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Announcements

� This week’s mailing list topic: think of a real-
world problem where we could apply an 
optimization search
– You may not repeat someone else’s answer!
– What are the states?
– What are the actions?
– What is the objective function? 

� Read Chapter 6 in AI: A Modern Approach for 
next time
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Announcements

� If you choose to do a paper instead of a 
programming project, 6 pages is a minimum… you 
may write more if you feel that there is too much 
material (but please no more than 10)
– Keep in mind each group will only have 15 minutes to 

present on the last week

– The presentations don’ t have to go into as much detail 
as the paper, though
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Homework #1 Clarifications

� For problem 1, part b, your heuristics are for the 
2-letter change problem, and don’ t have to be 
admissible
– But do think about if they are or aren’ t, and explain

� Even though “hill-climbing”  and “beam” searches 
are local strategies (and often used for complete 
searching), you can still use them to solve partial 
search problems like the graph in problem 2
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Homework #1 Clarifications

� For problem 3, let’ s say you have the initial state 
ABC, and are doing standard HC… what are the 
neighbors you need to consider?

BC, AC, AB, ABCD, ABCE, ABCF

� So to do hill-climbing, you will generate all these 
states, score them all, and choose the best one 
(since we are maximizing the objective function)
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Genetic Algorithms

� So far the optimization strategies we’ve 
discussed search for a single solution, one 
state at a time within a neighborhood

� Genetic algorithms (GAs) are a unique 
search approach that maintains a population
of states, or individuals, which evolves
– Also called evolutionary search
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Evolutionary Analogy

� Consider a population of rabbits: 
some individuals are faster and 
smarter than others

� Slower, dumber rabbits are likely 
to be caught and eaten by foxes

� Fast, smart rabbits survive to do what rabbits to 
best: make more rabbits!!
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Evolutionary Analogy

� The rabbits that survive breed with each other to 
generate offspring, which starts to mix up their 
genetic material
– Fast rabbits might breed with fast rabbits
– Fast rabbits with slow rabbits
– Smart with not-so-smart, etc…

� Furthermore, nature occasionally throws
in a “wild hare”  because genes can
mutate
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Evolutionary Analogy

� In this analogy, an individual rabbit represents a 
solution to the problem (i.e. a single point in the 
state space)
– The state description is its DNA, if you will

� The foxes represent the problem constraints
– Solutions that do well are likely to survive

� What we need to create are notions of natural 
selection, reproduction, and mutation
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Core Elements of GAs

� For selection, we use a fitness function to rank the 
individuals of the population

� For reproduction, we define a crossover operator 
which takes state descriptions of individuals and 
combines them to create new ones
– What advantages does this present over local search?

� For mutation, we can merely choose individuals in 
the population and alter part of its state
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Genetic Algorithm Example

POP = initialPopulation       // build a new population

repeat {                      // with every generation

NEW_POP = empty

for I = 1 to POP_SIZE {    

X = fit individual // natural selection

Y = fit individual

CHILD = crossover(X,Y) // reproduction

if small random probability then

mutate(CHILD)   // mutation

add CHILD to NEW_POP

}

POP = NEW_POP

} until solution found or enough time elapsed

return most fit individual in POP
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Genetic Algorithm Example

� The previous algorithm completely replaces the 
population for each new generation… but we can 
allow individuals from older generations to live on

� Reproduction here is only between two parents 
(as in nature), but we can allow for more!!

� The population size also is fixed… but we can 
have this vary from one generation to the next
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Genetic Algorithm Example

�Basically, there is no one GA, we can devise 
many variants of these 3 principles for 
nearly any problem!!

�
Chapters 7 & 8 in How to Solve It: Modern 
Heuristics have a very thorough 
presentation of how to design genetic 
algorithms for particular problems
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Selection

� Selection (either to reproduce or live on) from one 
generation to the next relies on the fitness function

� We can usually think of the fitness function as 
being a heuristic, or the objective function

� We want to apply pressure that good solutions 
survive and bad solutions die
– Too much and we converge to sub-optimal solutions
– Too little and we don’ t make much progress
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Selection

� Deterministic selection
1. Rank all the individuals using the fitness function and 

choose the best k to survive
2. Replace the rest with offspring
– Can lead fast convergence (and local optima)

� Stochastic selection
– Instead of selecting the best k, we could select each 

individual in proportion to its relative fitness to the 
population

– Slower to converge, but could lose good solutions
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Selection

� Tournament selection
1. For each individual i, create a subset q of the 

population by random selection

2. Assign a point to i for each individual in q that it 
“beats”  (is less fit than itself)

3. Rebuild the population based not on fitness scores, but 
the points accumulated in the tournament

– As the size of q increases, though, it becomes more 
like deterministic selection
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Reproduction

� The unique thing about GAs is the ability of 
solutions to inherit properties from other solutions 
in the population

� The basic way to perform a crossover operation is 
to splice together parts of the state description 
from each parent… for example, in SAT:

1 0 0 1 1 1 0 1

0 1 0 0 0 1 1 0

parents

1 0 0 1 0 1 1 0

0 1 0 0 1 1 0 1

children
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Reproduction

� There are many different ways to choose 
crossover point(s) for reproduction:
– Single-point: choose the center, or some “optimal”  

point in the state description… take the first half of one 
parent, the second half of the other

– Random: choose the split point randomly
(or proportional to the parents’  fitness scores)

– n-point: make not 1 split point, but n different ones
– Uniform: choose each element of the state description 

independently, at random (or proportional to fitness)
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Reproduction for 8-Queens

� For the 8-queens problem, we could choose a 
crossover point with the same number of queens on 
either side

� What else could we do?
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Reproduction for TSP

� For TSP, our individuals are n-city tours 
(e.g. 1-4-6-2-5-3 or 3-5-1-2-4-6 for 6 cities)

� Can we do a simple point-crossover like we 
could for SAT and 8-Queens?

1-4-6-2-5-3

3-5-1-2-4-6

parents children

1-4-6-2-4-6

3-5-1-2-5-3

These aren’ t 
legal tours!}
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Reproduction for TSP

� One option is to have an ordered master queue of all the 
cities in the problem: e.g. 1,2,3,4,5,6

� Each individual, then, is a code that corresponds to 
“dequeuing instructions”  from this master queue
– Numbers in the code are the relative position of the appropriate

city left in the queue

– These codes can then be mated with point-crossovers

1-4-6-2-5-3

3-5-2-1-4-6

actual parents

1 3 4 1 2 1

3 4 1 1 1 1

GA parent codes

1 3 4 1 1 1

3 4 1 1 2 1

GA child codes

1-4-6-2-3-5

3-5-2-1-6-4

actual children
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Reproduction for TSP

� We can try something even simpler to try and conserve 
information from both parents
– Pick an block of contiguous cities in the tour to pass from one 

parent to a child

– Remove all the cities in block from the other parent

– Add the remaining cities to the child in their preserved order, after 
the other block

1-4-6-2-5-3

3-5-2-1-4-6
1-4-6-2-5-3

3-5-2-1-4-6

4-6-2-x-x-x

5-2-1-x-x-x
4-6-2-3-5-1

5-2-1-4-6-3

conser ve
blocks

remove
cit ies from
other  par ent

cross over
the remainders
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Mutation

� There are also a variety of ways to mutate individuals in 
the population

� The first question to consider it who to mutate
– Alter the most fit? Least fit? Random?
– Mutate children only, or surviving parents as well?
– How many to mutate?

� The second question is how to mutate
– Totally arbitrarily?
– Mutate to a better neighbor?
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GAs and Creativity

� GAscan be thought of as a simultaneous, parallel 
hill-climbing search
– The population as a whole is trying to converge to an 

optimal solution

� Because solutions can evolve from a variety of 
factors, without prodding from us as to “which 
direction to go”  (as in local search), very novel 
problem solutions can be found discovered
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GAs and Creativity

� Sensor-actuator networks (SANs) are structures that model 
connections between sensors and actuators (motors and 
muscles) in simple robots

� GAs can learn parameters for SANs that solve locomotion 
problems in a variety of ways
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GAs and Creativity

�
M. van dePanne, “Control Techniques For 
Physically-Based Animation,”  Third Eurographics
Workshop on Animation and Simulation, 1994
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GAs and Emergent Intelligence

� So far, we’ve talked about GAsas a search 
strategy for a problem solving (in which case, 
there is an agent conducting the GA search)

� Recall from the second lecture about multi-agent
environments

� Now consider a GA that evolves a population of 
agents!! Now, our GA population is a virtual 
multi-agent environment
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GAs and Emergent Intelligence

� Let’s say we want to “grow” agents to predict 
stock market trends

� Each agent might be some statistical function that 
maps a stock’s history to its predicted future 
performance:

(α × todaysPrice) + (β × yesterdaysPrice) + 
(γ × relativeValue) + (δ × 1-monthStdDev) + …
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GAs and Emergent Intelligence

� We could maintain a population of these 
agents, where each agent’s state (“DNA”) is 
its set of coefficients (α, β, γ, δ, etc.)

� Now let’s think about a GA for them:
– What is our fitness function?
– What is a good crossover?
– How can we mutate them?
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GAs and Emergent Intelligence

� Over time, the population should converge 
on a population of individuals that reflect 
the current stock market trends

� But will the most fit individual become a 
universally good stock-picker?

� Perhaps not!
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GAs and Emergent Intelligence

� It is possible that different agents in the population 
specialize to aspect of the task
– Some agents predict well for the Fortune-500 stocks
– Others predict well for sports companies
– Still others pick non-profits well, etc…

� If there is no one universally intelligent agent in 
the population, perhaps we can let them all 
predict… or “ vote”  on a predictions
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GAs and Emergent Intelligence

� So our population of stock-pickers is a multi-agent 
environment… is it cooperative or competitive?

� This phenomenon is what we might refer to as 
emergent intelligence
– No single agent in the environment is, taken 

individually, all that “ intelligent”
– Taken together, though, the entire population possesses 

a more global intelligence that emerges from its 
constituent agents
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Genetic Programming

� Genetic programming is a field related to genetic 
algorithms (surprise!)

� Instead of maintaining and manipulating a 
population of strings, however, we use expression 
trees… the goal is to evolve programs

�
Section 9.5 in Machine Learning provides a nice 
overview of this (slightly more advanced) topic
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Genetic Programming

+

sin √√√√

x +

^

x

y

2

Expression trees are graphical, relational 
representations of functions or programs

Programming language compilers 
convert code to such trees before 
writing out machine-level 
instructions (CS 536)

For example:

sin(x) + √√√√ x2 + y
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Genetic Programming

� Populations are initialized with randomized, well-
formed expressions build up from:
– Operators (e.g. +, sin, ×, etc.)
– Terminals (x, y, 2, etc.)

� Fitness is evaluated on how well its encoded 
function/algorithm performs the task

� Crossover is applied by swapping subtrees in the 
parent expressions
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Genetic Programming
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parentssin(x) + √√√√ x2 + y
sin(x) + 2x+y
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children

sin(x) + 2x2
sin(x) + √√√√ (x + y) + y
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Genetic Programming

�
J. Koza, Genetic programming: On the programming of 
computers by means of natural selection, MIT Press, 1992

� 300 random programs were initialized with primitives to 
solve block-stacking problems with the goal of spelling 
“UNIVERSAL”

� After 10 generations, a program evolved that solved all of 
166 initial configurations
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Views of Evolution

� The Lamarkian Theory
– Popular in 1800s

– An individual’s genetic makeup is altered as it 
learns through life experience

– Today’s biological evidence contradicts this
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Views of Evolution

� The Baldwin Effect
– Learning has no effect on genetic makeup

– However, ability to learn reduces the need for “hard-
wired”  functions

– Therefore, individual learning allows for a more diverse 
gene pool (less hard-wiring) and more adaptable 
populations

– Example: a new predator appears in an environment; 
individuals who can learn to avoid it live on, resulting 
in more adaptable gene pool
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Last Thoughts on GAs

� Evolutionary algorithms are simulationsof what 
we perceive happening in nature, but we don’ t 
have to follow the laws of nature
– Lamarkian GAs have been experimented with, and 

shown successful on some problems

� Since we get to design the framework for the 
simulation, there is a wide margin for creative 
license in the framework we create!
– Concepts of age/gender/politics?
– Variety of fitness functions?

41

Summary of Search Strategies

� Partial Search
Look through state space for a goal from 
which a solution can be found
– Node: state description

– Edge: action that changes state at some cost

– Path: sequence of actions that change from the 
start state to the goal state
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Summary of Search Strategies

� Uninformed Search: no domain information
– Complete/optimal if costs uniform: BFS, IDS
– Complete/optimal with costs: UCS
– Not complete/optimal: DFS, DLS

� Informed Search: use heuristics to guide search
– g(n): cost from start to n
– h(n): estimates cost from n to goal (heuristic)
– f(n): g(n) + h(n): estimated cost of searching through n
– Complete/optimal: A* = h(n) is admissible
– Not complete/optimal: Greedy, A
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Summary of Search Strategies

� Optimization Search
Look through solution space for better 
solutions to the problem
– Node: complete solution

– Edge: operator changes to a new solution

– Can stop anytime

– Well-suited for NP-Complete problems, 
optimization problems
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Summary of Search Strategies

� Local Search
Focus on a local part of the search space 
rather than exploring it all
– Beam search limits the list of candidate states

– Hill-climbing follows a single path of 
promising successor states

– Solution heavily dependent on the initial state

– Can get stuck in “ local optima”
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Summary of Search Strategies

� Escaping Local Optima
Ways to avoid the traps into which local search 
methods tend to fall
– Random Restarting

– Simulated Annealing

– Tabu Search

� Evolutionary Search
Unique, non-local, parallel optimization search


