Neural Networks
P | o

Burr H. Settles

CS-540, UW-Madison
WWW.cs.wisc.edu/~cs540-1
Summer 2003

= Announcements (7/18)

m Homework #4 (“ML part 1”) is out
— Will be due Monday, 7/28
— Homework #5 (“ML part 2”) should be out on

= Announcements (7/21)

m TAs have had adelay in HW#2 grading

— Hopefully it will be done and the results will be
in by tomorrow!

m Read 20.1-20.2 in Al: A Modern Approach

m HW#5 out this week
— Due Monday 7/28 along with HW#4

] Monday, and due the same day
m Tournament results for Homework #2
should ready by Monday!
I
= Neural Networks

m Neura networks (NNs) are Al modelsthat try to
mimic the brain in the way it stores knowledge
and processes information

m Also known as:
— Artificial Neural Networks (ANNs)

— Connectionist Learning Models
» Asopposed the symbolic models, like decision trees
— Parallel Distributed Processing (PDP) Models

= Neuroscience (1861-present)

m Neuroscience isthe study of the nervous system,
particularly the functions of the brain

— By the 19t century, it had been established that the
brain played a central role in specific cognitive

- functions

— Before that, people thought the heart or spleen might be
the focus of cognitive activity
m Paul Brocajump-started the field with his studies
of speech disorders: heisolated the speech center
in the lower left hemisphere of the brain
— Now called “Broca’s Area’

Neuroscience

m Special nerve cedlls called neurons had been
theorized about by the late 1800s
— At the turn of the 20" century, a staining method for
actually viewing them was developed by Camillo Golgi
— Santiago Ramon y Cajal used the staining technique to
propose the structure of the nervous system
— Golgi & Cajal shared the Nobel prizein 1906, though
they had differing views:
« Gogli thought brain’s functions were carried out in the medium
» Cgja theorized about a connectionist “ neuronal doctrine”

TR B

Neuronal Structure

Axonal arborization

Axon from another cell

Synapse
Dendrite

\/

Synapses

Cell body or Soma

TR B

Neuronal Communication

m Neurons propagate information by “firing,” or
sending el ectrochemical signals along the axon
— Axons can be 1 to 100 centimeters long!
m Synapses connect the axon of one neuron to the
dendrites of up to 100,000 other neurons
— The synapses function as signal amplifiers or repressors

% |f enough energy flowsinto a neuron fromall of
its synapses/dendrites, then it will fire, too,
sending a message along its axon to other neurons

8

TR B

Simulated Neurons

m We can create a mathematical approximation to
the nature of neuronal communication:
— Represent a“neuron” as a Boolean function

— Each neuron can have an output capacity of either
+1 (fire) or O (don't fire... sometimes use -1)

— Each also hasa set of inputs (i.e. other neurons, +1/0),
each with an associated +weight (i.e. synapse)

— The neuron can compute a weighted sum over all the
inputs and compare it to some threshold t

— If the sumis = t, then output +1 (fire), otherwise O

TR B

Perceptrons

m A perceptron isasimulated neuron that takes the
agent’ s percepts (e.g. feature vector) as inputs an
maps them to the appropriate output value:

X wy

X, Wy
The output, o isthe result of some activation function g(in),
wherein is the weighted sum of the inputs (x;...x,). Right
now, g(in) is a simple threshold or “step” function 10

TR B

Perceptrons

m Redlly, the threshold t is just another weight
(called the bias):

(Wy X X)) + (Wy X %) + ...

= (W X Xg) + (Wy X)) + ...

= (Wy X X)) + (W, X X)) + ...

+ (W X %) 2 t
+ (W, xX,)—t=0
+ (W, xx)+(tx-1)=20

11

TR B

Perceptron Learning

m A perceptron learnsis by adjusting its weightsin
order to minimize the error on the training set
m To start off, consider updating the value for a
single weight on asingle example x with the
perceptron learning rule:
— W« W+ Aw, Aw; = a(true — 0)x;
— Where aisthelearning rate, a value in the range [0,1],

trueisthetrue function value for the example, and o is
the perceptron’s output (so (true — o) isthe error)

Note: the notation used in the new version of Al: A Modern Approach isreally

messy, and riddled with typos... so my notation will differ from the textbook 12

Perceptron Learning

m Now that we can update a single weight on one
example, we want to update all weights so that we
minimize error on the whole training set

— So thisisreally an optimization search in weight space,
which is the hypothesis space for perceptrons

m For reasonswewon't get into, it's actually useful
to minimize the squared error over the whol e set:

— E[w] = %22 (truey — 0g)?
— Where E[w] is the sum of squared errors for the weight
vector w, and d ranges over examples in the training set

13

Gradient Descent

m Solution: use calculus
— Compute the magnitude and direction of the gradient of the error
surface by using a partial derivative:
« OE[W] = [SE/dw,, SE/Sw,, SE/Sw,]
— Wewant to update each weight w; by Aw; :
* Aw = —a[3E/5w]
* Aw, = —ax-x x (true—o0) x g'(in)
* Aw, = axx x (true—o0) x g'(in)
— And if we combine this with our weight update rule, we get the
following complete perceptron training rule:
W o~ W+ axx x(true—o) x g'(in)
« This makes sense: if (true— o) is positive, the weight should be
increased for positive inputs x;, and decreased for negatives

15

Gradient Descent

Recall that minimization
problems are called
“gradient descent” tasks ~ *

N

%

If we have aperceptron Z
with 2 weights, we want !
to find the pair of

weights (i.e. point in 2D
weight space) where 2
E[w] is the lowest

,;;5
% !

7
e
7

o
.

%)

y

But the weights are continuous

Perceptron Training

m [nitialize weights to small random values

m The perceptron training rule allows us to move to the point
in weight space that minimizes squared error on the
training set

m Recall that thisis an optimization search, so after adjusting
the weights we repeat the process with the new weights
(each cycleis called an epoch)

* We continue for a fixed number of epochs, or until
the weights converge on an optimal set, or until
they stop changing very much

17

values, so how do we know w
how much to change them?
| .
= On Activation Functions

m Houston, we have a problem!
— We'reusing asimple step function as our activation function g(in)
— Thisisn't differentiable, so we can’t compute g'(in)
— To remedy this, we can use asigmoid function, which is similar,
but is continuous, differentiable, and easy to compute:

a(in)
" gin) =a(in)
=U(L+e-in)
g(in) =a'(in)
in =g(in) x (1-a(in))
| .
= Perceptron Training

[SIR RN
T

Weightsfor Various | nputs

1 1
0 500 1000 1500 2000 2500

Number of Training Epochs 18

Perceptron Training

A = learning rate /1 in range [0, 1]
W = wei ght - vect or /1 initialize randomy near 0
repeat {
for each exanple X in TRAI NI NG _SET {
IN=0
for each feature | in exanmple X {
IN+= WI] * X 1] /1 weighted sumover X
}
QUT = signoi d(IN) /'l activation function
ERR = true |abel of X - OUT
for each weight index | in W{
WI] += A* X[I] * ERR* (QUT * (1 — QUT))
}
} until converged // or sone other stopping criteria
19

Training in Practice

m Thetheoretically correct thing to do is batch mode
training, where we compute CJE[w] over the entire
dataset and update wei ghts accordingly

— Inpractice, thisis very ow and computationally
expensive for one epoch, let alone until we converge

m In practice, wetrain in incremental mode,
updating the weights one example at atime
— If thelearning rate a is low enough, we should
converge to about the same weight vector

21

Training Example: Epoch 1

a=0.5; Aw, = @xx; x error x @ (in)

= Perceptron Training

m Conceptually, the perceptron rule does this:

— Compare the perceptron’s output (o) to what it should
have been (f, e.g. true), i.e. compute error

— If theerror islarge, assign “blame” to the weight/input
. combinations that most influenced the wrong call, and
raise/lower the weights accordingly

— If the error is small, don’t change them as much

m Thekey parameter isthelearning rate o
— If too small, learn slowly and convergence takes forever

— If too large, can make changes that are too drastic
20

= Perceptron Training Example

m Consider this simple 3-input perceptron:

» O(in)

m |magine we want to train this perceptron on the following
dataset with alearning a rate = 0.5:

x=001 f(x)=0 x=111 f(x)=1
x=110 f(x)=1 x=101 f(x)=1
x=000 f(x)=0 x=011 f(x)=1

x f(x)| in a(in) @(in) eror Aw t A W, A

- - - - 0.200 0150 -0.150 0.100
001 O -0100 0475 0249 -0475 -0.059| 0259 0.150 -0.150 0.041
110 1| -0259 043 0246 0564 0069| 019 0219 -0.081 0.041
000 Of -019 0453 0248 -0453 -0.056| 0246 0219 -0.081 0.041
111 1| -0066 0483 0250 0517 0065| 0181 0284 -0.016 0.105
101 1| 0208 0552 0247 0448 0055| 0126 0339 -0016 0.161
011 1| 0019 0505 0250 049 0062| 0064 0339 0046 0223

Net Adjustments: | -0.136 +0.189 +0.196 +0.123

Average error2for thisepoch: 0.244

23

= Training Example: Epoch 2

a=0.5; Aw, = @xx; x error x @ (in)

x f(x)| in a(in) @(in) eror Aw t A W, A
- - - 0.064 0339 0046 0.223
001 Of 0159 0540 0248 -0540 -0.067| 0131 0339 0046 0.156
110 1| 0254 0563 0246 0437 0054| 0077 0393 0100 0.156
- 000 O -0077 048L 0250 -0481 -0060| 0.137 0393 0100 0.156
111 1| 0511 0625 0234 0375 0044| 0093 0437 0143 0.200
101 1| 0543 0633 0232 0367 0043 0051 0480 0143 0.242
011 1| 0335 058 0243 0417 0051| 0000 0480 0194 0293

Net Adjustments: | -0.064 +0.141 +0.148 +0.070

Average error2for thisepoch: 0.193
Last epoch: 0.244 2

TR 0 |

Training Example: Epoch 3

a=0.5; Aw, = axx xerror x g'(in)

x f(x)| in a(in) d(in) error Aw t A W, Wy
- - - 0.000 048 0194 0.293
001 0| 0293 0573 0245 -0573 -0.070| 0.070 0480 0194 0.223
110 1| 0604 0647 0229 0353 0.040| 0030 0520 0235 0.223
000 0| -0.030 0493 0.250 -0.493 -0.062| 0.091 0520 0235 0.223
111 1| 088 0708 0.207 0292 0.030| 0.061 0550 0265 0.253
101 1| 0742 0677 0219 0323 0.035| 0026 058 0265 0.283
011 1| 0527 0629 0233 0371 0.043|-0.017 058 0308 0.332
Net Adjustments: | -0.017 +0.105 +0.114 +0.039

Averageerror?for thisepoch: 0.171
Last epoch: 0.193 25

TR B

Error Over Training Epochs

Error {True Yalue - Signaid Perceptron Dutput)

oL ——
110
000 ——
1 —
101
oL ——

1 10 100 1000

Musber of Training Epachs
27

TR 0 |

Error Over Training Epochs

Error: (True Valus - Signoid Perceptron Dutput)

oL ——
110
000 ——

Munber of Training Epochs

TR B

Perceptrons and Logic

m Perceptrons can learn logical functions:
-1

X, OX,

X, OX,

29

TR B

Training Example Results

m After 1,000 epochs, this s the learned perceptron:
-1

X~y t=3.299

w, = 5.562
_o107

» a(in)

X2

w3
X3
Predictions on the training data:
x=001 f(x)=0 a(in)=0.070
x=110 f(x)=1 olin) = 1.000
x=000 f(x)=0 a(in) =0.030
And on some novel examples:
x =010 f(x)=? a(in)=0.906

x=111 f(x)=1 o(in) = 1.000
x=101 f(x)=1 olin) = 0.951
x=011 f(x)=1 olin) = 0.951

x=100 f(x)=? o(in) =0.906

Any ideas what function thismight be?

28

TR B

Perceptrons and Logic

m Perceptrons can learn logical functions:

A perceptron cannot represent the

X1 o Xz XOR function! Why not??

Linear Separability

m Consider a perceptron with two inputs and and a
threshold (bias):
— The perceptron firesif w;x; + w,x, —t=0
— Recall the weights for the “and” perceptron:
+ 05x, + 0.5%,—-0.7520
— Thisisrealy the equation for aline!
* X, 2—X + 1.5 (in slope-intercept form)
m The activation threshold for a perceptron is
actualy alinearly separable “hyperplane’ in the
space of inputs

31

w Linear Separability

X, OX%, X, OX%,

X x; O X, %)

Linear Separability

Using the sigmoid
activation function
achieves the same
general effect,
diding the

sigmoid surface
across the linear
hyperplane...

33

= The Need for a Network

m Clearly asingle perceptron islimited compared to

the expressiveness of a decision tree or k-NN
— They can handle XOR, for example
m But remember: the brain is a network of neurons:
- the axon (output) is connected to the dendrites

(inputs) of others through synapses (weights)

m By thisanalogy, we can create a multi-layer feed-
forward neural network made up of perceptrons,
which might learn more expressive functions

Multi-Layer Networks

m Thestructure of amulti-layer network isfairly
straightforward:

— Theinput layer is the set of features (percepts)

— Next is a hidden layer, which has an arbitrary number
of perceptrons called hidden units that take the features
(input layer) asinputs

— The perceptron(s) in the output layer then takes the
outputs of the hidden units asits inputs

% Thisislooking more like a model of the brain!

35

= Multi-Layer Networks

m Hereisavery simple multi-layer network that can
handle the XOR function:

75

Input Hidden Output
layer layer layer

Multi-Layer Networks

m Thisnetwork is essentially eguivalent to amore
complex logical function:

(X O%5) O=(x, O%p)
m Which, represented graphicaly, is:

1
(x,0x;) 0
=(x, Oxy)

Multi-Layer Networks

m Wearen't limited to just one layer of hidden units,
though, we could have even more, which will
alow usto learn even more complex functions:

Multi-Layer Networks

Multi-layer networks are called
feed forward because the
information is fed forward from
theinput layer (features) toward
the output layer

For most problems, one layer of
hidden unitsis sufficient

Such networks are a'so usually
fully connected: every output
from one layer is connected to
every input of the next (but they r
don’t need to be)

Training Multi-Layer Networks

m Training multi-layer networks can be a bit
complicated (the weight spaceis larger!)
— The perceptron rule worked fine for a single unit that
mapped input features to the final output value
— But hidden units don’t produce the final output

— Output unit(s) take other perceptrons — not known
feature values — as inputs

m The solution is to use the back-propagation
algorithm, which is an intuitive extension of the
perceptron training algorithm

40

Back-Propagation (BP)

m BP generdlizes the perceptron rule:
— Gradient-descent search to minimize error on the
training data (again, usualy in iterative mode)
— Inthe forward pass, features are fed forward to the
output layer where error is calculated
— Then, in the backward pass:
« Update weights from hidden layer to output layer as usual:
Aw,, = ax x, x ERR; where ERR, = g'(in,) x (true—g(in,))
» Update weights from input layer to the hidden layer:
Aw;, = ax x x ERR, ; where ERR, = g/(in;) x Z, (W, X ERR))
More complete version of the algorithm on p.746
of AIMA or section 4.5.2 of Maching Learning

Problems with BP

m Because BPisagradient descent (hill-climbing)
search, it suffers from the same problems:
— Doesn't necessarily find the globally best weight vector
« Convergence is determined by the starting point
(randomly initialized weights)
« If aissettoo large, can “bounce’ right over the global
minimum into alocal minimum

m To deal with these problems:
— Usualy initialize weights close to O
— Can repeat training with multiple random restarts

42

Non-Boolean Features

m So far, the networks we' ve described only take
Boolean features[1,0] asinputs

m To hand discrete-valued features, we can create a
unique input for each feature-value pair

— e.g. Outlook = { Sunny, Overcast, Rainy} would be
converted into 3 Bool ean inputs

— For classification purposes, the observed value's input
isset to 1, the othersare 0
m Continuous features can beleft alone and fed
through the network as real numbers
— The weights will figure out what to do with them!

Regression and Neural Nets

m Areneura networks very well suited for regression
(i.e. real-valued function) tasks?

m We currently use the o function to allow the perceptrons to
behave like classifiers, but we could just output the
weighted sum of their inputs directly

— Sincethisisalinear function, the g'(in) factor in training is 1

* Neural networks can learn regression problems better than
decision trees or k-nearest neighbors (though training can
be slower than a standard network)

45

Handling Multiple Labels

= Similarly, the networks so far have been for Boolean
classification functions
m To handle multi-label classification tasks we can simply
create extra output units:
— Each unit corresponds to one label (e.g. animal/vegetable/mineral)

— For classification, the unit with the highest output is the “winner,”
and the network assigns the corresponding label to that example

— For training purposes, the “true” label’ s output unit is set to 1, and
the othersare set to 0

* This variant on networks has been applied with wide
success to several multi-class problems

44

Overfitting in Neural Nets

m Again, aswith al machine learning algorithms,
thereisarisk of overfitting the training data
— Neural nets with lots of hidden units are particularly
prone to overfit, because the model is so expressive!
m Recall that the network ultimately “converges,”
within some € of change
— If we keep cycling through epochs ad infinitum, we end
up memorizing the training examples
m But how do we know when to stop?

47

Expressiveness of Neural Nets

m Classification problems
— Any Boolean function can be represented in a neural
network with just 2 layers
— But might require an exponential number of hidden
units (in terms of input features)
m Regression problems
— Perceptrons can learn any linear function
G. Cybenko, “Continuous valued neural networks with

two hidden layers are sufficient,” Tech. Report, 1988

« 2-layer networks with enough hidden units can learn any
bounded, continuous (e.g. polynomial) function

* 3-layer networks can learn any function. Period. P

Overfitting in Neural Nets

Ecror versus weight updates (example 1)
001 T T T

0.009 —\. Training set error . 4
Validation set error +
Q.008 4
0.007 i
5 I
0006
o Mm
0.005
0.004
0003
0.002 - L L

Q 5000 10000 15000 20000
Nuinber of weight updates
48

TR 0 |

Overfitting in Neural Nets

Error versus weight updates (example 2)

0.08
~, T T — T
007 | °, Training set emror . i
Validation set error +
006 [1
%,
005 . q
L
g2 004 . 1
o .
003 7
.
002 ’.’ q
%
001 q
. T\u......_~
0 1000 2000 3000 4000 5000 6000

Number of weight updates
49

TR B

Neural Network Applications

W. Huang & R. Lippmann, “Neural net and
traditional classifiers,” Neural Information
Processing Systems, 1988

m Used asimple network to disambiguate between
vowel phoneme soundsin “h — d” words

— Only 2 features (percepts) obtained from spectral
analysis of recorded data

— 7 hidden unitsin 1 layer (fully connected)
— 10 outputs (words: head, hid, who'd, hood, etc...)

51

TR 0 |

Overfitting in Neural Nets

m Asusual, we can use a tuning set to avoid
overfitting in neural nets
— We can train several candidate structures and use the
tuning set to find one that’s appropriately expressive
m More common: given anetwork structure, use
early stopping by evaluating the network on the
tuning set after each epoch
— Stop when performance begins to dip on the tuning set

— Sometimes allow a fixed number of epochs beyond the
dip... justin caseit goes back up

TR B

Neural Network Applications

m Facial pose recognition
Section 4.7 of Machine Learning by T. Michell

« All thisimage datais available at
www.cs.cmu.edu/~tom/faces.html

m Used 30x32 pixel images of faces pointing l&ft,
straight, right, and up
— Each of the 30x32 = 960 pixels was a continuous
feature (grayscale value)
— 3hidden units
— 4 output units (poses)

53

TR B

Neural Network Applications

4000

D head
» hid

+ hod

= had

@ haved
» heard
o need
< hud

» who'd
~ hood

2000

¥2 (Hz)

1000|

500

a 560 1000 1aco

TR B

Neural Network Applications

left straight right up

Newokweights N EET] BN W ECEN
(dark—, light+)

after 100 epochs
of training on 260
examples

Achieved 90%
accuracy

Neural Network Applications

D. Pomerleau, “Knowledge-based training of
artificial neural networks for autonomous robot
driving,” Robot Learning, 1993

m That'sright, folks: ALVINN (Autonomous Land
VehicleIn aNeura Network)
— Takes 30x32 pixel input cameraimages
— Only 1 hidden layer: 4 hidden units
— 30 output units (discrete steering wheel direction)

55

Understanding Neural Nets

M. Craven & J. Shavlik, “Extracting Tree-Structured
Representations of Trained Networks,” Advancesin
Neural Information Processing Systems, MIT Press, 1996

— “Trepan” Algorithm: extract decision trees from Neural Netsto
better understand what they learned

Issues with Neural Nets

m Neura networks are very powerful and can
approximate any function, but they do have
drawbacks

— Many weights to learn: training can take a while
— Sensitive to structure, initial weights, and learning rate

m Oncethe network has learned a hypothesis
function, what does it mean?

— Neural networks are connectionist models, thus not as
comprehensible as decision trees, which are symbolic

56

Problem % Accuracy Fidelity

Dataset Network | 1D2/3 | Trepan | tONN
Heart 845 746 818 94.1
Promoters 90.6 835 87.6 85.7
Protein-coding 94.1 90.9 91.4 92.4
Voting 92.2 87.8 90.8 95.9

57
Summary

m Many applications:
— Speech processing, driving, face/handwriting
recognition, backgammon, checkers, etc.

B . Disadvantages

— Overly expressive: prone to overfitting

— Difficult to design appropriate structure

— Many parameters to estimate: slow training
— Hill-climbing can get stuck in local optima
— Poor comprehensibility

59

Summary

m Perceptrons are mathematical models of neurons
(brain cells)
— Learn linearly separable functions
— Insufficiently expressive for many problems

m Neura Networks are machine learning models that
have multiple layers of perceptrons
— Trained using back-propagation, a gradient descent
search through weight space (NN hypothesis space)
— Sufficiently expressive for any classification or
regression task, also quite robust to noise

10

