
1

1

Game Playing

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements (6/25)

� The “handin” directories are now setup for
Homework #1

� For problem 1 part A, don’ t worry about
run-time speed

� Problem 3, part D: the crossover function…

ADE

abc

A,C,E fr om one parent

B,D,F from the other

AbE

acD

3

Announcements (6/26)

� There are ties in problem 3-D, sorry… break ties
alphabetically, and you do still need to do part C

� Read Chapter 7 of AI: A Modern Approach for
next time

� For your project proposals (due Monday), I want:
– Names of those in the group
– Description of proposed topic (paper/program)
– A bibliography of 3-4 references on the topic

4

AI for Game Playing

� Game playing is (was?) thought to be a good
problem for AI research

� Game playing is non-trivial
– Players need “human-like” intelligence
– Games can be very complex (e.g. chess, go)
– Requires decision making within limited time

� Games usually are:
– Well-defined and repeatable
– Limited and accessible

� Can directly compare humans and computers

5

AI for Game Playing

bridge, poker,
scrabble???Inaccessible:

imperfect info

backgammon,
monopoly

Tic-tac-toe,
checkers, chess,

mancala

Accessible:
per fect info

ChanceDeterministic

6

Game Playing as Search

� Consider a two player board game:
– e.g. chess, checkers, mancala

– Board configuration: unique arrangement of pieces

� Let’s represent board games as search problem:
– States: board configurations

– Actions: legal moves

– Initial state: current board configuration

– Goal state: winning/terminal board configuration

2

7

Game Tree Representation

How do we handle this?

X X X

X

…

OX OX
O
X

O

X

…

X

O

X

XO

X

X O

X

O

X X

…

OX

X

But there’s a new aspect
to the problem…

There’s an opponent
we do not control!

8

Complexity of Game Playing

� Assume the opponent’s moves can be predicted
given the agent’s moves

� How complex would search be in this case?
– Worst case: O(bd)
– Tic-Tac-Toe: ~5 legal moves, max of 9 moves

• 59 = 1,953,125 states

– Chess: ~35 legal moves, ~100 moves per game
• 35100 ~10154 states (but “only” ~1040 legal states)

� Common games produce enormous search trees!!

9

Greedy Search for Games

� A utility function is used to score each
terminal state of the board to a number
value for that state for the computer
– Positive for winning (e.g. +1, +∞)

– Negative for losing (e.g. -1, -∞)

– Zero for a draw

10

Greedy Search for Games

� Expand the search tree to the terminal states
� Evaluate utility of each terminal board state
� Make the initial move that results in the board

configuration with the maximum value

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

EDB C

A
9

computer's moves

E
3

D
2

B
-5

C
9 opponent's moves

terminal states

11

Greedy Search for Games

� But this still ignores what the opponent is
likely to do…
– Computer chooses C because its utility is 9

– Opponent chooses J and wins!

EDB C

A

E
3

D
2

B
-5

C
9

A
9

computer's moves

opponent's moves

terminal statesM
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

12

The MiniMax Principle

� Assuming the worst
(i.e. the opponent plays optimally):
– Given there are two plays till the terminal states

– Low utility numbers favor opponent
• Smart opponent chooses minimizing moves

– High utility numbers favor computer
• Computer should choose maximizing moves

3

13

The MiniMax Principle

� The computer assumes after it moves the
opponent will choose the minimizing move
– Therefore, it chooses the best move considering

both its move and the opponent’s best move

computer's moves

opponent's moves

terminal states

EDB C

A

E
1

D
0

B
-7

C
-6

A
1

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

14

Propagating MiniMax Values

� Explore the tree to the terminal states
� Evaluate utility of the resulting board

configurations
� The computer makes a move to put the board

in the best configuration for it, assuming the
opponent makes its best moves on its turn:
– Start at the leaves
– Assign value to the parent node as follows

• Use minimum when children are opponent’ s moves
• Use maximum when children are computer's moves

15

Deeper Game Trees

� MiniMax can be generalized to more than 2 moves
� Propagate utility values upwards in the tree

ED
0B C

R
0

N
4 O P

9
Q
-6

S
3

T
5

U
-7

V
-9

K MF G
-5

H
3

I
8 J L

2

W
-3

X
-5

A

terminal states

O
-5

K
5

M
-7

F
4

J
9

E
-7

B
-5

C
3

A
3

opponent: min

computer: max

opponent: min

computer: max

16

General MiniMax Algorithm

f or each move by t he comput er {

per f or m DFS t o t er mi nal st at es

eval uat e each t er mi nal st at e

pr opagat e Mi ni Max val ues upwar d

– i f opponent pr opagat e mi n val ue of chi l dr en

– i f comput er pr opagat e max val ue of chi l dr en

choose move wi t h maxi mum Mi ni Max val ue

}

Note:
� MiniMax values gradually propagate upwards as DFS proceeds

(i.e. MiniMax values propagate up in “ left-to-right” fashion)
� MiniMax values for sub-tree propagate upwards “as we go” , so only O(bd)

nodes need to be kept in memory at any time

17

Complexity of MiniMax

� Space complexity
– depth-first search (no closed list necessary), so O(bd)

� Time complexity
– given branching factor b, O(bd)

� Time complexity is a major problem since
computer typically only has a finite amount of
time to make a move!!

18

Complexity of MiniMax

� Direct MiniMax algorithm is impractical
– Instead do depth-limited search to depth limit l

– But evaluation defined only for terminal states

– We need to know the value of non-terminal states

� Static board evaluator (SBE) functions use
heuristics to estimate utility for non-terminal
states

4

19

Static Board Evaluators (SBE)

� A static board evaluation function is used to
estimate how good the current board configuration
is for the computer
– Reflects computer’s chances of winning from that state
– Must be easy to calculate from board configuration

� For Example, Chess:
SBE = � × materialBalance +

�
 × centerControl + � × …

material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc…

20

Static Board Evaluators (SBE)

� Typically, one subtracts how good it is for the
opponent from how good it is for the computer

� If the board evaluation has utility x for a player,
then it is usually considered -x for opponent

� Must agree with the utility function that is
calculated at terminal nodes

21

MiniMax Algorithm with SBE

f unct i on mi ni max (STATE, DEPTH, LI MI T) {
/ / base cases
i f STATE i s t er mi nal t hen

r et ur n ut i l i t y(STATE)
i f DEPTH = LI MI T t hen

r et ur n sbe(STATE)
/ / cont i nue sear ch
el se {

CHI LDREN = empt y l i st
f or each CHI LD of STATE {

add t o CHI LDREN:
mi ni max(CHI LD, DEPTH+1, LI MI T)

i f comput er ' s t ur n t hen
r et ur n max(CHI LDREN)

el se
r et ur n mi n(CHI LDREN)

}
}

}

22

MiniMax with SBE

� The same as general MiniMax, except
– Only goes to depth l

– Estimates using SBE function

� How would this algorithm perform at chess?
– If could look ahead ~4 pairs of moves (i.e. 8 ply)

would be consistently beaten by average players

– If could look ahead ~8 pairs (16 ply)
as done in typical PC, is as good as human master

23

Summary So Far

� MiniMax can’ t search to the end of the game
– Otherwise, choosing a move is trivial

� SBE isn’ t perfect at estimating utility
– If it was, just choose best move without searching

� Since neither is feasible for interesting games,
combine MiniMax with SBE
– MiniMax to depth l

– Use SBE to score board configuration

24

Alpha-Beta Pruning

� Some of the branches of the game tree won’ t be
taken if playing against an intelligent opponent

� We can “prune” those branches from the tree
� Keep track while doing DFS of game tree of:

– Maximizing level: alpha
• Highest value seen so far

• Lower bound on node’s utility or score

– Minimizing level: beta
• Lowest value seen so far

• Higher bound on node’s utility or score

5

25

Alpha-Beta Pruning

� When maximizing (computer’s turn):
– If alpha � parent’s beta, stop expanding

– Opponent shouldn’ t allow the computer to
make this move

� When minimizing (opponent’s turn):
– If beta � parent’s alpha, stop expanding
– Computer shouldn’ t take this route

26

min

blue: terminal state

O�
=-3

W
-3

B�
=-5

N
4

F� =4
G
-5

X
-5

E�
=2

D
0

C�
=3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K� =5 MH
3

I
8

J� =9
L
2

A� =

Alpha-Beta Example

Result: Computer chooses move C

max DFS
Stack

A

max

min
X
-5

A� =3

red: pruned state

27

Effectiveness of Alpha-Beta

� Effectiveness depends on the order in which
successors are examined (more effective if best
are examined first)
– Best Case:

• Each player’ s best move is evaluated first (left-most)

– Worst Case:
• Ordered so that no pruning takes place
• No improvement over exhaustive search

� In general, performance is closer to the best case
than the worst case

28

Effectiveness of Alpha-Beta

� In practice often get O(b(d/2)) rather than O(bd)
– Same as having a branching factor of sqrt(b)

since (sqrt(b))d = b(d/2)

� Example: chess
– Branching factor goes from ~35 to ~6
– Allows for a much deeper search given the same

amount of time

– Allows computer chess to be competitive with humans

29

The Horizon Effect

� Sometimes disaster is just beyond the depth limit
– Computer captures queen, but a few moves later the

opponent checkmates and wins
� The computer has a limited horizon, it cannot

see that this significant event could happen
� How do you avoid catastrophic losses due to

“short-sightedness”?
– Quiescence search

– Secondary search

30

The Horizon Effect

� Quiescence Search
– When evaluation frequently changing, allow looking

deeper than the limit

– Looking for a point when game quiets down

� Secondary Search
1. Find best move looking to depth d
2. Look k steps beyond to verify it still looks good

3. If it doesn’ t, repeat step 2 for next best move

6

31

Stochastic Game Environments

� Some games involve chance, for example:
– Roll of a die
– Spin of a game wheel
– Deal of cards from shuffled deck

� Extend the game tree representation:
– Computer moves
– Opponent moves
– Chance nodes

32

Stochastic Game Environments

The game tree representation is extended:

A� =
max

50/50 50/50

.5 .5 .5 .5
chance

B�
=2

7 2

C�
=6

9 6

D�
=0

5 0

E�
=-4

8 -4

min

33

Stochastic Game Environments

� Weight score by the probabilities that move
occurs

� Use expected value for move: sum of possible
random outcomes

A� =

B�
=2

7 2

C�
=6

9 6

D�
=0

5 0

E�
=-4

8 -4

50/50 50/50

.5 .5 .5 .5

max

chance

min

50/50
4

50/50
-2

34

Stochastic Game Environments

� Choose move with highest expected value

A� =

B�
=2

7 2

C�
=6

9 6

D�
=0

5 0

E�
=-4

8 -4

.5 .5 .5 .5

max

chance

min

50/50
4

50/50
-2

35

Stochastic Game Environments

� Stochastic elements increase the branching factor
– 21 possible number rolls with 2 dice

– The value of look-ahead diminishes: as depth increases,
probability of reaching a particular node decreases

� Alpha-beta pruning is less effective

�
See AI: A Modern Approach for more details

36

Limiting Search Time

� In real games there is usually some time limit T
on making a move

� How do we take this into account?
– Can’t stop alpha-beta midway and expect to use

results with any confidence
– So, we could set a conservative depth-limit that

guarantees we will find a move in time < T
– But then, the search may finish early and the

opportunity to search deeper is wasted

7

37

Limiting Search Time

� In practice, we use an iterative-deepening (IDS)
approach
– Run MiniMax with alpha-beta pruning at increasing

depth limits
– When the clock runs out, use the solution found for the

last complete alpha-beta search
(i.e. the deepest search that was completed)

� As with all heuristics, there is also a speed vs.
accuracy tradeoff for board evaluation functions

38

Using Book Moves

� For well-studied games, maybe we know the
move we should make without having to
searching for it

� Build a database of opening moves, end-games,
and common board configurations

� If the current game state is in the lookup table,
use database:
– To determine the next move
– To evaluate the board

� Otherwise do alpha-beta search

39

Evaluation Functions

� The board evaluation function estimates how
good the current board state is for the computer

� Heuristic function of the features of the board
– i.e. function(f1, f2, f3, …, fn)

� The features are numeric characteristics
– f1 = # of white pieces
– f2 = # of black pieces
– f3 = f1 / f2
– f4 = estimate of “ threat” to white king, etc…

40

Linear Evaluation Functions

� A linear evaluation function of the features
is a weighted sum of f1, f2, f3...
(w1 × f1) + (w2 × f2) + (w3 × f3) + … + (wn × fn)
– where f1, f2, …, fn are features

– and w1, w2 , …, wn are their weights

�More important features get more weight

41

Linear Evaluation Functions

� The quality of play depends directly on
the quality of the evaluation function

� To build an evaluation function we have to:
– Construct good features using expert

knowledge of the game

– Choose good weights… or learn them

42

Learning Weights

� Q: How can we learn the weights for a linear
evaluation function?

� A: Play lots of games against an opponent!
– For every move (or game)

error = true outcome - evaluation function
– If error is positive (underestimating)

adjust weights to increase the evaluation function
– If error is zero do nothing
– If error is negative (overestimating)

adjust weights to decrease the evaluation function

8

43

Learning Checkers

�
A. L. Samuel, “Some Studies in Machine Learning
using the Game of Checkers,” IBM Journal of
Research and Development, 11(6):601-617, 1959

� Learned linear weights by playing copies of itself
thousands of times

� Used only an IBM 704 with 10,000 words of
RAM, magnetic tape, and a clock speed of 1 kHz

� Successful enough to be competitive in human
tournaments

44

Learning Backgammon

�
G. Tesauro and T. J. Sejnowski, “A Parallel
Network that Learns to Play Backgammon,”
Artificial Intelligence, 39(3), 357-390, 1989

� Also learned by playing copies of itself
� Used a non-linear evaluation function: a neural

network (we’ ll discuss these models in the
machine learning section of the course)

� Rates in the top three players in the world

45

IBM’s Deep Blue

� Current world chess champion
� Parallel processor, 8 dedicated VLSI “chess chips”
� Can search 200 million configurations/second
� Uses MiniMax, alpha-beta pruning, very

sophisticated heuristics
� It can search up to 14 ply (i.e. 7 pairs of moves)
� Can avoid horizon by searching as deep as 40 ply
� Uses book moves

46

IBM’s Deep Blue

� Kasparov vs. Deep Blue, May 1997
– 6-game full-regulation chess match sponsored by ACM
– Kasparov lost the match 2.5 to 3.5

� This was a historic achievement for computer
chess because it became the best chess player on
the planet!!

� Note: Deep Blue still searches “brute force,” and
still plays with little in common with the intuition
and strategy humans use

47

Chess Rating Scale

1200

1400

1600

1800

2000

2200
2400

2600

2800

3000

1966 1971 1976 1981 1986 1991 1997

Ratings

Garry Kasparov (current human World Champion) Deep Blue

Deep Thought

48

AI for Other Games

� Checkers
– Current world champion is Chinook
– Blondie24 won a 2001 online checkers tournament

• Learned to play checkers with genetic algorithms
• Used a neural network: wasn’ t even programmed with rules!

� Go
– Branching factor is ~360 on average, very large!
– Pretty much still play at novice levels these days
– $2 million prize for any system that can beat

a world expert

9

49

AI in Modern Computer Games

� Modern computer games (i.e. “Doom,” “Civilization,” etc.)
usually still use rudimentary AI
– Finite state machines, simple reflex agents

– e.g. the “scientist” AI schema for Half-life:

fear

idle

hide

heal follow

stop follow

player uses player walks away

path not found

noises
near/far

see player

enemy
near/far

50

AI in Modern Computer Games

� Path-finding for FPS-type tournament arena games is often
done using A* search with straight-line distance as a
heuristic
– Often makes the agent’ s moves “ look like it’ s drunk”

� Remember: reflex agents aren’ t very adaptable, and behave
very deterministically (not very human-like)

�
S. Rabin, editor, AI Game Programming Wisdom, Charles
River Media, 2002

51

AI in Modern Computer Games

� Genetic algorithms and genetic programming have
been used and shown some success in “evolving”
realistically-acting agents for games
– Certainly appropriate for “Sim”-type games

�
B. Geisler, “An Empirical Study of Machine Learning
Algorithms Applied to Modeling Player Behavior in a
‘First Person Shooter’ Video Game,” M.S. Thesis, UW-
Madison, 2002
– Used machine learning to learn typical player actions
– Created a computer agent player based on learned behavior

52

Summary

� Classic game playing is best modeled as a search
problem

� Search trees for games represent alternate
computer/opponent moves

� Evaluation functions estimate the quality of
a given board configuration for each player
- good for opponent
+ good for computer
0 neutral

53

Summary

� MiniMax is a procedure that chooses moves by
assuming that the opponent always choose their
best move

� Alpha-beta pruning is a procedure that can
eliminate large parts of the search tree enabling
the search to go deeper

� For many well-known games, computer
algorithms using heuristic search can match or
out-perform human world experts

54

Summary

� Initially thought to be good area for AI research
� But brute force has proven to be better than

a lot of knowledge engineering
– More high-speed hardware issues than AI

– AI relatively simple, enabled scaled-up hardware
� Still a good test-bed for machine learning

� Perhaps machines don’ t have to think like us?

