Evolutionary Search
N O

Burr H. Settles
CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

= Announcements

m |If you choose to do a paper instead of a
programming project, 6 pagesisa minimum... you
may write moreif you fee that thereistoo much

- materia (but please no morethan 10)
— Keep in mind each group will only have 15 minutes to
present on the last week
— The presentations don’t have to go into as much detail
as the paper, though

= Announcements

m Thisweek’s mailing list topic: think of areal-
world problem where we could apply an
optimization search

— You may not repeat someone else’s answer!
. — What are the states?

— What are the actions?

— What is the objective function?

m Read Chapter 6 in Al: A Modern Approach for
next time

= Homework #1 Clarifications

m For problem 1, part b, your heuristics are for the
2-letter change problem, and don’t have to be
admissible

— But do think about if they are or aren’t, and explain

m Even though “hill-climbing” and “beam” searches
arelocal strategies (and often used for complete
searching), you can still use them to solve partial
search problems like the graph in problem 2

= Homework #1 Clarifications

m For problem 3, let’s say you havetheinitial state
ABC, and are doing standard HC... what arethe

neighbors you need to consider?
- BC, AC, AB, ABCD, ABCE, ABCF

m So to do hill-climbing, you will generate all these
states, score them all, and choose the best one
(since we are maximizing the objective function)

= Genetic Algorithms

m So far the optimization strategies we've
discussed search for a single solution, one
state at a time within a neighborhood

|
m Genetic algorithms (GAS) are aunique
search approach that maintains a population
of states, or individuals, which evolves
— Also called evolutionary search
| -




Evolutionary Analogy

m Consider apopulation of rabbits:
some individuals are faster and
smarter than others

m Slower, dumber rabbits are likely
to be caught and eaten by foxes

m Fast, smart rabbits survive to do what rabbits to
best: make more rabbits!!

Evolutionary Analogy

m In thisanaogy, an individual rabbit represents a
solution to the problem (i.e. asingle point in the
state space)

— The state description isits DNA, if you will

m Thefoxes represent the problem constraints
— Solutions that do well are likely to survive

m What we need to create are notions of natural
selection, reproduction, and mutation

= Evolutionary Analogy

m Therabbitsthat survive breed with each other to
generate offspring, which startsto mix up their
genetic material

— Fast rabbits might breed with fast rabbits
|| — Fast rabbits with slow rabbits
— Smart with not-so-smart, etc...

m Furthermore, nature occasionally throws
ina“wild hare’ because genes can
mutate

Genetic Algorithm Example

POP = initial Popul ation /1 build a new popul ation
repeat { /1 with every generation
NEW POP = enpty
for | =1 to POP_SIZE {
X = fit individual /1 natural selection
Y = fit individual
CHI LD = crossover (X, Y) // reproduction
if small random probability then
nut at e( CHI LD) /1l mutation

add CHI LD to NEW POP

}

POP = NEW POP
} until solution found or enough tine el apsed
return nost fit individual in POP

11

w Core Elements of GAs

m For selection, we use afitness function to rank the
individuals of the population

- m For reproduction, we define a crossover operator

which takes state descriptions of individuals and
combines them to create new ones

— What advantages does this present over local search?

m For mutation, we can merely choose individualsin
the population and alter part of its state

10

= Genetic Algorithm Example

m The previous algorithm completely replacesthe
population for each new generation... but we can
alow individuals from older generationsto live on

- m Reproduction hereis only between two parents
(asin nature), but we can alow for more!!

m The population sizeaso isfixed... but we can
have this vary from one generation to the next




= Genetic Algorithm Example

* Basically, there is no one GA, we can devise
many variants of these 3 principles for
nearly any problem!!

& Chapters 7 & 8in How to Solve It: Modern
Heuristics have a very thorough
presentation of how to design genetic
algorithms for particular problems

= Selection

m  Deterministic selection
1. Rank al theindividuals using the fitness function and
choose the best k to survive
2. Replace the rest with offspring
- — Can lead fast convergence (and local optima)

m  Stochastic selection
— Instead of selecting the best k, we could select each
individual in proportion to its relative fitness to the
population

— Slower to converge, but could lose good solutions
15

Selection

m Selection (either to reproduce or live on) from one
generation to the next relies on the fitness function

m We can usualy think of the fitness function as
being a heuristic, or the objective function

m Wewant to apply pressure that good solutions
survive and bad solutions die
— Too much and we converge to sub-optimal solutions
— Too little and we don’t make much progress

= Reproduction

m The unique thing about GAsisthe ability of
solutions to inherit properties from other solutions
in the population

- m The basic way to perform a crossover operation is
to splice together parts of the state description
from each parent... for example, in SAT:

10011101 10010110
01000110 01001101
parents children

17

Selection

m  Tournament selection

1. For eachindividual i, create a subset g of the
population by random selection

2. Assignapoint toi for each individua in g that it
“beats’ (islessfit than itself)

3. Rebuild the population based not on fitness scores, but
the points accumulated in the tournament

— Asthesize of g increases, though, it becomes more
like deterministic selection

Reproduction

m There are many different ways to choose
crossover point(s) for reproduction:

— Single-point: choose the center, or some “optimal”
point in the state description... take the first half of one
parent, the second half of the other

— Random: choose the split point randomly
(or proportional to the parents’ fitness scores)

— n-point: make not 1 split point, but n different ones

— Uniform: choose each element of the state description
independently, at random (or proportional to fitness)




TR 0 |

Reproduction for 8-Queens

m For the 8-queens problem, we could choose a

crossover point with the same number of queens on

either side
m What else could we do?

R
ilkl.l .I.I

19

TR 0 |

Reproduction for TSP

m For TSP, our individuals are n-city tours
(e.g. 1-4-6-2-5-3 or 3-5-1-2-4-6 for 6 cities)

m Can we do a simple point-crossover like we
could for SAT and 8-Queens?

| 1-46

Thesearen't

[ 351

legal tours!

2.5.3 1-462-46 |
246 351253 |

parents

children

TR B

Reproduction for TSP

m One option isto have an ordered master queue of all the

citiesin the problem: e.g. 1,2,3,4,5,6

m Eachindividual, then, is a code that corresponds to

“dequeuing instructions’ from this master queue

— Numbersin the code are the relative position of the appropriate

city left in the queue
— These codes can then be mated with point-crossovers

actual parents GA parent codes GA child codes

actual children

[1-4-6-2-5-3}-» 134121 x 134111 |-»[1-4-6-2-35|

341121 }-»[352-1-6-4]

[35-2-1-4-6}»[341111

21

TR B

Reproduction for TSP

m We can try something even simpler to try and conserve
information from both parents
— Pick an block of contiguous cities in the tour to pass from one
parent to a child
— Removeall thecitiesin block from the other parent
— Add the remaining cities to the child in their preserved order, after
the other block

et

blocks
[B2-2h0xex]
[114-6253] / 4-6- 2555
[3/5-2-1/4-6] N 176253 52-1-4-6-3
citiesfrom | 3-5-2-1-4-6 me,:ﬁ::]‘évei 22
other parent

TR B

Mutation

m There are also avariety of waysto mutate individualsin

the population

m Thefirst question to consider it who to mutate
— Alter the most fit? Least fit? Random?
— Mutate children only, or surviving parents as well?
— How many to mutate?

m The second question is how to mutate
— Totally arbitrarily?
— Mutate to a better neighbor?

23

TR B

GAs and Creativity

m GAs can be thought of as a simultaneous, parallel
hill-climbing search
— The population as awhole is trying to converge to an
optimal solution

m Because solutions can evolve from avariety of
factors, without prodding from us asto “which
direction to go” (asin local search), very novel
problem solutions can be found discovered




GAs and Creativity

m Sensor-actuator networks (SANSs) are structures that model
connections between sensors and actuators (motors and
muscles) in simple robots

m GAs can learn parameters for SANSs that solve locomotion
problemsin a variety of ways

Ml@lzll

I v B G, U U
ST S U G . W

25

GAs and Emergent Intelligence

m So far, we' vetalked about GAs asasearch
strategy for a problem solving (in which case,
thereis an agent conducting the GA search)

m Recall from the second lecture about multi-agent
environments

m Now consider a GA that evolves a population of
agents!! Now, our GA population isavirtual
multi-agent environment

27

= GAs and Creativity

M. van de Panne, “ Control Techniques For
Physically-Based Animation,” Third Eurographics
Workshop on Animation and Smulation, 1994

| S - T S S S W N N 8
R 2 S S s e " N - -
Ve e a2 ¥ 9 g g
e 3 e a g a s I
R S T R T S S R i

= GAs and Emergent Intelligence

m Let'ssay wewant to “grow” agentsto predict
stock market trends

- m Each agent might be some statistical function that
maps a stock’ s history to its predicted future
performance:

(a x todaysPrice) + (B x yesterdaysPrice) +
(y x relativeValue) + (& x 1-monthStdDev) +

GAs and Emergent Intelligence

m We could maintain a population of these
agents, where each agent’ s state (“DNA") is
its set of coefficients (a, 3, Y, 0, etc.)

m Now let’ sthink about a GA for them:
— What is our fitness function?
— What isagood crossover?
— How can we mutate them?

29

= GAs and Emergent Intelligence

m Over time, the population should converge
on a population of individuals that reflect
the current stock market trends

m But will the most fit individual become a
universally good stock-picker?

m Perhaps not!




GAs and Emergent Intelligence

m It ispossiblethat different agentsin the population
specialize to aspect of the task
— Some agents predict well for the Fortune-500 stocks
— Others predict well for sports companies
— Still others pick non-profits well, etc...

% If thereisno one universally intelligent agent in
the population, perhaps we can let them all
predict... or “vote’ on a predictions

31

Genetic Programming

m Genetic programming isafield related to genetic
agorithms (surprise!)

m Instead of maintaining and manipulating a
population of strings, however, we use expression
trees... the goal isto evolve programs

Section 9.5 in Machine Learning provides anice
overview of this (sightly more advanced) topic

33

= GAs and Emergent Intelligence

m So our population of stock-pickersisamulti-agent
environment... iSit cooperative or competitive?

. m This phenomenon iswhat we might refer to as
emergent intelligence
— No single agent in the environment is, taken
individually, all that “intelligent”
— Taken together, though, the entire popul ation possesses
amore global intelligence that emerges from its
constituent agents

= Genetic Programming

Expression trees are graphical, relational
representations of functions or programs

Programming language compilers e
- convert code to such trees before
writing out machine-level @

instructions (CS 536) o
O (+)

For example:

sin(x) +Vx2+y

Genetic Programming

m Populations are initialized with randomized, well-
formed expressions build up from:
— Operators (e.g. +, Sin, X, tc.)
— Terminals (x, y, 2, €tc.)

m Fitnessis evaluated on how well its encoded
function/algorithm performs the task

m Crossover is applied by swapping subtreesin the
parent expressions

35

= Genetic Programming




Genetic Programming

J. Koza, Genetic programming: On the programming of
computers by means of natural selection, MIT Press, 1992

m 300 random programs were initialized with primitives to
solve block-stacking problems with the goal of spelling
“UNIVERSAL”

m After 10 generations, a program evolved that solved all of
166 initial configurations

(][] [w] [1][a] [{]
RS EEEE_SSSsSssss

37

Views of Evolution

m The Lamarkian Theory
— Popular in 1800s
— Anindividua’s genetic makeup is dtered asit
learns through life experience
— Today’ s biological evidence contradicts this

Views of Evolution

m The Baldwin Effect

— Learning has no effect on genetic makeup

— However, ability to learn reduces the need for “hard-
wired” functions

— Therefore, individual learning allows for amore diverse
gene pool (less hard-wiring) and more adaptable
populations

— Example: anew predator appears in an environment;
individuals who can learn to avoid it live on, resulting
in more adaptable gene pool

39

Last Thoughts on GAs

m Evolutionary algorithms are simulations of what
we perceive happening in nature, but we don’t
haveto follow the laws of nature

— Lamarkian GAs have been experimented with, and
shown successful on some problems

m Since we get to design the framework for the
simulation, there is awide margin for creative
licensein the framework we create!

— Concepts of age/gender/politics?
— Variety of fitness functions?

40

Summary of Search Strategies

m Partial Search
Look through state space for agoal from
which a solution can be found
— Node: state description
— Edge: action that changes state at some cost

— Path: sequence of actions that change from the
start state to the goal state

41

Summary of Search Strategies

m Uninformed Search: no domain information
— Complete/optimal if costs uniform: BFS, IDS
— Complete/optimal with costs: UCS
— Not complete/optimal: DFS, DLS

- m Informed Search: use heuristics to guide search

— g(n): cost from start to n

— h(n): estimates cost from n to goal (heuristic)

— f(n): g(n) + h(n): estimated cost of searching through n
— Complete/optimal: A* = h(n) isadmissible

— Not complete/optimal: Greedy, A

42




= Summary of Search Strategies

m Optimization Search
L ook through solution space for better
solutions to the problem
. — Node: complete solution
— Edge: operator changes to a new solution
— Can stop anytime

— Well-suited for NP-Complete problems,
optimization problems

i

= Summary of Search Strategies

m Escaping Loca Optima

Ways to avoid the traps into which local search
methods tend to fall

- — Random Restarting
— Simulated Annealing
— Tabu Search

m Evolutionary Search
Unique, non-local, parallel optimization search

= Summary of Search Strategies

m Loca Search

Focus on alocal part of the search space
rather than exploring it al

. — Beam search limitsthelist of candidate states

— Hill-climbing follows a single path of
promising successor states

— Solution heavily dependent on the initial state

— Can get stuck in “local optima’

i




