
1

1

Planning

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements (7/7)

� Lots of homework business!
– HW#3 out (due Monday, 7/14)
– HW#2 due today
– HW#1 almost graded, back tomorrow

� Reminders:
– Midterm review on Wednesday (7/9)
– Midterm on Thursday, in class (7/10)
– No class on Friday (7/11)

3

Announcements (7/8)

� Homework #1 is not quitegraded!
– Check my mailbox in CS 5th floor after 5pm today
– Otherwise, collect them at the review tomorrow
– There is a solution for HW#1 on the webpage

� Homework #3 due date extended (Wed. 7/16)
� About the exam:

– Closed book, but you may bring a 1-sided handwritten 
8½×11 sheet of notes and a calculator

– I threw together a midterm study guide available on the 
course webpageunder “exam”  section

4

Planning

Problem:
� Mechanically and efficiently find a sequence of 

actions that, when “ executed,”  achieve a goal

� Given:
– Initial state, goal state, and actions

� Find:
– A plan: a sequence of actions that when applied, 

beginning with the initial state, transforms the world 
into a goal state

5

Assumptions with Planning

� Goal is a conjunction of sub-goals:
– To achieve a goal, you must achieve a set of sub-goals

� Actions are atomic
– Are not divisible into sub-actions

� Actions are sequential
– No two actions can be executed concurrently

� Actions are deterministic: 
– No uncertainty in performing an action

6

Assumptions with Planning

� The agent is the sole cause of change in the 
environment

� World is accessible (i.e. the agent knows all it 
need to know about the environment)

� Closed World Assumption:
– State description lists all that is true
– Anything else is assumed false

� The planning task is very difficult, even with such 
a simplified framework!



2

7

Classic Planning Problems

� Dressing
– Initial state: socks, shoes, and pants off
– Goal state: socks on, under shoes (on correct feet), under pants
– Actions: PutOnPants, PutOnSock(f), PutOnShoe(f)

� Blocks World
– Initial state: some configuration of blocks on a table
– Goal State: another configuration (stacked?)
– Actions: Pickup(x), Putdown(x), Stack(x,y), Unstack(x,y)

� Shopping
– Initial state: at home, with no items
– Goal state: at home, having a list of items
– Actions: Go(store), Buy(item), etc…

8

Planning As Search

� State-space search:
– State representation
– Operators/actions
– Start state
– Goal test

�Note: This is how we approached the 
“ water jugs”  problem back in lecture 3

9

Planning As Search

� Doesn’ t allow for real reasoning about states and actions
– Operators are just used to generate next state
– Can’ t reason about operator definition or ordering

• Causes exploration of dead-end successor states
(possibly even illegal ones!)

– Goal test is just used to determine if goal reached
– Can’ t reason about goal definition

• No knowledge of determining how to best achieve the goal
• Note: heuristic is simply the distance from goal

� Weak representation
� Weak ability to reason about the world

10

Planning Using Logic

� By using knowledge-based agents, we can capture 
reasonable information things about the agent’s 
actions and their effect on the world
– “ If I move forward, I’m in the next room”
– “ If I pick up a gold brick, then I am holding it”
– “ If I am holding something, my hand is not empty”

� The problem here is dealing with time:
– “ If I move forward again, I’m in a different room”
– The results of each action are now relative to the 

sequence of actions before…

11

Situation Calculus

� Situation calculusextends FOL to deal with such 
time-sensitive dilemmas for planning (Sec. 10.3)
– Situations are states that are generated from applying an 

action to another situation 
• Result(a, s) is the function that returns the situation when 

applying action a to situation s

– Fluents are predicates/functions that vary from one 
situation to the next, such as the location of the agent, 
or what it may be holding

– Atemporals/eternals are predicates/functions that do not 
depend on a time stamp

• e.g. Dog(Lassie) or LeftLegOf(John)
12

Situation Calculus



3

13

Situation Calculus

� There are two types of axioms (or rules) in 
situation calculus:
– Possibility axioms: say when it is possible to perform a 

certain action
• At(Agent, x, s) ∧ Adjacent(x, y) � Poss(Go(x, y), s)
• Gold(g) ∧ At(g, x, s) ∧ At(Agent, x, s) � Poss(Pickup(g), s)
• Holding(g, s) � Poss(Putdown(g), s)

– Effect axioms: defines what happens in the 
environment when a possible action is executed

• Poss(Go(x, y), s) � At(Agent, y, Result(Go(x,y), s))
• Poss(Pickup(g), s) � Holding(g, Result(Pickup(g), s))

• Poss(Putdown(g), s) � ¬Holding(g, Result(Putdown(g), s))
14

Situation Calculus

� Fortunately, situation calculus allows us to express 
what actions are reasonable as well as what will 
change when an action is taken

� Unfortunately, it doesn’ t say anything about what
stays the same!

� Frame axiomsspecify what does not change when 
a certain action is applied
– e.g. “ If I go into a room that had gold in it during the 

last situation, then the gold is still there”
– Many axioms are required (for each action even!)

15

Situation Calculus

� Situation calculus with frame axioms is a 
strong representation
– However, the approach is not very modular… each new 

predicate requires axioms to be added for each of the 
possible actions

� Inference procedures are very weak… the 
representation is too fine-grained

16

Planning Solution

Combine the two approaches:
� Simplify the representation language

– Allow reasoning about how to achieve the goal

– Inference procedure is faster than resolution
� “Open up” the representation of states, operators, 

and goal test
– Rather than blindly applying operators, try to reason 

about which ones are most important

– Reduces the number of nodes that are considered

17

STRIPS Representation

STRIPS (STandard Research Institute Problem Solver):
� Facts: ground literals with variables
� Situations: conjunction of facts
� Goal: conjunction of positive literals

– Variables allowed, assume all variables are existential
� Operators/Actions: 

– Action name
– Preconditions: conjunction of positive literals that defines if 

action is legal/applicable
– Effects: conjunction of positive literals (called the add list) and 

negative literals (called the delete list)
– Assumption: everything stays the same unless explicitly on the 

delete list (avoids frame problem) 18

Representation for Planning

� Operator Examples: 

– Action name: Buy(x)

– Preconditions: At(s), Sells(s,x)

– Effects: Have(x)

– Action name: Pickup(x)

– Preconditions: OnTable(x), Clear(x), HandEmpty

– Effects: Holding(x),

¬OnTable(x), ¬Clear(x), ¬HandEmpty



4

19

Planning as Seach

� Situation-space search:
– Search space: all possible situations (i.e. states)

– Node: situation (i.e. world state)

– Edges: actions

– Start node: initial situation

– Goal node: situation where all of the sub-goals solved

– Plan: sequence of actions in path from start to goal
� Plan-space search:

– Search space: all possible plans

– More later…

20

More on the Nature of Plans

� A plan is complete if and only if every 
precondition is achieved

� A precondition is achieved if and only if it is 
the effect of an earlier step (and no 
intervening steps undo it)

21

Situation-Space Planners

� Progression: Forward Chaining
– Like state-space search except for representation

– Inefficient due to large situation space to explore

� Regression: Backward Chaining (e.g. Prolog)
– Start from the goal state and solve its sub-goals 

(preconditions)

– More efficient and goal-directed than progression 
(fewer applicable operators)

22

Example

� Putting on pants, socks, and shoes
Start:
PantsOff, SockOff(L), SockOff(R), ShoeOff(L), ShoeOff(R)

Goal:
PantsOn, SockOn(L), SockOn(R), ShoeOn(L),ShoeOn(R)

Operators:
– PutOnPants: Pre: PantsOff, ShoeOff(L), ShoeOff(R)

Eff: PantsOn, ¬PantsOff
– PutOnSock(x): Pre: ShoeOff(x), SockOff(x),

Eff: SockOn(x), ¬SockOff(x) 
– PutOnShoe(x): Pre: ShoeOff(x), SockOn(x)

Eff: ShoeOn(x), ¬ShoeOff(x) 

23

Goal-Stack Regression Planner

� Goal stack: what to do next
� Current situation: facts that are true
� Pick order of achieving (sub-)goals

– Find operator that achieves the (sub-)goal

– Push the operator onto stack

– Push its preconditions (in some order) onto stack

– When eventually get back to original goal, check that 
all of the preconditions that were needed to be satisfied 
are still satisfied

24

Key Assumption in STRIPS

� Sub-goals are independent of each other
– Divide and conquer the problem without worrying 

about other parts of the problem
• e.g. With putting on socks: the order doesn’ t matter;

putting on left sock first doesn’ t preclude putting on the right

– Whole plan is sum of all sub-plans
� Sussman anomaly

– Sub-goals interfere with each other
• e.g. Blocks world tower, can’ t fix with reordering

– Thus, STRIPS is incomplete:
(i.e. can’ t always find a plan even if one exists)



5

25

The Sussman Anomaly

� Stacking A on top of B precludes us from stacking B on top of C
– We cannot pick it up because it is no longer clear!
– Imagine stacking 100 blocks…

AB
C

C

A
B

Start State Goal State

26

Interleaving in Planning

� Non-interleaving planners
– All of the steps for a sub-goal must occur “atomically”
– Given two sub-goals G1 and G2, either all the steps for 

achieving G1 occur before G2, or vice-versa
– STRIPS is non-interleaving because it uses a stack 

mechanism (solves one sub-goal at a time)

� Interleaving planners
– Can intermix the order of sub-goal steps
– This solves the Sussman anomaly

27

Partial-Order Plans (Sec. 11.3)

� Total-order planner (linear):
– Maintains a partial solution as a “ totally ordered”  list of 

steps found so far

– e.g. STRIPS

– e.g. Situation-space progression/regression planners

� Partial-order planner (non-linear):
– Only maintains partial order

– Constraints on the ordering of steps in the plan

28

Principle of Least Commitment

� Principle of Least Commitment: don’ t make an 
ordering choice unless required to do so
– Property of partial-order planners (POP)

– Not a property of situation-space planners: they commit 
to an ordering when an operator is applied

� Keep the ordering choice as general as possible
� Reduces the amount of backtracking needed

– Don’t waste time undoing steps

29

Planning as Search: Revisited

� Situation-space search:
– Search space: all possible situations (i.e. states)
– etc…

� Plan-space search:
– Search space: all possible partial-order plans
– Node: a partially-order plan
– Edges: add/delete/modify steps of previous node’s plan

or add temporal and causal constraint between existing steps
– Start node: initial partial-order plan, start

�
finish

where start: pre = none, eff = positive literals defining start state
and finish: pre = goal of conjunctive literals, eff = none

– Goal node: a complete plan that solves all sub-goals

30

POP Example



6

31

� Causal constraints:
– S1 →c S2: S1 achieves c for S2
– S1 has a literal c in its effect list that is needed

to satisfy part of the precondition for S2
– Records the purpose of a step in the plan
– Thick links

Types of “Links”

� Ordering constraints:
– S1 < S2: S1 before S2

– S1 must occur before S2
but not necessarily immediately before it

– Thin links

S1

S2

S1

S2

c

32

Solving Open Preconditions

� A open (i.e. unsatisfied) precondition is one that 
does not have a causal link to it

� How is an open precondition p for step Ssolved?
– Step addition: add new plan step R that contains p in its 

Effects list
– Simple establishment: find an existing plan step R prior 

to S that has p in its Effects list
– Then add a causal and ordering links from R to S

� To keep the search focused, the planner only
adds steps that achieve an open precondition

33

Example: Shopping Problem

Finish

At(Home), Sells(GS, Cookies),  Sells(GS, Milk), Sells(HWS, Drill) 

Buy(Cookies)

At(store), Sells(store, Cookies) Plan Step Addition
Buy(x):

Pre: At(store) ∧∧∧∧ Sells(store,x)
Eff: Have(x) 

Start

Have(Cookies), Have(Milk),  Have(Drill), At(Home)

34

Example: Shopping Problem

Finish

Buy(Cookies)

At(GS), Sells(GS, Cookies)

Start

Have(Cookies), Have(Milk),  Have(Drill), At(Home)

Simple Establishment

At(Home), Sells(GS, Cookies),  Sells(GS, Milk), Sells(HWS, Drill) 

35

Example: Shopping Problem

Finish

Buy(Cookies)

At(GS), Sells(GS, Cookies)

Start

Have(Cookies), Have(Milk),  Have(Drill), At(Home)

At(Home), Sells(GS, Cookies),  Sells(GS, Milk), Sells(HWS, Drill) 

At(GS), Sells(GS, Milk)

Buy(Milk)

At(HWS), Sells(HWS, Drill) 

Buy(Drill)

36

Finishing the Algorithm

� The algorithm is finished when every 
precondition in every step has a causal link

� The algorithm fails if a precondition cannot 
be satisfied or an ordering constraint cannot 
be met 
– e.g. S1 < S2 and S2 < S1



7

37

A Flawed Shopping Plan

Finish

Have(Cookies), Have(Milk), Have(Drill), At(Home) 

Start

At(HWS), Sells(HWS, Drill) 

Buy(Drill)

At(GS), Sells(GS, Milk) 

Buy(Milk)

At(GS), Sells(GS, Cookies) 

Buy(Cookies)

At(here)

Go(GS)

Plan Step Addition
Go(there):

Pre: At(here)
Eff: At(there), ¬¬¬¬At(here) 

Simple Establishment

At(GS), Sells(GS, Milk) 

At(Home)

38

A Flawed Shopping Plan

Finish

Have(Cookies), Have(Milk), Have(Drill), At(Home) 

Start

At(HWS), Sells(HWS, Drill) 

Buy(Drill)

At(GS), Sells(GS, Milk) 

Buy(Milk)

At(GS), Sells(GS, Cookies) 

Buy(Cookies)

At(Home) 

Go(GS)

At(Home) 

Go(HWS)

39

Threat Removal (Declobbering)

� Threat: step that deletes (clobbers) a needed effect
– S2 requires an effect of S1

(i.e. there is a causal link between S1 and S2),
but the effect of S3 is to undo the needed effect

� Thus S3 can’ t occur between S1 and S2

– It must occur either before S1 (demotion)
• Add link S3 < S1

– Or after S2 (promotion)
• Add link S2 < S3

40

At(Home) 

Go(HWS)

Threat Removal

Finish

Have(Cookies), Have(Milk), Have(Drill), At(Home) 

Start

At(HWS), Sells(HWS, Drill) 

Buy(Drill)

At(GS), Sells(GS, Milk) 

Buy(Milk)

At(GS), Sells(GS, Cookies) 

Buy(Cookies)

At(Home) 

Go(GS)

There is no way to remove 
the threat that each Go
action poses to another… 
so try a new plan

At(GS) 

41

Threat Removal

Finish

Have(Cookies), Have(Milk), Have(Drill), At(Home) 

Start

At(HWS), Sells(HWS, Drill) 

Buy(Drill)

At(GS), Sells(GS, Milk) 

Buy(Milk)

At(GS), Sells(GS, Cookies) 

S2:Buy(Cookies)

At(Home) 

S1:Go(GS)

At(GS) 

S3:Go(HWS)

Demotion of Threat

42

Completing the Plan

Finish

Have(Cookies), Have(Milk), Have(Drill), At(Home) 

Start

At(HWS), Sells(HWS, Drill) 

Buy(Drill)

At(GS), Sells(GS, Milk) 

Buy(Milk)

At(GS), Sells(GS, Cookies) 

Buy(Cookies)

At(Home) 

Go(GS)

At(GS) 

Go(HWS)

At(here) 

Go(Home)

At(HWS) 



8

43

Historical AI Planning

� State-space search (STRIPS) can be 
directed using logic, but is still incomplete

� Partially-ordered planners are complete, but 
are practically limited in the number of 
steps they can accurately plan

�Planning was sort of a “ dead”  AI research 
area for a while

44

Modern AI Planning

� Since 1992, there have been several new 
approaches to the planning task discovered (e.g.
Graph-Plan and SAT-Plan) that can find plans up 
to thousands of steps long
– CS-731 goes into these approaches in detail

�
D. Weld, “Recent advances in AI planning,”
AI Magazine,1999
– Excellent coverage of these new approaches

45

Graph-Plan (Sec. 11.4)

�
A. Blum and M. Furst, “Fast Planning Through 
Planning Graph Analysis,”  Artificial Intelligence, 
1997

� Propositionalizeactions and situations
� Construct a planning graph

– Levels (e.g. time steps) with potential action nodes
• Include persistence actions (inactions) to deal with frame prob.

– Link actions to situation nodes between each level
– Indicate which situation descriptions are mutually 

exclusive with “mutex links” 46

Graph-Plan

// basic graph-plan algorithm (p.399)

GRAPH = initial state graph

GOALS = problem goals

loop forever {

if GOALS non-mutex in last level of graph then {

SOL = extract_sol(GRAPH, GOALS, len(GRAPH))

if SOL � failure then return SOL

else if no_sol(GRAPH) then return failure

}

GRAPH = expand_graph(GRAPH, problem definition)

}

// See textbook or paper for more details on computing

// mutex, algorithmically finding solutions, etc...

47

Graph-Plan

Start: Have(Cake) ∧ ¬Eaten(Cake) Goal: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)
Precond = Have(Cake) / Effect = ¬Have(Cake) ∧ Eaten(Cake)

Action: Bake(Cake)
Precond = ¬Have(Cake) / Effect = Have(Cake)

Have(Cake)

¬Eaten(Cake)

S0 A0

Eat(Cake)

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

S1 A1

Eat(Cake)

Bake(Cake)

Have(Cake)

¬Have(Cake)

Eaten(Cake)

¬Eaten(Cake)

S2

48

SAT-Plan (Sec. 11.5)

�
H.A. Kautz and B. Selman, “Planning as 
Satisfiability,”  Proceedings of the Tenth European 
Conference on Artificial Intelligence (ECAI), 1992

� Recall that a planning environment can be 
expressed in situation calculus
– Axioms of the form α � β (rather ¬α ∨ β)

� Recall that plans are considered to be a 
conjunction of sub-goals:
– Start state ∧ axioms ∧ goals



9

49

SAT-Plan

� The basic idea with SAT-Plan: 
– Describe the environment in situation calculus

– Propositionalize all the axioms (disjunctions), 
enumerated for each of an arbitrary number of steps

– Conjoin all instantiated rules with the initial state and 
goal descriptions

� This provides us with a PL formula in CNF, which 
we can try to solve using HC, SA, Tabu, GAs, etc.

50

SAT-Plan

� SAT-PLAN isn’ t necessarily complete
– Using local search, can get stuck in local optima

– Using exhaustive heuristic search (e.g. DPLL), it is 
complete but can take a long time

13 hours3,798288hanoi

1.2 sec3,025244medium

4 sec2,533215reverse

0.1 sec93394anomaly

SAT-Plan# of clauses# of variablesProblem

51

Summary

� Planning agents search to find a sequence of 
actions to achieve a goal using a flexible 
representation of states, operators, goals, plans
– STRIPS language describes actions in terms

of their preconditions and effects

� Not feasible to search through the entire space as 
was done with search agents
– Regression planning focuses the search
– STRIPS assumes sub-goals are independent
– POP uses principle least commitment, declobbering

52

Summary

� Partial-Order Planning (POP) is a sound and 
complete planning algorithm, but can be 
limited by plan length

� Recent advances in AI planning reduce the 
planning environment to other problems 
(Graphs, SAT formulas) that can be solved 
using other methods

53

Next Lecture

� After the Midterm:

Machine
Learning!


