Planning
N O

Burr H. Settles

CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

w= Announcements (7/7)

m Lotsof homework business!
— HW#3 out (due Monday, 7/14)
— HW#2 due today
— HW#1 almost graded, back tomorrow

m Reminders:
— Midterm review on Wednesday (7/9)
— Midterm on Thursday, in class (7/10)
— No classon Friday (7/11)

Announcements (7/8)

m Homework #1 is not quite graded!
— Check my mailbox in CS 5% floor after 5pm today
— Otherwise, collect them at the review tomorrow
— Thereis asolution for HW#1 on the webpage
m Homework #3 due date extended (Wed. 7/16)
m About the exam:
— Closed book, but you may bring a 1-sided handwritten
8Y2x11 sheet of notes and a calculator
— | threw together a midterm study guide available on the
course webpage under “exam” section

= Planning

Problem:

* Mechanically and efficiently find a sequence of
actions that, when “ executed,” achieve a goal

m Given:
— Initial state, goal state, and actions
m Find:

— A plan: a sequence of actions that when applied,
beginning with the initial state, transforms the world
into agoal state

Assumptions with Planning

m Goal isaconjunction of sub-goals:
— To achieve agoal, you must achieve a set of sub-goals
m Actions are atomic
— Arenot divisible into sub-actions
m Actions are sequential
— No two actions can be executed concurrently
m Actions are determinigtic:
— No uncertainty in performing an action

= Assumptions with Planning

m The agent isthe sole cause of changein the
environment
m World isaccessible (i.e. the agent knows all it
need to know about the environment)
- m Closed World Assumption:
— State description lists al that istrue
— Anything elseis assumed false

* The planning task is very difficult, even with such
a smplified framework!

Classic Planning Problems

m Dressing
— Initial state: socks, shoes, and pants off
— Goal state: socks on, under shoes (on correct feet), under pants
— Actions: PutOnPants, PutOnSock(f), PutOnShoe(f)
m Blocks World
— Initial state: some configuration of blocks on atable
— Goal State: another configuration (stacked?)
— Actions: Pickup(x), Putdown(x), Stack(x,y), Unstack(x,y)
= Shopping
— Initial state: at home, with no items
— Goal state: at home, having alist of items
— Actions: Go(store), Buy(item), etc...

Planning As Search

m State-space search:
— State representation
— Operatorg/actions
— Start state
— Goal test

* Note: Thisis how we approached the
“water jugs’ problem backinlecture 3

Planning As Search

m Doesn't alow for real reasoning about states and actions

— Operators are just used to generate next state
— Can't reason about operator definition or ordering

« Causes exploration of dead-end successor states

(possibly even illegal ones!)

— Goal test isjust used to determine if goal reached
— Can't reason about goal definition

+ No knowledge of determining how to best achieve the goal

« Note: heuristic is simply the distance from goal

m Wesak representation
m Wesk ability to reason about the world

Planning Using Logic

m By using knowledge-based agents, we can capture
reasonable information things about the agent’s
actions and their effect on the world

— “If I move forward, I'm in the next room”
— “If I pick up agold brick, then | am holding it”
— “If I am holding something, my hand is not empty”

m The problem hereis dealing with time:
— “If I move forward again, I'm in a different room”

— Theresults of each action are now relative to the
sequence of actions before... 0

Situation Calculus

m Situation calculus extends FOL to deal with such
time-sensitive dilemmas for planning (Sec. 10.3)
— Situations are states that are generated from applying an
action to another situation
* Result(a, s) isthe function that returns the situation when
applying action a to situation s
— Fluents are predicates/functions that vary from one
situation to the next, such as the location of the agent,
or what it may be holding
— Atemporals/eternals are predicates/functions that do not
depend on atime stamp

» eg. Dog(Lassie) or LeftL egOf(John)
11

Situation Calculus

Result(Turn (Right),
Result(Forward, §,))
Turn (Right)

Resuli(Forward, S,)

Forward

Situation Calculus

m There are two types of axioms (or rules) in
situation calculus:
— Possibility axioms: say when it is possible to perform a
certain action
* At(Agent, x, s) O Adjacent(x, y) = Poss(Go(x, y),)
« Gold(g) DAt(g, x, s) O At(Agent, x, s) = Poss(Pickup(g), 5)
« Holding(g, s) = Poss(Putdown(g), s)
— Effect axioms: defines what happensin the
environment when a possible action is executed
* Poss(Go(x, y), s) = At(Agent, y, Result(Go(x,y), 5))
* Poss(Pickup(g), s) = Holding(g, Result(Pickup(g), s))

+ Poss(Putdown(g), s) = —Holding(g, Result(Putdown(g), s)) .

Situation Calculus

m Situation calculus with frame axiomsis a
strong representation

— However, the approach is not very modular... each new
predicate requires axioms to be added for each of the
possible actions

* |nference procedures are very weak... the
representation istoo fine-grained

15

Situation Calculus

m Fortunately, situation calculus alows us to express
what actions are reasonable aswell aswhat will
change when an action is taken

m Unfortunately, it doesn’t say anything about what
stays the same!

m Frame axioms specify what does not change when
acertain action isapplied

— eg. “If I gointo aroom that had gold in it during the
last situation, then the gold is still there”
— Many axioms are required (for each action even!)

STRIPS Representation

STRIPS (STandard Research Institute Problem Solver):
m Facts: ground literals with variables
m Situations: conjunction of facts
m Goal: conjunction of positive literals
— Variables allowed, assume all variables are existential
m Operators/Actions:
— Action name
— Preconditions: conjunction of positive literals that definesif
action islegal/applicable
— Effects: conjunction of positive literals (called the add list) and
negative literals (called the delete list)

— Assumption: everything stays the same unless explicitly on the
delete list (avoids frame problem) 17

Planning Solution

Combine the two approaches:
m Simplify the representation language
— Allow reasoning about how to achieve the goal
— Inference procedure is faster than resolution
m “Open up” therepresentation of states, operators,
and goal test

— Rather than blindly applying operators, try to reason
about which ones are most important

— Reduces the number of nodes that are considered

Representation for Planning

m Operator Examples:

— Action name: Buy(x)

— Preconditions: At(s), Sells(sx)

— Effects: Have(X)

— Action name: Pickup(x)

— Preconditions: OnTable(x), Clear(x), HandEmpty
— Effects: Holding(x),

=1 0nTable(x), = Clear(x), = HandEmpty

Planning as Seach

m Situation-space search:
— Search space: all possible situations (i.e. states)
— Node: situation (i.e. world state)
— Edges: actions
— Start node: initial situation
— Goal node: situation where all of the sub-goals solved
— Plan: sequence of actionsin path from start to goal

m Plan-space search:

— Search space: al possible plans
— Morelater...

Situation-Space Planners

m Progression: Forward Chaining
— Like state-space search except for representation
— Inefficient due to large situation space to explore

m Regression: Backward Chaining (e.g. Prolog)

— Start from the goal state and solve its sub-goals
(preconditions)

— More efficient and goal-directed than progression
(fewer applicable operators)

21

More on the Nature of Plans

m A planiscompleteif and only if every
precondition is achieved

- m A precondition isachieved if and only if it is

the effect of an earlier step (and no
intervening steps undo it)

Goal-Stack Regression Planner

m Goa stack: what to do next
m Current situation: factsthat are true
m Pick order of achieving (sub-)goals
— Find operator that achieves the (sub-)goal
— Push the operator onto stack
— Push its preconditions (in some order) onto stack

— When eventually get back to original goal, check that
al of the preconditions that were needed to be satisfied
are dtill satisfied

23

| .
= Example
m Putting on pants, socks, and shoes

Start:

PantsOff, SockOff(L), SockOff(R), ShoeOff(L), ShoeOff(R)

Goal:

- PantsOn, SockOn(L), SockOn(R), ShoeOn(L),ShoeOn(R)

Operators:

— PutOnPants: Pre: PantsOff, ShoeOff(L), ShoeOff(R)
Eff: PantsOn, —~ PantsOff

— PutOnSock(x): Pre: ShoeOff(x), SockOff(x),
Eff: SockOn(x), = SockOff(x)

— PutOnShoe(x): Pre: ShoeOff(x), SockOn(x)

Eff: ShoeOn(x), — ShoeOff(x)

Key Assumption in STRIPS

* Sub-goals are independent of each other
— Divide and conquer the problem without worrying
about other parts of the problem

« e.g. With putting on socks: the order doesn’t matter;
putting on left sock first doesn’t preclude putting on the right

— Whole plan is sum of all sub-plans
m Sussman anomaly
— Sub-goals interfere with each other
+ eg. Blocksworld tower, can’t fix with reordering
— Thus, STRIPS isincomplete:
(i.e. can't always find a plan even if one exists)

TR B

The Sussman Anomaly

B
BllA

Start State Goal State

m Stacking A on top of B precludes us from stacking B on top of C
— We cannot pick it up because it is no longer clear!

Imagine stacking 100 blocks. ..

25

TR B

Interleaving in Planning

m Non-interleaving planners
— All of the steps for a sub-goal must occur “atomically”

— Given two sub-goals G, and G,, either all the steps for
achieving G, occur before G, or vice-versa

— STRIPSis non-interleaving because it uses a stack
mechanism (solves one sub-goa at atime)

m Interleaving planners
— Can intermix the order of sub-goal steps
— This solves the Sussman anomaly

TR B

Partial-Order Plans (Sec. 11.3)

m Tota-order planner (linear):
— Maintains a partial solution as a “totally ordered” list of

steps found so far
e.g. STRIPS
e.g. Situation-space progression/regression planners

m Partial-order planner (non-linear):

Only maintains partial order
Constraints on the ordering of stepsin the plan

27

TR B

Principle of Least Commitment

m Principle of Least Commitment: don’'t make an
ordering choice unless required to do so

— Property of partial-order planners (POP)
— Not aproperty of situation-space planners: they commit
to an ordering when an operator is applied
m Keep the ordering choice as general as possible
m Reduces the amount of backtracking needed
— Don’'t waste time undoing steps

TR B

Planning as Search: Revisited

m Situation-space search:

Search space: all possible situations (j.e. states)
etC...

m Plan-space search:

Search space: all possible partial-order plans

Node: apartialy-order plan

Edges: add/delete/modify steps of previous node's plan

or add temporal and causal constraint between existing steps
Start node: initial partial-order plan, start = finish

where start: pre = none, eff = positive literals defining start state
and finish: pre = goal of conjunctive literals, eff = none

Goal node: acomplete plan that solves all sub-goals

29

TR B

POP Example

Total Order Plans:

ﬂ

Partial Order Plan:
Left Right
Sock Sock

Lefts Oon RightSackOn

Sock
Loft Right
Shoe Shoe

LeftShoeOn, RightShoeOn

Start

1]

Right Left
Shoe Shoe

Left
Sock

Right
Shoe

o
o
8
w

S

TR 0 |

Types of “Links”

m Ordering constraints:
— §,<S,: S, before S,
— S, must occur before S,
but not necessarily immediately before it
— Thinlinks
m Causal constraints:
- S, -.S, S, achievescfor S,
- S, hasalitera cinits effect list that is needed
to satisfy part of the precondition for S, c
- Records the purpose of a step in the plan
- Thick links

31

TR 0 |

Solving Open Preconditions

m A open (i.e. unsatisfied) precondition is one that
does not have acausal link to it
m How is an open precondition p for step Ssolved?
— Step addition: add new plan step R that contains p in its
Effectslist
— Simple establishment: find an existing plan step R prior
to Sthat has p in its Effects list
— Then add a causal and ordering linksfrom Rto S
% To keep the search focused, the planner only
adds steps that achieve an open precondition

TR B

Example: Shopping Problem

At(Home), Sells(GS, Cogkies), [Sells(GS, Milk), Sells(HWS, Drill)

Plan Step Addition
Buy(x):
Pre: At(store) OSells(store,x)
Eff: Have(x)

At(store), Sells(store, Cookies)

Have(Cookies), Have(Milk),| Have(Drill), At(Home)

33

TR B

Example: Shopping Problem

At(Home), Sells(GS, Cogkies), Sells(GS, Milk), Sells(HWS, Drill)

AH(GS), Sells(GS, Cookies) Simple Establishment

Have(Cookies), Have(Milk), Have(Drill), At(Home)

TR B

Example: Shopping Problem

Al(Home) Sells(GS, Cookies), Se?GS Milk), Sells(HWS Drill)

At(GS), Sells(GS, Cookles) At(GS), Sells(GS, Milk) At(HWS), Sells HWS, Drill)

Have(Cookies), Have(Milk), Have(Drill), At(Home)

- 35

Finishing the Algorithm

m The algorithm is finished when every
precondition in every step has a causal link

m The algorithm failsif a precondition cannot
be satisfied or an ordering constraint cannot
be met

—-eg.§<SadS,<S

TR 0 |

A Flawed Shopping Plan

Plan Step Addition
Go(there):

Pre: At(here)

Eff: At(there), =At(here)
Simple Establishment

At(GS), Sells(GS, Cookies) At(GS), Sells(GS, Milk) At(HWS), Sells(HWS, Drill)

Have(Cookies), Have(Milk), Have(Drill), At(Home)
37

A Flawed Shopping Plan

At(Home)

At(Home)

At(GS), Sells(GS, Cookies) At(GS), Sells(GS, Milk) At(HWS), Sells(HWS, Drill)

Have(Cookies), Have(Milk), Have(Drill), At(Home)

TR B

Threat Removal (Declobbering)

m Threat: step that deletes (clobbers) a needed effect
— S, requires an effect of S;
(i.e. thereisacausal link between S, and S)),
but the effect of S; isto undo the needed effect
m Thus S; can’t occur between S, and S,
— It must occur either before S; (demotion)
+ Addlink S;<S;
— Or after S, (promotion)
+ Addlink S, <,

39

TR B

Threat Removal

There is no way to remove
the threat that each Go
action poses to another...
so try anew plan

At(Home)

At(GS), Sells(GS, Cookies) ' At(GS), Sells(GS, Milk) At(HWS), Sells(HWS, Drill)

Have(Cookies), Have(Milk), Have(Drill), At(Home)
40

Threat Removal

Demotion of Threat

41

Completing the Plan

Have(Cookies), Have(Milk), Have(Drill), At(Home)

Historical Al Planning

m State-space search (STRIPS) can be
directed using logic, but is still incomplete

m Partially-ordered planners are complete, but
are practically limited in the number of
steps they can accurately plan

* Planning was sort of a “ dead” Al research
area for awhile

43

Modern Al Planning

m Since 1992, there have been several new
approaches to the planning task discovered (e.g.
Graph-Plan and SAT-Plan) that can find plans up
to thousands of stepslong

— CS-731 goes into these approaches in detail

D. Wdd, “Recent advancesin Al planning,”
Al Magazine, 1999

— Excellent coverage of these new approaches

44

Graph-Plan (Sec. 11.4)

A. Blumand M. Furst, “Fast Planning Through
Planning Graph Analysis,” Artificial Intelligence,
1997

m Propositionalize actions and situations

m Construct aplanning graph
— Levels (e.g. time steps) with potential action nodes
* Include persistence actions (inactions) to deal with frame prob.
— Link actions to situation nodes between each level

— Indicate which situation descriptions are mutually
exclusive with “mutex links’ 5

Graph-Plan

Il basic graph-plan al gorithm (p.399)
GRAPH = initial state graph
GOALS = probl em goal s
| oop forever {
if GOALS non-nutex in last |evel of graph then {
SOL = extract_sol (GRAPH, GOALS, |en(GRAPH))
if SOL # failure then return SOL
else if no_sol (GRAPH) then return failure
}
GRAPH = expand_gr aph(GRAPH, probl em definition)
}
/'l See textbook or paper for nore details on conputing
!/ mutex, algorithmcally finding solutions, etc...

46

Graph-Plan

Start: Have(Cake) - Eaten(Cake) Goal: Have(Cake) U Eaten(Cake)
Action: Eat(Cake)

Precond = Have(Cake) / Effect = - Have(Cake) U Eaten(Cake)
Action: Bake(Cake)

Precond = ~ Have(Cake) / Effect = Have(Cake)

S A s, A, s,
fosacsal

Have(Cake) {1 Have(Cake)

" - Have(Cake) &
(encan K| \'-‘

Eaten(Cake) =
- Eaten(Cake)

Have(Cake)
~Have(Cake)

Eaten(Cake)

- Eaten(Cake)
47

- Eaten(Cake)

SAT-Plan (Sec. 11.5)

H.A. Kautz and B. Selman, “Planning as
Satisfiability,” Proceedings of the Tenth European
Conference on Artificial Intelligence (ECAI), 1992

m Recall that a planning environment can be
expressed in situation calculus
— Axioms of the form a = S(rather ~a 0 f)

m Recall that plans are considered to be a
conjunction of sub-goals:
— Start state U axioms [Jgoals

48

SAT-Plan

m Thebasicideawith SAT-Plan:
— Describe the environment in situation calculus

— Propositionalize all the axioms (disjunctions),
enumerated for each of an arbitrary number of steps

— Conjoin al instantiated rules with the initial state and
goal descriptions

% This provides uswith a PL formula in CNF, which
we can try to solve using HC, SA, Tabu, GAs, etc.

49

= SAT-Plan
Problem #of variables |#of clauses | SAT-Plan
anomaly 94 933 0.1sec
reverse 215 2,533 4 sec
medium 244 3,025 1.2sec
B i 288 3,798 13 hours

m SAT-PLAN isn't necessarily complete
— Using local search, can get stuck in local optima

— Using exhaustive heuristic search (e.g. DPLL), itis
complete but can take along time

Summary

m Planning agents search to find a sequence of
actions to achieve agoal using aflexible
representation of states, operators, goals, plans

— STRIPS language describes actions in terms
of their preconditions and effects

m Not feasible to search through the entire space as
was done with search agents
— Regression planning focuses the search
— STRIPS assumes sub-goals are independent
— POP uses principle least commitment, declobbering

= Summary

m Partial-Order Planning (POP) is a sound and
complete planning agorithm, but can be
limited by plan length

m Recent advancesin Al planning reduce the
planning environment to other problems
(Graphs, SAT formulas) that can be solved
using other methods

Next Lecture

m After the Midterm:

Machine
Learning!

53

