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Summer 2003

Announcements (7/1)

� Discussion list topic #2: pick a favorite saying and 
translate it to FOL
– Must be well-formed

– Have at least 1 quantified variable

– Have at least 2 connectives (∧∨�)

� If someone post a translation that you disagree 
with, say so! (it is a discussion list, after all… 
you’re not being graded on being wrong or right!)

Announcements (7/2)

� Excellent FOL translations going up on the discussion list! 
Feel free to post more than one!

� Plan for the next week and a half:
– No classFriday (July 4)
– Lectures Mon & Tues next week
– Review session Wed (TAs will run it)
– Midterm on Thursday (July 10, in class)
– No classnext Friday (July 11)

� Project papers/reports will be due Friday, August 1 
(second to last week of classes)

Inference Rules for FOL

� All inference rules for PL also apply to FOL
(MP, AE, AI, OI, DNE, UR, R, DML)

� Universal Elimination, UE
variable substituted with ground term
∀∀∀∀x Eats(Jim, x) infer Eats(Jim, Cake)

� Existential Elimination, EE

variablesubstituted with new constant
∃∃∃∃x Eats(Jim, x) infer Eats(Jim, NewFood)

� Existential Introduction, EI

ground term substituted with variable
Eats(Jim, Cake) infer ∃∃∃∃x Eats(x, Cake)

∀∀∀∀v �
SUBST({v/g}, � )

∃∃∃∃v �
SUBST({v/k}, � )

�

∃∃∃∃v SUBST({g/v}, � )

Proofs for FOL

� “Thom is a turtle.”
1. turtle(Thom)

� “Rob is a rabbit.”
2. rabbit(Rob)

� “Turtles outlast rabbits.”
3. ∀∀∀∀x,y turtle(x) ∧∧∧∧ rabbit(y) ���� outlasts(x,y)

� Prove: “Thom outlasts Rob.”
? outlasts(Thom,Rob)

Proofs for FOL

� And Introduction: 1, 2
4. turtle(Thom) ∧∧∧∧ rabbit(Rob)

� Universal Elimination: 3 {x/Thom, y/Rob}

5. turtle(Thom) ∧∧∧∧ rabbit(Rob)���� outlasts(Thom,Rob)
� Modus Ponens: 4, 5

6. outlasts(Thom,Rob)

� AI, UE, MP is a common inference pattern
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FOL Proof as Search

� States: the current KB
� Actions: inference rules
� Goal test: see if query is in KB

1 2 3
4 5 6

AI: 1,2

1 2 3

……

1 2 3
4

UE: 3
……

1 2 3
4 5

……
MP: 4,5

� Problem: huge branching factor 
(especially for UE)

� Idea: Find a substitution that 
makes the rule premise match 
known facts

� Make new, powerful inference rule!

Automated Inference in FOL

� Automated inference is harder for FOL 
than it is for PL

� Variables can take on a potentially infinite
number of possible values from the domain

� Thus… UE can be applied in a potentially infinite 
number of ways to KB!

Generalized Modus Ponens (GMP)

� Unify rule premises with known facts and apply 
unifier to conclusion

� Rule:  ∀∀∀∀x,y turtle(x) ∧∧∧∧ rabbit(y) ���� outlasts(x,y)

– Known facts: turtle(Thom), and rabbit(Rob)

– Unifier: {x/Thom, y/Rob}

� Apply unifier to conclusion: outlasts(Thom,Rob)

Generalized Modus Ponens (GMP)

� Combines AI, UE, and MP into a single rule

p1', p2', …, pn', (p1 ∧∧∧∧ p2 ∧∧∧∧…∧∧∧∧ pn � q)

SUBST(θ,q)

(where SUBST(θ,,,,pi') = SUBST(θ,,,,pi) for all i)

�
SUBST(θθθθ,αααα) means apply substitutions in θθθθ to sentence αααα

� Substitution list θθθθ = {v1/t1, v2/t2, …, vn/tn} means
– Replace all occurrences of variable vi with term ti
– Substitutions are made in left to right order

Generalized Modus Ponens (GMP)

� All variables assumed to be universally quantified
� Used with a KB in Horn normal form (HNF):

Horn sentence: disjunction with one positive literal
– single atomic sentence:      P(x)
– (conj. of atoms) ���� atom:    ¬¬¬¬P(x) ∨∨∨∨ ¬¬¬¬Q(x) ∨∨∨∨ R(x)

p1', p2', …, pn', (p1 ∧∧∧∧ p2 ∧∧∧∧…∧∧∧∧ pn � q)

SUBST(θ,q)

(where SUBST(θ,,,,pi') = SUBST(θ,,,,pi) for all i)

Generalized Modus Ponens (GMP)

Example:
p1'                 = taller(Larry,Curly)
p2' = taller(Curly,Moe)
p1 ∧∧∧∧ p2 ���� q = taller(x,y) ∧∧∧∧ taller(y,z) ���� taller(x,z)
θ = {x/Larry, y/Curly, z/Moe}
SUBST(θ,q) = taller(Larry,Moe)

p1', p2', …, pn', (p1 ∧∧∧∧ p2 ∧∧∧∧…∧∧∧∧ pn � q)

SUBST(θ,q)

(where SUBST(θ,,,,pi') = SUBST(θ,,,,pi) for all i)
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friends(x,Mark)friends(Burr,x)

turtle(Thom)turtle(y)

loves(Burr,Nat)loves(Burr,x)

{y/Thom}

{x/Nat}

Unification

� Substitution θ is said to unifiy p and q if 
SUBST(θ,p) = SUBST(θ,q)

θθθθqp

sees(DJ,id(y),home(y))sees(x,id(x),
home(JD))

failure, assuming 
home(JD) ≠≠≠≠ home(DJ)

{y/Burr, x/Mark}

obeys(z,mother(z))obeys(Ron,x) {z/Ron,x/mother(Ron)}

eats(z,Fish)eats(y,y) {y/z, z/Fish}

sees(z,DJ,home(z))sees(JD,x,y) {z/JD,x/DJ,y/home(JD)}

friends(y,Mark)friends(Burr,x)

Unification Algorithm

// p.278 has a more detailed version of the algorithm

unify (P, Q, THETA) {
if no differences then return THETA
else {
R = mismatch term in P      // where R ≠≠≠≠ S
S = mismatch term in Q

}
if R is a variable then {
if R is in S then return FAILURE
add {R/S} to THETA
return unify(P-sub-THETA, Q-sub-THETA, THETA)

}
else if S is a variable {
if R is in S then return FAILURE
add {S/R} to THETA
return unify(P-sub-THETA, Q-sub-THETA, THETA)

}
else return FAILURE // no unifier found

}

Unification Algorithm

� θ is a most general unifier (MGU)
– Shortest length substitution list to make a match
– In general, more than one MGU

� Our algorithm recursively explores the two 
expressions and simultaneously builds θ

� We want to prevent replacing variables with terms 
that contains that variable (e.g. {x/F(x)})
– This slows down the algorithm

� Unification with this variable-substitution check 
has a time complexity of O(n2), where n is the 
number of terms in the expressions

Soundness of GMP

� Note: αθ is the same as SUBST(θ,α)
� We want to show:

p1', p2', …, pn', (p1 ∧∧∧∧ p2 ∧∧∧∧…∧∧∧∧ pn ���� q) 
�
 qθθθθ

provided pi'θ = piθ for all i
� Lemma: for any Horn clause p: p �  pθ by UE
1. (p1 ∧∧∧∧ …∧∧∧∧ pn ���� q) 

�
(p1 ∧∧∧∧ …∧∧∧∧ pn ���� q)θθθθ = = = = ((((p1θθθθ ∧∧∧∧…∧∧∧∧ pnθθθθ���� qθθθθ)

2. p1', …, pn'
�
 p1' ∧∧∧∧ …∧∧∧∧ pn'

�
 p1'θθθθ ∧∧∧∧…∧∧∧∧ pn'θθθθ

3. qθ (MP: 1,2) since pi'θ = piθ for all i

Completeness of FOL Inference

� Truth table enumeration: incomplete for FOL
(table may be infinite in size)

� Natural Deduction: complete for FOL
(but impractical… branching factor is too large)

� GMP: incomplete for FOL
(not all sentences can be converted to Horn form)

� GMP: complete for FOL KB in HNF
– Forward chaining: move from KB to query
– Backward chaining: move from query to KB

Inference Example

“The law says that it is a crime for an American to sell weapons to 
hostile nations. The country Nono, and enemy of America, has some 
missiles, and all of its missiles were sold to it by Colonel West, who is 
an American.”

1. american(x) ∧∧∧∧ weapon(y) ∧∧∧∧ sells (x,y,z) ∧∧∧∧ hostile(z) ���� criminal(x)

∃∃∃∃x owns(Nono,x) ∧∧∧∧ missile(x)

5. missile(x) ∧∧∧∧ owns(Nono,x) ���� sells(West,x,Nono)

8. missile(x) ���� weapon(x)
7. enemy(x,America) ���� hostile(x)
6. american(West)

2. enemy(Nono,America)

Must be in HNF!

3. owns(Nono,M)
4. missile(M)

Use EE and generate
2 sentences
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Forward Chaining with GMP

amer ican(West) missile(M) owns(Nono,M) enemy(Nono,America)

weapon(M)

missile(x) � weapon(x)
θ = {x/M}

sells(West,M,Nono)

missile(x) ∧ owns(Nono,x) 
� sells(West,x,Nono)

θ = {x/M}

hostile(Nono)

enemy(x,America) � hostile(x)
θ = {x/Nono}

cr iminal(West)

american(x) ∧ weapon(y) ∧ sells (x,y,z) ∧ hostile(z) � criminal(x)
θ = {x/West, y/M, z/Nono}

Forward Chaining with GMP

� For full FC Algorithm, see page 282
� Sound and complete for first-order definite clauses

– Proof similar to PL proof
� Datalog: FOL clauses with no functions (e.g.

crime KB)
– FC terminates for Datalog in at most pnk literals

� FC typically adds all sentences that can be inferred
– Matching premises against known facts in NP-Hard

� Still, FC is used widely in deductive databases

Backward Chaining with GMP

cr iminal(x)

weapon(y) hostile(Nono)

missile(y)

θ = { y/M}

amer ican(West)
θ = { }

sells(West,M,z)
θ = { z/Nono}

θ = {x/West}

missile(M)
θ = { }

owns(Nono,M)

θ = { }

enemy(Nono,America)

θ = { }

θ = {x/West, y/M}θ = {x/West, y/M, z/Nono}

american(West) ∧ weapon(y) ∧ sells (West,y,z) ∧ hostile(z) � criminal(West)american(West) ∧ weapon(M) ∧ sells (West,M,z) ∧ hostile(z) � criminal(West)american(West) ∧ weapon(M) ∧ sells (West,M,Nono) ∧ hostile(Nono) � criminal(West)

missile(y) 
� weapon(y)

enemy(Nono,America) 
� hostile(Nono)

missile(M) ∧ owns(Nono,M) 
� sells(West,M,Nono)

Backward Chaining with GMP

� For full BC Algorithm, see page page 288
� DFS recursive proof search

– Space is linear in the size of the proof
� Incomplete due to possible infinite loops

– Fix by checking current goal against every goal on the stack
� Inefficient due to repeated subgoals

– Complications added to keep track of unifiers 
– Fix by caching previous results (but this uses up space!)

� Two versions: find any solution, find all solutions
� BC still used (without improvements!) extensively for 

logic programming systems (e.g. Prolog)

Completeness of General FOL

� FC and BC are complete for KBs in Horn 
form, but incomplete for general FOL:
owns(Burr,x) ∧∧∧∧ shoe(x) ���� stinky(x)

shoe(x) ∧∧∧∧ stinky(x) ���� ¬¬¬¬allowed(x)
?- shoe(x) ∧∧∧∧ owns(Burr,x) ∧∧∧∧ allowed(x)

� Can’t prove query with FC or BC… why? 
� Does a complete algorithm for FOL exist?

Brief History of Reasoning

� 450BC  Stoics PL, inference (?)
� 32BC    Aristotle inference rules (syllogisms), quantifiers
� 1565     Cardano PL + uncertainty (probability theory)
� 1847     Boole PL (again)
� 1879     Frege FOL
� 1922     Wittgenstein proof using truth table
� 1930     Gödel complete algo for FOL exists
� 1930 Herbrand complete algo for FOL (reduce to PL)
� 1931     Gödel no completealgo for number theory
� 1960     Davis/Putnampractical algo for PL
� 1965     Robinson practical algo for FOL (resolution)



5

Resolution

� Entailment in general FOL is only semi-decidable:
– Can prove � if KB

� �
– Cannot always prove that KB doesn’ t

� �  (halting)
� Resolution is a refutation technique:

– To prove KB
� � show that KB ∧∧∧∧ ¬� is unsatisfiable

� Resolution uses KB and ¬¬¬¬ � in CNF:
– Conjunction of clauses that are disjunction of literals

� Resolution repeatedly combines two clauses to 
make a new one until an empty clause is derived
(a contradiction)

Resolution

� Resolution in PL

� ∨∨∨∨ � , ¬ ¬ ¬ ¬ � ∨∨∨∨ �
� ∨∨∨∨ � ¬¬¬¬ � ����    � , � ����    �

¬¬¬¬ � ����    �
� Generalized Resolution (GR) for FOL:

where pi and qi are literals for all i
where UNIFY(pj , qk) = θ, and qk is the negation of pj

p1 ∨ ∨ ∨ ∨ … pj ∨∨∨∨ … ∨∨∨∨ pm , q1 ∨ ∨ ∨ ∨ … qk ∨∨∨∨ … ∨∨∨∨ qn

SUBST(θ, p1 ∨∨∨∨… pj-1∨∨∨∨ pj+1 … ∨∨∨∨ pm ∨∨∨∨ q1 ∨∨∨∨… qk-1 ∨∨∨∨ qk+1 … ∨∨∨∨ qn)

equivalently:

Resolution Refutation

well-fed(Me), ¬¬¬¬well-fed(x)∨ ∨ ∨ ∨ happy(x)

SUBST(θ, happy(x))

� pj is  well-fed(Me)

qk is ¬¬¬¬well-fed(x)

� UNIFY(pj , qk) result in θθθθ = {x/Me}

SUBST(θ, happy(x)) result in happy(Me)

Infer red sentence: happy(Me)

� GMP is a special case of generalized resolution 
(for KBs in HNF)

Resolution Refutation

� Can be thought of as search
– Reversed construction of search tree (leaves to root)
– Leaves are KB clauses and ¬query
– Resolvent is new node with arcs to parent clauses
– Root is a clause containing false

� A search is complete if it guarantees that the
empty clause(i.e. false) can be derived
whenever KB � q

� Goal is to design a complete search that efficiently
finds a contradiction (i.e. empty clause)

Resolution Refutation Example

¬¬¬¬amer ican(x) ∨∨∨∨ ¬¬¬¬weapon(y) ∨∨∨∨ ¬¬¬¬sells (x,y,z) ∨∨∨∨ ¬¬¬¬hostile(z) ∨∨∨∨ cr iminal(x)

missile(x) ∧∧∧∧ owns(Nono,x) ���� sells(West,x,Nono)

missile(x) ���� weapon(x)enemy(x,America) ���� hostile(x)

enemy(Nono,America) owns(Nono,M)
missile(M) amer ican(West)

Recycling the “West is a criminal”  example, let’ s begin by making sure 
that all the facts and rules in our KB are in CNF. The following are 
already in CNF:

The remaining four need to be converted to CNF:

amer ican(x) ∧∧∧∧ weapon(y) ∧∧∧∧ sells (x,y,z) ∧∧∧∧ hostile(z) ���� cr iminal(x)

¬¬¬¬missile(x) ∨∨∨∨ ¬¬¬¬owns(Nono,x) ∨∨∨∨ sells(West,x,Nono)

¬¬¬¬enemy(x,America) ∨∨∨∨ hostile(x) ¬¬¬¬missile(x) ∨∨∨∨ weapon(x)

And we also need to negate our query: ¬¬¬¬cr iminal(West)

Resolution Refutation Example
¬¬¬¬cr iminal(West)

amer ican(West)

¬¬¬¬weapon(y) ∨∨∨∨ ¬¬¬¬sells(West,y,z) ∨∨∨∨ ¬¬¬¬hostile(z)

¬¬¬¬amer ican(x) ∨∨∨∨ ¬¬¬¬weapon(y) ∨∨∨∨
¬¬¬¬sells (x,y,z) ∨∨∨∨ ¬¬¬¬hostile(z) ∨∨∨∨ cr iminal(x)

¬¬¬¬amer ican(West) ∨∨∨∨ ¬¬¬¬weapon(y) ∨∨∨∨
¬¬¬¬sells(West,y,z) ∨∨∨∨ ¬¬¬¬hostile(z)

¬¬¬¬missile(x) ∨∨∨∨ weapon(x)

¬¬¬¬missile(y) ∨∨∨∨ ¬¬¬¬sells(West,y,z) ∨∨∨∨ ¬¬¬¬hostile(z)missile(M)

¬¬¬¬sells(West,M,z) ∨∨∨∨ ¬¬¬¬hostile(z)¬¬¬¬missile(x) ∨∨∨∨ ¬¬¬¬owns(Nono,x) ∨∨∨∨
sells(West,x,Nono)

¬¬¬¬missile(M) ∨∨∨∨ ¬¬¬¬owns(Nono,M) ∨∨∨∨ ¬¬¬¬hostile(Nono)missile(M)

¬¬¬¬owns(Nono,M) ∨∨∨∨ ¬¬¬¬hostile(Nono)owns(Nono,M)

¬¬¬¬hostile(Nono)¬¬¬¬enemy(x,America) ∨∨∨∨ hostile(x)

¬¬¬¬enemy(Nono,America)enemy(Nono,America)
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Conjunctive Normal Form

� The KB needs to be a conjunction of CNF clauses 
and/or literals

� CNF clause: disjunction of literals
– e.g. hot(x) ∨ ∨ ∨ ∨ warm(x) ∨ ∨ ∨ ∨ cold(x)

� Literal: atom (may be negated)
– e.g. ¬¬¬¬happy(Sally)

� Any FOL KB can be converted into CNF

Converting FOL to CNF

1. Replace ⇔ with equivalent: P ⇔⇔⇔⇔ Q becomes P���� Q ∧ ∧ ∧ ∧ Q���� P
2. Replace � with equivalent: P���� Q becomes ¬¬¬¬P ∨∨∨∨ Q

3. Reduce scope of ¬ to single literals:
¬¬¬¬¬¬¬¬P becomes P (DNE)
¬¬¬¬(P ∨ ∨ ∨ ∨ Q) becomes ¬¬¬¬P ∧∧∧∧ ¬¬¬¬Q (de Morgan's)
¬¬¬¬(P ∧ ∧ ∧ ∧ Q) becomes ¬¬¬¬P ∨∨∨∨ ¬¬¬¬Q (de Morgan's)
¬¬¬¬∀∀∀∀x P becomes ∃∃∃∃x ¬¬¬¬P
¬¬¬¬∃∃∃∃x P becomes ∀∀∀∀x ¬¬¬¬P

4. Standardize variables apart:
– Each quantifier must have a unique variable name
– Avoids confusion in steps 5 and 6
– e.g. [∀∀∀∀x P] ∨ [∃∨ [∃∨ [∃∨ [∃x Q] becomes ∀∀∀∀x P ∨ ∃∨ ∃∨ ∃∨ ∃y Q

Converting FOL to CNF

5. Eliminate existential quantifiers (Skolemize):
∀∀∀∀x P(x) becomes   P(K) (EE)
K is some new constant (Skolem constant)

– e.g. ∀∀∀∀x∃∃∃∃y P(x,y) becomes  ∀∀∀∀x P(x,F(x))
F() must be a new function (Skolem function) with arguments 
that are all enclosing universlly quantified variables 

– Everyone has a name.
∀∀∀∀x person(x) � ∃∃∃∃y name(y) ∧ has(x,y)
wrong: ∀∀∀∀x person(x) ���� name(K)∧∧∧∧has(x,K)
Everyone has the same name K!!
We want everyone to have a name based on who they are
r ight: ∀∀∀∀x person(x) ���� name(F(x))∧∧∧∧has(x,F(x))

Converting FOL to CNF

6. Drop universal quantifiers:
– All variables are only universally quantified after step 5
– e.g. ∀∀∀∀x P(x) ∨ ∀∨ ∀∨ ∀∨ ∀y Q(y) becomes P(x) ∨ ∨ ∨ ∨ Q(y)
– All variables in KB will be assumed to be universally quantified

7. Distribute ∨ over ∧ :
(P ∧ ∧ ∧ ∧ Q)∨ ∨ ∨ ∨ R becomes (P ∨ ∨ ∨ ∨ R)∧∧∧∧(Q ∨ ∨ ∨ ∨ R)

8. Group conjunctions/disjunctions together:
(P ∧ ∧ ∧ ∧ Q)∧ ∧ ∧ ∧ R becomes (P ∧ ∧ ∧ ∧ Q ∧ ∧ ∧ ∧ R)
(P ∨ ∨ ∨ ∨ Q)∨ ∨ ∨ ∨ R becomes (P ∨ ∨ ∨ ∨ Q ∨ ∨ ∨ ∨ R)

FOL-CNF Conversion Example

“Everyone who loves all animals is loved by someone.”
∀∀∀∀x [∀∀∀∀y animal(y) ���� loves(x,y)] ���� [∃∃∃∃y loves(y,x)]

1& 2. Eliminate biconditionals and implications
∀∀∀∀x ¬¬¬¬[∀∀∀∀y ¬¬¬¬animal(y) ∨∨∨∨ loves(x,y)] ∨∨∨∨ [∃∃∃∃y loves(y,x)]

3. Reduce scope of ¬ to single literals
∀∀∀∀x [∃∃∃∃y ¬¬¬¬{¬¬¬¬animal(y) ∨∨∨∨ loves(x,y)}] ∨∨∨∨ [∃∃∃∃y loves(y,x)]
∀∀∀∀x [∃∃∃∃y ¬¬¬¬¬¬¬¬animal(y) ∧∧∧∧ ¬¬¬¬loves(x,y)] ∨∨∨∨ [∃∃∃∃y loves(y,x)]
∀∀∀∀x [∃∃∃∃y animal(y) ∧∧∧∧ ¬¬¬¬loves(x,y)] ∨∨∨∨ [∃∃∃∃y loves(y,x)]

FOL-CNF Conversion Example

4. Standardize variables apart
∀∀∀∀x [∃∃∃∃y animal(y) ∧∧∧∧ ¬¬¬¬loves(x,y)] ∨∨∨∨ [∃∃∃∃z loves(z,x)]

5. Eliminate Existentials by skolemizing
∀∀∀∀x [animal(F(x)) ∧∧∧∧ ¬¬¬¬loves(x,F(x))] ∨∨∨∨ loves(G(x),x)

6. Drop universals
[animal(F(x)) ∧∧∧∧ ¬¬¬¬loves(x,F(x))] ∨∨∨∨ loves(G(x),x)

7& 8. Distribute ∨ over ∧ , group conjunctions/disjunctions:
[animal(F(x)) ∨∨∨∨ loves(G(x),x)] ∧∧∧∧ [¬¬¬¬loves(x,F(x)) ∨∨∨∨ loves(G(x),x)]
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Summary

� First-Order logic is a language that is very 
expressive, but difficult to perform inference with
– One inference method is removing all variables/ 

quantifiers (i.e. propositionalizing), which is slow
– We can also use unification to identify appropriate 

substitutions with generalized Modus Ponens (GMP)
– The Forward Chaining and Backward Chaining

algorithms use GMP to KBs in HNF
– GMP complete for definite clauses (HNF), but not 

general FOL domains

Summary

� Generalized resolution inference provides a 
complete proof system for all of FOL
– KBs must be converted to CNF

– Resolution refutation is an efficient strategy for 
proving a query q by showing that it’s negation 
¬q is inconsistent with the KB

– i.e. show that KB ∧ ¬q is unsatisfiable


