Game Playing
N O

Burr H. Settles

CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

Announcements (6/25)

m The “handin” directories are now setup for
Homework #1

m For problem 1 part A, don’'t worry about
run-time speed
m Problem 3, part D: the crossover function...

A,C,E from one parent
ADE >< AbE
abc acD

B,D,F from the other 2

Announcements (6/26)

m Therearetiesin problem 3-D, sorry... break ties
aphabeticaly, and you do still need to do part C

m Read Chapter 7 of Al: A Modern Approach for
next time

m For your project proposas (due Monday), | want:
— Names of thosein the group
— Description of proposed topic (paper/program)
— A bibliography of 3-4 references on the topic

Al for Game Playing

m Game playing is (was?) thought to be a good
problem for Al research
m Game playing isnon-trivial
— Players need “human-like” intelligence
— Games can be very complex (e.g. chess, go)
— Requires decision making within limited time
m Gamesusualy are:
— Well-defined and repeatable
— Limited and accessible
m Can directly compare humans and computers

Al for Game Playing

Deterministic Chance
Accessible: Tic-tac-toe, backgammon,
perfect info checkers, chess, monopoly
mancala
Inaccessible: 1900 bridge, poker,
imperfect info LA scrabble

Game Playing as Search

m Consider atwo player board game:
— e.g. chess, checkers, mancala
— Board configuration: unique arrangement of pieces

m Let’'srepresent board games as search problem:
— States: board configurations
— Actions: legal moves
— Initial state: current board configuration
— Goal state: winning/terminal board configuration

Complexity of Game Playing

m Assume the opponent’ s moves can be predicted

| |
= Game Tree Representation
But there's anew aspect
o O the problem...
There'san opponent ‘
wedo not control! 4 \
[N
. Ty NN
How do we handle this? x4
e
| -
| |
= Greedy Search for Games
B - A utility function is used to score each
terminal state of the board to a number
value for that state for the computer
- — Positive for winning (e.g. +1, +o)
— Negativefor losing (e.g. -1, -)
- — Zero for adraw
.
| -
| |
= Greedy Search for Games
- " But this gtill ignores what the opponent is

TR B

likely to do...
— Computer chooses C because its utility is9
— Opponent chooses J and wins!

computer's moves

opponent's moves

terminal states

11

S8 giventhe agent’s moves
m How complex would search bein this case?
— Worst case: O(bd)
. — Tic-Tac-Toe: ~5 legal moves, max of 9 moves
* 59=1,953,125 states
. — Chess: ~35 legal moves, ~100 moves per game
o 3510 ~10' gtates (but “only” ~10% legal states)
* Common games produce enormous search trees!!
-
8
I
| |
= Greedy Search for Games
- m Expand the search tree to thetermina states
m Evaluate utility of each terminal board state
m Maketheinitiad movethat resultsin the board
- configuration with the maximum value
- compuler's moves
opponent's moves
terminal states
.
10
| -
| |
= The MiniMax Principle
m Assuming the worst
] . .
(i.e. the opponent plays optimally):
— Given there aretwo playstill theterminal states
- — Low utility numbers favor opponent
* Smart opponent chooses minimizing moves
[| — High utility numbers favor computer
» Computer should choose maximizing moves
e
12
| -

TR 0 |

The MiniMax Principle

m The computer assumes after it moves the
opponent will choose the minimizing move

— Therefore, it chooses the best move considering
both its move and the opponent’ s best move

computer's moves

opponent's moves

terminal states

13

TR 0 |

Propagating MiniMax Values

m Explorethetreeto thetermina states

m Evaluate utility of the resulting board
configurations
m The computer makes a move to put the board
in the best configuration for it, assuming the
opponent makes its best moves on its turn:
— Start at the leaves
— Assign value to the parent node as follows

* Use minimum when children are opponent’ s moves
+ Use maximum when children are computer's moves

TR B

Deeper Game Trees

m MiniMax can be generalized to more than 2 moves
m Propagate utility values upwardsin the tree

computer: max

opponent: min

computer: max

opponent: min terminal states

15

TR B

General MiniMax Algorithm

for each nove by the conmputer {
performDFS to ternminal states
eval uate each termnal state
propagate M ni Max val ues upward
— if opponent propagate min value of children
— if conputer propagate max val ue of children
choose nove with nmaxi num M ni Max val ue

}

Note:

m MiniMax values gradually propagate upwards as DFS proceeds
(i.e. MiniMax values propagate up in “|eft-to-right” fashion)

m MiniMax values for sub-tree propagate upwards “as we go”, so only O(bd)
nodes need to be kept in memory at any time

Complexity of MiniMax

m Space complexity
— depth-first search (no closed list necessary), so O(bd)

m Time complexity
— given branching factor b, O(b)

m Time complexity isamajor problem since
computer typicaly only has a finite amount of
time to make amove!!

17

Complexity of MiniMax

m Direct MiniMax agorithmisimpractica
— Instead do depth-limited search to depth limit |
— But evaluation defined only for terminal states
— We need to know the value of non-terminal states

m Static board evaluator (SBE) functions use
heuristics to estimate utility for non-terminal
States

Static Board Evaluators (SBE)

m A static board evaluation function is used to
estimate how good the current board configuration
isfor the computer

— Reflects computer’s chances of winning from that state
— Must be easy to calculate from board configuration

m For Example, Chess:
SBE = o x materialBalance + B x centerControl +y x ...
material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc...

w Static Board Evaluators (SBE)

m Typically, one subtracts how good it isfor the
opponent from how good it is for the computer

. m If the board evaluation has utility x for aplayer,
then it isusually considered -x for opponent

m Must agree with the utility function that is
calculated at terminal nodes

MiniMax Algorithm with SBE

function ninimax (STATE, DEPTH, LIMT) {
/'l base cases
if STATE is terminal then
return utility(STATE)
if DEPTH = LIMT then
return sbhe(STATE)
/'l continue search
el se {
CHI LDREN = enpty list
foreach CHI LD of STATE {
add to CH LDREN:
i ni max(CHI LD, DEPTH+1, LIMT)
if conputer's turn then
return max(CH LDREN)
el se
return mi n(CH LDREN)

21

= MiniMax with SBE

m The same as general MiniMax, except
— Only goesto depth |
— Estimates using SBE function

m How would this algorithm perform at chess?
— If could look ahead ~4 pairs of moves (i.e. 8 ply)
would be consistently beaten by average players
— If could look ahead ~8 pairs (16 ply)
asdoneintypical PC, isas good as human master

Summary So Far

m MiniMax can’'t search to the end of the game
— Otherwise, choosing amoveistrivial

m SBE isn't perfect at estimating utility
— If it was, just choose best move without searching

m Since neither isfeasible for interesting games,
combine MiniMax with SBE
— MiniMax to depth |
— Use SBE to score board configuration

23

= Alpha-Beta Pruning

m Some of the branches of the game treewon’t be
taken if playing against an intelligent opponent

m Wecan “prune’ those branches from the tree

- m Keep track while doing DFS of game tree of:
— Maximizing level: alpha
+ Highest value seen so far
» Lower bound on node' s utility or score
— Minimizing level: beta
* Lowest value seen so far
« Higher bound on node's utility or score

TR 0 |

Alpha-Beta Pruning

m \When maximizing (computer’sturn):
— If alpha > parent’s beta, stop expanding

— Opponent shouldn’t alow the computer to
make this move

m \When minimizing (opponent’ s turn):
— If beta < parent’ s alpha, stop expanding
— Computer shouldn’t take this route

25

TR 0 |

Alpha-Beta Example

Result: Computer chooses move C

DFS
Stack

blue: terminal state

red: pruned state 26

TR B

Effectiveness of Alpha-Beta

m Effectiveness depends on the order in which
successors are examined (more effective if best
are examined first)

— Best Case:

« Each player’s best move is evaluated first (left-most)
— Worst Case:

« Ordered so that no pruning takes place

+ No improvement over exhaustive search

m |n general, performanceis closer to the best case
than theworst case

27

TR B

Effectiveness of Alpha-Beta

m In practice often get O(b(@2)) rather than O(b4)
— Same as having a branching factor of sqrt(b)
since (sqri(b))? = b@?

m Example: chess
— Branching factor goes from ~35 to ~6

— Allows for amuch deeper search given the same
amount of time

— Allows computer chess to be competitive with humans

28

The Horizon Effect

m Sometimes disaster isjust beyond the depth limit

— Computer captures queen, but a few moves later the
opponent checkmates and wins

m The computer has alimited horizon, it cannot
see that this significant event could happen
m How do you avoid catastrophic losses due to
“short-sightedness’?
— Quiescence search
— Secondary search

29

X

The Horizon Effect

m Quiescence Search

— When evaluation frequently changing, allow looking
deeper than the limit

— Looking for a point when game quiets down

m Secondary Search
1. Find best move looking to depth d
2. Look k steps beyond to verify it till looks good
3. If it doesn't, repeat step 2 for next best move

= Stochastic Game Environments = Stochastic Game Environments

m Some gamesinvolve chance, for example: The game tree representation is extended:
— Roll of adie
— Spin of agame wheel
— Dedl of cards from shuffled deck
=
m Extend the game tree representation:
— Computer moves
— Opponent moves
— Chance nodes
31 32
| . | .
= Stochastic Game Environments = Stochastic Game Environments
= Weight score by the probabilities that move m Choose move with highest expected value
occurs
m Use expected value for move: sum of possible
random outcomes
| |
min
7 29 6 5 0 8 4
| |
= Stochastic Game Environments @ Limiting Search Time
m Stochastic eements increase the branching factor * Inreal gamesthereis usually sometime limit T
— 21 possible number rolls with 2 dice on making a move
— The value of look-ahead diminishes: as depth increases,
- probability of reaching a particular node decreases - m How do wetake this into account?
— Can't stop alpha-beta midway and expect to use
m Alpha-betapruning is less effective results with any confidence o
— So, we could set a conservative depth-limit that
guarantees we will find amoveintime< T
See Al: A Modern Approach for more details — But then, the search may finish early and the
opportunity to search deeper is wasted
| |

Limiting Search Time

m |n practice, we use an iterative-deepening (IDS)
approach
— Run MiniMax with alpha-beta pruning at increasing
depth limits
— When the clock runs out, use the solution found for the
last complete alpha-beta search
(i.e. the deepest search that was completed)

m Aswith dl heurigtics, thereis aso a speed vs.
accuracy tradeoff for board evaluation functions

37

= Using Book Moves

m For well-studied games, maybe we know the
move we should make without having to
searching for it

m Build a database of opening moves, end-games,

= and common board configurations

m |f the current game state isin the lookup table,
use database:

— To determine the next move
— To evaluate the board
m Otherwise do apha-beta search

Evaluation Functions

%* The board evaluation function estimates how
good the current board state is for the computer

m Heurigtic function of the features of the board
— i.e. function(fy, f,, f5, ..., fn)
m Thefeatures are numeric characteristics
— f, = # of white pieces
— f, = #of black pieces
—f,=f,/f,
— f, = estimate of “threat” to whiteking, etc...

39

= Linear Evaluation Functions

m A linear evaluation function of the features
isaweighted sum of f;, f,, f5...

(Wi %fi)) + Wy xf) + (W3 xfy) + ... + (w, Xf,)
- —wheref,, f,, ..., f, are features
—andw,, w,, ..., w, aretheir weights

* More important features get more weight

40

Linear Evaluation Functions

m The quality of play depends directly on
the quality of the evaluation function

m To build an evaluation function we have to:

— Construct good features using expert
knowledge of the game

— Choose good weights... or learn them

41

= Learning Weights

m Q: How can welearn theweightsfor alinear
evaluation function?
m A: Play lots of games against an opponent!
— For every move (or game)
- error = true outcome - evaluation function

— If error is positive (underestimating)
adjust weights to increase the evaluation function

— If error is zero do nothing

— If error is negative (overestimating)
adjust weights to decrease the evaluation function

42

Learning Checkers

A. L. Samuel, “Some Studiesin Machine Learning
using the Game of Checkers,” IBM Journal of
Research and Devel opment, 11(6):601-617, 1959

m Learned linear weights by playing copies of itself
thousands of times

m Used only an IBM 704 with 10,000 words of
RAM, magnetic tape, and a clock speed of 1 kHz

m Successful enough to be competitivein human
tournaments

43

Learning Backgammon

G. Tesauro and T. J. Sgnowski, “A Perallel
Network that Learnsto Play Backgammon,”
Artificial Intelligence, 39(3), 357-390, 1989

m Also learned by playing copies of itself

m Used anon-linear evaluation function: aneura
network (we'll discuss these modelsin the
machine learning section of the course)

m Ratesin thetop three playersin the world

44

IBM’s Deep Blue

m Current world chess champion
m Paralld processor, 8 dedicated VLS| “chess chips’
m Can search 200 million configurations/second

B = Uses MiniMax, alpha-beta pruning, very

sophisticated heuristics
m It can search up to 14 ply (i.e. 7 pairs of moves)
m Can avoid horizon by searching as deep as 40 ply
m Uses book moves

45

IBM’s Deep Blue

m Kasparov vs. Deep Blue, May 1997
— 6-game full-regulation chess match sponsored by ACM
— Kasparov lost the match 2.5t0 3.5
m Thiswas a historic achievement for computer
chess because it became the best chess player on
the planet!!
m Note: Deep Blue still searches “brute force,” and
till plays with little in common with the intuition
and strategy humans use

46

Chess Rating Scale

ool
2800 atngs /
26004 Garry Kasparov (current human World Champion) Deep Blue

2400+
2200
2000+
18004
1600
14004

1200 T T T T T d
1966 1971 1976 1981 1986 1991 1997

Deep Thought

47

Al for Other Games

m Checkers
— Current world champion is Chinook
— Blondie24 won a 2001 online checkers tournament
« Learned to play checkers with genetic algorithms
* Used aneural network: wasn't even programmed with rules!
m Go
— Branching factor is ~360 on average, very large!
— Pretty much still play at novice levels these days

— $2 million prize for any system that can beat
aworld expert

48

Al in Modern Computer Games

m Modern computer games (i.e. “Doom,” “Civilization,” etc.)
usually still use rudimentary Al
— Finite state machines, simple reflex agents
— eg.the“scientist” Al schemafor Half-life:

see player
noises
nearffar

enemy
near/far

player uses player walks away

heal

path not found

stop follow.

49

Al in Modern Computer Games

m Genetic agorithms and genetic programming have
been used and shown some successin “evolving”
realistically-acting agents for games

— Certainly appropriate for “ Sim”-type games

B. Geidler, “An Empirical Study of Machine Learning
Algorithms Applied to Modeling Player Behavior in a
‘First Person Shooter’ Video Game,” M.S. Thesis, UW-
Madison, 2002

— Used machine learning to learn typical player actions
— Created acomputer agent player based on learned behavior

51

Al in Modern Computer Games

m Path-finding for FPS-type tournament arena games is often
done using A* search with straight-line distance as a
heuristic

— Often makes the agent’s moves “look likeit's drunk”

m Remember: reflex agents aren’t very adaptable, and behave
very deterministically (not very human-like)

S. Rabin, editor, Al Game Programming Wisdom, Charles
River Media, 2002

Summary

m MiniMax is aprocedure that chooses moves by
assuming that the opponent aways choose their
best move

m Alpha-betapruning is a procedure that can
diminate large parts of the search tree enabling
the search to go deeper

m For many well-known games, computer
agorithms using heuristic search can match or
out-perform human world experts

53

Summary

m Classic game playing is best modeled as a search
problem
m Search trees for games represent alternate
computer/opponent moves
m Evaluation functions estimate the quality of
agiven board configuration for each player
- good for opponent
+ good for computer
0 neutral

Summary

m |nitially thought to be good areafor Al research

m But brute force has proven to be better than
alot of knowledge engineering
— More high-speed hardware issues than Al
— Al relatively simple, enabled scaled-up hardware

m Still agood test-bed for machine learning

* Perhaps machines don’t have to think like us?

