
1

1

Optimization

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements

� Project groups and preliminary topic ideas will be
due on 6/30
– A week from Monday

– Be thinking about what you’d like to do

– Try to find others in the class who might are interested
in the same topic!

� We’re almost ready to start using the class
discussions on the mailing list

3

Last Time

� Someone asked why, in the textbook’s example on page 98, A* search
looks backward to nodes already explored

� The answer is: they don’ t appear to be using a closed list
� If g(n) ≥ 0 for all n, closed lists prevent such unnecessary work (back-

tracked states will always be toward the end of the queue)
� However, if -∞ ≤ g(n) ≤ ∞ (i.e. costs can be negative: or rewards!), you

would want to allow such moves, and ignore the closed list
� Closed lists aren’ t necessary, but are often useful

4

Searching: So Far

� We’ve discussed how to build goal-based and
utility-based agents that search to solve problems

� We’ve also presented both uninformed (or blind)
and informed (or heuristic) approaches for search

� What we’ve covered so far are called partial
search strategies because they build up partial
solutions, which could enumerate the entirestate
space before finding a solution

5

Complete Searching

� In complete search strategies, each state or node
already represents a complete solution to the
problem at hand
– We aren’ t concerned with finding a path
– We don’ t necessarily have a designated start state

� The objective is to search through the problem
space to find other solutions that are better, the
best, or that that meet certain criteria (goal)

6

Optimization

� Problems where we search through complete
solutions to find the best solution are often
referred to as optimization problems

� Most optimization tasks belong to a class of
computational problems called NP
– Non-deterministic Polynomial time solvable
– Computationally very hard problems
– For NP problems, state spaces are usually exponential,

so partial search methods aren’ t time or space efficient

2

7

Optimization Problems

� The k-Queens Problem
Of course this isn’ t real chess

8

Optimization Problems

� Traveling Salesman Problem (TSP)
Perhaps most famous optimization problem

9

Optimization Problems

� As it turns out, many real-world problems that we
might want an agent to solve are similarly hard
optimization problems:
– Bin-packing
– Logistics planning
– VLSI layout/circuit design
– Theorem-proving
– Navigation/routing
– Production scheduling, supply/demand
– Learning the parameters for a neural network

(more in the machine learning part of the course)
10

Optimization Problems

� For optimization (also sometimes called
constraint-satisfaction) problems, there is a
well-defined objective function that we are
trying to optimize

11

Satisfiability (SAT)

� Classic NP problem
� Belongs to a specific class of problems in the

complexity hierarchy called NP-Complete
– Any other NP problem can be converted to a SAT

problem in polynomial time

– These are the hardest problems we know of

P NP-
Complete

NP

12

Satisfiability (SAT)

� Given:
– Some logical formula

– Array of binary variables in the formula

� Do:
– Find a truth assignment for all variables such

that the formula is satisfied (true)

3

13

Satisfiability (SAT)

� For example, given the following formula with 8
clauses and 10 variables:

(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ ¬x10) ∧ (¬x2) ∧
(x4 ∨ x10) ∧ (x3 ∨ x5) ∧ (¬x4 ∨ x2 ∨ ¬x5) ∧
(¬x1 ∨ x6 ∨ ¬x7) ∧ (x8 ∨ x10)

� We need to find a 10-bit array that makes the
formula logically true
– There are 210 = 1024 possible binary arrays
– Only 32 of them (~3%) are solutions to this formula

A bit of notation: ∧ and ∨ are a logical “and” and “or” operators, respectively. A clause (x1 ∨ ¬x2) is
true if either x1 = 1 or x2 = 0. The formula is satisfied when all of its clauses are true.

14

Greedy Search for SAT

� A state is a 10-bit array x
– e.g. x = “0101010101”
– For this array, x1 = 0, x2 = 1, etc.

� Our actionsare to toggle any single bit in the array
to generate a new one

� Our heuristic (or objective function) will be to
minimize the number of clauses in the formula
that are unsatisfied by the candidate string
– We are trying to satisfy them all

15

Greedy Search for SAT
0000000000 | h=3

16

Greedy Search for SAT
0000000000 | h=3

1000000000 | h=3

0000010000 | h=3

0100000000 | h=4

0000001000 | h=3

0010000000 | h=3

0000000100 | h=2

0001000000 | h=2

0000000010 | h=3

0000100000 | h=2

0000000001 | h=2

17

Greedy Search for SAT
0000000000 | h=3

1000000000 | h=3

0000010000 | h=3

0100000000 | h=4

0000001000 | h=3

0010000000 | h=3

0000000100 | h=2

0001000000 | h=2

0000000010 | h=3

0000100000 | h=2

0000000001 | h=2

1000000100 | h=2

0000010100 | h=2

0100000100 | h=3

0000001100 | h=2

0000100100 | h=1

0000000101 | h=20001000100 | h=10000000110 | h=2

0010000000 | h=2

18

Greedy Search for SAT

1000000000 | h=3

0000010000 | h=3

0100000000 | h=4

0000001000 | h=3

0010000000 | h=3 0001000000 | h=2

0000000010 | h=3

0000100000 | h=2

0000000001 | h=2

1000000100 | h=2

0000010100 | h=2

0100000100 | h=3

0000001100 | h=2

0010000000 | h=2

0000000110 | h=2

0000100100 | h=1

0000000101 | h=20001000100 | h=1

1011000100 | h=0

0011000100 | h=1……7 other states…… ……7 other states ……

……6 other states …… ……6 other states ……

0000000100 | h=2

0000000000 | h=3

4

19

Greedy Search for SAT

� Greedy search does the right thing in that it does
find a solution, and quickly

� However, it only expanded 4 out of the 35 that are
generated in the search (i.e. placed in the open list)
– You may work it all out yourself if you wish

� It also found a direct route, and we don’ t need to
remember the path, so storing all those extra states
pretty much wasted space!

20

Local Search

� Local search is a type of greedy, complete
search that focuses on a specific (or local)
part of the search space, rather than trying
to branch out into all of it

� We only consider the neighborhood of the
current state rather than the entire state
space so far (so as not to waste time/space)

21

Beam Search

� One type of local search is beam search, which
uses f(n), as in other informed searches, but uses a
“beam” with a width w to restrict the possible
search directions

� Only keep the w-best nodes in the open list, and
throw the rest away

� More space efficient than best-first search, but can
throw away nodes on a solution path

22

Beam Search Example

of states tested: 0, expanded: 0

f(n) = g(n) + h(n)
w = 2

1 5

3 97

8

4

S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

5

--S:8--

ClosedOpenState

23

Beam Search Example

of states tested: 1, expanded: 1 S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

SA:9, B:9, C:11S

--S:8--

ClosedOpenState

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2

24

Beam Search Example

of states tested: 2, expanded: 2 S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3SAB:9, G:10, D:∞, E:∞A

SA:9, B:9S

--S:8--

ClosedOpenState

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2

5

25

Beam Search Example

of states tested: 3, expanded: 3 S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

SABG:9B

SAB:9, G:10A

SA:9, B:9S

--S:8--

ClosedOpenState

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2

26

Beam Search Example

of states tested: 4, expanded: 3

SABG:9B

Goal!!G

SAB:9, G:10A

SA:9, B:9S

--S:8--

ClosedOpenState

S
h=8

A
h=8

E
h= �

D
h= �

B
h=4

G
h=0

C
h=3

Space used (Beam): 4
Space used (A*): 7

1 5

3 97

8

4 5

f(n) = g(n) + h(n)
w = 2

27

Hill-Climbing (HC)

� The most common local strategy is called
hill-climbing, if the task is to maximize the
objective function
– Called gradient descent if we are minimizing

� We consider all the successors of the
current node, expand the best one, and
throw the rest away

28

Hill-Climbing (HC)

� HC chooses what looks best locally like greedy
search, but cannot backtrack or consider an
alternative path (there is no open list)

� HC is very simple and space efficient
– Like beam search with w = 1

– However, a closed list can become very large if used
(but it usually isn’ t)

29

Hill-Climbing (HC)

CURRENT = i ni t i al St at e / / i ni t i al i ze t he sear ch

l oop f or ever { / / l oop unt i l opt i mum i s f ound

NEXT = hi ghest - val ued successor of CURRENT

i f scor e(CURRENT) bet t er t han scor e(NEXT) t hen

r et ur n CURRENT

el se

CURRENT = NEXT

}

/ / we can modi f y t hi s al gor i t hm t o t est i f whet her or

/ / not CURRENT i s a goal st at e, i f opt i mal i t y i sn’ t

/ / i mpor t ant , as wi t h k- Queens or SAT

30

Hill-Climbing for SAT

� How to represent the problem?
– States, actions, and objective function

� We’ve seen this before…
– States: binary array that correspond to variable

truth assignments (e.g. “1010101010” for 10 variables)

– Actions: toggle a single bit on/off

– Objective function: to minimize the number of
unsatisfied clauses

6

31

Hill-Climbing for k-Queens

� How to represent the problem?
– States, actions, and objective function

� This is a little tricky…
– States: k×k chess board with k queens

– Actions: move a single queen to any of its legal
positions up, down, or diagonally

– Objective function: minimize the number of conflicts
between queens

32

Hill-Climbing for TSP

� How to represent the problem?
– States, actions, and objective function

� This is even trickier…
– States: an n-city tour (e.g. 1-4-6-2-5-3 is a 6-city tour)

– Actions: swap any two cities in the tour
(so the tour is still valid given the problem definition)

– Objective function: minimize the total cost or length
of the entire tour

33

Hill-Climbing Issues

� The solution found by HC is totally determined
by the initial state
– How should it be initialized?

– Should it be fixed or random?

– Maybe we just want to get started somewhere in the
search space…

� Can frequently get stuck in local optima or
plateaux, without finding the global optimum

34

Objective Surfaces

The objective surface is a
plot of the objective
function’s “ landscape”

The various levels of
optimality can be seen on
the objective surface

Getting stuck in local optima
can be a major problem!

f(y)

y

Global maximum

Plateau

Local
maxima

35

Example Objective Surface

f(x,y) = - (|x| - 10) ×××× cos(x) – y ×××× cos(|y| - 10)

36

Escaping Local Optima

� Searching with HC is like scaling Mount Everest
in a thick fog with one arm and amnesia

� Local optima are OK, but sometimes we want to
find the absolute best solution

�
Ch. 5 & 6 of How to Solve It: Modern Heuristics
have a better discussion of techniques for escaping
local optima than AI: A Modern Approach

7

37

Escaping Local Optima

� There are several ways we can try to avoid
local optima and find more globally optimal
solutions:
– Random Restarting

– Simulated Annealing

– Tabu Search

38

Random Restarting

� If at first you don’ t succeed, try, try again!

� The idea here is to run the standard HC search
algorithm several times, each with different,
randomized initial states

� Of course, depending on the state space, this can
be a difficult task in and of itself… not all states
that can be generated are legal for some problems

39

Random Restarting

� If the object is to find a particular solution
(or that reaches a certain goal), we can stop
when it is found

� If the aim is to find the best solution
(optimize), repeat for a fixed number of
trials and return the best found

40

Random Restarting

Since HC is a local
search strategy, trying
multiple initial states
allows us to locally
explore a wider range
of the search space

If we pick lucky initial
states, we can find the
global optimum!

f(y)

y

BINGO!!

41

Random Restarting

� As the number of trials increases, the probability
of finding a solution (or the global optimum)
approaches 1.0
– This is for the trivial reason that, given enough restarts,

we’ ll ultimately generate the optimum

� But we don’ t want to keep restarting ad infinitum
– That would defeat the point of local search!

42

Random Restarting

� It turns out that, if each HC run has a probability p
of success, the number of restarts needed is
approximately 1/p

� For example, with 8-Queens, there is a probability
of success p ≈ 0.14 ≈ 1/7

� So, on average, we would need only 7 randomly-
initialized trails of the basic HC search to find a
solution

8

43

Random Restarting

� Random restart approaches are built in to many
state-of-the-art constraint satisfaction algorithms

� They’ve been shown especially useful in systems
geared toward solving hard SAT problems
– GSAT

– Davis-Putnam (DPLL with restarts)

44

Simulated Annealing (SA)

� We don’ t always want to take the best local move,
sometimes we might want to:
– Try taking uphill moves that aren’ t the best

– Actually go downhill to escape local optima

� We can alter HC to allow for these possibilities:
– Modify how successor states are selected

– Change the criteria for accepting a successor

45

Simulated Annealing (SA)

� With standard Hill-Climbing:
– We explore all of the current state’s actions/successors

– Accept the best one

� Perhaps we can modify this to account for the
other kinds of moves we’d like to make:
– Choose one action/successor at random

– If it is better, accept it, otherwise accept with some
probability p

46

Simulated Annealing (SA)

� These changes allow us to take a variety of new
moves, but has problems:
– Chance of taking a bad move is the same at the

beginning of the search as at the end

– The magnitude of a move’s effect is ignored
� We can replace p with a temperatureT which

decreases over time
� Since T “cools off” over the course of search, we

call this approach simulated annealing

47

Simulated Annealing (SA)

Simulated annealingAnnealing

Control parameter TTemperature

Local searchRapid quenching

Goal or optimumGround state

Objective functionEnergy

Feasible solutionPhysical state

Optimization problemPhysical system

Concepts behind the SA analogy:

48

Simulated Annealing (SA)

Let ∆E = score(NEXT) – score(CURRENT)
p = e∆E/T (Boltzman equation)

� ∆E → -� , p → 0
The worse a move is, the probability of taking it
decreases exponentially

� Time → � , T → 0
As time increases, the temperature decreases, in accordance
with a cooling schedule

� T → 0, p → 0
As temperature decreases, the probability of taking a bad
move also decreases

9

49

Simulated Annealing (SA)

CURRENT = i ni t i al St at e / / i ni t i al i ze t he sear ch

f or TI ME = 1 t o �� �� do {

T = schedul e(TI ME) / / el apsed t i me ef f ect s schedul e

i f T = 0 t hen / / T has t ot al l y “ cool ed”

r et ur n CURRENT

NEXT = r andom successor of CURRENT
�� ��

E = scor e(NEXT) – scor e(CURRENT)

i f
�� ��

E > 0 t hen

CURRENT = NEXT / / t ake al l “ good” moves

el se

CURRENT = NEXT wi t h pr obabi l i t y e^ (
�� ��

E/ T)

}

50

Simulated Annealing (SA)

� Can perform downhill and locally sub-optimal
moves, unlike HC

� Chance of finding global optimum increased

� SA is fast in practice
– Only one random neighbor generated per step
– Only score one successor instead of whole

neighborhood
– Can use more complex heuristics

51

Simulated Annealing (SA)

� According to thermodynamics, to grow a crystal:
– Start by heating a row of materials in a molten state
– The crystal melt is cooled until it is frozen in
– If the temperature is reduced too quickly, irregularities occur and it

does not reach its ground state (e.g. more energy is trapped in the
structure)

� By analogy, SA relies on a good cooling schedule, which
maps the current time to a temperature T, to find the
optimal solution
– Usually exponential
– Can be very difficult to devise

52

Simulated Annealing (SA)

� SA was first used to solve layout problems for
VLSI (very large-scale integration) computer
architectures in the 1980s
– Optimally fitting hundreds of thousands of transistors

into a single compact microchip

� It is also proven useful for the TSP, and is used in
many factory scheduling software systems

53

Tabu Search

� Tabu search is a way to add memory to a local search
strategy, and force it to explore new areas of the search
space

� We’ve seen state-based memory before with the closed list,
but this memory:
– Tracks actions taken rather than states expanded
– Is designed to be a limited (short-term) memory

� Moves that have been seen or taken too recently or too
often become tabu (or taboo)

54

Tabu Search

� We maintain an array M which tracks time-stamps
of the actions we’ve taken
– We store in location Mi the most recent time action i

was taken in the search
� The key parameter of tabu search is the horizon:

how long should a certain remain tabu?
– If we set this too small, we may default to normal HC

and stay stuck in local optima
– If we set it too large, we may run out of legal moves!
– Usually problem-dependent

10

55

Tabu Search

CURRENT = i ni t i al St at e / / i ni t i al i ze sear ch

BEST = CURRENT / / r et ai n best sol ut i on so f ar

f or TI ME = 1 t o MAX_TI ME do {

NEXT = best l egal successor of CURRENT

ACTI ON = act i on t hat gener at ed NEXT

M[ACTI ON] = t abu i nf o based on hor i zon & TI ME

CURRENT = NEXT / / t ake next move r egar dl ess

i f scor e(CURRENT) bet t er t han scor e(BEST) t hen

BEST = CURRENT

}

r et ur n BEST

56

Tabu Search

� Instead of an array, memory can also be
stored in a queue, or tabu list:
– As a move is made, place it in the queue

– When the queue becomes full, the oldest move
is removed and becomes legal again

– The sizeof the queue is the horizon

57

Tabu Search

� Since we take the best non-tabu move at
each step, we are allowed to take backward
steps or just OK moves, as with simulated
annealing

� Tabu search can also be faster than standard
HC, as it doesn’ t have to evaluate all
action/successors, just those that are legal

58

Tabu Search

� Breaking rules
– Since we retain the best solution so far, we

sometimes might want to make tabu moves
anyway… if they are better than anything
we’ve previously seen

– This is called the aspriation critera, if a tabu
solution aspires to be better than all previously
seen solutions

59

Summary

� Local search methods are more appropriate for
solving complete search and optimization
problems
– State spaces can be prohibitively large

– The goal is different than with partial search strategies

� However, basic hill-climbing can become stuck in
local optima rather than finding the best solution

60

Summary

� There are several effective ways of escaping
local optima for local searching, which
exploit different properties:
– Random restarting tries several times from

different parts of the search space
– Simulated annealing allows for a variety of

moves by searching stochastically
– Tabu search is deterministic, but incorporates

memory to force exploration of the state space

