
1

1

Neural Networks

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements (7/18)

� Homework #4 (“ML part 1”) is out
– Will be due Monday, 7/28

– Homework #5 (“ML part 2”) should be out on
Monday, and due the same day

� Tournament results for Homework #2
should ready by Monday!

3

Announcements (7/21)

� TAs have had a delay in HW#2 grading
– Hopefully it will be done and the results will be

in by tomorrow!

� Read 20.1-20.2 in AI: A Modern Approach

� HW#5 out this week
– Due Monday 7/28 along with HW#4

4

Neural Networks

� Neural networks (NNs) are AI models that try to
mimic the brain in the way it stores knowledge
and processes information

� Also known as:
– Artificial Neural Networks (ANNs)

– Connectionist Learning Models
• As opposed the symbolic models, like decision trees

– Parallel Distributed Processing (PDP) Models

5

Neuroscience (1861-present)

� Neuroscience is the study of the nervous system,
particularly the functions of the brain
– By the 19th century, it had been established that the

brain played a central role in specific cognitive
functions

– Before that, people thought the heart or spleen might be
the focus of cognitive activity

� Paul Broca jump-started the field with his studies
of speech disorders: he isolated the speech center
in the lower left hemisphere of the brain
– Now called “Broca’s Area”

6

Neuroscience

� Special nerve cells called neurons had been
theorized about by the late 1800s
– At the turn of the 20th century, a staining method for

actually viewing them was developed by Camillo Golgi

– Santiago Ramon y Cajal used the staining technique to
propose the structure of the nervous system

– Golgi & Cajal shared the Nobel prize in 1906, though
they had differing views:

• Gogli thought brain’s functions were carried out in the medium

• Cajal theorized about a connectionist “neuronal doctrine”

2

7

Neuronal Structure

8

Neuronal Communication

� Neurons propagate information by “ firing,” or
sending electrochemical signals along the axon
– Axons can be 1 to 100 centimeters long!

� Synapses connect the axon of one neuron to the
dendrites of up to 100,000 other neurons
– The synapses function as signal amplifiers or repressors

�
If enough energy flows into a neuron from all of
its synapses/dendrites, then it will fire, too,
sending a message along its axon to other neurons

9

Simulated Neurons

� We can create a mathematical approximation to
the nature of neuronal communication:
– Represent a “neuron” as a Boolean function
– Each neuron can have an output capacity of either

+1 (fire) or 0 (don’ t fire… sometimes use -1)
– Each also has a set of inputs (i.e. other neurons, +1/0),

each with an associated ±weight (i.e. synapse)
– The neuron can compute a weighted sum over all the

inputs and compare it to some threshold t
– If the sum is ≥ t, then output +1 (fire), otherwise 0

10

Perceptrons

� A perceptron is a simulated neuron that takes the
agent’s percepts (e.g. feature vector) as inputs an
maps them to the appropriate output value:

o

w1

wn

t
x1

xn

…
…

The output, o is the result of some activation function g(in),
where in is the weighted sum of the inputs (x1…xn). Right
now, g(in) is a simple threshold or “step” function

11

Perceptrons

� Really, the threshold t is just another weight
(called the bias):

(w1 × x1) + (w2 × x2) + … + (wn × xn) ≥ t

= (w1 × x1) + (w2 × x2) + … + (wn × xn) – t ≥ 0

= (w1 × x1) + (w2 × x2) + … + (wn × xn) + (t × -1) ≥ 0

-1
t

o

w1

wn

x1

xn

…
…

12

Perceptron Learning

� A perceptron learns is by adjusting its weights in
order to minimize the error on the training set

� To start off, consider updating the value for a
single weight on a single example x with the
perceptron learning rule:
– wi ← wi + ∆wi ; ∆wi = α(true – o)xi

– Where α is the learning rate, a value in the range [0,1],
true is the true function value for the example, and o is
the perceptron’s output (so (true – o) is the error)

Note: the notation used in the new version of AI: A Modern Approach is really
messy, and riddled with typos… so my notation will differ from the textbook

3

13

Perceptron Learning

� Now that we can update a single weight on one
example, we want to update all weights so that we
minimize error on the whole training set
– So this is really an optimization search in weight space,

which is the hypothesis space for perceptrons
� For reasons we won’ t get into, it’s actually useful

to minimize the squared error over the whole set:
– E[w] ≡ ½ Σd (trued – od)2

– Where E[w] is the sum of squared errors for the weight
vector w, and d ranges over examples in the training set

14

Gradient Descent

Recall that minimization
problems are called
“gradient descent” tasks

If we have a perceptron
with 2 weights, we want
to find the pair of
weights (i.e. point in 2D
weight space) where
E[w] is the lowest

But the weights are continuous
values, so how do we know
how much to change them?

15

Gradient Descent

� Solution: use calculus
– Compute the magnitude and direction of the gradient of the error

surface by using a partial derivative:
• ∇E[w] ≡ [δE/δw0, δE/δw1, δE/δwn]

– We want to update each weight wi by ∆wi :
• ∆wi = –α[δE/δwi]
• ∆wi = –α × –xi × (true– o) × g'(in)
• ∆wi = α × xi × (true– o) × g'(in)

– And if we combine this with our weight update rule, we get the
following complete perceptron training rule:

• wi ← wi + α × xi × (true– o) × g'(in)
• This makes sense: if (true – o) is positive, the weight should be

increased for positive inputs xi, and decreased for negatives

16

On Activation Functions

� Houston, we have a problem!
– We’ re using a simple step function as our activation function g(in)

– This isn’ t differentiable, so we can’ t compute g'(in)

– To remedy this, we can use a sigmoid function, which is similar,
but is continuous, differentiable, and easy to compute:

g(in) = σσσσ(in)
= 1/(1 + e -in)

g'(in) = σσσσ'(in)
= σσσσ(in) ×××× (1 – σσσσ(in))

σσσσ(in)

in

+1

17

Perceptron Training

� Initialize weights to small random values
� The perceptron training rule allows us to move to the point

in weight space that minimizes squared error on the
training set

� Recall that this is an optimization search, so after adjusting
the weights we repeat the process with the new weights
(each cycle is called an epoch)

�
We continue for a fixed number of epochs, or until
the weights converge on an optimal set, or until
they stop changing very much

18

Perceptron Training

Number of Training Epochs

W
ei

gh
ts

 f
or

 V
ar

io
us

 I
np

ut
s

4

19

Perceptron Training

A = l ear ni ng r at e / / i n r ange [0, 1]

W = wei ght - vect or / / i ni t i al i ze r andoml y near 0

r epeat {

f or each exampl e X i n TRAI NI NG_SET {

I N = 0

f or each f eat ur e I i n exampl e X {

I N += W[I] * X[I] / / wei ght ed sum over X

}

OUT = si gmoi d(I N) / / act i vat i on f unct i on

ERR = t r ue l abel of X – OUT

f or each wei ght i ndex I i n W {

W[I] += A * X[I] * ERR * (OUT * (1 – OUT))

}

} unt i l conver ged / / or some ot her st oppi ng cr i t er i a

20

Perceptron Training

� Conceptually, the perceptron rule does this:
– Compare the perceptron’s output (σ) to what it should

have been (f, e.g. true), i.e. compute error
– If the error is large, assign “blame” to the weight/input

combinations that most influenced the wrong call, and
raise/lower the weights accordingly

– If the error is small, don’ t change them as much

� The key parameter is the learning rate α:
– If too small, learn slowly and convergence takes forever
– If too large, can make changes that are too drastic

21

Training in Practice

� The theoretically correct thing to do is batch mode
training, where we compute ∇E[w] over the entire
dataset and update weights accordingly
– In practice, this is very slow and computationally

expensive for one epoch, let alone until we converge

� In practice, we train in incremental mode,
updating the weights one example at a time
– If the learning rate α is low enough, we should

converge to about the same weight vector

22

Perceptron Training Example

� Consider this simple 3-input perceptron:

σσσσ(in)

w
1 = 0.15x1

x2

-1
t = 0.2

x3

w2 = -0.15

w3 = 0.1

� Imagine we want to train this perceptron on the following
dataset with a learning α rate = 0.5:

x = 001 f(x) = 0
x = 110 f(x) = 1
x = 000 f(x) = 0

x = 111 f(x) = 1
x = 101 f(x) = 1
x = 011 f(x) = 1

23

Training Example: Epoch 1

w3w2w1t∆∆∆∆wierrorσσσσ' (in)σσσσ(in)inf(x)x

0.041-0.1500.1500.259-0.059-0.4750.2490.475-0.1000001

0.100-0.1500.1500.200--------------

0.041-0.0810.2190.246-0.056-0.4530.2480.453-0.1900000

0.041-0.0810.2190.1900.0690.5640.2460.436-0.2591110

0.105-0.0160.2840.1810.0650.5170.2500.483-0.0661111

0.2230.0460.3390.0640.0620.4950.2500.5050.0191011

0.161-0.0160.3390.1260.0550.4480.2470.5520.2081101

Average er ror2 for this epoch: 0.244

+0.123+0.196+0.189-0.136Net Adjustments:

αααα = 0.5; ∆∆∆∆wi = αααα ×××× xi ×××× error ×××× σσσσ'(in)

24

Training Example: Epoch 2

w3w2w1t∆∆∆∆wierrorσσσσ' (in)σσσσ(in)inf(x)x

0.1560.0460.3390.131-0.067-0.5400.2480.5400.1590001

0.2230.0460.3390.064--------------

0.1560.1000.3930.137-0.060-0.4810.2500.481-0.0770000

0.1560.1000.3930.0770.0540.4370.2460.5630.2541110

0.2000.1430.4370.0930.0440.3750.2340.6250.5111111

0.2930.1940.4800.0000.0510.4170.2430.5830.3351011

0.2420.1430.4800.0510.0430.3670.2320.6330.5431101

Average er ror2 for this epoch: 0.193
Last epoch: 0.244

+0.070+0.148+0.141-0.064Net Adjustments:

αααα = 0.5; ∆∆∆∆wi = αααα ×××× xi ×××× error ×××× σσσσ'(in)

5

25

Training Example: Epoch 3

w3w2w1t∆∆∆∆wierrorσσσσ' (in)σσσσ(in)inf(x)x

0.2230.1940.4800.070-0.070-0.5730.2450.5730.2930001

0.2930.1940.4800.000--------------

0.2230.2350.5200.091-0.062-0.4930.2500.493-0.0300000

0.2230.2350.5200.0300.0400.3530.2290.6470.6041110

0.2530.2650.5500.0610.0300.2920.2070.7080.8861111

0.3320.3080.585-0.0170.0430.3710.2330.6290.5271011

0.2880.2650.5850.0260.0350.3230.2190.6770.7421101

Average er ror2 for this epoch: 0.171
Last epoch: 0.193

+0.039+0.114+0.105-0.017Net Adjustments:

αααα = 0.5; ∆∆∆∆wi = αααα ×××× xi ×××× error ×××× σσσσ'(in)

26

Error Over Training Epochs

27

Error Over Training Epochs

28

Training Example Results
� After 1,000 epochs, this is the learned perceptron:

σσσσ(in)

w
1 = 5.567

x1

x2

-1
t = 3.299

x3

w2 = 5.562

w3 = 0.707

Any ideas what function this might be?

x = 001 f(x) = 0 σσσσ(in) = 0.070
x = 110 f(x) = 1 σσσσ(in) = 1.000
x = 000 f(x) = 0 σσσσ(in) = 0.030

x = 111 f(x) = 1 σσσσ(in) = 1.000
x = 101 f(x) = 1 σσσσ(in) = 0.951
x = 011 f(x) = 1 σσσσ(in) = 0.951

Predictions on the training data:

And on some novel examples:
x = 010 f(x) = ? σσσσ(in) = 0.906 x = 100 f(x) = ? σσσσ(in) = 0.906

29

Perceptrons and Logic

� Perceptrons can learn logical functions:

x1 ∨∨∨∨ x2

x1 ∧∧∧∧ x2

o
.5

.5

x1

x2

-1
.25

o
.5

.5

x1

x2

-1
.75

30

Perceptrons and Logic

� Perceptronscan learn logical functions:

¬¬¬¬ x1

x1 ⊗⊗⊗⊗ x2
A perceptron cannot represent the
XOR function! Why not??

o
-.5

x1

-1
-.25

6

31

Linear Separability

� Consider a perceptron with two inputs and and a
threshold (bias):
– The perceptron fires if w1x1 + w2x2 – t ≥ 0
– Recall the weights for the “and” perceptron:

• 0.5x1 + 0.5x2 – 0.75 ≥ 0

– This is really the equation for a line!
• x2 ≥ – x1 + 1.5 (in slope-intercept form)

� The activation threshold for a perceptron is
actually a linearly separable “hyperplane” in the
space of inputs

32

Linear Separability

x2

x1
0 1

1

x1 ∧∧∧∧ x2 x1 ∨∨∨∨ x2

x2

x1
0 1

1

¬¬¬¬ x1

x2

x1
0 1

1

x1 ⊗⊗⊗⊗ x2

x2

x1
0 1

1

??

33

Linear Separability

Using the sigmoid
activation function
achieves the same
general effect,
sliding the
sigmoid surface
across the linear
hyperplane…

34

The Need for a Network

� Clearly a single perceptron is limited compared to
the expressiveness of a decision tree or k-NN
– They can handle XOR, for example

� But remember: the brain is a network of neurons:
the axon (output) is connected to the dendrites
(inputs) of others through synapses (weights)

� By this analogy, we can create a multi-layer feed-
forward neural network made up of perceptrons,
which might learn more expressive functions

35

Multi-Layer Networks

� The structure of a multi-layer network is fairly
straightforward:
– The input layer is the set of features (percepts)
– Next is a hidden layer, which has an arbitrary number

of perceptrons called hidden units that take the features
(input layer) as inputs

– The perceptron(s) in the output layer then takes the
outputs of the hidden units as its inputs

�
This is looking more like a model of the brain!

36

Multi-Layer Networks

� Here is a very simple multi-layer network that can
handle the XOR function:

x1

x2

Input
layer

-1 .75

.5

.5

.5

.5

-1 .25

Hidden
layer

.5

-.5 -1 .25

Output
layer

x1 ⊗⊗⊗⊗ x2

7

37

Multi-Layer Networks

� This network is essentially equivalent to a more
complex logical function:

(x1 ∨∨∨∨ x2) ∧∧∧∧ ¬¬¬¬(x1 ∧∧∧∧ x2)
� Which, represented graphically, is:

x2

x1
0 1

1

¬¬¬¬(x1 ∧∧∧∧ x2)
(x1 ∨∨∨∨ x2) ∧∧∧∧

(sigmoid)

38

Multi-Layer Networks

� We aren’ t limited to just one layer of hidden units,
though, we could have even more, which will
allow us to learn even more complex functions:

-

+
+

+
+

+

+ +

+

-
- -

-

- -

-
-

-

-

- -
-
-

-
-

-

-

-
- -

-
-

-

-

- -
- -

-
--

39

Multi-Layer Networks

Multi-layer networks are called
feed forward because the
information is fed forward from
the input layer (features) toward
the output layer

For most problems, one layer of
hidden units is sufficient

Such networks are also usually
fully connected: every output
from one layer is connected to
every input of the next (but they
don’ t need to be)

40

Training Multi-Layer Networks

� Training multi-layer networks can be a bit
complicated (the weight space is larger!)
– The perceptron rule worked fine for a single unit that

mapped input features to the final output value
– But hidden units don’ t produce the final output
– Output unit(s) take other perceptrons – not known

feature values – as inputs

� The solution is to use the back-propagation
algorithm, which is an intuitive extension of the
perceptron training algorithm

41

Back-Propagation (BP)

� BP generalizes the perceptron rule:
– Gradient-descent search to minimize error on the

training data (again, usually in iterative mode)
– In the forward pass, features are fed forward to the

output layer where error is calculated
– Then, in the backward pass:

• Update weights from hidden layer to output layer as usual:
∆who = α × xh × ERRo ; where ERRo = g'(ino) × (true– g(ino))

• Update weights from input layer to the hidden layer:
∆wih = α × xi × ERRh ; where ERRh = g'(inh) × Σo (who × ERRo)

�
More complete version of the algorithm on p.746
of AIMA or section 4.5.2 of Maching Learning

42

Problems with BP

� Because BP is a gradient descent (hill-climbing)
search, it suffers from the same problems:
– Doesn’ t necessarily find the globally best weight vector

• Convergence is determined by the starting point
(randomly initialized weights)

• If α is set too large, can “bounce” right over the global
minimum into a local minimum

� To deal with these problems:
– Usually initialize weights close to 0

– Can repeat training with multiple random restarts

8

43

Non-Boolean Features

� So far, the networks we’ve described only take
Boolean features [1,0] as inputs

� To hand discrete-valued features, we can create a
unique input for each feature-value pair
– e.g. Outlook = { Sunny, Overcast, Rainy} would be

converted into 3 Boolean inputs
– For classification purposes, the observed value’s input

is set to 1, the others are 0
� Continuous features can be left alone and fed

through the network as real numbers
– The weights will figure out what to do with them!

44

Handling Multiple Labels

� Similarly, the networks so far have been for Boolean
classification functions

� To handle multi-label classification tasks we can simply
create extra output units:
– Each unit corresponds to one label (e.g. animal/vegetable/mineral)
– For classification, the unit with the highest output is the “winner,”

and the network assigns the corresponding label to that example
– For training purposes, the “ true” label’ s output unit is set to 1, and

the others are set to 0

�
This variant on networks has been applied with wide
success to several multi-class problems

45

Regression and Neural Nets

� Are neural networks very well suited for regression
(i.e. real-valued function) tasks?

� We currently use the σ function to allow the perceptrons to
behave like classifiers, but we could just output the
weighted sum of their inputs directly
– Since this is a linear function, the g'(in) factor in training is 1

�
Neural networks can learn regression problems better than
decision trees or k-nearest neighbors (though training can
be slower than a standard network)

46

Expressiveness of Neural Nets

� Classification problems
– Any Boolean function can be represented in a neural

network with just 2 layers
– But might require an exponential number of hidden

units (in terms of input features)
� Regression problems

– Perceptrons can learn any linear function
�

G. Cybenko, “Continuous valued neural networks with
two hidden layers are sufficient,” Tech. Report, 1988

• 2-layer networks with enough hidden units can learn any
bounded, continuous (e.g. polynomial) function

• 3-layer networks can learn any function. Period.

47

Overfitting in Neural Nets

� Again, as with all machine learning algorithms,
there is a risk of overfitting the training data
– Neural nets with lots of hidden units are particularly

prone to overfit, because the model is so expressive!
� Recall that the network ultimately “converges,”

within some ε of change
– If we keep cycling through epochs ad infinitum, we end

up memorizing the training examples
� But how do we know when to stop?

48

Overfitting in Neural Nets

9

49

Overfitting in Neural Nets

50

Overfitting in Neural Nets

� As usual, we can use a tuning set to avoid
overfitting in neural nets
– We can train several candidate structures and use the

tuning set to find one that’s appropriately expressive
� More common: given a network structure, use

early stopping by evaluating the network on the
tuning set after each epoch
– Stop when performance begins to dip on the tuning set
– Sometimes allow a fixed number of epochs beyond the

dip… just in case it goes back up

51

Neural Network Applications

�
W. Huang & R. Lippmann, “Neural net and
traditional classifiers,” Neural Information
Processing Systems, 1988

� Used a simple network to disambiguate between
vowel phoneme sounds in “h — d” words
– Only 2 features (percepts) obtained from spectral

analysis of recorded data
– 7 hidden units in 1 layer (fully connected)
– 10 outputs (words: head, hid, who’d, hood, etc…)

52

Neural Network Applications

53

Neural Network Applications

� Facial pose recognition
�

Section 4.7 of Machine Learning by T. Michell
• All this image data is available at

www.cs.cmu.edu/~tom/faces.html

� Used 30×32 pixel images of faces pointing left,
straight, right, and up
– Each of the 30×32 = 960 pixels was a continuous

feature (grayscale value)
– 3 hidden units
– 4 output units (poses)

54

Neural Network Applications

Example
images:

left straight r ight up

Network weights
(dark–, light+)

after 100 epochs
of training on 260

examples

Achieved 90%
accuracy

hidden #1 hidden #2 hidden #3

10

55

Neural Network Applications

�
D. Pomerleau, “Knowledge-based training of
artificial neural networks for autonomous robot
driving,” Robot Learning, 1993

� That’s right, folks: ALVINN (Autonomous Land
Vehicle In a Neural Network)
– Takes 30×32 pixel input camera images
– Only 1 hidden layer: 4 hidden units
– 30 output units (discrete steering wheel direction)

56

Issues with Neural Nets

� Neural networks are very powerful and can
approximate any function, but they do have
drawbacks
– Many weights to learn: training can take a while
– Sensitive to structure, initial weights, and learning rate

� Once the network has learned a hypothesis
function, what does it mean?
– Neural networks are connectionist models, thus not as

comprehensible as decision trees, which are symbolic

57

Understanding Neural Nets

�
M. Craven & J. Shavlik, “Extracting Tree-Structured
Representations of Trained Networks,” Advances in
Neural Information Processing Systems, MIT Press, 1996
– “Trepan” Algorithm: extract decision trees from Neural Nets to

better understand what they learned

95.990.887.892.2Voting

92.491.490.994.1Protein-coding

85.787.683.590.6Promoters

94.181.874.684.5Hear t

TrepanID2/3Network

Fidelity
to NN

% AccuracyProblem
Dataset

58

Summary

� Perceptronsare mathematical models of neurons
(brain cells)
– Learn linearly separable functions
– Insufficiently expressive for many problems

� Neural Networksare machine learning models that
have multiple layers of perceptrons
– Trained using back-propagation, a gradient descent

search through weight space (NN hypothesis space)
– Sufficiently expressive for any classification or

regression task, also quite robust to noise

59

Summary

� Many applications:
– Speech processing, driving, face/handwriting

recognition, backgammon, checkers, etc.

� Disadvantages:
– Overly expressive: prone to overfitting
– Difficult to design appropriate structure
– Many parameters to estimate: slow training
– Hill-climbing can get stuck in local optima
– Poor comprehensibility

