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Announcements (6/25)

� The “handin”  directories are now setup for 
Homework #1

� For problem 1 part A, don’ t worry about 
run-time speed

� Problem 3, part D: the crossover function…

ADE

abc

A,C,E fr om one parent

B,D,F from the other

AbE

acD
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Announcements (6/26)

� There are ties in problem 3-D, sorry… break ties 
alphabetically, and you do still need to do part C

� Read Chapter 7 of AI: A Modern Approach for 
next time

� For your project proposals (due Monday), I want:
– Names of those in the group
– Description of proposed topic (paper/program)
– A bibliography of 3-4 references on the topic
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AI for Game Playing

� Game playing is (was?) thought to be a good 
problem for AI research

� Game playing is non-trivial
– Players need “human-like”  intelligence
– Games can be very complex (e.g. chess, go)
– Requires decision making within limited time

� Games usually are:
– Well-defined and repeatable
– Limited and accessible

� Can directly compare humans and computers
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AI for Game Playing

bridge, poker, 
scrabble???Inaccessible: 

imperfect info

backgammon, 
monopoly

Tic-tac-toe,
checkers, chess, 

mancala

Accessible: 
per fect info

ChanceDeterministic
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Game Playing as Search

� Consider a two player board game:
– e.g. chess, checkers, mancala

– Board configuration: unique arrangement of pieces

� Let’s represent board games as search problem:
– States: board configurations

– Actions: legal moves

– Initial state: current board configuration

– Goal state: winning/terminal board configuration
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Game Tree Representation

How do we handle this?
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But there’s a new aspect
to the problem…

There’s an opponent
we do not control!
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Complexity of Game Playing

� Assume the opponent’s moves can be predicted 
given the agent’s moves

� How complex would search be in this case?
– Worst case: O(bd)
– Tic-Tac-Toe: ~5 legal moves, max of 9 moves

• 59 = 1,953,125 states

– Chess: ~35 legal moves, ~100 moves per game
• 35100 ~10154 states (but “only”  ~1040 legal states)

� Common games produce enormous search trees!!
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Greedy Search for Games

� A utility function is used to score each 
terminal state of the board to a number 
value for that state for the computer
– Positive for winning (e.g. +1, +∞)

– Negative for losing (e.g. -1, -∞)

– Zero for a draw
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Greedy Search for Games

� Expand the search tree to the terminal states 
� Evaluate utility of each terminal board state
� Make the initial move that results in the board 

configuration with the maximum value
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Greedy Search for Games

� But this still ignores what the opponent is 
likely to do…
– Computer chooses C because its utility is 9

– Opponent chooses J and wins!
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The MiniMax Principle

� Assuming the worst
(i.e. the opponent plays optimally):
– Given there are two plays till the terminal states

– Low utility numbers favor opponent
• Smart opponent chooses minimizing moves

– High utility numbers favor computer
• Computer should choose maximizing moves
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The MiniMax Principle

� The computer assumes after it moves the 
opponent will choose the minimizing move
– Therefore, it chooses the best move considering 

both its move and the opponent’s best move
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Propagating MiniMax Values

� Explore the tree to the terminal states
� Evaluate utility of the resulting board 

configurations
� The computer makes a move to put the board

in the best configuration for it, assuming the 
opponent makes its best moves on its turn:
– Start at the leaves
– Assign value to the parent node as follows

• Use minimum when children are opponent’ s moves
• Use maximum when children are computer's moves
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Deeper Game Trees

� MiniMax can be generalized to more than 2 moves  
� Propagate utility values upwards in the tree
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General MiniMax Algorithm

f or  each move by t he comput er  {

per f or m DFS t o t er mi nal  st at es

eval uat e each t er mi nal  st at e

pr opagat e Mi ni Max val ues upwar d

– i f  opponent  pr opagat e mi n val ue of  chi l dr en

– i f  comput er  pr opagat e max val ue of  chi l dr en

choose move wi t h maxi mum Mi ni Max val ue

}

Note:
� MiniMax values gradually propagate upwards as DFS proceeds 

(i.e. MiniMax values propagate up in “ left-to-right”  fashion)
� MiniMax values for sub-tree propagate upwards “as we go” , so only O(bd)

nodes need to be kept in memory at any time
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Complexity of MiniMax

� Space complexity
– depth-first search (no closed list necessary), so O(bd)

� Time complexity
– given branching factor b, O(bd)

� Time complexity is a major problem since 
computer typically only has a finite amount of 
time to make a move!!
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Complexity of MiniMax

� Direct MiniMax algorithm is impractical
– Instead do depth-limited search to depth limit l

– But evaluation defined only for terminal states

– We need to know the value of non-terminal states

� Static board evaluator (SBE) functions use 
heuristics to estimate utility for non-terminal 
states
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Static Board Evaluators (SBE)

� A static board evaluation function is used to 
estimate how good the current board configuration 
is for the computer
– Reflects computer’s chances of winning from that state 
– Must be easy to calculate from board configuration

� For Example, Chess:
SBE = �  × materialBalance + 

�
 × centerControl + �  × …

material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc…
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Static Board Evaluators (SBE)

� Typically, one subtracts how good it is for the 
opponent from how good it is for the computer 

� If the board evaluation has utility x for a player, 
then it is usually considered -x for opponent 

� Must agree with the utility function that is 
calculated at terminal nodes
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MiniMax Algorithm with SBE

f unct i on mi ni max ( STATE,  DEPTH,  LI MI T)  {
/ /  base cases
i f  STATE i s t er mi nal  t hen

r et ur n ut i l i t y( STATE)
i f  DEPTH = LI MI T t hen

r et ur n sbe( STATE)
/ /  cont i nue sear ch
el se {

CHI LDREN = empt y l i st
f or each CHI LD of  STATE {

add t o CHI LDREN:
mi ni max( CHI LD,  DEPTH+1,  LI MI T)

i f  comput er ' s t ur n t hen
r et ur n max( CHI LDREN)

el se
r et ur n mi n( CHI LDREN)

}
}

}
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MiniMax with SBE

� The same as general MiniMax, except
– Only goes to depth l

– Estimates using SBE function

� How would this algorithm perform at chess?
– If could look ahead ~4 pairs of moves (i.e. 8 ply) 

would be consistently beaten by average players

– If could look ahead ~8 pairs (16 ply)
as done in typical PC, is as good as human master
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Summary So Far

� MiniMax can’ t search to the end of the game
– Otherwise, choosing a move is trivial

� SBE isn’ t perfect at estimating utility
– If it was, just choose best move without searching

� Since neither is feasible for interesting games, 
combine MiniMax with SBE
– MiniMax to depth l

– Use SBE to score board configuration
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Alpha-Beta Pruning

� Some of the branches of the game tree won’ t be 
taken if playing against an intelligent opponent

� We can “prune” those branches from the tree
� Keep track while doing DFS of game tree of:

– Maximizing level: alpha
• Highest value seen so far

• Lower bound on node’s utility or score

– Minimizing level: beta
• Lowest value seen so far

• Higher bound on node’s utility or score
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Alpha-Beta Pruning

� When maximizing (computer’s turn):
– If alpha � parent’s beta, stop expanding

– Opponent shouldn’ t allow the computer to 
make this move

� When minimizing (opponent’s turn):
– If beta � parent’s alpha, stop expanding
– Computer shouldn’ t take this route
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Effectiveness of Alpha-Beta

� Effectiveness depends on the order in which 
successors are examined (more effective if best 
are examined first)
– Best Case:

• Each player’ s best move is evaluated first (left-most)

– Worst Case:
• Ordered so that no pruning takes place
• No improvement over exhaustive search

� In general, performance is closer to the best case 
than the worst case
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Effectiveness of Alpha-Beta

� In practice often get O(b(d/2)) rather than O(bd)
– Same as having a branching factor of sqrt(b)

since (sqrt(b))d =  b(d/2)

� Example: chess
– Branching factor goes from ~35 to ~6
– Allows for a much deeper search given the same 

amount of time

– Allows computer chess to be competitive with humans
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The Horizon Effect

� Sometimes disaster is just beyond the depth limit
– Computer captures queen, but a few moves later the 

opponent checkmates and wins
� The computer has a limited horizon, it cannot

see that this significant event could happen
� How do you avoid catastrophic losses due to 

“short-sightedness”?
– Quiescence search

– Secondary search
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The Horizon Effect

� Quiescence Search
– When evaluation frequently changing, allow looking 

deeper than the limit

– Looking for a point when game quiets down

� Secondary Search
1. Find best move looking to depth d
2. Look k steps beyond to verify it still looks good

3. If it doesn’ t, repeat step 2 for next best move
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Stochastic Game Environments

� Some games involve chance, for example:
– Roll of a die
– Spin of a game wheel
– Deal of cards from shuffled deck

� Extend the game tree representation:
– Computer moves
– Opponent moves
– Chance nodes
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Stochastic Game Environments

The game tree representation is extended:
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Stochastic Game Environments

� Weight score by the probabilities that move 
occurs

� Use expected value for move: sum of possible 
random outcomes 
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Stochastic Game Environments

� Choose move with highest expected value
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Stochastic Game Environments

� Stochastic elements increase the branching factor
– 21 possible number rolls with 2 dice

– The value of look-ahead diminishes: as depth increases, 
probability of reaching a particular node decreases

� Alpha-beta pruning is less effective

�
See AI: A Modern Approach for more details
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Limiting Search Time

� In real games there is usually some time limit T
on making a move

� How do we take this into account? 
– Can’t stop alpha-beta midway and expect to use

results with any confidence
– So, we could set a conservative depth-limit that 

guarantees we will find a move in time < T
– But then, the search may finish early and the 

opportunity to search deeper is wasted
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Limiting Search Time

� In practice, we use an iterative-deepening (IDS) 
approach
– Run MiniMax with alpha-beta pruning at increasing 

depth limits
– When the clock runs out, use the solution found for the 

last complete alpha-beta search
(i.e. the deepest search that was completed)

� As with all heuristics, there is also a speed vs. 
accuracy tradeoff for board evaluation functions
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Using Book Moves

� For well-studied games, maybe we know the 
move we should make without having to 
searching for it

� Build a database of opening moves, end-games, 
and common board configurations

� If the current game state is in the lookup table, 
use database:
– To determine the next move
– To evaluate the board

� Otherwise do alpha-beta search
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Evaluation Functions

� The board evaluation function estimates how 
good the current board state is for the computer

� Heuristic function of the features of the board
– i.e. function(f1, f2, f3, …, fn)

� The features are numeric characteristics
– f1 = # of white pieces
– f2 = # of black pieces
– f3 = f1 / f2
– f4 = estimate of “ threat”  to white king, etc…
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Linear Evaluation Functions

� A linear evaluation function of the features
is a weighted sum of f1, f2, f3...
(w1 × f1) + (w2 × f2) + (w3 × f3) + … + (wn × fn)
– where f1, f2, …, fn are features

– and w1, w2 , …, wn are their weights

�More important features get more weight
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Linear Evaluation Functions

� The quality of play depends directly on
the quality of the evaluation function

� To build an evaluation function we have to:
– Construct good features using expert 

knowledge of the game

– Choose good weights… or learn them
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Learning Weights

� Q: How can we learn the weights for a linear 
evaluation function?

� A: Play lots of games against an opponent!
– For every move (or game)

error = true outcome - evaluation function
– If error is positive (underestimating)

adjust weights to increase the evaluation function
– If error is zero do nothing
– If error is negative (overestimating)

adjust weights to decrease the evaluation function
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Learning Checkers

�
A. L. Samuel, “Some Studies in Machine Learning 
using the Game of Checkers,”  IBM Journal of 
Research and Development, 11(6):601-617, 1959

� Learned linear weights by playing copies of itself 
thousands of times

� Used only an IBM 704 with 10,000 words of 
RAM, magnetic tape, and a clock speed of 1 kHz

� Successful enough to be competitive in human 
tournaments
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Learning Backgammon

�
G. Tesauro and T. J. Sejnowski, “A Parallel 
Network that Learns to Play Backgammon,”  
Artificial Intelligence, 39(3), 357-390, 1989

� Also learned by playing copies of itself
� Used a non-linear evaluation function: a neural 

network (we’ ll discuss these models in the 
machine learning section of the course)

� Rates in the top three players in the world
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IBM’s Deep Blue

� Current world chess champion
� Parallel processor, 8 dedicated VLSI “chess chips”
� Can search 200 million configurations/second
� Uses MiniMax, alpha-beta pruning, very 

sophisticated heuristics
� It can search up to 14 ply (i.e. 7 pairs of moves)
� Can avoid horizon by searching as deep as 40 ply
� Uses book moves
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IBM’s Deep Blue

� Kasparov vs. Deep Blue, May 1997
– 6-game full-regulation chess match sponsored by ACM
– Kasparov lost the match 2.5 to 3.5

� This was a historic achievement for computer 
chess because it became the best chess player on 
the planet!!

� Note: Deep Blue still searches “brute force,”  and 
still plays with little in common with the intuition 
and strategy humans use
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Chess Rating Scale
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AI for Other Games

� Checkers
– Current world champion is Chinook
– Blondie24 won a 2001 online checkers tournament

• Learned to play checkers with genetic algorithms
• Used a neural network: wasn’ t even programmed with rules! 

� Go
– Branching factor is ~360 on average, very large!
– Pretty much still play at novice levels these days
– $2 million prize for any system that can beat

a world expert
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AI in Modern Computer Games

� Modern computer games (i.e. “Doom,”  “Civilization,”  etc.) 
usually still use rudimentary AI
– Finite state machines, simple reflex agents

– e.g. the “scientist”  AI schema for Half-life:

fear

idle

hide

heal follow

stop follow

player uses player walks away

path not found

noises
near/far

see player

enemy
near/far

50

AI in Modern Computer Games

� Path-finding for FPS-type tournament arena games is often 
done using A* search with straight-line distance as a 
heuristic
– Often makes the agent’ s moves “ look like it’ s drunk”

� Remember: reflex agents aren’ t very adaptable, and behave 
very deterministically (not very human-like)

�
S. Rabin, editor, AI Game Programming Wisdom, Charles 
River Media, 2002
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AI in Modern Computer Games

� Genetic algorithms and genetic programming have 
been used and shown some success in “evolving”  
realistically-acting agents for games
– Certainly appropriate for “Sim”-type games

�
B. Geisler, “An Empirical Study of Machine Learning 
Algorithms Applied to Modeling Player Behavior in a 
‘First Person Shooter’  Video Game,”  M.S. Thesis, UW-
Madison, 2002
– Used machine learning to learn typical player actions
– Created a computer agent player based on learned behavior
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Summary

� Classic game playing is best modeled as a search 
problem

� Search trees for games represent alternate 
computer/opponent moves

� Evaluation functions estimate the quality of
a given board configuration for each player
- good for opponent
+ good for computer
0 neutral
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Summary

� MiniMax is a procedure that chooses moves by 
assuming that the opponent always choose their 
best move

� Alpha-beta pruning is a procedure that can 
eliminate large parts of the search tree enabling
the search to go deeper

� For many well-known games, computer 
algorithms using heuristic search can match or 
out-perform human world experts
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Summary

� Initially thought to be good area for AI research
� But brute force has proven to be better than

a lot of knowledge engineering
– More high-speed hardware issues than AI

– AI relatively simple, enabled scaled-up hardware
� Still a good test-bed for machine learning

� Perhaps machines don’ t have to think like us?


