
1

1

Prolog

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements

� Read Sections 10.2-10.3, and Chapter 11 in AI: A
Modern Approach for Monday

� Homework #2 is due on Monday
– Handin directories are already set up, in case you’re

ready to turn it in

� Homework #3 will go out on Monday
(but it won’ t be due until after the midterm)

3

Logic Programming

� Computation as inference on logical KBs

Logic ProgrammingOrdinary Programming

Identify problemIdentify problem1.

Assemble informationAssemble information2.

Go have a beer!Plan out your algorithms3.

Encode information in the KBProgram the solution4.

Encode problem as logical factsEncode problem as data5.

Ask queriesRun program on data6.

Find/correct false factsDebug errors7.

Should be easier to debug capi t al (NewYor k, USA) than find that pesky x += 2!
4

Logic Programming

� Logic programs are also called expert systems
– Problem domain experts sit down and encode lots of

information into the KB

– System then reasons using that “expert” knowledge

– Used for medical diagnosis, Q/A systems, etc.

– KB must be in datalog format: FOL with no functions

� Fall loosely under the “ think rationally” quadrant
of AI research

5

Prolog

� Prolog is probably the most common logic
programming language

� A program is:
– A set of logic sentences in HNF (definite clauses)

• Called the database (DB, basically the KB)
• Ordered by programmer (top to bottom)

– Executed by specifying a query to be proved
• Backward-chaining with GMP
• Uses DFS on the ordered facts and rules
• Searches until a solution is found (or times out)

– Can find multiple solutions
6

Prolog Execution

To Solve a Goal (i.e. answer a query)
� Try to unify:

– First with each of the ground facts
– When all facts fail, then with each of the consequents

of the rules in the order in which they occur in DB
� Successful unification with a fact:

– Solved, pop goal from stack
� Successful unification with a rule:

– Solve the sub-goals in DFS manner (i.e. recursively
attempt to solve each of the rule’s premises)

2

7

Prolog Execution

Backtracking During DFS
� While solving a rule:

– If antecedent (premise) fails to be proved true

– Then try to re-prove it using different facts or rules
� When a rule fails:

– If an antecedent can’ t be solved at all, the rule fails

– Go on to the next rule in the program and try again
(try to unify current goal with a different consequent)

8

Prolog Execution

� Efficient implementation
– Unification use “open coding”
– Retrieval and matching of clauses by direct linking
– Sophisticated memory management

� Uses a closed world assumption
– Negation as failure
– e.g. given ¬¬¬¬dead(X) �� �� al i ve(X)

al i ve(el vi s) succeeds if dead(el vi s) fails
� Widely used in Europe and Japan

9

Basic Prolog Syntax

� Database:
– Fact: a positive literal (atom)

FOL: F(x) Prolog: f (X) .

FOL: ¬¬¬¬F(x) Prolog: not f (X) .

variables are capitalized and universally quantified

– Rules: 1 positive literal (the consequent, or head), and
at least 1 negative (the antecedents)
FOL: A1 ∧ ∧ ∧ ∧ A2 ∧ ∧ ∧ ∧ …∧ ∧ ∧ ∧ An

�� �� C Prolog: C: - A1, , , , A2, , , , …, , , , An.
� Query:

– FOL: Q1 ∧ ∧ ∧ ∧ Q2 ∧ ∧ ∧ ∧ …∧ ∧ ∧ ∧ Qn Prolog: ?- Q1, , , , Q2, , , , …, , , , Qn.

10

Prolog Example

mi ssi l e(m) .
owns(nono, m) .
enemy(nono, amer i ca) .
amer i can(west) .
weapon(X) : - mi ssi l e(X) .
sel l s(west , X, nono) : - mi ssi l e(X) , owns(nono, X) .
host i l e(X) : - enemy(X, amer i ca) .
cr i mi nal (X) : -

amer i can(X) , weapon(Y) ,
sel l s(X, Y, Z) , host i l e(Z) .

Example prolog DB that encodes our “criminal” example
from last time (note that variables are capitalized, and
constants in lower-case):

11

Prolog Example

� The implementation of prolog that we’ ll use on the TUX
machines is called YAP
– “Yet Another Prolog”
– Freeware implementation, downloadable from

www.ncc.up.pt/~vsc/Yap/
� To run prolog on a TUX machine, type: % yap
� To end prolog, type: ?- hal t .
� To load a file, type: ?- [f i l e] .
� The prolog extension is * . pl

– Try not to confuse it with perl programs
– Note that you don’ t need the extension when loading a program

into prolog, it knows to look for the file with a * . pl extension
12

Prolog Example

� Once YAP is running and the criminal KB is
loaded, we can start by asking simple queries we
clearly already know:

?- mi ssi l e(m) . ?- amer i can(west) .
� Then we can move on to more complex queries:

?- weapon(X) . ?- owns(X, m) .
?- cr i mi nal (west) .

� To view the entire BC search, YAP has a
debugging feature called “spy” :
– Type spy(pr edi cat e) . to turn it on
– And nospy(pr edi cat e) . to turn it off

3

13

Another Prolog Example

� Let’s consider a simple KB that expresses facts
about a certain family:

f at her (t om, di ck) . mot her (t om, j udy) .
f at her (di ck, har r y) . mot her (di ck, mar y) .
f at her (j ane, har r y) . mot her (j ane, mar y) .

� Now let’ s also think about creating some FOL
rules for defining family relations:
– Parent?

par ent (X, P) : - mot her (X, P) .
par ent (X, P) : - f at her (X, P) .

– Grandmother?
gr anny(X, G) : - par ent (X, Y) , mot her (Y, G) .

14

Another Prolog Example

� How should we define the relation sibling?
– Two people are siblings if they have the same mother

and the same father (ignoring half-siblings, step-
siblings, etc.)

� How about this:
si bl i ng(X, Y) : - mot her (X, M) , mot her (Y, M) ,

f at her (X, M) , f at her (Y, M) .
� Let’s run this and see what happens!

– Oops! Need to make sure X ≠ Y!
si bl i ng2(X, Y) : - mot her (X, M) , mot her (Y, M) ,

f at her (X, M) , f at her (Y, M) , X\ =Y.

15

More Prolog Syntax

� Prolog has built-in operators (predicates) for mathematical
functions and equalities:
– x = 2×(y+1) X i s 2* (Y+1) .

– d < 20 D < 20.

– 1 ≤ 2 1 @=< 2.

– x = y X = Y.

– x ≠ y X \ = Y.
� The major data structure for Prolog is the list

– [] denotes an empty list
– [H| T] denotes a list with a head (H) and tail (T)

• The head is the first element of the list
• The tail is the entire sublist after it
• e.g. for the list [a,b,c,d]… H=[a] and T=[b,c,d]

16

List Processing in Prolog

� Suppose we want to define an “append” operator for
lists… that is to take two lists L1 and L2, and merges their
elements together into a new list L3
– Usually this is done with a function

• e.g. L3 = append(L1, L2)

– But prolog programs are datalog: no functions allowed!
• Create make-shift functions by defining predicates with the return

value included as a parameter
• e.g. append(L1, L2, L3)

� How about defining a simple predicate that takes the first
two L1 and L2, and returns a new list [L1|L2]?
– e.g. app(L1, L2, [L1| L2]) .

– Nope! Let’ s try again…

17

List Processing in Prolog

� What we need to do is take one list and recursively
add one element at a time from the other list, until
we’ve added them all

� Let’s assume that we start with L2 and want to add
the elements from L1 one at a time to the front
– Makes things easier: with [H|T], H is the front element
– What is our base case?

• append([] , L2, L2) .

– Now how do we deal with the recursive aspect?
• append([H| T] , L2, [H| L3]) : - append(T, L2, L3) .

18

List Processing in Prolog

� Now we can ask the queries:
?- append([1, 2, 3] , [a, b, c] , [1, 2, 3, a, b, c]) .

• Result: yes

?- append([1, 2, 3] , [a, b, c] , X) .

• Result: X = [1, 2, 3, a, b, c]

?- append(A, B, [1, 2]) .

• Result: A=[] B=[1, 2]
A=[1] B=[2]
A=[1, 2] B=[]

� Recall that, since prolog uses BC, we can try to
find any single solution, or find all solutions
– After each result, type “ ; ” to view another

4

19

Partitioning Lists

� Another useful application might be how to
recursively sort prolog lists

� Most sorting algorithms utilize some partitioning
method, where the list L is split into two sublists
L1 and L2 based on a particular element E
– e.g. splitting list [1,5,3,9,7,4,1] on element [5] would

yield the lists [1,3,4,1] and [5,9,7]
� This would be a useful method to define first

par t i t i on(E, L, L1, L2) .

20

Partitioning Lists

� First, let’s think of the base case for our
partitioning predicate

par t i t i on(E, [] , [] , []) .

• That is, an empty list gets split into two empty lists
� Second, we must consider the recursive aspect:

– Upon considering a new element H at the head of the
list, what conditions must we account for?

• If H < E, or if H ≥ E (to determine which sublist)

– Since we have two different cases, each with a different
desired result, we need two recursive definitions

21

Partitioning Lists

� If H < E, then we want to add H to the first list L1:
par t i t i on(E, [H| T] , [H| T1] , L2) : -

H < E,
par t i t i on(E, T, T1, L2) .

� However, if H ≥ E then we’ ll add it to the second list L2:
par t i t i on(E, [H| T] , L1, [H| T2]) : -

H @>= E,
par t i t i on(E, T, L1, T2) .

� These predicates, together with the base case, will partition
all the list items less than E in the first list, and all greater
or equal in the second list

22

Sorting in Prolog

� Now that we know how to partition one list into
two, and also how to append two lists together, we
have all the tools we need to sort a list!

� Let’s consider insertion sort:
– Walk through each position of the list
– For each position, insert the list item i that belongs in

that position, relative to other items in the list
– Recursively, we can achieve the same effect by walking

through each i, partitioning a pre-sorted list on i, and
then appending the partitions on either side

23

Sorting in Prolog

� As always, we will need a base case for insertion sort
(assume that an empty list is sorted):

i sor t ([] , []) .
� For the recursive aspect, we can walk through the whole

list, and backtrack, inserting each element where it belongs
in the pre-sorted list:

i sor t ([H| T] , F) : -

i sor t (T, L) ,

par t i t i on(H, L, L1, L2) ,

append(L1, [H| L2] , F) .
� We can do something similar to implement quicksort, but

I’ ll leave that up to you to work out on your own!

24

Parsing with Prolog

� A lot of early natural language processing (NLP) research
was historically done using logic systems, because HNF
rules are analogous to grammar productions
– e.g. A simple English grammar: S → NP VP (NP)

• S means “sentence,” NP means “noun phrase,”
and VP means “verb phrase”

– In prolog:
s(I nput) : - np(I nput , Mi d) , vp(Mi d, []) .

s (I nput) : - np(I nput , Mi d1) , vp(Mi d1, Mi d2) , np(Mi d2, []) .
� Once we add definitions for np and vp (and ultimately

noun, ver b, pr ep, det , etc.), we will have a full-blown
deterministic English parser!

5

25

Ordering Prolog Rules

� The rules in a prolog program are searched depth-
first, exploring the potential rules from top down

� Imagine that we are designing a knowledge-based
reflex agent that has multiple rules which which it
can unify
– We want to make more specific rules toward the top,

and more general rules toward the bottom

– For recursive “ functions,” that means making sure the
base case comes before the recursive case(s)

26

Other Logic Systems

� Production Systems
– Proposed by E.L. Post in 1943
– Equivalent in computational power to a Turing machine.

• Rules are unordered, unlike Prolog

– Have been developed for a wide variety of problems, ranging from
algebra word problems, mathematical and logical proofs, physics
problems, and games.

– Newell and Simon (1960s) used production systems to define
model human cognition

• Production rules represent problem-solving skills stored in a person’s
long-term memory.

– Many other groups have tried to develop similar models of human
cognition using production systems

– Harder to do inference than BC in Prolog

27

Other Logic Systems

� Semantic Networks
– Used widely in computational linguistics

– Developed to aid in machine translation and natural language
understanding (“WordNet” is a famous SN)

– Represent knowledge in a hierarchy of semantic classes to be able
to deduce and disambiguate meaning

• e.g. “Jane looked for her keys. She needed milk.”

• The query: Why was Jane looking for her keys?

need milk

milk a cow

buy it

steal it

need $$

go to the market

walk

drive

take bus

car keys

28

Summary

� Logic programs are a agent programs that use
facts and rules in a KB to answer questions about
a particular domain

� Such programs arrive at conclusions (or decide on
actions) in a logical way

� Prolog is one of the most common logic
programming languages
– Uses first-order definite clauses to encode the KB
– Searches for proofs recursively with BC and GMP
– Can answer yes/no queries, or find bindings

