First-Order Inference

Burr H. Settles
CS-540, UW-Madison
www.cs.wisc.edu/~cs540-1
Summer 2003

Announcements (7/1)

- Discussion list topic \#2: pick a favorite saying and translate it to FOL
- Must be well-formed
- Have at least 1 quantified variable
- Have at least 2 connectives ($\wedge \vee \Rightarrow$)
- If someone post a translation that you disagree with, say so! (it is a discussion list, after all... you're not being graded on being wrong or right!)

Proofs for FOL

■ "Thom is a turtle."

1. turtle (Thom)

- "Rob is a rabbit."

2. rabbit (Rob)

■ "Turtles outlast rabbits."
3. $\forall x, y$ turtle $(x) \wedge$ rabbit $(y) \Rightarrow$ outlasts (x, y)

■ Prove: "Thom outlasts Rob."
? outlasts (Thom, Rob)

Inference Rules for FOL

- All inference rules for PL also apply to FOL (MP, AE, AI, OI, DNE, UR, R, DML)
- Universal Elimination, UE variable substituted with ground term $\forall \mathrm{x}$ Eats (Jim, x) infer Eats (Jim, Cake)
- Existential Elimination, EE variable substituted with new constant
$\mathbf{~} \mathbf{x}$ Eats (Jim, x) infer Eats(Jim, NewFood)
- Existential Introduction, EI ground term substituted with variable
$\frac{\forall v \alpha}{\text { SUBST(\{v/g\}, } \alpha)}$
$\frac{\exists v \alpha}{\text { SUBST }\{v / k\}, \alpha)}$
$\frac{\alpha}{\exists v \operatorname{SUBST}(\{g / v\}, \alpha)}$

Eats (Jim, Cake) infer $\exists \mathrm{x}$ Eats (x , Cake)

Proofs for FOL

- And Introduction: 1, 2

4. turtle (Thom) \wedge rabbit (Rob)

- Universal Elimination: 3 ($x /$ Thom, $y /$ Rob $\}$

5. turtle (Thom) \wedge rabbit (Rob) \Rightarrow outlasts (Thom, Rob)

- Modus Ponens: 4, 5

6. outlasts (Thom, Rob)

* AI, UE, MP is a common inference pattern

FOL Proof as Search

- States: the current KB
- Actions: inference rules
- Goal test: see if query is in KB
- Problem: huge branching factor (especially for UE)
- Idea: Find a substitution that makes the rule premise match known facts
* Make new, powerful inference rule!

Automated Inference in FOL

* Automated inference is harder for FOL than it is for PL
- Variables can take on a potentially infinite number of possible values from the domain
- Thus... UE can be applied in a potentially infinite number of ways to KB!

Generalized Modus Ponens (GMP)

* Unify rule premises with known facts and apply unifier to conclusion
- Rule: $\forall x, y$ turtle $(x) \wedge$ rabbit $(y) \Rightarrow$ outlasts (x, y)
- Known facts: turtle(Thom), and rabbit (Rob)
- Unifier: \quad ($x /$ Thom, $y /$ Rob $\}$
- Apply unifier to conclusion: outlasts (Thom, Rob)

Generalized Modus Ponens (GMP)

- Combines AI, UE, and MP into a single rule

(where $\operatorname{SUBST}\left(\theta, p_{i}{ }^{\prime}\right)=\operatorname{SUBST}\left(\theta_{,} p_{i}\right)$ for all i)
- $\boldsymbol{\operatorname { S U B S T }}(\boldsymbol{\theta}, \boldsymbol{\alpha})$ means apply substitutions in $\boldsymbol{\theta}$ to sentence $\boldsymbol{\alpha}$

■ Substitution list $\boldsymbol{\theta}=\left\{v_{1} / t_{1}, v_{2} / t_{2}, \ldots, v_{n} / t_{n}\right\}$ means

- Replace all occurrences of variable v_{i} with term t_{i}
- Substitutions are made in left to right order

Generalized Modus Ponens (GMP)

(where SUBST $\left(\theta, p_{i}{ }^{\prime}\right)=\operatorname{SUBST}\left(\theta, p_{i}\right)$ for all i)

- All variables assumed to be universally quantified
- Used with a KB in Horn normal form (HNF): Horn sentence: disjunction with one positive literal
- single atomic sentence: $\quad \mathbf{P (x)}$
$-($ conj. of atoms $) \Rightarrow$ atom: $\neg P(x) \vee \neg Q(x) \vee R(x)$

Generalized Modus Ponens (GMP)

(where $\operatorname{SUBST}\left(\theta, p_{i}{ }^{\prime}\right)=\operatorname{SUBST}\left(\theta, p_{i}\right)$ for all i)

Example:

$p_{1}{ }^{\prime} \quad=$ taller (Larry, Curly)
$p_{2}^{\prime} \quad=$ taller (Curly, Moe)
$p_{1} \wedge p_{2} \Rightarrow q=$ taller $(\mathbf{x}, \mathrm{y}) \wedge$ taller $(\mathrm{y}, \mathrm{z}) \Rightarrow \operatorname{taller}(\mathrm{x}, \mathrm{z})$
$\theta=\{x /$ Larry, $y /$ Curly, $z /$ Moe $\}$
$\operatorname{SUBST}(\theta, q)=$ taller (Larry, Moe)

Unification Algorithm

■ θ is a most general unifier (MGU)

- Shortest length substitution list to make a match
- In general, more than one MGU
- Our algorithm recursively explores the two expressions and simultaneously builds θ
■ We want to prevent replacing variables with terms that contains that variable (e.g. $\{\mathbf{x} / \mathrm{F}(\mathrm{x}) \mathrm{\}})$
- This slows down the algorithm
- Unification with this variable-substitution check has a time complexity of $O\left(n^{2}\right)$, where n is the number of terms in the expressions

Unification Algorithm

```
// p.278 has a more detailed version of the algorithm
unify (P, Q, THETA) {
    if no differences then return THETA
    else {
        R = mismatch term in P // where R f S
        S = mismatch term in Q
    }
        if R is a variable then {
        if R is in S then return FAILURE
        add {R/S} to THETA
        return unify(P-sub-THETA, Q-sub-THETA, THETA)
    }
        else if S is a variable {
        if R is in S then return FAILURE
        add {S/R} to THETA
        return unify(P-sub-THETA, Q-sub-THETA, THETA)
    }
}
```


Soundness of GMP

- Note: $\alpha \theta$ is the same as $\operatorname{SUBST}(\theta, \alpha)$
- We want to show:
$p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)=q \theta$ provided $p_{i}^{\prime} \theta=p_{i} \theta$ for all i
- Lemma: for any Horn clause $p: p$ p $p \theta$ by UE

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)=$
$\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}=p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime}=p_{1}{ }^{\prime} \boldsymbol{\theta} \wedge \ldots \wedge p_{n}{ }^{\prime} \boldsymbol{\theta}$
3. $q \theta$ (MP: 1,2) since $p_{i}{ }^{\prime} \theta=p_{i} \theta$ for all i

Inference Example

"The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, and enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is an American."

1. american $(x) \wedge$ weapon $(y) \wedge \operatorname{sells}(x, y, z) \wedge \operatorname{hostile}(z) \Rightarrow \operatorname{criminal}(x)$ 2. enemy(Nono,America)
$\exists x$ owns(Nono,x) ^ missile $(x) \longleftarrow$ Must be in HNF!

2. missile (M)
3. missile (x) \wedge owns(Nono,x) $\Rightarrow \operatorname{sells}$ (West,x,Nono)
4. american (West)
5. enemy $(x$, America $) \Rightarrow$ hostile (x)
6. $\operatorname{missile}(x) \Rightarrow \operatorname{weapon}(x)$

Forward Chaining with GMP

Backward Chaining with GMP

Completeness of General FOL

- FC and BC are complete for KBs in Horn form, but incomplete for general FOL:
owns (Burr, x) \wedge shoe (x) \Rightarrow stinky (x) shoe (x) ^ stinky (x) \Rightarrow aallowed (x) ?- shoe (x) ^owns(Burr, x) ^ allowed(x)
- Can't prove query with FC or $\mathrm{BC} \ldots$ why?
- Does a complete algorithm for FOL exist?

Forward Chaining with GMP

- For full FC Algorithm, see page 282
- Sound and complete for first-order definite clauses - Proof similar to PL proof
- Datalog: FOL clauses with no functions (e.g. crime KB)
- FC terminates for Datalog in at most $p n^{k}$ literals
- FC typically adds all sentences that can be inferred - Matching premises against known facts in NP-Hard
- Still, FC is used widely in deductive databases

Backward Chaining with GMP

- For full BC Algorithm, see page page 288
- DFS recursive proof search
- Space is linear in the size of the proof
- Incomplete due to possible infinite loops - Fix by checking current goal against every goal on the stack
- Inefficient due to repeated subgoals
- Complications added to keep track of unifiers
- Fix by caching previous results (but this uses up space!)
- Two versions: find any solution, find all solutions
- BC still used (without improvements!) extensively for logic programming systems (e.g. Prolog)

Brief History of Reasoning

-	450BC	Stoics	PL, inference (?)
-	32 BC	Aristotle	inference rules (syllogisms), quantifiers
-	1565	Cardano	PL + uncertainty (probability theory)
-	1847	Boole	PL (again)
-	1879	Frege	FOL
-	1922	Wittgenstein	proof using truth table
-	1930	Gödel	complete algo for FOL exists
-	1930	Herbrand	complete algo for FOL (reduce to PL)
-	1931	Gödel	no complete algo for number theory
-	1960	Davis/Putnam practical algo for PL	
-	1965	Robinson	practical algo for FOL (resolution)

- 450BC Stoics
- 32BC Aristotle
- 1565 Cardano
- 1847 Boole
- 1879 Frege
- 1922 Wittgenstein
- 1930 Herbrand
- 1965 Robinson practical algo for FOL (resolution)

Resolution

- Entailment in general FOL is only semi-decidable:
- Can prove $\boldsymbol{\alpha}$ if кв $\vDash \boldsymbol{\alpha}$
- Cannot always prove that KB doesn't $\mathcal{=} \boldsymbol{\alpha}$ (halting)
- Resolution is a refutation technique:
- To prove KB $\vDash \boldsymbol{\alpha}$ show that $\mathrm{KB} \wedge \neg \boldsymbol{\alpha}$ is unsatisfiable
- Resolution uses кв and $\neg \alpha$ in CNF:
- Conjunction of clauses that are disjunction of literals
* Resolution repeatedly combines two clauses to make a new one until an empty clause is derived (a contradiction)

Resolution

- Resolution in PL

equivalently:

- Generalized Resolution (GR) for FOL:
where \boldsymbol{p}_{i} and \boldsymbol{q}_{i} are literals for all \boldsymbol{i} where $\boldsymbol{U N I F Y}\left(\boldsymbol{p}_{j}, \boldsymbol{q}_{k}\right)=\theta$, and \boldsymbol{q}_{k} is the negation of \boldsymbol{p}_{j}
$\frac{p_{1} \vee \ldots p_{j} \vee \ldots \vee p_{m}, q_{1} \vee \ldots q_{k} \vee \ldots \vee q_{n}}{\operatorname{SUBST}\left(\theta, p_{1} \vee \ldots p_{j-1} \vee p_{j+1} \ldots \vee p_{m} \vee q_{1} \vee \ldots q_{k-1} \vee q_{k+1} \ldots \vee q_{n}\right)}$

Resolution Refutation

well-fed (Me), ᄀwell-fed (x) v happy (x)
$\operatorname{SUBST}(\theta$, happy (x))

- p_{j} is well-fed (Me)
\boldsymbol{q}_{k} is ᄀwell-fed (\mathbf{x})
- $\operatorname{UNIFY}\left(p_{j}, q_{k}\right)$ result in $\boldsymbol{\theta}=\{\mathbf{x} / \mathrm{Me}\}$ $\operatorname{SUBST}(\theta$, happy (x) $)$ result in happy (Me)

Inferred sentence: happy (Me)

* GMP is a special case of generalized resolution (for KBs in HNF)

Resolution Refutation

- Can be thought of as search
- Reversed construction of search tree (leaves to root)
- Leaves are KB clauses and \neg query
- Resolvent is new node with arcs to parent clauses
- Root is a clause containing false
- A search is complete if it guarantees that the empty clause (i.e. false) can be derived whenever кв $=\mathbf{q}$
* Goal is to design a complete search that efficiently finds a contradiction (i.e. empty clause)

Resolution Refutation Example

Conjunctive Normal Form

- The KB needs to be a conjunction of CNF clauses and/or literals
- CNF clause: disjunction of literals $-e . g$. hot (\mathbf{x}) \vee warm (\mathbf{x}) $\vee \operatorname{cold}(\mathbf{x})$
- Literal: atom (may be negated)
- e.g. ᄀhappy (Sally)
* Any FOL KB can be converted into CNF

Converting FOL to CNF

```
1. Replace }\Leftrightarrow\mathrm{ with equivalent: P &Q becomes P}=>QQQQ
2. Replace }=>\mathrm{ with equivalent: P}=>QQ\quad\mathrm{ becomes }\neg\textrm{P}\vee
3. Reduce scope of }\neg\mathrm{ to single literals:
\begin{tabular}{|c|c|c|}
\hline \(\rightarrow\) & becomes P & (DNE) \\
\hline \(\neg(P \vee Q)\) & becomes \(\neg \mathrm{P} \wedge \neg \mathrm{Q}\) & (de Morgan's) \\
\hline \(\neg(P \wedge Q)\) & becomes \(\neg \mathrm{P} \vee \neg \mathrm{Q}\) & (de Morgan's) \\
\hline \(\neg \forall \times \mathrm{P}\) & becomes \(\exists \mathrm{x} \neg \mathrm{P}\) & \\
\hline
\end{tabular}
    \negxP b becomes }\forallx->
4. Standardize variables apart:
- Each quantifier must have a unique variable name
- Avoids confusion in steps 5 and 6
- e.g. \([\forall \mathrm{x} P] \vee[\exists \mathrm{x} Q] \quad\) becomes \(\forall \mathrm{x} P \vee \exists \mathrm{y} Q\)
```


FOL-CNF Conversion Example

4. Standardize variables apart
$\forall x[\exists y \operatorname{animal}(y) \wedge \neg \operatorname{loves}(x, y)] \vee[\exists z \operatorname{loves}(z, x)]$
5. Eliminate Existentials by skolemizing $\forall x[\operatorname{animal}(F(x)) \wedge \neg \operatorname{loves}(x, F(x))] \vee \operatorname{loves}(G(x), x)$
6. Drop universals
$[\operatorname{animal}(F(x)) \wedge \neg \operatorname{loves}(x, F(x))] \vee \operatorname{loves}(G(x), x)$

7\&8. Distribute \vee over \wedge, group conjunctions/disjunctions: $[\operatorname{animal}(F(x)) \vee \operatorname{loves}(G(x), x)] \wedge[\neg \operatorname{loves}(x, F(x)) \vee \operatorname{loves}(G(x), x)]$

Summary

■ Generalized resolution inference provides a complete proof system for all of FOL

