
1

1

Evolutionary Search

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements

� This week’s mailing list topic: think of a real-
world problem where we could apply an
optimization search
– You may not repeat someone else’s answer!
– What are the states?
– What are the actions?
– What is the objective function?

� Read Chapter 6 in AI: A Modern Approach for
next time

3

Announcements

� If you choose to do a paper instead of a
programming project, 6 pages is a minimum… you
may write more if you feel that there is too much
material (but please no more than 10)
– Keep in mind each group will only have 15 minutes to

present on the last week

– The presentations don’ t have to go into as much detail
as the paper, though

4

Homework #1 Clarifications

� For problem 1, part b, your heuristics are for the
2-letter change problem, and don’ t have to be
admissible
– But do think about if they are or aren’ t, and explain

� Even though “hill-climbing” and “beam” searches
are local strategies (and often used for complete
searching), you can still use them to solve partial
search problems like the graph in problem 2

5

Homework #1 Clarifications

� For problem 3, let’ s say you have the initial state
ABC, and are doing standard HC… what are the
neighbors you need to consider?

BC, AC, AB, ABCD, ABCE, ABCF

� So to do hill-climbing, you will generate all these
states, score them all, and choose the best one
(since we are maximizing the objective function)

6

Genetic Algorithms

� So far the optimization strategies we’ve
discussed search for a single solution, one
state at a time within a neighborhood

� Genetic algorithms (GAs) are a unique
search approach that maintains a population
of states, or individuals, which evolves
– Also called evolutionary search

2

7

Evolutionary Analogy

� Consider a population of rabbits:
some individuals are faster and
smarter than others

� Slower, dumber rabbits are likely
to be caught and eaten by foxes

� Fast, smart rabbits survive to do what rabbits to
best: make more rabbits!!

8

Evolutionary Analogy

� The rabbits that survive breed with each other to
generate offspring, which starts to mix up their
genetic material
– Fast rabbits might breed with fast rabbits
– Fast rabbits with slow rabbits
– Smart with not-so-smart, etc…

� Furthermore, nature occasionally throws
in a “wild hare” because genes can
mutate

9

Evolutionary Analogy

� In this analogy, an individual rabbit represents a
solution to the problem (i.e. a single point in the
state space)
– The state description is its DNA, if you will

� The foxes represent the problem constraints
– Solutions that do well are likely to survive

� What we need to create are notions of natural
selection, reproduction, and mutation

10

Core Elements of GAs

� For selection, we use a fitness function to rank the
individuals of the population

� For reproduction, we define a crossover operator
which takes state descriptions of individuals and
combines them to create new ones
– What advantages does this present over local search?

� For mutation, we can merely choose individuals in
the population and alter part of its state

11

Genetic Algorithm Example

POP = initialPopulation // build a new population

repeat { // with every generation

NEW_POP = empty

for I = 1 to POP_SIZE {

X = fit individual // natural selection

Y = fit individual

CHILD = crossover(X,Y) // reproduction

if small random probability then

mutate(CHILD) // mutation

add CHILD to NEW_POP

}

POP = NEW_POP

} until solution found or enough time elapsed

return most fit individual in POP

12

Genetic Algorithm Example

� The previous algorithm completely replaces the
population for each new generation… but we can
allow individuals from older generations to live on

� Reproduction here is only between two parents
(as in nature), but we can allow for more!!

� The population size also is fixed… but we can
have this vary from one generation to the next

3

13

Genetic Algorithm Example

�Basically, there is no one GA, we can devise
many variants of these 3 principles for
nearly any problem!!

�
Chapters 7 & 8 in How to Solve It: Modern
Heuristics have a very thorough
presentation of how to design genetic
algorithms for particular problems

14

Selection

� Selection (either to reproduce or live on) from one
generation to the next relies on the fitness function

� We can usually think of the fitness function as
being a heuristic, or the objective function

� We want to apply pressure that good solutions
survive and bad solutions die
– Too much and we converge to sub-optimal solutions
– Too little and we don’ t make much progress

15

Selection

� Deterministic selection
1. Rank all the individuals using the fitness function and

choose the best k to survive
2. Replace the rest with offspring
– Can lead fast convergence (and local optima)

� Stochastic selection
– Instead of selecting the best k, we could select each

individual in proportion to its relative fitness to the
population

– Slower to converge, but could lose good solutions
16

Selection

� Tournament selection
1. For each individual i, create a subset q of the

population by random selection

2. Assign a point to i for each individual in q that it
“beats” (is less fit than itself)

3. Rebuild the population based not on fitness scores, but
the points accumulated in the tournament

– As the size of q increases, though, it becomes more
like deterministic selection

17

Reproduction

� The unique thing about GAs is the ability of
solutions to inherit properties from other solutions
in the population

� The basic way to perform a crossover operation is
to splice together parts of the state description
from each parent… for example, in SAT:

1 0 0 1 1 1 0 1

0 1 0 0 0 1 1 0

parents

1 0 0 1 0 1 1 0

0 1 0 0 1 1 0 1

children
18

Reproduction

� There are many different ways to choose
crossover point(s) for reproduction:
– Single-point: choose the center, or some “optimal”

point in the state description… take the first half of one
parent, the second half of the other

– Random: choose the split point randomly
(or proportional to the parents’ fitness scores)

– n-point: make not 1 split point, but n different ones
– Uniform: choose each element of the state description

independently, at random (or proportional to fitness)

4

19

Reproduction for 8-Queens

� For the 8-queens problem, we could choose a
crossover point with the same number of queens on
either side

� What else could we do?

20

Reproduction for TSP

� For TSP, our individuals are n-city tours
(e.g. 1-4-6-2-5-3 or 3-5-1-2-4-6 for 6 cities)

� Can we do a simple point-crossover like we
could for SAT and 8-Queens?

1-4-6-2-5-3

3-5-1-2-4-6

parents children

1-4-6-2-4-6

3-5-1-2-5-3

These aren’ t
legal tours!}

21

Reproduction for TSP

� One option is to have an ordered master queue of all the
cities in the problem: e.g. 1,2,3,4,5,6

� Each individual, then, is a code that corresponds to
“dequeuing instructions” from this master queue
– Numbers in the code are the relative position of the appropriate

city left in the queue

– These codes can then be mated with point-crossovers

1-4-6-2-5-3

3-5-2-1-4-6

actual parents

1 3 4 1 2 1

3 4 1 1 1 1

GA parent codes

1 3 4 1 1 1

3 4 1 1 2 1

GA child codes

1-4-6-2-3-5

3-5-2-1-6-4

actual children

22

Reproduction for TSP

� We can try something even simpler to try and conserve
information from both parents
– Pick an block of contiguous cities in the tour to pass from one

parent to a child

– Remove all the cities in block from the other parent

– Add the remaining cities to the child in their preserved order, after
the other block

1-4-6-2-5-3

3-5-2-1-4-6
1-4-6-2-5-3

3-5-2-1-4-6

4-6-2-x-x-x

5-2-1-x-x-x
4-6-2-3-5-1

5-2-1-4-6-3

conser ve
blocks

remove
cit ies from
other par ent

cross over
the remainders

23

Mutation

� There are also a variety of ways to mutate individuals in
the population

� The first question to consider it who to mutate
– Alter the most fit? Least fit? Random?
– Mutate children only, or surviving parents as well?
– How many to mutate?

� The second question is how to mutate
– Totally arbitrarily?
– Mutate to a better neighbor?

24

GAs and Creativity

� GAscan be thought of as a simultaneous, parallel
hill-climbing search
– The population as a whole is trying to converge to an

optimal solution

� Because solutions can evolve from a variety of
factors, without prodding from us as to “which
direction to go” (as in local search), very novel
problem solutions can be found discovered

5

25

GAs and Creativity

� Sensor-actuator networks (SANs) are structures that model
connections between sensors and actuators (motors and
muscles) in simple robots

� GAs can learn parameters for SANs that solve locomotion
problems in a variety of ways

26

GAs and Creativity

�
M. van dePanne, “Control Techniques For
Physically-Based Animation,” Third Eurographics
Workshop on Animation and Simulation, 1994

27

GAs and Emergent Intelligence

� So far, we’ve talked about GAsas a search
strategy for a problem solving (in which case,
there is an agent conducting the GA search)

� Recall from the second lecture about multi-agent
environments

� Now consider a GA that evolves a population of
agents!! Now, our GA population is a virtual
multi-agent environment

28

GAs and Emergent Intelligence

� Let’s say we want to “grow” agents to predict
stock market trends

� Each agent might be some statistical function that
maps a stock’s history to its predicted future
performance:

(α × todaysPrice) + (β × yesterdaysPrice) +
(γ × relativeValue) + (δ × 1-monthStdDev) + …

29

GAs and Emergent Intelligence

� We could maintain a population of these
agents, where each agent’s state (“DNA”) is
its set of coefficients (α, β, γ, δ, etc.)

� Now let’s think about a GA for them:
– What is our fitness function?
– What is a good crossover?
– How can we mutate them?

30

GAs and Emergent Intelligence

� Over time, the population should converge
on a population of individuals that reflect
the current stock market trends

� But will the most fit individual become a
universally good stock-picker?

� Perhaps not!

6

31

GAs and Emergent Intelligence

� It is possible that different agents in the population
specialize to aspect of the task
– Some agents predict well for the Fortune-500 stocks
– Others predict well for sports companies
– Still others pick non-profits well, etc…

� If there is no one universally intelligent agent in
the population, perhaps we can let them all
predict… or “ vote” on a predictions

32

GAs and Emergent Intelligence

� So our population of stock-pickers is a multi-agent
environment… is it cooperative or competitive?

� This phenomenon is what we might refer to as
emergent intelligence
– No single agent in the environment is, taken

individually, all that “ intelligent”
– Taken together, though, the entire population possesses

a more global intelligence that emerges from its
constituent agents

33

Genetic Programming

� Genetic programming is a field related to genetic
algorithms (surprise!)

� Instead of maintaining and manipulating a
population of strings, however, we use expression
trees… the goal is to evolve programs

�
Section 9.5 in Machine Learning provides a nice
overview of this (slightly more advanced) topic

34

Genetic Programming

+

sin √√√√

x +

^

x

y

2

Expression trees are graphical, relational
representations of functions or programs

Programming language compilers
convert code to such trees before
writing out machine-level
instructions (CS 536)

For example:

sin(x) + √√√√ x2 + y

35

Genetic Programming

� Populations are initialized with randomized, well-
formed expressions build up from:
– Operators (e.g. +, sin, ×, etc.)
– Terminals (x, y, 2, etc.)

� Fitness is evaluated on how well its encoded
function/algorithm performs the task

� Crossover is applied by swapping subtrees in the
parent expressions

36

Genetic Programming

+

sin √√√√

x +

^

x

y

2

+

sin ^

x +

x y

2

parentssin(x) + √√√√ x2 + y
sin(x) + 2x+y

+

sin √√√√

x +

+

x

y

y

+

sin ^

x ^

x 2

2

children

sin(x) + 2x2
sin(x) + √√√√ (x + y) + y

7

37

Genetic Programming

�
J. Koza, Genetic programming: On the programming of
computers by means of natural selection, MIT Press, 1992

� 300 random programs were initialized with primitives to
solve block-stacking problems with the goal of spelling
“UNIVERSAL”

� After 10 generations, a program evolved that solved all of
166 initial configurations

38

Views of Evolution

� The Lamarkian Theory
– Popular in 1800s

– An individual’s genetic makeup is altered as it
learns through life experience

– Today’s biological evidence contradicts this

39

Views of Evolution

� The Baldwin Effect
– Learning has no effect on genetic makeup

– However, ability to learn reduces the need for “hard-
wired” functions

– Therefore, individual learning allows for a more diverse
gene pool (less hard-wiring) and more adaptable
populations

– Example: a new predator appears in an environment;
individuals who can learn to avoid it live on, resulting
in more adaptable gene pool

40

Last Thoughts on GAs

� Evolutionary algorithms are simulationsof what
we perceive happening in nature, but we don’ t
have to follow the laws of nature
– Lamarkian GAs have been experimented with, and

shown successful on some problems

� Since we get to design the framework for the
simulation, there is a wide margin for creative
license in the framework we create!
– Concepts of age/gender/politics?
– Variety of fitness functions?

41

Summary of Search Strategies

� Partial Search
Look through state space for a goal from
which a solution can be found
– Node: state description

– Edge: action that changes state at some cost

– Path: sequence of actions that change from the
start state to the goal state

42

Summary of Search Strategies

� Uninformed Search: no domain information
– Complete/optimal if costs uniform: BFS, IDS
– Complete/optimal with costs: UCS
– Not complete/optimal: DFS, DLS

� Informed Search: use heuristics to guide search
– g(n): cost from start to n
– h(n): estimates cost from n to goal (heuristic)
– f(n): g(n) + h(n): estimated cost of searching through n
– Complete/optimal: A* = h(n) is admissible
– Not complete/optimal: Greedy, A

8

43

Summary of Search Strategies

� Optimization Search
Look through solution space for better
solutions to the problem
– Node: complete solution

– Edge: operator changes to a new solution

– Can stop anytime

– Well-suited for NP-Complete problems,
optimization problems

44

Summary of Search Strategies

� Local Search
Focus on a local part of the search space
rather than exploring it all
– Beam search limits the list of candidate states

– Hill-climbing follows a single path of
promising successor states

– Solution heavily dependent on the initial state

– Can get stuck in “ local optima”

45

Summary of Search Strategies

� Escaping Local Optima
Ways to avoid the traps into which local search
methods tend to fall
– Random Restarting

– Simulated Annealing

– Tabu Search

� Evolutionary Search
Unique, non-local, parallel optimization search

