

Announcements

- Project groups and preliminary topic ideas will be due on 6/30
 - A week from Monday
 - Be thinking about what you'd like to do
 - Try to find others in the class who might are interested in the same topic!
- We're almost ready to start using the class discussions on the mailing list

2

Searching: So Far

- We've discussed how to build goal-based and utility-based agents that search to solve problems
- We've also presented both uninformed (or *blind*) and informed (or *heuristic*) approaches for search
- What we've covered so far are called partial search strategies because they build up partial solutions, which could enumerate the *entire* state space before finding a solution

Complete Searching

- In complete search strategies, each state or node already represents a complete solution to the problem at hand
 - We aren't concerned with finding a path
 - We don't necessarily have a designated start state
- The objective is to search through the problem space to find other solutions that are better, the best, or that that meet certain criteria (goal)

Optimization

- Problems where we search through complete solutions to find the best solution are often referred to as optimization problems
- Most optimization tasks belong to a class of computational problems called NP
 - Non-deterministic Polynomial time solvable
 - Computationally very hard problems
 - For NP problems, state spaces are usually exponential, so partial search methods aren't time or space efficient

Simulated Annealing (SA)

- We don't always want to take the best local move, sometimes we might want to:
 - Try taking uphill moves that aren't the best
 - Actually go downhill to escape local optima
- We can alter HC to allow for these possibilities:
 - Modify how successor states are selected
 - Change the criteria for accepting a successor

44

Simulated Annealing (SA)

- With standard Hill-Climbing:
 - We explore all of the current state's actions/successors
 - Accept the best one
- Perhaps we can modify this to account for the other kinds of moves we'd like to make:
 - Choose one action/successor at random
 - If it is better, accept it, otherwise accept with some probability p

45

Simulated Annealing (SA)

- These changes allow us to take a variety of new moves, but has problems:
 - Chance of taking a bad move is the same at the beginning of the search as at the end
 - The magnitude of a move's effect is ignored
- We can replace *p* with a temperature *T* which decreases over time
- Since *T* "cools off" over the course of search, we call this approach simulated annealing

46

Simulated Annealing (SA) Concepts behind the SA analogy:

Physical system	Optimization problem
Physical state	Feasible solution
Energy	Objective function
Ground state	Goal or optimum
Rapid quenching	Local search
Temperature	Control parameter T
Annealing	Simulated annealing

Simulated Annealing (SA)

Let $\Delta E = score(NEXT) - score(CURRENT)$ $p = e^{\Delta E/T}$ (Boltzman equation)

 $\blacksquare \ \Delta E \to -\infty, \ p \to 0$

The worse a move is, the probability of taking it decreases exponentially

■ Time $\rightarrow \infty$, $T \rightarrow 0$

As time increases, the temperature decreases, in accordance with a cooling schedule

 $\blacksquare \ T \to 0, \ p \to 0$

As temperature decreases, the probability of taking a bad move also decreases

Simulated Annealing (SA) CURRENT = initialState // initialize the search for TIME = 1 to • do { T = schedule(TIME) // elapsed time effects schedule if T = 0 then // T has totally "cooled" return CURRENT NEXT = random successor of CURRENT ΔE = score(NEXT) - score(CURRENT) if ΔE > 0 then CURRENT = NEXT // take all "good" moves else CURRENT = NEXT with probability e^(ΔE/T) }

Simulated Annealing (SA)

- Can perform downhill and locally sub-optimal moves, unlike HC
- Chance of finding global optimum increased
- SA is fast in practice
 - Only one random neighbor generated per step
 - Only score one successor instead of whole neighborhood
 - Can use more complex heuristics

50

Simulated Annealing (SA)

- According to thermodynamics, to grow a crystal:
 - Start by heating a row of materials in a molten state
 - The crystal melt is cooled until it is frozen in
 - If the temperature is reduced too quickly, irregularities occur and it does not reach its ground state (e.g. more energy is trapped in the structure)
- By analogy, SA relies on a good cooling schedule, which maps the current *time* to a temperature *T*, to find the optimal solution
 - Usually exponential
 - Can be very difficult to devise

51

Simulated Annealing (SA)

- SA was first used to solve layout problems for VLSI (very large-scale integration) computer architectures in the 1980s
 - Optimally fitting hundreds of thousands of transistors into a single compact microchip
- It is also proven useful for the TSP, and is used in many factory scheduling software systems

52

Tabu Search

- Tabu search is a way to add memory to a local search strategy, and force it to explore new areas of the search space
- We've seen state-based memory before with the closed list, but this memory:
 - Tracks actions taken rather than states expanded
 - Is designed to be a limited (short-term) memory
- Moves that have been seen or taken too recently or too often become *tabu* (or *taboo*)

Tabu Search

- We maintain an array *M* which tracks time-stamps of the actions we've taken
 - We store in location M_i the most recent time action i was taken in the search
- The key parameter of tabu search is the horizon: how long should a certain remain tabu?
 - If we set this too small, we may default to normal HC and stay stuck in local optima
 - If we set it too large, we may run out of legal moves!
 - Usually problem-dependent

5

