Optimization
| | B

Burr H. Settles

CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

= Announcements

m Project groups and preliminary topic ideas will be
due on 6/30
— A week from Monday
. — Bethinking about what you'd like to do

— Try to find othersin the class who might are interested
in the same topic!

m We'reamost ready to start using the class
discussions on the mailing list

w LastTime

m Someone asked why, in the textbook’ s example on page 98, A* search
looks backward to nodes already explored

m Theanswer is: they don’t appear to be using a closed list

m If g(n) =2 Oforall n, closed lists prevent such unnecessary work (back-
tracked states will always be toward the end of the queue)
- m However, if -0 < g(n) < oo (i.e. costs can be negative: or rewards!), you
would want to allow such moves, and ignore the closed list
m Closed lists aren’t necessary, but are often useful

(¢) After expanding Sibiu Arad

Siu
447=118+329 449=75+374

Gt T Cratod > Gied

646-280+366 415-230+176 671-201+380 413-220+193 3

= Searching: So Far

m We' ve discussed how to build goal-based and
utility-based agents that search to solve problems

- m WEe ve also presented both uninformed (or blind)
and informed (or heuristic) approaches for search

m What we' ve covered so far are called partia
search strategies because they build up partial
solutions, which could enumerate the entire state
space before finding a solution

= Complete Searching

m In complete search strategies, each state or node
aready represents a complete solution to the
problem at hand

— Wearen't concerned with finding a path
- — Wedon't necessarily have a designated start state

m The objectiveisto search through the problem
spaceto find other solutions that are better, the
best, or that that meet certain criteria (goa)

= Optimization

m Problems where we search through complete
solutions to find the best solution are often
referred to as optimization problems

- m Most optimization tasks belong to a class of
computational problems called NP
— Non-deterministic Polynomial time solvable
— Computationally very hard problems
— For NP problems, state spaces are usually exponential,
so partial search methods aren’t time or space efficient

6

Optimization Problems

m Traveling Salesman Problem (TSP)

| |
= Optimization Problems
.. = The k-Queens Problem
Of course thisisn’t real chess
= —
[]
-
7
| .
| |
= Optimization Problems
m Asit turns out, many real-world problems that we
L might want an agent to solve are similarly hard
optimization problems:
— Bin-packing
- — Logistics planning
— VLS layout/circuit design
. — Theorem-proving
— Navigation/routing
— Production scheduling, supply/demand
— Learning the parameters for a neural network
. (more in the machine learning part of the course)
| -
| |
= Satisfiability (SAT)
m Classic NP problem
i

TR B

m Belongsto a specific class of problemsin the
complexity hierarchy called NP-Complete

— Any other NP problem can be converted to a SAT
problem in polynomial time
— These are the hardest problems we know of

11

- Perhaps most famous optimization problem
I
m
e
| -
| |
= Optimization Problems
- T For optimization (also sometimes called
congtraint-satisfaction) problems, thereisa
well-defined objective function that we are
B tryingto optimize
o
.
| -
| |
= Satisfiability (SAT)
- T Given: _
— Some logica formula
— Array of binary variablesin the formula
|
m Do:
- — Find atruth assignment for al variables such
that the formulais satisfied (true)
e
| -

TR 0 |

Satisfiability (SAT)

m For example, given thefollowing formulawith 8
clauses and 10 variables:
(X, 0% O=%g) O (X, O%yg) O (=x%) O
(%, O%0) O (X3 Ox5) O (=%, Ox, O-%5) O
(=%, O%g O=%7) O (Xg D%
m We need to find a 10-bit array that makes the
formulalogicaly true
— There are 210 = 1024 possible binary arrays
— Only 32 of them (~3%) are solutions to this formula

A hit of notation: [1and Care alogical “and” and “or" operators, respectively. A clause (x, [1-x,) is
trueif either x, = 1 or x, = 0. The formula is satisfied when all of its clauses are true.

13

TR 0 |

Greedy Search for SAT

m A stateisa10-bit array x
- eg. x="0101010101"
— For thisarray, x, = 0, X, = 1, etc.
m Our actions areto toggle any single bit in the array
to generate anew one
m Our heuristic (or objective function) will beto
minimize the number of clausesin the formula
that are unsatisfied by the candidate string

TR B

-
= Greedy Search for SAT
i
|
2
-
| .
-
= Greedy Search for SAT
. [|h:3]:l, |h:4U 0 \h:au |h:i 1h=2
|h=3 |h=3

[0000010100 | h=2] 0000001100 | h=2] [0000000110 | h=2] [0001000100 | h=1] [0000000101 | h=2]

17

TR B

— We aretrying to satisfy them all
| |
= Greedy Search for SAT
0000000000 | h=3
. |h=3 |h=a u 0 \h:au |h=2 1h=2
|h=3 |h=3] [|h=2] [|h=3 |h=2]
|
2
e
|
| |
= Greedy Search for SAT
0000000000 | h=3
] 1h=3 Ih=4 |h=3 |h=2 |h=2

Greedy Search for SAT

w Local Search

m Local search isatype of greedy, complete
search that focuses on a specific (or local)
part of the search space, rather than trying

w to branch out into all of it

m We only consider the neighborhood of the
current state rather than the entire state
space so far (so as not to waste time/space)

= Beam Search Example

f(n) = g(n) + h(n)

w=2

of statestested: 0, expanded: 0

[Closed |

| State l Open
[ss

-
m Greedy search doestheright thing in that it does
find asolution, and quickly
. m However, it only expanded 4 out of the 35 that are
generated in the search (i.e. placed in the open list)
— You may work it all out yourself if you wish
m It also found adirect route, and we don’t need to
remember the path, so storing all those extra states
pretty much wasted space!
19
I
= Beam Search
m Onetype of local search is beam search, which
uses f(n), asin other informed searches, but uses a
“beam” with awidth w to restrict the possible
- search directions
m Only keep the w-best nodes in the open list, and
throw the rest away
m More space efficient than best-first search, but can
throw away nodes on a solution path
| -
= Beam Search Example
fn) = g(n) + h(n)
w=2
of statestested: 1, expanded: 1
State | Open Closed
_ Mo

3 7

23

= Beam Search Example

f(n) = g(n) + h(n)

w=2
of statestested: 2, expanded: 2
State | Open Closed
- s8 N
- s A9, B9 s
A B9, G:10, D: @, E: o0 SA

Beam Search Example

f(n) = g(n) + h(n)
w=2
of statestested: 3, expanded: 3

State | Open Closed
S8 -

S A:9,B:9 S

A B:9, G:10 SA
G:9 SAB

25

= Beam Search Example

f(n) = g(n) + h(n)
w=2
of statestested: 4, expanded: 3

State | Open Closed
- S8

S A:9,B:9 S

A B:9, G:10 SA

B G:9 SAB
G Goal!!

Space used (Beam): 4
Space used (A*): 7

Hill-Climbing (HC)

m The most common local strategy is called
hill-climbing, if the task is to maximize the
objective function
— Called gradient descent if we are minimizing

m We consider all the successors of the
current node, expand the best one, and
throw the rest away

27

Hill-Climbing (HC)

m HC chooses what 1ooks best locally like greedy
search, but cannot backtrack or consider an
aternative path (thereis no open list)

m HC isvery simple and space efficient
— Like beam search withw =1

— However, aclosed list can become very large if used
(but it usually isn't)

Hill-Climbing (HC)

CURRENT = initial State // initialize the search
| oop forever { /1 loop until optinumis found
NEXT = hi ghest -val ued successor of CURRENT
if score(CURRENT) better than score(NEXT) then
return CURRENT
el se
CURRENT = NEXT
}
/1 we can nodify this algorithmto test if whether or
/1 not CURRENT is a goal state, if optimality isn't
/1l inportant, as with k-Queens or SAT

29

Hill-Climbing for SAT

m How to represent the problem?
— States, actions, and objective function

m WEe ve seen this before...

— States: binary array that correspond to variable
truth assignments (e.g. “1010101010” for 10 variables)

— Actions: toggle a single bit on/off

— Objective function: to minimize the number of
unsatisfied clauses

TR B

Hill-Climbing for k-Queens

m How to represent the problem?
— States, actions, and objective function

m Thisisalittletricky...
— States: kxk chess board with k queens
— Actions: move asingle queen to any of itslegal
positions up, down, or diagonally
— Objective function: minimize the number of conflicts
between queens

31

TR B

Hill-Climbing for TSP

m How to represent the problem?
— States, actions, and objective function

m Thisiseven trickier...
— States: an n-city tour (e.g. 1-4-6-2-5-3 is a 6-city tour)
— Actions: swap any two citiesin the tour
(so the tour is gtill valid given the problem definition)

— Objective function: minimize the total cost or length
of the entire tour

TR B

Hill-Climbing Issues

m The solution found by HC istotally determined
by theinitial state
— How should it beinitialized?
— Should it be fixed or random?

— Maybe we just want to get started somewhere in the
search space...

m Can frequently get stuck in local optima or
plateaux, without finding the global optimum

33

TR B

Objective Surfaces

The objective surfaceisa
plot of the objective f
function’s “landscape’

Global maximum

The various levels of
optimality can be seen on
the objective surface

Getting stuck in local optima
can be amajor problem!

TR B

Example Objective Surface

f(xy) =- (Ix] - 10) x cos(x) —y x cos(ly| - 10)

35

Escaping Local Optima

% Searching with HC is like scaling Mount Everest
in a thick fog with one arm and amnesia

m Local optimaare OK, but sometimes we want to
find the absolute best solution

Ch. 5 & 6 of How to Solve It: Modern Heuristics
have a better discussion of techniques for escaping
local optimathan Al: A Modern Approach

Escaping Local Optima

m There are several ways we can try to avoid
local optima and find more globally optimal
solutions:

— Random Restarting
— Simulated Annealing
— Tabu Search

37

Random Restarting

% If at first you don’t succeed, try, try again!

m Theideahereisto run the standard HC search
algorithm severa times, each with different,
randomized initia states

m Of course, depending on the state space, this can
beadifficult task in and of itself... not all states
that can be generated are legal for some problems

38

Random Restarting

m |f the object isto find a particular solution
(or that reaches a certain goal), we can stop
when it is found

m |[f the amisto find the best solution
(optimize), repeat for a fixed number of
trials and return the best found

39

Random Restarting

SinceHC isalocal fy

search strategy, trying 4 BINGON
multipleinitial states
allowsusto locally
explore awider range
of the search space

If we pick lucky initial
states, we can find the /\ \/ \
global optimum! Sy

40

Random Restarting

m Asthe number of trialsincreases, the probability
of finding a solution (or the global optimum)
approaches 1.0

— Thisisfor thetrivial reason that, given enough restarts,
we'll ultimately generate the optimum

m But we don't want to keep restarting ad infinitum
— That would defeat the point of local search!

41

Random Restarting

m It turns out that, if each HC run has a probability p
of success, the number of restarts needed is
approximately 1/p

m For example, with 8-Queens, there is a probability
of successp=0.14=1/7

m S0, on average, we would need only 7 randomly-
initialized trails of the basic HC search to find a
solution

42

Random Restarting

m Random restart approaches are built in to many
state-of-the-art constraint satisfaction algorithms

m They’ ve been shown especially useful in systems
geared toward solving hard SAT problems
- GSAT
— Davis-Putnam (DPLL with restarts)

43

Simulated Annealing (SA)

m With standard Hill-Climbing:
— We explore all of the current state’s actions/successors
— Accept the best one

m Perhaps we can modify thisto account for the
other kinds of moveswe d like to make:
— Choose one action/successor at random
— If it is better, accept it, otherwise accept with some
probability p

45

= Simulated Annealing (SA)

m Wedon't always want to take the best local move,
sometimes we might want to:
— Try taking uphill moves that aren’t the best
. — Actually go downhill to escape local optima

m We can ater HC to allow for these possibilities:
— Modify how successor states are sel ected

— Change the criteria for accepting a successor

44

Simulated Annealing (SA)

Concepts behind the SA analogy:

Physical system Optimization problem
Physical state Feasible solution
Energy Objective function
Ground state Goal or optimum
Rapid quenching Local search
Temperature Control parameter T
Annealing Simulated annealing

47

= Simulated Annealing (SA)

m These changes dlow usto take avariety of new
moves, but has problems:

— Chance of taking a bad move is the same at the
- beginning of the search as at the end

— The magnitude of a move's effect isignored
m We can replace p with atemperature T which
decreases over time
m Since T “cools off” over the course of search, we
call this approach simulated annealing

46

= Simulated Annealing (SA)

Let AE = score(NEXT) — SCOre(CURRENT)
p = eAE'T (Boltzman equation)

- m AE - -0, p-0

The worse amove s, the probability of taking it
decreases exponentially
m Time - o, T-0
Astime increases, the temperature decreases, in accordance
with a cooling schedule
aT-.0p-0
Astemperature decreases, the probability of taking a bad

move also decreases a8

Simulated Annealing (SA)

CURRENT = initialState // initialize the search
for TIME =1 to w do {
T = schedul e(TI ME) /1 elapsed time effects schedul e
if T=0then /1 T has totally “cool ed”
return CURRENT
NEXT = random successor of CURRENT
AE = score(NEXT) — score(CURRENT)
if AE > 0 then
CURRENT = NEXT // take all “good” noves
el se
CURRENT = NEXT with probability er(AE/T)

49

Simulated Annealing (SA)

m Can perform downhill and locally sub-optimal
moves, unlike HC

m Chance of finding global optimum increased

m SA isfastin practice
— Only one random neighbor generated per step

— Only score one successor instead of whole
neighborhood

— Can use more complex heuristics

Simulated Annealing (SA)

m According to thermodynamics, to grow acrystal:
— Start by heating arow of materialsin a molten state
— Thecrystal melt is cooled until itisfrozenin

— If the temperature is reduced too quickly, irregularities occur and it
does not reach its ground state (e.g. more energy is trapped in the
structure)

m By analogy, SA relies on a good cooling schedule, which
maps the current time to a temperature T, to find the
optimal solution

— Usually exponential
— Can be very difficult to devise

51

Simulated Annealing (SA)

m SA wasfirst used to solve layout problems for
VLSI (very large-scale integration) computer
architecturesin the 1980s

— Optimally fitting hundreds of thousands of transistors
into a single compact microchip

m It isaso proven useful for the TSP, and isused in
many factory scheduling software systems

Tabu Search

m Tabu search is away to add memory to alocal search
strategy, and force it to explore new areas of the search
space

m \We've seen state-based memory before with the closed list,
but this memory:
— Tracks actions taken rather than states expanded
— Isdesigned to be alimited (short-term) memory

= Movesthat have been seen or taken too recently or too
often become tabu (or taboo)

53

Tabu Search

m We maintain an array M which tracks time-stamps
of the actions we' ve taken
— Wegtorein location M; the most recent time action i
was taken in the search
m The key parameter of tabu search is the horizon:
how long should a certain remain tabu?

— If we set thistoo small, we may default to normal HC
and stay stuck in local optima

— If we set it too large, we may run out of legal moves!
— Usually problem-dependent

Tabu Search

CURRENT = initial State // initialize search
BEST = CURRENT /] retain best solution so far
for TIME = 1 to MAX_TIME do {
NEXT = best |egal successor of CURRENT
ACTION = action that generated NEXT
M ACTION] = tabu info based on horizon & TI ME
CURRENT = NEXT /1 take next nove regardl ess
if score(CURRENT) better than score(BEST) then
BEST = CURRENT
}
return BEST

55

Tabu Search

m Since we take the best non-tabu move at
each step, we are allowed to take backward
steps or just OK moves, as with simulated
annealing

m Tabu search can also be faster than standard
HC, asit doesn't have to evaluate all
action/successors, just those that are legal

57

Tabu Search

m |nstead of an array, memory can also be
stored in a queue, or tabu list:
— Asamoveis made, placeit in the queue

— When the queue becomes full, the oldest move
isremoved and becomes legal again

— The size of the queueisthe horizon

Summary

m L ocal search methods are more appropriate for
solving compl ete search and optimization
problems

— State spaces can be prohibitively large
— The god is different than with partial search strategies

m However, basic hill-climbing can become stuck in
local optima rather than finding the best solution

59

Tabu Search

m Breaking rules

— Since we retain the best solution so far, we
sometimes might want to make tabu moves
anyway ... if they are better than anything
Wwe ve previously seen

— Thisiscalled the aspriation critera, if atabu
solution aspiresto be better than al previousy
seen solutions

Summary

m There are several effective ways of escaping
local optimafor local searching, which
exploit different properties:

— Random restarting tries several timesfrom
different parts of the search space

— Smulated annealing allows for avariety of
moves by searching stochastically

— Tabu search isdeterministic, but incorporates
memory to force exploration of the state space

60

10

