
1

1

Machine Learning

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements (7/15)

� If you haven’ t already, read Sections 18.1-18.3 in
AI: A Modern Approach

� Homework #3 due tomorrow
– The handin directories set up for you to submit your

prolog programs

� Homework #4 will be out soon
– Will have a programming portion

3

Announcements (7/16)

� Homework #3 due today

� Read Sections 20.4 and 20.5 in
AI: A Modern Approach for next time

� This week’s discussion topic: describe real-world
inductive learning task
– Is it a classification or regression problem?
– What are a good set of features?

4

Comments on the Midterm

� Skolemizing
– Forget what I said yesterday about a predicate connecting two

variables (brain fart, grrr…)
– Instead: work from the outside in, and substitute each existentially

quantified variable with a Skolem function dependent on the
universally quantified variables on the left (see p. 296 of AIMA)

� There was a typo in the exam (5.a.iii):
– i.e. not UR: ((A ∨ B) ∧ ¬B) ⇔ A

• UR: ((A ∨ B) ∧ ¬B) � A

– The first isn’ t a tautology, but it doesn’ t change the answer to the
question! (still true: each question has 4 interpretations, 3 models)

5

Agents that Don’t Learn

� So far, all the types of intelligent agents we’ve
discussed are quite “hard-wired”
– Search through a problem space (perhaps using defined

heuristics, or randomness) to find a good solution

– Use expert-written logical knowledge

� These approaches are good for well-understood or
definable environments, but what if things are too
novel or more complex?

6

Agents that Learn

� Learning is essential for unknown environments
– Too complex/rich to represent in a search space,

or to search efficiently
– Programmer doesn’ t know enough to write a sufficient

knowledge base
� Learning is also a useful construction method

– Expose the agent to reality and let it sort the problem
out rather than programming it

�
Learning modifies the agent’s decision-making
mechanisms to improve performance

2

7

Old Agent Architecture

Real World

Agent

Sensors

Effectors

Reasoning

Model of World

Actions

Knowledge

Goals/Utility

8

Learning Agent Architecture

Real World

Agent

Sensors

Effectors

Critic

Learning
Element

Problem
Generator

Performance
Element

9

Inductive Learning

� Inductive learning is the simplest form of learning
(can also be considered science)
– Learn a function from examples

� Scaled-down model of real learning
– Ignores prior knowledge

– Assumes deterministic, observable environment

– Assumes training examples are available

– Assumes that the agent wants to learn…?

10

Inductive Learning

� Problem framework:
– Given a set of training examples as pairs: � x, f(x)�

• x is the example itself, and f(x) is the concept to be learned

– Find a hypothesis function h(x) such that h(x) ≈ f(x)

x = f(x) = mammal

x = f(x) = mammal

x = f(x) = bird

x = f(x) = bird

11

Representing Examples

� The main issue for inductive learning is how to
represent the example x as data
– Example x must somehow be mapped to input(s) for the

hypothesis function h(x)

– Must still capture the nature and the important features
of the example

� We typically represent an example as a vector of
features (or attributes), e.g. x = � x1, x2, x3…�

12

Feature-Vector Representation

� Imagine you’ re in the circus, and company policy
says that if more than 1,000 people attend in a day,
you need extra security guards

� However, if you hire extra guards on a day with
less than 1,000 customers, you lose money!

� You must also notify the extra guards 24 hours in
advance… so you want to be able to predict if
over 1,000 will attend or not

3

13

Feature-Vector Representation

� Let’s say you have the nightly weather forecast
and attendance records for the last 2 weeks

� We can think of each day as an example x:
– Each of the weather measurements (outlook,

temperature, humidity, etc.) are features of x
– Whether or not there were >1,000 customers is our

binary concept function f(x)
� If we can learn the concept well enough, we can

predict the attendance for the next day based on
the nightly forecast information

14

Feature-Vector Representation

NoStrongHighMildRain14

YesWeakNormalHotOvercast13

YesStrongHighMildOvercast12

YesStrongNormalMildSunny11

YesWeakNormalMildRain10

YesWeakNormalCoolSunny9

NoWeakHighMildSunny8

YesStrongNormalCoolOvercast7

NoStrongNormalCoolRain6

YesWeakNormalCoolRain5

YesWeakHighMildRain4

YesWeakHighHotOvercast3

NoStrongHighHotSunny2

NoWeakHighHotSunny1

>1,000?WindHumidityTemperatureOutlookDay

15

A Hypothesis for the Circus

� The feature-vector corresponds to the set of all the
agent’s percepts

� Try hand-writing a series of if-then rules that
characterizes what is observed in the previous set
of examples
– For instance: Outlook=Sunny ∧ Humidity=High � No

�
This set of rules is comprises a hypothesis
function h(x)

16

A Hypothesis for the Circus

NoStrongHighM ildRain14

YesWeakNor malHotOvercast13

YesStrongHighM ildOvercast12

YesStrongNor malM ildSunny11

YesWeakNor malM ildRain10

YesWeakNor malCoolSunny9

NoWeakHighM ildSunny8

YesStrongNor malCoolOvercast7

NoStrongNor malCoolRain6

YesWeakNor malCoolRain5

YesWeakHighM ildRain4

YesWeakHighHotOvercast3

NoStrongHighHotSunny2

NoWeakHighHotSunny1

>1,000?WindHumidityTemperatureOutlookDay

17

A Hypothesis for the Circus

� One possible set of rules is:

Outlook=Sunny ∧ Humidity=High � No

Outlook=Sunny ∧ Humidity=Normal � Yes

Outlook=Overcast � Yes

Outlook=Rain ∧ Wind=Weak � Yes

Outlook=Rain ∧ Wind=Strong � No

18

Decision Trees

� Notice that the previous agent can also be
represented as a logical tree:

YES

outlook

sunny overcast rain

humidity

NO YES

high normal

wind

YES NO

strongweak

4

19

Decision Trees

� Decision trees are graphical representations of
logical functions
– Often very compact compared to truth tables

� They are one possible representation for the
hypothesis function h(x) ≈ f(x):
– Leaves (terminal nodes) are the results of h(x)

– In this example, both h(x) and f(x) are the Boolean
function “will more than 1,000 people attend?”

20

Expressiveness of D-Trees

� Decision trees can express any logical
function of the input attributes:

A ∧∧∧∧ B

A ⊗⊗⊗⊗ B

1 0

0

A

B

1

1 0

0

A
1 0

1 0

B
1 0

0 1

B
1 0

A ∨∨∨∨ (B ∧∧∧∧ ¬¬¬¬C)

0 1

0

B

C

1

1 0

0

A
1 0

1

21

Decision Tree Induction

�
It would be nice to be able to induce the decision
tree automatically from data, rather than trying to
hand-write the rules

� Fairly trivial to induce a decision tree from training data in
a feature-vector representation:
– Pick some feature xi as the root node
– Create an edge for each possible value of xi

• If all the examples that flow down the path from the root to this edge
have the same f(x) value, add a leaf for that value

• Else, pick another feature xi and add a node here

– Recursively repeat until you can add a leaf
22

Decision Tree Induction

� However, note that both of these trees are
consistent with the circus training data:

outlook

humidity windY

sunny overcast rain

Y

high normal

N N

weak strong

Y

temperature

outlook outlook

hot mild cool

humidity

Y

sunny overcast

N Y

normal high

outlook

windY

sunny overcast rain

N

weak strong

Y

N

windY

sunny overcast rain

N

weak strong

Y

Y

The difference is in which
features were chosen in which order!

23

Hypothesis Spaces

� A hypothesis space is the set of all the possible
hypothesis functions (in this case, decision trees)
for a given problem description

� How big is a hypothesis space for decision trees?
– Consider n Boolean features

– The size of this hypothesis space = number of distinct
decision trees over n features

24

Hypothesis Spaces

� How many decision trees with n Boolean features?
– # of Boolean functions
– # of distinct truth tables with 2n rows = 22n

– e.g., for 6 Boolean features there can be up to 18.4 × 1018 trees!!
• Not all are necessarily consistent with training data, of course

� How many purely conjunctive hypotheses (e.g. A ∧ ¬B)
are there for n Boolean features?
– Each feature is in (1), in (0), or out
– 3n distinct conjunctive hypotheses (e.g. path from root to leaf)

�
More expressive hypothesis spaces increase the chance of
fitting the function, but also increase complexity!

5

25

Inductive Bias

� If there are several hypotheses that are all consistent with
the training data, which should we prefer?
f(x)

x

� �
�

�

�

�

h1(x)

f(x)

x

� �
�

�

�

�

h2(x)

We want to introduce an inductive bias to prefer h1 over
other hypothesis, since is seems to generalize more 26

Occam’s Razor

� English philosopher William of Occam was
the first to address the question in 1320
– Apparently while shaving?

� The inductive bias is called Occam’s Razor:
– Prefer the simplest hypothesis that fits the data

� But how to we define simple?

27

Occam’s Razor and D-Trees

� We could say that, for decision trees, the simplest
hypothesis is the tree with the fewest nodes

Then we clearly want to choose
the smaller tree, but how?

outlook

humidity windY

sunny overcast rain

Y

high normal

N N

weak strong

Y

temperature

outlook outlook

hot mild cool

humidity

Y

sunny overcast

N Y

normal high

outlook

windY

sunny overcast rain

N

weak strong

Y

N

windY

sunny overcast rain

N

weak strong

Y

Y

28

Occam’s Razor and D-Trees

� One way to find the smallest (i.e. simplest, or most
general) decision tree is to enumerate all of them
and choose the one with the fewest nodes
– But the hypothesis space is too large!

� Alternatively: use the induction algorithm from
slide 21 (or page 658 of AIMA), using some
heuristic to choose the best feature xi to add

29

ID3: Efficient Tree Induction

�
J.R. Quinlan, “ Induction of Decision Trees,”
Machine Learning, 1986

� With the ID3 algorithm, there are many ways to
choose the “best feature” for adding at a node
– In general, we will use information theory
– First developed by Shannon & Weaver at AT&T labs

(used in digitizing telephone signals)
– Information gain: amount of information (in bits) that is

added by a certain feature

30

Information Theory Illustration

Say we’ re learning a Boolean concept, and have Boolean features:

xi

xj xk

xl

Begin with the
entire training set

Choose the feature
that, when added,
partitions the
training set into the
“purest” subsets

Do this recursively
until nodes are
totally pure (leaves)

6

31

Entropy

� To define information gain, we must first define
entropy, which characterizes the (im)purity of set
of examples S, in “bits” :

Entropy(S) = – p+ log2 p+ – p- log2 p-

� Where p+ is the proportion of positive examples in Sand p-
is the proportion of negatives

� Note: we will consider 0 log2 0 = 0 (not undefined)

32

Entropy Example

� For example, the circus domain has a set S
of 14 examples: 9 positives (f(x) = Yes) and
5 negatives (f(x) = No):

Entropy([9+,5–])
= – (9/14) log2 (9/14) – (5/14) log2 (5/14)
= – (0.64) log2 (0.64) – (0.36) log2 (0.36)
= – (–0.41) – (–0.53)
= 0.94

33

Entropy

p+

E
nt

ro
py

(S
)

0.0 1.00.5

0.5

1.0Entropy reflects the lack
of “purity” of some
particular set S

As the proportion of
positives p+ approaches
0.5 (very impure), the
Entropy of Sconverges
to 1.0

34

Information Gain

� Now we can compute the information gain of
adding a particular feature F on the set S in terms
of the entropy:

InfoGain(F, S) =
Entropy(S) – ΣΣΣΣv∈∈∈∈values(F) |Sv|/|S| Entropy(Sv)

� Where values(F) is the set of possible values for
the feature F (e.g. values(Wind)= { Weak, Strong})

35

Information Gain Example

� Again, the circus example:

S = [9+,5–] SWeak = [6+,2–] SStrong = [3+,3–]

InfoGain(Wind, S)

= Entropy(S) – Σv∈ {Weak,Strong} |Sv|/|S| Entropy(Sv)
= Entropy(S) – (8/14)Entropy(SWeak)

– (6/14)Entropy(SStrong)
= 0.94 – (0.57)0.81 – (0.43)1.00
= 0.048

36

Which Feature is Better?

HumidityWind

[9+,5–]
E = 0.94

[9+,5–]
E = 0.94

InfoGain(Humidity, S)
= 0.94 – (7/14)0.985 – (7.14)0.592
= 0.151

InfoGain(Wind, S)
= 0.94 – (8/14)0.81 – (6/14)1.00
= 0.048

[3+,4–]
E = 0.985

[6+,1–]
E = 0.592

[6+,2–]
E = 0.811

[3+,3–]
E = 1.0

Humidity provides greater information gain (more pure
subsets) than Wind on the training set as a whole. This
makes it the better choice at this point in the tree

7

37

Issues with Information Gain

� Consider adding the feature Date to the feature vector in
the circus problem
– Each example would have a unique date
– Therefore, each value of feature Datewould perfectly purify the

training set
– But this won’ t be very useful in predicting in the future!

� To remedy this we can alternatively use the
gain-ratio measure, which is a normalized information gain
that discourages features with more or less uniformly
distributed values

�
Section 3.7.3 in Machine Learning covers more advanced
decision tree heuristics in more detail 38

Generalizing Information Gain

� As presented, Entropy and thus InfoGain only
work for learning Boolean concepts
– The circus problem is Yes/No

� We may want to generalize this to more than two
classes (e.g. Labeling objects as animal, vegetable,
or mineral)

Entropy(S) = ΣΣΣΣi – pi log2 pi

� Where i ranges over all the labels in the concept

39

Types of Features

� There are three main kinds of features we can use
in inductive learning:
– Boolean (2 values, e.g. Wind)

– Discrete (>2 fixed values, e.g. Outlook)

– Continuous (real numbers, e.g. what Temperature
perhaps should be)

• Difficult for decision trees to deal with (not a logical construct)

• Must partition the training set on some value

• But there are a potentially infinitenumber of thresholds for
splitting up a continuous domain!

40

Handling Continuous Features

� One way of dealing with a continuous feature F is
to treat them like Boolean features, partitioned on
a dynamically chosen threshold t:
– Sort the examples in Saccording to F
– Identify adjacent examples with differing class labels
– Compute InfoGain with t equal to the average of the

values of at these boundaries
– Can also be generalized to multiple thresholds

�
U. Fayyad and K. Irani, “Multi-interval descretization of
continuous-valued attributes for classification learning,”
Proceedings of the 13th International Joint Conference on
Artificial Intelligence, 1993

41

Handling Continuous Features

� There are two candidates for threshold t in this example:

NoYesYesYesNoNo>1,000?

908072604840Temperature

t = (48+60)/2 = 54 t = (80+90)/2 = 85

� The dynamically-created Boolean features Temp>54 and
Temp>85 can now compete with the other Boolean and
discrete features in the dataset

42

Dealing with Noise

� Consider two or more examples that all have the exact
same feature descriptions, but have different labels
– e.g. The concept is whether or not you find someone is attractive…

two people might have the same height, weight, haircolor, etc., but
you think one is cute and the other isn’ t

� This is called noise in the data
� Encountered in ID3 when all features are exhausted, but

the examples are not homogenous
– Solve by adding a leaf with the majority class label value

– Break ties randomly

8

43

Tree Induction as Search

� We can think of inducing the “best tree” as an
optimization search problem:
– States: possible (sub-)trees
– Actions: add a feature as a node of the tree
– Objective Function: increase the overall information

gain of the tree

� Essentially, ID3 is a hill-climbing search through
the hypothesis space, where the heuristic picks
features that are likely to lead to small trees

44

Evaluating Learning Agents

� Recall that we want the learned hypothesis h(x) to
approximate the real concept function f(x)

� Therefore, a reasonable evaluation metric for a
learned agent is percent accuracy on some set of
labeled examples � x, f(x)�

�
But we don’ t want to evaluate on the set of
examples we trained on (that would be cheating)!

45

Experimental Methodology

� To conduct a reasonable evaluation of how well
the agent has learned a concept:
– Collect a set of labeled examples
– Randomly partition it into two disjoint subsets: the

training set and the test set
– Apply the learning algorithm (e.g. ID3) to the training

set to generate a hypothesis h
– Measure the percent of examples in the test set

accurately labeled by h
� This can be repeated for different, increasing sizes

of the training set to construct a learning curve
46

Example Learning Curve

47

Cross-Validation

� One problem with a simple train/test split of the
data is that the test set may happen to contain a
particularly easy (or difficult) set of examples

� Cross-validation is a way to get a better estimate
of a algorithm’s performance

� Leave-one-out validation:
– Train on all but one example in the dataset, and predict the one

example that was held out
– Repeat over the entire dataset and compute accuracy over all of

the held-out predictions
– Time consuming… if there are n examples, we must running the

learning algorithm n-1 times!
48

k-Fold Cross-Validation

� k-fold cross-validation is a simplified version of
leave-one-out:
– Partition the data into k random, equally sized “ folds”

with no redundancy
– Run the learning algorithm on all but one of the folds

(effectively the training set), and evaluate accuracy on
the held-out fold (test set)

– Repeat over all k folds and average the performance
– Leave-one-out is k-fold validation with k = n
– The standard in the ML community is 10-fold cross-

validation (results usually close to leave-one-out)

9

49

Overfitting

� There is a tradeoff that comes with having an
expressive hypothesis space:
– It is more likely that our hypothesis h(x) will

fit (or approximate) the actual f(x) exactly
– But because our training set is a representative sample

of f(x), we run the risk of overfitting the training data

�
Overfitting causes the agent to “ memorize” the
training data, keeping it from generalizing well to
new examples

50

Overfitting

51

Overfitting Avoidance

� To deal with overfitting in decision trees,
we can try two things:
– Stop growing when the information gain stops

being statistically significant
• Difficult to gauge, doesn’ t work well in practice

– Grow the full tree on training data, and then
prune the tree

• Remember Occam’s razor: simplify!
� But how do we know what to prune?

52

Decision Tree Pruning

� The answer is to take the training set and break it up into a
sub-training set, and a tuning set, on which we will “ fine-
tune” (or prune) our hypothesis
– Induce a tree on the sub-training set
– Consider pruning each node (and those below it) and evaluate

impact on the tuning set
– Greedily remove the one that most improves performance on the

tuning set

� Why don’ t we want to prune on the test set?
– The algorithm isn’ t supposed to be allowed to know the class

labels for the test set!

53

Decision Tree Pruning

54

Properties of Decision Trees

� Decision tree learning is fast in practice
� Applied to many real-world problems,

– Part-picking robots

– Financial decision-making software
� Another bonus: comprehensibility

– It is easy to look at the structure and/or the rules of a
learned d-tree and understand the concept that has been
learned

– After all, they’ re basically logical rules!

10

55

Eager vs. Lazy Learning

� Decision tree induction is called an eager learning
method because it actively (eagerly) constructs a
model hypothesis function

� There are also lazy learning methods (or instance-
based learning) which simply memorize aspects of
the training examples and compare new examples
to what it’s “ learned”

56

k-Nearest Neighbors

� The k-nearest neighbors (k-NN) algorithm is the
most common form of lazy learning
– Retain all the training data in memory

– When a test example is queried, let the k most similar
training examples “vote” on the class label

q

Consider this Venn Diagram with
both + and – examples

If we are using 5-NN learning,
what is the label for the point q?

The vote is 3-2 in favor of +

+ -

+

+

+

+

-

-
-

-

-
-

-

+

+

-

57

Evaluating Distance

� Given a query (test) example q, we compare it to
every x in the training set and let the nearest k vote

� To evaluate which training examples are “nearest”
to the query, we need a distance metric!
– Boolean and discrete features

• Hamming distance: # of features in x and q that do not match

– Continuous features
• Euclidian distance: distance(x,q) = sqrt(Σi (xi – qi)2)

where i ranges over all the examples’ features

– The two can be combined if all feature types are present

58

Distance-Weighted k-NN

Consider the following Venn Diagram:

q

+ -

+
+

-
-

-

-

+

+

-

-

-

- -

� If we conduct 5-NN learning in this rather sparse problem,
we’ ll probably end up misclassifying q

� To remedy this by conducting a weighted vote
– Compute a weight w for each example x: w = 1 / distance(x,q)2

– This assumes that the distances are normalized
– Now the examples nearest q will have more influence in the vote

59

The Key to k-NN

� The most important parameter in the k-NN
algorithm is the value for k itself: how many
neighbors are needed?
– If k is too low, we consider few examples and don’ t

generalize well (risk overfitting)
– If k is too high, we over-generalize and lose the sense

of relationship between the query and the examples
– Page 734 has some good illustrations of the tradeoff

�
Section 8.2 of Machine Learning covers all the
k-NN related issues well

60

The Key to k-NN

11

61

Tuning k

� As we did with decision tree pruning, we can
“ tune” the value of k by splitting the training set
into a sub-training set and a tuning set
– Consider several values for k, and evaluate performance

against the tuning set
– Choose the value of k that showed the best performance

(lowest error)

�
Tuning the value of k can make or break the utility
of k-NN learning agents

62

Properties of k-Nearest Neighbors

� k-NN can be more robust to noisy data than
decision trees
– If ≥2 identical examples have conflicting labels, they

aren’ t the only ones in the neighborhood
� The inductive bias is toward examples with small

Euclidian distance from the query
� However, k-NN computes distance based on all

features, whereas d-trees don’ t necessarily
– Can fix by weighting “ important” features higher

63

Regression Learning

� So far, we’ve assumed the concept function f(x) to
be a classification task
– e.g. yes/no, +/-, animal/vegetable/mineral, etc…

� Sometimes we want the agent to learn real-valued
functions, which is called a regression task
– e.g. Predict the exact number of customers at the circus,

not just the Boolean >1,000

64

Regression Learning

� Because decision trees represent logical functions,
it is difficult to extend them to handle such
regression problems
– CART (Classification And Regression Trees)

�
J. Friedman, “A recursive partitioning decision tree rule for
non-parametric classification,” IEEE Transactions on
Computers, 1977

� k-NN is a bit better suited to regression problems
– The estimated label is an average (or weighted average)

of its neighbors, instead of a vote
– This still has problems: what if f(x) is polynomial?

65

Summary

� Learning allows an agent to sort tasks out for itself
– Helpful for complex problem domains
– Useful for not-well-understood problems

� Inductive learning is the task of creating a
hypothesis which approximates some concept
– Learning a discrete function is called classification
– Learning a real-valued function is called regression

� Examples for inductive learning are represented as
a feature-vectors (a vector of percepts)

66

Summary

� Decision tree induction is an eager learning
method whose hypothesis represents logical
functions

� k-Nearest Neighbors is a lazy learning method
which compares test examples to recorded training
data

� Machine Learning evaluation is typically done
using separate training and test sets

� Overfitting the training data can usually be
avoided by using a tuning set to tweak the model

