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Announcements (6/25)

m The “handin” directories are now setup for
Homework #1

m For problem 1 part A, don’'t worry about
run-time speed
m Problem 3, part D: the crossover function...

A,C,E from one parent
ADE >< AbE
abc acD

B,D,F from the other 2

Announcements (6/26)

m Therearetiesin problem 3-D, sorry... break ties
aphabeticaly, and you do still need to do part C

m Read Chapter 7 of Al: A Modern Approach for
next time

m For your project proposas (due Monday), | want:
— Names of thosein the group
— Description of proposed topic (paper/program)
— A bibliography of 3-4 references on the topic

Al for Game Playing

m Game playing is (was?) thought to be a good
problem for Al research
m Game playing isnon-trivial
— Players need “human-like” intelligence
— Games can be very complex (e.g. chess, go)
— Requires decision making within limited time
m Gamesusualy are:
— Well-defined and repeatable
— Limited and accessible
m Can directly compare humans and computers

Al for Game Playing

Deterministic Chance
Accessible: Tic-tac-toe, backgammon,
perfect info checkers, chess, monopoly
mancala
Inaccessible: 1900 bridge, poker,
imperfect info LA scrabble

Game Playing as Search

m Consider atwo player board game:
— e.g. chess, checkers, mancala
— Board configuration: unique arrangement of pieces

m Let’'srepresent board games as search problem:
— States: board configurations
— Actions: legal moves
— Initial state: current board configuration
— Goal state: winning/terminal board configuration




Complexity of Game Playing

m Assume the opponent’ s moves can be predicted
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= Game Tree Representation
But there's anew aspect
o O the problem...
There'san opponent ‘
wedo not control! 4 \
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How do we handle this? x4
e
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= Greedy Search for Games
B - A utility function is used to score each
terminal state of the board to a number
value for that state for the computer
- — Positive for winning (e.g. +1, +o)
— Negativefor losing (e.g. -1, -)
- — Zero for adraw
.
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= Greedy Search for Games
- " But this gtill ignores what the opponent is
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likely to do...
— Computer chooses C because its utility is9
— Opponent chooses J and wins!

computer's moves

opponent's moves

terminal states
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S8 giventhe agent’s moves
m How complex would search bein this case?
— Worst case: O(bd)
. — Tic-Tac-Toe: ~5 legal moves, max of 9 moves
* 59=1,953,125 states
. — Chess: ~35 legal moves, ~100 moves per game
o 3510 ~10' gtates (but “only” ~10% legal states)
* Common games produce enormous search trees!!
-
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= Greedy Search for Games
- m Expand the search tree to thetermina states
m Evaluate utility of each terminal board state
m Maketheinitiad movethat resultsin the board
- configuration with the maximum value
- compuler's moves
opponent's moves
terminal states
.
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= The MiniMax Principle
m Assuming the worst
] . .
(i.e. the opponent plays optimally):
— Given there aretwo playstill theterminal states
- — Low utility numbers favor opponent
* Smart opponent chooses minimizing moves
[ | — High utility numbers favor computer
» Computer should choose maximizing moves
e
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The MiniMax Principle

m The computer assumes after it moves the
opponent will choose the minimizing move

— Therefore, it chooses the best move considering
both its move and the opponent’ s best move

computer's moves

opponent's moves

terminal states
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Propagating MiniMax Values

m Explorethetreeto thetermina states

m Evaluate utility of the resulting board
configurations
m The computer makes a move to put the board
in the best configuration for it, assuming the
opponent makes its best moves on its turn:
— Start at the leaves
— Assign value to the parent node as follows

* Use minimum when children are opponent’ s moves
+ Use maximum when children are computer's moves
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Deeper Game Trees

m MiniMax can be generalized to more than 2 moves
m Propagate utility values upwardsin the tree

computer: max

opponent: min

computer: max

opponent: min terminal states
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General MiniMax Algorithm

for each nove by the conmputer {
performDFS to ternminal states
eval uate each termnal state
propagate M ni Max val ues upward
— if opponent propagate min value of children
— if conputer propagate max val ue of children
choose nove with nmaxi num M ni Max val ue

}

Note:

m  MiniMax values gradually propagate upwards as DFS proceeds
(i.e. MiniMax values propagate up in “|eft-to-right” fashion)

m  MiniMax values for sub-tree propagate upwards “as we go”, so only O(bd)
nodes need to be kept in memory at any time

Complexity of MiniMax

m Space complexity
— depth-first search (no closed list necessary), so O(bd)

m Time complexity
— given branching factor b, O(b)

m Time complexity isamajor problem since
computer typicaly only has a finite amount of
time to make amove!!
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Complexity of MiniMax

m Direct MiniMax agorithmisimpractica
— Instead do depth-limited search to depth limit |
— But evaluation defined only for terminal states
— We need to know the value of non-terminal states

m Static board evaluator (SBE) functions use
heuristics to estimate utility for non-terminal
States




Static Board Evaluators (SBE)

m A static board evaluation function is used to
estimate how good the current board configuration
isfor the computer

— Reflects computer’s chances of winning from that state
— Must be easy to calculate from board configuration

m For Example, Chess:
SBE = o x materialBalance + B x centerControl +y x ...
material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc...

w Static Board Evaluators (SBE)

m Typically, one subtracts how good it isfor the
opponent from how good it is for the computer

. m If the board evaluation has utility x for aplayer,
then it isusually considered -x for opponent

m Must agree with the utility function that is
calculated at terminal nodes

MiniMax Algorithm with SBE

function ninimax (STATE, DEPTH, LIMT) {
/'l base cases
if STATE is terminal then
return utility(STATE)
if DEPTH = LIMT then
return sbhe( STATE)
/'l continue search
el se {
CHI LDREN = enpty list
foreach CHI LD of STATE {
add to CH LDREN:
i ni max(CHI LD, DEPTH+1, LIMT)
if conputer's turn then
return max( CH LDREN)
el se
return mi n( CH LDREN)
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= MiniMax with SBE

m The same as general MiniMax, except
— Only goesto depth |
— Estimates using SBE function

m How would this algorithm perform at chess?
— If could look ahead ~4 pairs of moves (i.e. 8 ply)
would be consistently beaten by average players
— If could look ahead ~8 pairs (16 ply)
asdoneintypical PC, isas good as human master

Summary So Far

m MiniMax can’'t search to the end of the game
— Otherwise, choosing amoveistrivial

m SBE isn't perfect at estimating utility
— If it was, just choose best move without searching

m Since neither isfeasible for interesting games,
combine MiniMax with SBE
— MiniMax to depth |
— Use SBE to score board configuration
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= Alpha-Beta Pruning

m Some of the branches of the game treewon’t be
taken if playing against an intelligent opponent

m Wecan “prune’ those branches from the tree

- m Keep track while doing DFS of game tree of:
— Maximizing level: alpha
+ Highest value seen so far
» Lower bound on node' s utility or score
— Minimizing level: beta
* Lowest value seen so far
« Higher bound on node's utility or score
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Alpha-Beta Pruning

m \When maximizing (computer’sturn):
— If alpha > parent’s beta, stop expanding

— Opponent shouldn’t alow the computer to
make this move

m \When minimizing (opponent’ s turn):
— If beta < parent’ s alpha, stop expanding
— Computer shouldn’t take this route
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Alpha-Beta Example

Result: Computer chooses move C

DFS
Stack

blue: terminal state

red: pruned state 26
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Effectiveness of Alpha-Beta

m Effectiveness depends on the order in which
successors are examined (more effective if best
are examined first)

— Best Case:

« Each player’s best move is evaluated first (left-most)
— Worst Case:

« Ordered so that no pruning takes place

+ No improvement over exhaustive search

m |n general, performanceis closer to the best case
than theworst case

27

TR B

Effectiveness of Alpha-Beta

m In practice often get O(b(@2)) rather than O(b4)
— Same as having a branching factor of sqrt(b)
since (sqri(b))? = b@?

m Example: chess
— Branching factor goes from ~35 to ~6

— Allows for amuch deeper search given the same
amount of time

— Allows computer chess to be competitive with humans
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The Horizon Effect

m Sometimes disaster isjust beyond the depth limit

— Computer captures queen, but a few moves later the
opponent checkmates and wins

m The computer has alimited horizon, it cannot
see that this significant event could happen
m How do you avoid catastrophic losses due to
“short-sightedness’?
— Quiescence search
— Secondary search
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The Horizon Effect

m  Quiescence Search

— When evaluation frequently changing, allow looking
deeper than the limit

— Looking for a point when game quiets down

m Secondary Search
1. Find best move looking to depth d
2. Look k steps beyond to verify it till looks good
3. If it doesn't, repeat step 2 for next best move




= Stochastic Game Environments = Stochastic Game Environments

m Some gamesinvolve chance, for example: The game tree representation is extended:
— Roll of adie
— Spin of agame wheel
— Dedl of cards from shuffled deck
=
m Extend the game tree representation:
— Computer moves
— Opponent moves
— Chance nodes
31 32
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= Stochastic Game Environments = Stochastic Game Environments
= Weight score by the probabilities that move m Choose move with highest expected value
occurs
m Use expected value for move: sum of possible
random outcomes
| |
min
7 29 6 5 0 8 4
| |
= Stochastic Game Environments @ Limiting Search Time
m Stochastic eements increase the branching factor * Inreal gamesthereis usually sometime limit T
— 21 possible number rolls with 2 dice on making a move
— The value of look-ahead diminishes: as depth increases,
- probability of reaching a particular node decreases - m How do wetake this into account?
— Can't stop alpha-beta midway and expect to use
m Alpha-betapruning is less effective results with any confidence o
— So, we could set a conservative depth-limit that
guarantees we will find amoveintime< T
See Al: A Modern Approach for more details — But then, the search may finish early and the
opportunity to search deeper is wasted
| |




Limiting Search Time

m |n practice, we use an iterative-deepening (IDS)
approach
— Run MiniMax with alpha-beta pruning at increasing
depth limits
— When the clock runs out, use the solution found for the
last complete alpha-beta search
(i.e. the deepest search that was completed)

m Aswith dl heurigtics, thereis aso a speed vs.
accuracy tradeoff for board evaluation functions
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= Using Book Moves

m For well-studied games, maybe we know the
move we should make without having to
searching for it

m Build a database of opening moves, end-games,

= and common board configurations

m |f the current game state isin the lookup table,
use database:

— To determine the next move
— To evaluate the board
m Otherwise do apha-beta search

Evaluation Functions

%* The board evaluation function estimates how
good the current board state is for the computer

m Heurigtic function of the features of the board
— i.e. function(fy, f,, f5, ..., fn)
m Thefeatures are numeric characteristics
— f, = # of white pieces
— f, = #of black pieces
—f,=f,/f,
— f, = estimate of “threat” to whiteking, etc...
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= Linear Evaluation Functions

m A linear evaluation function of the features
isaweighted sum of f;, f,, f5...

(Wi %fi)) + Wy xf) + (W3 xfy) + ... + (w, Xf,)
- —wheref,, f,, ..., f, are features
—andw,, w,, ..., w, aretheir weights

* More important features get more weight
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Linear Evaluation Functions

m The quality of play depends directly on
the quality of the evaluation function

m To build an evaluation function we have to:

— Construct good features using expert
knowledge of the game

— Choose good weights... or learn them
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= Learning Weights

m Q: How can welearn theweightsfor alinear
evaluation function?
m A: Play lots of games against an opponent!
— For every move (or game)
- error = true outcome - evaluation function

— If error is positive (underestimating)
adjust weights to increase the evaluation function

— If error is zero do nothing

— If error is negative (overestimating)
adjust weights to decrease the evaluation function
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Learning Checkers

A. L. Samuel, “Some Studiesin Machine Learning
using the Game of Checkers,” IBM Journal of
Research and Devel opment, 11(6):601-617, 1959

m Learned linear weights by playing copies of itself
thousands of times

m Used only an IBM 704 with 10,000 words of
RAM, magnetic tape, and a clock speed of 1 kHz

m Successful enough to be competitivein human
tournaments
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Learning Backgammon

G. Tesauro and T. J. Sgnowski, “A Perallel
Network that Learnsto Play Backgammon,”
Artificial Intelligence, 39(3), 357-390, 1989

m Also learned by playing copies of itself

m Used anon-linear evaluation function: aneura
network (we'll discuss these modelsin the
machine learning section of the course)

m Ratesin thetop three playersin the world
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IBM’s Deep Blue

m Current world chess champion
m Paralld processor, 8 dedicated VLS| “chess chips’
m Can search 200 million configurations/second

B = Uses MiniMax, alpha-beta pruning, very

sophisticated heuristics
m It can search up to 14 ply (i.e. 7 pairs of moves)
m Can avoid horizon by searching as deep as 40 ply
m Uses book moves
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IBM’s Deep Blue

m Kasparov vs. Deep Blue, May 1997
— 6-game full-regulation chess match sponsored by ACM
— Kasparov lost the match 2.5t0 3.5
m Thiswas a historic achievement for computer
chess because it became the best chess player on
the planet!!
m Note: Deep Blue still searches “brute force,” and
till plays with little in common with the intuition
and strategy humans use
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Chess Rating Scale

ool
2800 atngs /
26004 Garry Kasparov (current human World Champion) Deep Blue

2400+
2200
2000+
18004
1600
14004

1200 T T T T T d
1966 1971 1976 1981 1986 1991 1997

Deep Thought

47

Al for Other Games

m Checkers
— Current world champion is Chinook
— Blondie24 won a 2001 online checkers tournament
« Learned to play checkers with genetic algorithms
* Used aneural network: wasn't even programmed with rules!
m Go
— Branching factor is ~360 on average, very large!
— Pretty much still play at novice levels these days

— $2 million prize for any system that can beat
aworld expert
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Al in Modern Computer Games

m Modern computer games (i.e. “Doom,” “Civilization,” etc.)
usually still use rudimentary Al
— Finite state machines, simple reflex agents
— eg.the“scientist” Al schemafor Half-life:

see player
noises
nearffar

enemy
near/far

player uses player walks away

heal

path not found

stop follow.
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Al in Modern Computer Games

m Genetic agorithms and genetic programming have
been used and shown some successin “evolving”
realistically-acting agents for games

— Certainly appropriate for “ Sim”-type games

B. Geidler, “An Empirical Study of Machine Learning
Algorithms Applied to Modeling Player Behavior in a
‘First Person Shooter’ Video Game,” M.S. Thesis, UW-
Madison, 2002

— Used machine learning to learn typical player actions
— Created acomputer agent player based on learned behavior
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Al in Modern Computer Games

m Path-finding for FPS-type tournament arena games is often
done using A* search with straight-line distance as a
heuristic

— Often makes the agent’s moves “look likeit's drunk”

m Remember: reflex agents aren’t very adaptable, and behave
very deterministically (not very human-like)

S. Rabin, editor, Al Game Programming Wisdom, Charles
River Media, 2002

Summary

m MiniMax is aprocedure that chooses moves by
assuming that the opponent aways choose their
best move

m Alpha-betapruning is a procedure that can
diminate large parts of the search tree enabling
the search to go deeper

m For many well-known games, computer
agorithms using heuristic search can match or
out-perform human world experts
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Summary

m Classic game playing is best modeled as a search
problem
m Search trees for games represent alternate
computer/opponent moves
m Evaluation functions estimate the quality of
agiven board configuration for each player
- good for opponent
+ good for computer
0 neutral

Summary

m |nitially thought to be good areafor Al research

m But brute force has proven to be better than
alot of knowledge engineering
— More high-speed hardware issues than Al
— Al relatively simple, enabled scaled-up hardware

m Still agood test-bed for machine learning

* Perhaps machines don’t have to think like us?




