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Announcements

� Project groups and preliminary topic ideas will be 
due on 6/30
– A week from Monday

– Be thinking about what you’d like to do

– Try to find others in the class who might are interested 
in the same topic!

� We’re almost ready to start using the class 
discussions on the mailing list
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Last Time

� Someone asked why, in the textbook’s example on page 98, A* search 
looks backward to nodes already explored

� The answer is: they don’ t appear to be using a closed list
� If g(n) ≥ 0 for all n, closed lists prevent such unnecessary work (back-

tracked states will always be toward the end of the queue)
� However, if -∞ ≤ g(n) ≤ ∞ (i.e. costs can be negative: or rewards!), you 

would want to allow such moves, and ignore the closed list
� Closed lists aren’ t necessary, but are often useful
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Searching: So Far

� We’ve discussed how to build goal-based and 
utility-based agents that search to solve problems

� We’ve also presented both uninformed (or blind) 
and informed (or heuristic) approaches for search

� What we’ve covered so far are called partial 
search strategies because they build up partial 
solutions, which could enumerate the entirestate 
space before finding a solution
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Complete Searching

� In complete search strategies, each state or node 
already represents a complete solution to the 
problem at hand
– We aren’ t concerned with finding a path
– We don’ t necessarily have a designated start state

� The objective is to search through the problem 
space to find other solutions that are better, the 
best, or that that meet certain criteria (goal)
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Optimization

� Problems where we search through complete 
solutions to find the best solution are often 
referred to as optimization problems

� Most optimization tasks belong to a class of 
computational problems called NP
– Non-deterministic Polynomial time solvable
– Computationally very hard problems
– For NP problems, state spaces are usually exponential, 

so partial search methods aren’ t time or space efficient
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Optimization Problems

� The k-Queens Problem
Of course this isn’ t real chess
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Optimization Problems

� Traveling Salesman Problem (TSP)
Perhaps most famous optimization problem
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Optimization Problems

� As it turns out, many real-world problems that we 
might want an agent to solve are similarly hard 
optimization problems:
– Bin-packing
– Logistics planning
– VLSI layout/circuit design
– Theorem-proving
– Navigation/routing
– Production scheduling, supply/demand
– Learning the parameters for a neural network

(more in the machine learning part of the course)
10

Optimization Problems

� For optimization (also sometimes called 
constraint-satisfaction) problems, there is a 
well-defined objective function that we are 
trying to optimize
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Satisfiability (SAT)

� Classic NP problem
� Belongs to a specific class of problems in the 

complexity hierarchy called NP-Complete
– Any other NP problem can be converted to a SAT 

problem in polynomial time

– These are the hardest problems we know of

P NP-
Complete

NP
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Satisfiability (SAT)

� Given:
– Some logical formula

– Array of binary variables in the formula

� Do:
– Find a truth assignment for all variables such 

that the formula is satisfied (true)
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Satisfiability (SAT)

� For example, given the following formula with 8 
clauses and 10 variables:

(x1 ∨ x2 ∨ ¬x3)  ∧ (x2 ∨ ¬x10)  ∧ (¬x2)  ∧
(x4 ∨ x10)  ∧ (x3 ∨ x5)  ∧ (¬x4 ∨ x2 ∨ ¬x5)  ∧
(¬x1 ∨ x6 ∨ ¬x7)  ∧ (x8 ∨ x10)

� We need to find a 10-bit array that makes the 
formula logically true
– There are 210 = 1024 possible binary arrays
– Only 32 of them (~3%) are solutions to this formula

A bit of notation: ∧ and ∨ are a logical “and” and “or” operators, respectively. A clause (x1 ∨ ¬x2) is 
true if either x1 = 1 or x2 = 0. The formula is satisfied when all of its clauses are true.
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Greedy Search for SAT

� A state is a 10-bit array x
– e.g. x = “0101010101”
– For this array, x1 = 0, x2 = 1, etc.

� Our actionsare to toggle any single bit in the array 
to generate a new one

� Our heuristic (or objective function) will be to 
minimize the number of clauses in the formula 
that are unsatisfied by the candidate string
– We are trying to satisfy them all
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Greedy Search for SAT
0000000000 | h=3
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Greedy Search for SAT
0000000000 | h=3

1000000000 | h=3

0000010000 | h=3

0100000000 | h=4

0000001000 | h=3

0010000000 | h=3

0000000100 | h=2

0001000000 | h=2

0000000010 | h=3

0000100000 | h=2

0000000001 | h=2
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Greedy Search for SAT
0000000000 | h=3

1000000000 | h=3

0000010000 | h=3

0100000000 | h=4

0000001000 | h=3

0010000000 | h=3

0000000100 | h=2

0001000000 | h=2

0000000010 | h=3

0000100000 | h=2

0000000001 | h=2

1000000100 | h=2

0000010100 | h=2

0100000100 | h=3

0000001100 | h=2

0000100100 | h=1

0000000101 | h=20001000100 | h=10000000110 | h=2

0010000000 | h=2
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Greedy Search for SAT

1000000000 | h=3

0000010000 | h=3

0100000000 | h=4

0000001000 | h=3

0010000000 | h=3 0001000000 | h=2

0000000010 | h=3

0000100000 | h=2

0000000001 | h=2

1000000100 | h=2

0000010100 | h=2

0100000100 | h=3

0000001100 | h=2

0010000000 | h=2

0000000110 | h=2

0000100100 | h=1

0000000101 | h=20001000100 | h=1

1011000100 | h=0

0011000100 | h=1……7 other  states…… ……7 other  states ……

……6 other  states …… ……6 other  states ……

0000000100 | h=2

0000000000 | h=3
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Greedy Search for SAT

� Greedy search does the right thing in that it does 
find a solution, and quickly

� However, it only expanded 4 out of the 35 that are 
generated in the search (i.e. placed in the open list)
– You may work it all out yourself if you wish

� It also found a direct route, and we don’ t need to 
remember the path, so storing all those extra states 
pretty much wasted space!
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Local Search

� Local search is a type of greedy, complete 
search that focuses on a specific (or local) 
part of the search space, rather than trying 
to branch out into all of it

� We only consider the neighborhood of the 
current state rather than the entire state 
space so far (so as not to waste time/space)
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Beam Search

� One type of local search is beam search, which 
uses f(n), as in other informed searches, but uses a 
“beam”  with a width w to restrict the possible 
search directions

� Only keep the w-best nodes in the open list, and 
throw the rest away

� More space efficient than best-first search, but can 
throw away nodes on a solution path
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Beam Search Example

# of states tested: 0, expanded: 0

f(n) = g(n) + h(n)
w = 2

1 5

3 97

8

4

S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

5

--S:8--

ClosedOpenState
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Beam Search Example

# of states tested: 1, expanded: 1 S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

SA:9, B:9, C:11S

--S:8--

ClosedOpenState

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2
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Beam Search Example

# of states tested: 2, expanded: 2 S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3SAB:9, G:10, D:∞, E:∞A

SA:9, B:9S

--S:8--

ClosedOpenState

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2
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Beam Search Example

# of states tested: 3, expanded: 3 S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

SABG:9B

SAB:9, G:10A

SA:9, B:9S

--S:8--

ClosedOpenState

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2
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Beam Search Example

# of states tested: 4, expanded: 3

SABG:9B

Goal!!G

SAB:9, G:10A

SA:9, B:9S

--S:8--

ClosedOpenState

S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

Space used (Beam): 4
Space used (A*): 7

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2
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Hill-Climbing (HC)

� The most common local strategy is called 
hill-climbing, if the task is to maximize the 
objective function
– Called gradient descent if we are minimizing

� We consider all the successors of the 
current node, expand the best one, and 
throw the rest away
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Hill-Climbing (HC)

� HC chooses what looks best locally like greedy 
search, but cannot backtrack or consider an 
alternative path (there is no open list)

� HC is very simple and space efficient
– Like beam search with w = 1

– However, a closed list can become very large if used 
(but it usually isn’ t)
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Hill-Climbing (HC)

CURRENT = i ni t i al St at e  / /  i ni t i al i ze t he sear ch

l oop f or ever  {           / /  l oop unt i l  opt i mum i s f ound

NEXT = hi ghest - val ued successor  of  CURRENT

i f  scor e( CURRENT)  bet t er  t han scor e( NEXT)  t hen

r et ur n CURRENT

el se

CURRENT = NEXT

}

/ /  we can modi f y t hi s al gor i t hm t o t est  i f  whet her  or  

/ /  not  CURRENT i s a goal  st at e,  i f  opt i mal i t y i sn’ t

/ /  i mpor t ant ,  as wi t h k- Queens or  SAT
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Hill-Climbing for SAT

� How to represent the problem?
– States, actions, and objective function

� We’ve seen this before…
– States: binary array that correspond to variable

truth assignments (e.g. “1010101010”  for 10 variables)

– Actions: toggle a single bit on/off

– Objective function: to minimize the number of 
unsatisfied clauses
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Hill-Climbing for k-Queens

� How to represent the problem?
– States, actions, and objective function

� This is a little tricky…
– States: k×k chess board with k queens

– Actions: move a single queen to any of its legal 
positions up, down, or diagonally

– Objective function: minimize the number of conflicts 
between queens
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Hill-Climbing for TSP

� How to represent the problem?
– States, actions, and objective function

� This is even trickier…
– States: an n-city tour (e.g. 1-4-6-2-5-3 is a 6-city tour)

– Actions: swap any two cities in the tour 
(so the tour is still valid given the problem definition)

– Objective function: minimize the total cost or length 
of the entire tour

33

Hill-Climbing Issues

� The solution found by HC is totally determined 
by the initial state
– How should it be initialized?

– Should it be fixed or random?

– Maybe we just want to get started somewhere in the 
search space…

� Can frequently get stuck in local optima or
plateaux, without finding the global optimum
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Objective Surfaces

The objective surface is a 
plot of the objective 
function’s “ landscape”

The various levels of 
optimality can be seen on 
the objective surface

Getting stuck in local optima 
can be a major problem!

f(y)

y

Global maximum

Plateau

Local
maxima
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Example Objective Surface

f(x,y) = - (|x| - 10) ×××× cos(x) – y ×××× cos(|y| - 10)
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Escaping Local Optima

� Searching with HC is like scaling Mount Everest 
in a thick fog with one arm and amnesia

� Local optima are OK, but sometimes we want to 
find the absolute best solution

�
Ch. 5 & 6 of How to Solve It: Modern Heuristics
have a better discussion of techniques for escaping 
local optima than AI: A Modern Approach
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Escaping Local Optima

� There are several ways we can try to avoid 
local optima and find more globally optimal 
solutions:
– Random Restarting

– Simulated Annealing

– Tabu Search

38

Random Restarting

� If at first you don’ t succeed, try, try again!

� The idea here is to run the standard HC search 
algorithm several times, each with different, 
randomized initial states

� Of course, depending on the state space, this can 
be a difficult task in and of itself… not all states 
that can be generated are legal for some problems
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Random Restarting

� If the object is to find a particular solution 
(or that reaches a certain goal), we can stop 
when it is found

� If the aim is to find the best solution 
(optimize), repeat for a fixed number of 
trials and return the best found

40

Random Restarting

Since HC is a local 
search strategy, trying 
multiple initial states 
allows us to locally 
explore a wider range 
of the search space

If we pick lucky initial 
states, we can find the 
global optimum!

f(y)

y

BINGO!!
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Random Restarting

� As the number of trials increases, the probability 
of finding a solution (or the global optimum) 
approaches 1.0
– This is for the trivial reason that, given enough restarts, 

we’ ll ultimately generate the optimum

� But we don’ t want to keep restarting ad infinitum
– That would defeat the point of local search!

42

Random Restarting

� It turns out that, if each HC run has a probability p
of success, the number of restarts needed is 
approximately 1/p

� For example, with 8-Queens, there is a probability 
of success p ≈ 0.14 ≈ 1/7

� So, on average, we would need only 7 randomly-
initialized trails of the basic HC search to find a 
solution
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Random Restarting

� Random restart approaches are built in to many 
state-of-the-art constraint satisfaction algorithms

� They’ve been shown especially useful in systems 
geared toward solving hard SAT problems
– GSAT

– Davis-Putnam (DPLL with restarts)

44

Simulated Annealing (SA)

� We don’ t always want to take the best local move, 
sometimes we might want to:
– Try taking uphill moves that aren’ t the best

– Actually go downhill to escape local optima

� We can alter HC to allow for these possibilities:
– Modify how successor states are selected

– Change the criteria for accepting a successor

45

Simulated Annealing (SA)

� With standard Hill-Climbing:
– We explore all of the current state’s actions/successors

– Accept the best one

� Perhaps we can modify this to account for the 
other kinds of moves we’d like to make:
– Choose one action/successor at random

– If it is better, accept it, otherwise accept with some 
probability p
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Simulated Annealing (SA)

� These changes allow us to take a variety of new 
moves, but has problems:
– Chance of taking a bad move is the same at the 

beginning of the search as at the end

– The magnitude of a move’s effect is ignored
� We can replace p with a temperatureT which 

decreases over time
� Since T “cools off”  over the course of search, we 

call this approach simulated annealing
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Simulated Annealing (SA)

Simulated annealingAnnealing

Control parameter TTemperature

Local searchRapid quenching

Goal or optimumGround state

Objective functionEnergy

Feasible solutionPhysical state

Optimization problemPhysical system

Concepts behind the SA analogy:

48

Simulated Annealing (SA)

Let ∆E = score(NEXT) – score(CURRENT)
p = e∆E/T (Boltzman equation)

� ∆E → -� ,  p → 0
The worse a move is, the probability of taking it 
decreases exponentially

� Time → � , T → 0
As time increases, the temperature decreases, in accordance 
with a cooling schedule

� T → 0,  p → 0
As temperature decreases, the probability of taking a bad 
move also decreases
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Simulated Annealing (SA)

CURRENT = i ni t i al St at e  / /  i ni t i al i ze t he sear ch

f or  TI ME = 1 t o �� �� do {

T = schedul e( TI ME)    / /  el apsed t i me ef f ect s schedul e

i f  T = 0 t hen        / /  T has t ot al l y “ cool ed”

r et ur n CURRENT

NEXT = r andom successor  of  CURRENT
�� ��

E = scor e( NEXT)  – scor e( CURRENT)

i f  
�� ��

E > 0 t hen

CURRENT = NEXT   / /  t ake al l  “ good”  moves

el se

CURRENT = NEXT wi t h pr obabi l i t y e^ (
�� ��

E/ T)

}
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Simulated Annealing (SA)

� Can perform downhill and locally sub-optimal 
moves, unlike HC

� Chance of finding global optimum increased

� SA is fast in practice
– Only one random neighbor generated per step
– Only score one successor instead of whole 

neighborhood
– Can use more complex heuristics
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Simulated Annealing (SA)

� According to thermodynamics, to grow a crystal:
– Start by heating a row of materials in a molten state
– The crystal melt is cooled until it is frozen in
– If the temperature is reduced too quickly, irregularities occur and it 

does not reach its ground state (e.g. more energy is trapped in the 
structure)

� By analogy, SA relies on a good cooling schedule, which 
maps the current time to a temperature T, to find the 
optimal solution
– Usually exponential
– Can be very difficult to devise
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Simulated Annealing (SA)

� SA was first used to solve layout problems for 
VLSI (very large-scale integration) computer 
architectures in the 1980s 
– Optimally fitting hundreds of thousands of transistors 

into a single compact microchip

� It is also proven useful for the TSP, and is used in 
many factory scheduling software systems
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Tabu Search

� Tabu search is a way to add memory to a local search 
strategy, and force it to explore new areas of the search 
space

� We’ve seen state-based memory before with the closed list, 
but this memory:
– Tracks actions taken rather than states expanded
– Is designed to be a limited (short-term) memory

� Moves that have been seen or taken too recently or too 
often become tabu (or taboo)
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Tabu Search

� We maintain an array M which tracks time-stamps 
of the actions we’ve taken
– We store in location Mi the most recent time action i

was taken in the search
� The key parameter of tabu search is the horizon: 

how long should a certain remain tabu?
– If we set this too small, we may default to normal HC 

and stay stuck in local optima
– If we set it too large, we may run out of legal moves!
– Usually problem-dependent
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Tabu Search

CURRENT = i ni t i al St at e   / /  i ni t i al i ze sear ch

BEST = CURRENT   / /  r et ai n best  sol ut i on so f ar

f or  TI ME = 1 t o MAX_TI ME do {

NEXT = best  l egal  successor  of  CURRENT

ACTI ON = act i on t hat  gener at ed NEXT

M[ ACTI ON]  = t abu i nf o based on hor i zon & TI ME

CURRENT = NEXT        / /  t ake next  move r egar dl ess

i f  scor e( CURRENT)  bet t er  t han scor e( BEST)  t hen

BEST = CURRENT

}

r et ur n BEST
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Tabu Search

� Instead of an array, memory can also be 
stored in a queue, or tabu list:
– As a move is made, place it in the queue

– When the queue becomes full, the oldest move 
is removed and becomes legal again

– The sizeof the queue is the horizon
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Tabu Search

� Since we take the best non-tabu move at 
each step, we are allowed to take backward 
steps or just OK moves, as with simulated 
annealing

� Tabu search can also be faster than standard 
HC, as it doesn’ t have to evaluate all 
action/successors, just those that are legal
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Tabu Search

� Breaking rules
– Since we retain the best solution so far, we 

sometimes might want to make tabu moves 
anyway… if they are better than anything 
we’ve previously seen

– This is called the aspriation critera, if a tabu
solution aspires to be better than all previously 
seen solutions
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Summary

� Local search methods are more appropriate for 
solving complete search and optimization 
problems
– State spaces can be prohibitively large

– The goal is different than with partial search strategies

� However, basic hill-climbing can become stuck in 
local optima rather than finding the best solution
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Summary

� There are several effective ways of escaping 
local optima for local searching, which 
exploit different properties:
– Random restarting tries several times from 

different parts of the search space
– Simulated annealing allows for a variety of 

moves by searching stochastically
– Tabu search is deterministic, but incorporates 

memory to force exploration of the state space


