Prolog
N O

Burr H. Settles

CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

Announcements

m Read Sections 10.2-10.3, and Chapter 11in Al: A
Modern Approach for Monday

m Homework #2 is due on Monday

— Handin directories are already set up, in case you're
ready to turnitin

m Homework #3 will go out on Monday
(but it won't be due until after the midterm)

Logic Programming

m Computation asinference on logical KBs

Ordinary Programming Logic Programming

1. | Identify problem Identify problem

2. | Assemble information Assemble information

3. | Plan out your agorithms Go have abeer!

4. | Program the solution Encode information in the KB
5. | Encode problem as data Encode problem aslogical facts
6. | Run program on data Ask queries

7. | Debug errors Find/correct false facts

Should be easier to debug capi t al (Newvor k, UsA) than find that pesky x += 2!
3

Logic Programming

m Logic programs are also called expert systems

— Problem domain experts sit down and encode lots of
information into the KB

— System then reasons using that “expert” knowledge
— Used for medical diagnosis, Q/A systems, etc.
— KB must be in datalog format: FOL with no functions

m Fall loosely under the “think rationally” quadrant
of Al research

Prolog

m Prologis probably the most common logic
programming language
m A programis:
— A set of logic sentencesin HNF (definite clauses)
« Called the database (DB, basically the KB)
« Ordered by programmer (top to bottom)
— Executed by specifying a query to be proved
« Backward-chaining with GMP
* Uses DFS on the ordered facts and rules
* Searches until asolution isfound (or times out)
— Can find multiple solutions

Prolog Execution

To SolveaGoal (i.e. answer aquery)
m Try to unify:
— First with each of the ground facts

— When all factsfail, then with each of the consequents
of therules in the order in which they occur in DB

m Successful unification with afact:
— Solved, pop goal from stack
m Successful unification with arule:

— Solve the sub-goals in DFS manner (i.e. recursively
attempt to solve each of the rule’s premises)

Prolog Execution

Backtracking During DFS
m Whilesolving arule:

— If antecedent (premise) fails to be proved true

— Then try to re-prove it using different facts or rules
m When arulefails:

— If an antecedent can’'t be solved at all, therule fails

— Go on to the next rule in the program and try again
(try to unify current goal with a different consequent)

Prolog Execution

m Efficient implementation
— Unification use “open coding”
— Retrieval and matching of clauses by direct linking
— Sophisticated memory management
m Uses aclosed world assumption
— Negation asfailure
— eg. given ~dead(X) = alive(X)
alive(el vis) succeedsif dead(el vis) fails
m Widely used in Europe and Japan

Basic Prolog Syntax

m Database:
— Fact: apositive literal (atom)
FOL: F(x) Prolog: f (X) .
FOL: =F(x) Prolog: not f(X).

variables are capitalized and universally quantified
— Rules: 1 positive literal (the consequent, or head), and
at least 1 negative (the antecedents)
FOL: A, OA,O0..0A,=C Prolog: C: - A, A, .., A,
m Query:

- FOL:Q 0Q 0O..0Q, Prolog: ?- Q,Q, ... Q.

Prolog Example

Example prolog DB that encodes our “criminal” example
from last time (note that variables are capitalized, and
constants in lower-case):

mssile(m.
owns(nono, m) .
eneny(nono, anerica) .
ameri can(west).
weapon(X) :- mssile(X).
sel | s(west, X, nono) :- nissile(X), ows(nono, X).
hostile(X) :- eneny(X anerica).
crimnal (X) :-
anerican(X), weapon(Y),
sells(X Y,Z), hostile(Z).

Prolog Example

m Theimplementation of prolog that we'll use on the TUX
machinesiscalled YAP
— “Yet Another Prolog”

— Freeware implementation, downloadable from
www.ncc.up.pt/~vsc/Y ap/

m Torun prolog on a TUX machine, type: % yap

= To end prolog, type: ?- halt.
m Toload afile, type: ?- [file].
|

The prolog extensionis*. pl
— Try not to confuse it with perl programs

— Notethat you don'’t need the extension when loading a program
into prolog, it knowsto look for the filewitha*. pl extension

11

Prolog Example

m Once YAP isrunning and the criminal KB is
loaded, we can start by asking simple querieswe
clearly already know:

?- mssile(n. ?- anerican(west).
m Then we can move on to more complex queries:
?- weapon(X). ?- owns(X, .

?- crimnal (nest).
m Toview theentire BC search, YAP hasa
debugging feature called “ spy”:
— Typespy(predicate). toturniton
— And nospy(predi cate). toturn it off

Another Prolog Example

m Let'sconsider asimple KB that expresses facts
about a certain family:

father(tomdick). not her (tom j udy) .
father(dick, harry). nother(dick, mary).
father(jane, harry). nother(jane, mary).

m Now let’s also think about creating some FOL
rules for defining family relations:
— Parent?

parent (X, P) :-
parent (X, P) :-

not her (X, P).
father(X P).

— Grandmother?
granny(X, G :- parent(X Y), nother(Y,Q. .
| .
= More Prolog Syntax

m Prolog has built-in operators (predicates) for mathematical
functions and equalities:

— X=2%(y+1) Xis 2*(Y+1).
- d<20 D < 20.

- 1<2 1 @< 2.

- x=y X =Y.

- X%y X\= Y.

m The mgjor data structure for Prolog isthe list
— [] denotesan empty list
— [HT] denotesalist with ahead (H) and tail (T)
« The head isthefirst element of the list
« Thetail isthe entire sublist after it

« eg.forthelist [ab,cd]... H=[a] and T=[b,c,d] s

Another Prolog Example

m How should we define the relation sibling?

— Two people are siblings if they have the same mother
and the same father (ignoring half-siblings, step-
siblings, etc.)

= How about this:

sibling(X Y) :- nother(X M, nother(Y,M,
father(X, M, father(Y,M.

m Let’srun thisand see what happens!
— Oops! Need to make sure X # Y!

sibling2(X, Y) :- mother(X,M, nother(Y,M,
father(X, M, father(Y,M, X =V.

List Processing in Prolog

m What we need to do is take one list and recursively
add one e ement at atime from the other list, until
we' ve added them all

m Let'sassumethat we start with L2 and want to add
the e ements from L1 one at atime to the front

— Makes things easier: with [H[T], H is the front element

— What is our base case?
« append([],L2,L2).

— Now how do we deal with the recursive aspect?
« append([H T],L2,[HL3]) :- append(T,L2,L3).

17

List Processing in Prolog

m Suppose we want to define an “append” operator for
lists... that isto take two lists L1 and L2, and merges their
elements together into anew list L3

— Usually thisis done with afunction
* €0.L3 = append(L1,L2)
— But prolog programs are datalog: no functions allowed!
« Create make-shift functions by defining predicates with the return
value included as a parameter
* eg.append(L1,L2,L3)

m How about defining a simple predicate that takes the first

two L1 and L2, and returnsanew list [L1|L2]?
— eg.app(L1,L2,[L1]L2]).
— Nope! Let'stry again...

List Processing in Prolog

m Now we can ask the queries:
?- append([1,2,3], [a,b,c], [1,2,3,ab,c]).
* Result: yes
?- append([1,2,3], [a,b,c], X.
Result: X = [1,2,3,a,b,¢c]
?- append(A, B, [1,2]).

* Result: Al] B=[1, 2]
A=[1] B=[2]
A=[1,2] B[]

m Recall that, since prolog uses BC, we can try to
find any single solution, or find all solutions
— After each result, type“; " to view another

Partitioning Lists

m Another useful application might be how to
recursively sort prolog lists
m Most sorting a gorithms utilize some partitioning
method, wherethelist L is split into two sublists
L1 and L2 based on aparticular element E
— e.g. splitting list [1,5,3,9,7,4,1] on element [5] would
yield thelists[1,3,4,1] and [5,9,7]
m Thiswould be a useful method to define first
partition(E L, L1, L2).

Partitioning Lists

m First, let’ sthink of the base case for our
partitioning predicate
partition(E [],[],[]).
» That is, an empty list gets split into two empty lists
m Second, we must consider the recursive aspect:

— Upon considering a new element H at the head of the
list, what conditions must we account for?
« If H<E, or if H 2 E (to determine which sublist)
— Since we have two different cases, each with a different
desired result, we need two recursive definitions

Partitioning Lists

m If H < E, then we want to add H to thefirst list L1:
partition(E [H T],[HT1],L2) :-
H < E,
partition(E T, T1,L2).
m However, if H > E then we'll add it to the second list L2:
partition(E [H T],L1, [HT2]) :-
H @= E
partition(E T, L1, T2).
m These predicates, together with the base case, will partition
al thelist itemslessthan E in thefirst list, and all greater
or equal in the second list

21

Sorting in Prolog

m Now that we know how to partition onelist into
two, and also how to append two lists together, we
have all the tools we need to sort alist!

m | et’s consider insertion sort:

— Walk through each position of the list

— For each position, insert the list item i that belongsin
that position, relative to other itemsin the list

— Recursively, we can achieve the same effect by walking
through each i, partitioning a pre-sorted list on i, and
then appending the partitions on either side

Sorting in Prolog

m Asalways, we will need a base case for insertion sort
(assume that an empty list is sorted):

isort([],[])-

m For the recursive aspect, we can walk through the whole
list, and backtrack, inserting each element where it belongs
in the pre-sorted list:

isort([HT], F) :
isort(T, L),
partition(H,L,L1,L2),
append(L1,[H L2],F).

m We can do something similar to implement quicksort, but
Il leave that up to you to work out on your own!

23

Parsing with Prolog

m A lot of early natural language processing (NLP) research
was historically done using logic systems, because HNF
rules are analogous to grammar productions

— eg. A simple English grammar: S — NP VP (NP)
* Smeans “sentence,” NP means “noun phrase,”
and VP means “verb phrase”

— In prolog:
s(lnput) :- np(lnput, Md), vp(Md, []).
s(lnput) :- np(lnput, Mdl), vp(Mdil, Md2), np(Md2, [])

= Once we add definitions for np and vp (and ultimately
noun, verb, prep, det , etc.), we will have afull-blown
deterministic English parser!

Ordering Prolog Rules

m Therulesin aprolog program are searched depth-
first, exploring the potential rules from top down
m Imagine that we are designing a knowledge-based
reflex agent that has multiple rules which which it
can unify
— We want to make more specific rules toward the top,
and more general rules toward the bottom

— For recursive “functions,” that means making sure the
base case comes before the recursive case(s)

25

m Other Logic Systems

= Production Systems
— Proposed by E.L. Post in 1943
— Equivalent in computational power to a Turing machine.
* Rulesare unordered, unlike Prolog
— Have been developed for awide variety of problems, ranging from
. algebraword problems, mathematical and logical proofs, physics
problems, and games.
— Newell and Simon (1960s) used production systems to define
model human cognition
« Production rules represent problem-solving skills stored in a person’s
long-term memory.
— Many other groups have tried to develop similar models of human
cognition using production systems
— Harder to do inference than BC in Prolog

Other Logic Systems

m Semantic Networks
— Used widely in computational linguistics
— Developed to aid in machine trandation and natural language
understanding (“WordNet” is afamous SN)
— Represent knowledge in a hierarchy of semantic classes to be able
to deduce and disambiguate meaning
« eg. “Janelooked for her keys. She needed milk.”
* The query: Why was Jane looking for her keys?

milk a cow

go to the mar ket

27

= Summary

m Logic programs are a agent programs that use
factsand rulesin aKB to answer questions about
aparticular domain

m Such programs arrive at conclusions (or decide on

- actions) in alogical way

m Prolog isone of the most common logic

programming languages

— Usesfirst-order definite clauses to encode the KB
— Searches for proofs recursively with BC and GMP
— Can answer yes/no queries, or find bindings

