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Announcements (7/23)

m Grades to date (including grades for HW#2)
are on the class website

—“Latedays’ meansthe number of |ate daysthat
have been used so far this semester

m Homework #5 is till in the works...
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Announcements (7/24)

m Homework #5 isfinally donel

— Good news:. due date for HW4 and HW5 are extended
to Tuesday, 7/29

— Bad news: no late days (apologiesif you have been
saving them up!)

m TA’ssolution to HW2 is on the website aswell if
you're still interested in improving your Mancala
playing agent

Learning With Probabilities

= Sometimes machine learning algorithms are too rigid or

brittle to be applied in many real-world problems
— e.g. How would decision trees or k-NN fare in stochastic, dynamic,
or partially observable environments?

m Sometimes the agent should make decisions based on what
ismost likely to happen, or what the world is likely to
actually belike

— The agent can then use its experience to learn these sorts of
probabilities

m But let’'s take a break from talking about learning for a
moment, and introduce what it means to be Bayesian
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Thomas Bayes (1702-1761)

m Thomas Bayes was a
Nonconformist Presbyterian
minister in England in the
early 18" century

m Described by William
Wiston as* ... a dissenting
Minister ... and a successor,
though not immediate, to
Mr. Humphrey Ditton, and
like him a very good
mathematician.”

Thomas Bayes

m Bayeswas elected a Fellow of the Royal Society of
London (sort the M.1.T. of theday) in 1742

— Despite the fact that at that time he had no published
works on mathematics to his name

— He actually had published one anonymously: a critique
of George Berkeley’s attack on the logic of probability
m Apparently Bayes tried to retire from the chapel in
Tunbridge Wells (where he was minister) in 1749
— Perhaps to focus more on his math “hobby”
— But didn’t actually retire until 1752
— Stayed in Tunbridge Wells until his death in 1761




Thomas Bayes

m |n 1764, Bayes friend Richard Price found one of his
papers, “ Essay towards solving a problem in the doctrine
of chances’ and submitted it to the Royal Society

— Bayes first scientific publication: printed in the Philosophical
Transactions of the Royal Society of London, 3 years after he died

— Theprinciplesin this paper were accepted by Pierre-Simon
Laplace (of differential equation fame) and Marquis de Condorcet
(infinitesimals) later in the on century

* Bayes' findings are the basisfor much of modern
probability theory (certainly the parts that we use
in Al, anyway)

Probability Theory

m A Random variable (RV): avariable that takes on values
from a set of mutually exclusive and exhaustive values
m A=q: aproposition, variable A has a particular value a
— This can correspond to a percept or feature, e.g. Wind=Weak
m P(A=a): single probability of RV A=a, which isthe degree
of belief in a proposition in the absence of any other
relevant information
— eg. P(Wind=Weak), etc.
m P(A): probability distribution, i.e. set of P(A=a;) for al i
— eg. P(Wind) ={ P(Wind=Weak), P(Wind=Strong) }

Probability Theory

m Joint probabilities specify the probabilities
for the conjunction of propositions
— eg. P(A,B) or P(ACB)

m A full joint probability distribution:
— Completely specifies al of the possible probabilities by
enumerating all possible variable-value combinations
— Kind of like atruth table
— Intractable representation: since table grows
exponentialy in size k” where n variables each have k
possible values

Probability Theory

m Conditional (posterior) probabilities:

— Formalize the process of accumulating evidence
and updating probabilities based on new evidence

— Specify the belief in one proposition (event, conclusion,
diagnosis, etc.) conditioned on another proposition
(evidence, feature, symptom, etc.)

m P(A|B) isthe conditional probability of A given
evidence B is known to betrue
P(ACB)

PAIB) == s
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Probability Theory

m Conditional probabilities behave like
standard probabilities:
-eg.0sPAB) <1
» Conditional probabilities are within the range
0to 1, inclusive

~ P(A=a,|B) + P(A=a,|B) + ... + P(A=q,| B) =1
« Conditional probabilities sumto 1
m Can have P(conjunction of events | B)

— P(AOBOCI E) isthe agent’s belief in the sentence
“A0BOC” conditioned on the evidence E being true
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Independence

m Unconditional (absolute) Independence: variables that have
no connection to each other
— Taking CS-540 has no relationship to having a hayfever
* P(cs540 | hayfever) = P(cs540)
« P(hayfever | cs540) = P(hayfever)
« P(cs540 O hayfever) = P(cs540) x P(hayfever)
m Conditional Independence: variables that are connected
only through another variable
— Sneezing and drowsiness connected to hayfever, but not each other
* P(sneeze | drowsy O hayfever) = P(sneeze | hayfever)
* P(drowsy | sneeze O hayfever) = P(drowsy | hayfever)
* P(sneeze Odrowsy | hayfever) = P(sneeze | hayfever) x
P(drowsy | hayfever)




Rules of Probability Theory

Negation P(=A|B)=1-P(A|B)
Probability event A being false:

Sum Rule P(ALCB) =P(A) +P(B)-P(ALB)
Probability of adisjunction of two

events A and B:

Product Rule P(ALB)=P(A|B)xP(B)
Probability of a conjunction of =P(B|A)xP(A)

two events A and B:
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Rules of Probability Theory

Chain Rule P(ACBOC) =

Generalization of the product rule
for any number of events: P(A|BOC)xP(B|C)xP(C)

Conditional Chain Rule P(ACB|C) =

Variant of the chain rule for
conditional probabilities: P(A|BOC)xP(B|C)

Total Probability _3
“Summing out” over mutually P(A) ;P(Al B')x P(B‘)
exclusveevents B,,...,B,

n

Bayes’ Rule

Bayes' Ruleisthe basis for efficiently computing
unknown conditional probabilities, as derived from
the product rule:

P(ACB) =
P(A|B)xP(B) =P(B|A)xP(A)

P(B[A)xP(A)
P(B)

P(A|B) =
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Bayes’ Rule Examples

P(BIA)xP(A)

Bayes Rule: P(A|B) = P(B)

P(happy | sunny) = 0.95 P(sneeze | cold) = 0.75

P(sunny) = 0.5 P(cold) =0.1

P(happy) = 0.75 P(sneeze) = 0.2

P(sunny | happy) = P(cold | sneeze) =
(0.95%0.5)/0.75 = (0.75%x0.1)/0.2=
0.63 0.375

Relationship to Machine Learning

m For inductive learning, we are given atraining set
D of examples, from which we are to approximate
aconcept function f

m We have a set of hypotheses H (i.e. the hypothesis
space), from which we want to choose asingle
hypothesish such that h = f

* Then it makes sense to choose the most probable
hypothesish/7H given the training data D
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Choosing Hypotheses

Using Bayes' Rule, we can measure the probability of a hypothesis h
given evidence of the training data D:
p(h| D) = PRINP()
P(D)

Generally, we want to find the most probable hypothesish 0 H, called

the maximum a posteriori hypothesis hy,p:

P(D [h)x P(h)
P(D)

hyse =argmax P(h|D) =argmax =argmax P(D | h)x P(h)
hOH hOH hOH

If we assume P(h) = P(hy), all hypotheses are equally probable, and we
can further simplify to the maximum likelihood hypothesis hy, :

hy, =argmax P(D [h)
KOH




Bayesian Learning

m Bayesian learning is, generally speaking, the
method of selecting the best hypothesishOH in
terms of how well it can explain the observed
training data D:

— If hypotheses have different probabilities:
hye =argmax P(D | h) x P(h)
hOH

— If hypotheses are equally likely:
hy. =argmax P(D |h)
hOH

Surprise Candy!

m Consider this example from p.712 of the textbook:
— A surprise candy comesin two flavors (cherry, lime)
— There are 5 kinds of unmarked candy bags:
h, = 100% cherry P(h) =0.1
h, = 75% cherry, 25% lime P(h,) =0.2
h; = 50% cherry, 50% lime P(hy) = 0.4
h, = 25% cherry, 75% lime P(h,) =0.2
hg = 100% lime P(hy) =0.1
m Since you love cherry but hate lime, you want to
hypothesize about (e.g. learn) which bag you have
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Surprise Candy!

m At thispoint, you believe that the bag is most likely hy
(50% cherry, 50% lime), because it has this highest
probability P(hy) = 0.4

m However, as you take the candies out to examine them (i.e.
collect training data), the most probable hypothesis will
change

— Since each hypothesis has a different probability (some bags are
more common than others), we want to find the hy,,» hypothesis
— Each h;isscored by P(D | hy) x P(h), where:

P(Dlh)=HP(dIh)
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Surprise Candy!

m After examining 10 candiesthat are all lime, the
probabilities for each bag (hypothesis) are:

P(h,|D) =(0.0)°x0.1 =0
P(h,|D) =(0.25)°x0.2 = 2x107
P(h;|D) =(0.5)x0.4 = 4x10
P(h,|D) =(0.75)°x0.2 =001
P(hs|D) =(10)°x0.1 =01

m It should beintuitively obviousto usthat, after 10
lime candiesin arow, thisis an al-lime bag, but
now we can give the agent asimilar intuition!

Surprise Candy!

Fosterior Probabilities of Hypotheses
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Bayesian Learning in Practice

m Consider our inductive learning framework,
specifically inducing decision trees:
— Hypothesis space H = set of al possible
decision trees for the problem
— A training set D (assumethat it is noise-free)

* Does ID3 find a MAP hypothesis?




Decision Trees and MAP

m Recall the definition of a MAP hypothesis:

hye =argmax P(D | h)x P(h)
hOH

m Since D is assumed to be noise-free, any treeh
that weinduce (regardless of heuristic) will be
fully consistent with D, thusP(D | h) = 1.0

m So the key factor isP(h)... but how can we

measure that?
25

= Probability of Hypotheses

m Interesting fact from information theory: the optimal code
(i.e. shortest expected “coding length”) for an event with
probability pis—og, p bits...

B h,.. =argmaxP(D|h)xP(h)
hOH
=argmaxlog, P(D | h) +log, P(h)
hOH
=argmin-log, P(D | h) —log, P(h)

hOH

Minimum Description Length

hyae =agmin—log, P(D | h) —log, P(h)
hOH

m We can interpret:
—log, P(h) to bethe “size” of hypothesish
—log, P(D | h) to be the number of h's misclassificationsin D
(e.g. “impurity” of predictionson D given hypothesis h)
m We call this the the minimum description length principle
— We want to trade-off hypothesis size (complexity) for accuracy
m For adecision tree h and noise-free training set D, then
—og, P(D | h) =0, so we want the want the smallest tree h
— A theoretical defense for Occam’ s Razor!
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= Bayesian Classification

m Sofar, we'vejust talked about finding the most probable
hypothesis h given data D
— Boilsdown to Occam’s razor: doesn’t teach us anything new!
m Given atest example X, what is its most probable
- classification? Isit necessarily hy,p(X)?
m Consider:
— Four hypotheses
* P(h;|D)=.4 P(h,|D)=2 P(h|D)=2 P(h,|D)=.2
— And anew instance x
* h()=YES h,)=NO hy(x)=NO h,(x)=NO
— What'sthe most probable |abel for example x?

Bayesian Classification

m It turns out that we can aso use Bayes' Ruleto do

inductive learning

— Consider input features x,,...,X, to be evidence

— Probability of aclasslabel cisP(c|Xy,....X;)
m There are many different inductive learning
algorithms that use Bayesian probability theory to
predict the most likely class |abel

— Nalive Bayes Classifier We'll talk

— Bayesian Belief Network (Bayes Net) | about these
— Bayes Optimal Classifier
— Gibbs Classifier
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= Naive Bayes Classifier

m Along side decision trees, k-NN, and neura nets, a
naive Bayes classifier one of the most practical
and widely-used inductive |earning al gorithms

m Nalve Bayesclassifiers are extremely fast:

- — Training scales linearly with respect to |D|
(number of training examples)

— Testing islinear in [x] (number of features)

m Makes the naive Bayes assumption:
— All features (evidence) are independent of each other

— In other words, if one feature should be conditioned on

another, the classifier is“naive” (unaware of it) ®




= Naive Bayes Classifier

m A concept functionf: X - C, wherec O Cisaclass|abel,
and xOX is described by a feature vector (X,,...,X,):

Cuvap :ar%uTaX P(C] X %,)

- P(%,-% 16)XP(c)
. argdjrgax P(Xye0 Xy)

=argmax P(X,,..., X, | ¢) x P(c)
cc

m The Naive Bayes assumption is that all the features are
independent (e.g. Sunny has nothing to do with Windy)

Cys = argmax P(c) [ ] Plx, |c)

= Naive Bayes Algorithm

m Tolearn from training set D:

— For each concept class c
* PE(c) ~ estimation of P(c) according to D
« For each input feature observation x,
. — PE(x, | ¢)  estimation of P(x, | ¢) according to D

m Then, to classify an new example x:
— Score each ¢ by: PE(c) x 1, [PE(x, | ©)]
— Return the ¢ with the highest probability

= Naive Bayes Example

m Recall our “circus’ example from afew lectures ago...
m Let'suse aNaive Bayes classifier to predict if >1,000

people will attend the circus based on the following

weather forecast:

- x ={Outlook=Sunny, Temp=Cool, Humid=High, Wind=Strong)
= So we want to compute:
Cyg = argmax P(c) x I_I P(x,1c)
o n

P(Y) x P(Sunny | Y) x P(Cool | Y) x P(High | Y) x P(Strong | Y) = .005
P(N) x P(Sunny | N) x P(Cool | N) x P(High | N) x P(Strong | N) = .021

- Cyg = NoO 23

= Issues With Naive Bayes

m |n practice, we estimate the probabilities by maintaining counts as we
pass through the training data, and then divide through at the end

= But what happensif, when classifying, we come across a feature-value
wedidn't seein training (e.g. Temperature=Sub-Zero)?

- PE(x, |c) =0 ...therefore...
PE(c) x |_| PE(x,|c)=0

m Typicaly, we can get around this by initializing all the counts to
Laplacian priors (small uniform values) instead of O
— Thisway, the probability will still be small, but not impossible
— Thisisaso called “smoothing”

= Issues With Naive Bayes

m In order to use naive Bayes classification, our features
need to be a set of events/propositions on which to
condition the probability estimates

— Thisisstraightforward for Boolean features
— For discrete features, we can do what we did with neural nets:
- enumerate all the feature-value pairs
m But what about continuous features?

— The only thing we can do is generate new Boolean features from
the older continuous ones

— Could use the method we used for splitting in decision trees

— More commonly, we want awider discretized range, so we make k
equally-sized “bins’ to represent continuous value ranges
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= Issues With Naive Bayes

m Similar to the problems with continuous features,
notice that we call this anaive Bayes “classifier”
— Not a“naive Bayes regression learning algorithm”

- m Naive Bayesis not well-suited to solving
regression problems at al
— Infact, in the 2-classinstance, it learns alinearly-
separating hyperplane just like a perceptron
— That means that for every perceptron, thereisan
equivalent naive Bayes classifier (though the proof of
thisis abit involved)




= Issues With Naive Bayes

m Another big problem with naive Bayes: often the

independence assumption is violated

— Consider the task of classifying whether or not a certain
word is a corporation name

. * eg.“Google,” “Microsoft,” “IBM,” and “ACME"

— Two useful features we might want to use are
captialized,andall-capitals

— Nalive Bayes will assume that these two features are
independent of one another, but this clearly isn’t the
case (things that are all-caps must also be capitalized)!!
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= Using Conditional Independence

m Clearly the naive Bayes assumption is too restrictive for
many types of problems
m Onealternative is to estimate the full-joint probability table
— But recall that this takes an exponential amount of space
. — Our training probably isn’t large enough to estimate every cell in
the FJPT, either! It's huge!
m Recall, though, absolute vs. conditional independence:
— Independence: two variables are completely unrelated (NB)
— Conditional independence: two variables are unrelated to each
other, but can be related through a common variable
m Perhaps we can compress the FJPT by using a conditional
independence assumption instead?

= Bayesian Networks

m A Bayesian Belief Network (or Bayes Net) isan
Al model that describes the conditional
independencies among subsets of variables

- m We can use any prior knowledge we might have
about the rel ati onships between features

m Yet, we can also take advantage of theinductive
learning framework
— Let the agent learn these probabilities for itself
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= Bayesian Networks

m Bayes Nets are directed acyclic graphs (DAGS):
— One node for each random variable (e.g. feature)
— A directed edge from cause A to its effect B represents a
direct causal relationships (B is conditioned on A)
- — Each node is conditionally independent of its non-
descendents, given its parents

* A nodeisconditioned on its parents, and its descendents are
conditioned on it

» Soif thereis evidence for its parents, then it is conditionally
independent of anything not dependent on it
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= Bayesian Networks

m For aset of variables, draw an edge from one
variable to one that is conditioned on it
— Represents direct causal relationships between variables
— Support for B due to the evidence of A (e.g. P(B | A)) is
- called “diagnostic” or “evidential” support
m Can be used to reason in different ways:
— Predictive (or causal) reasoning:
« Forward (top-down) from causes to effects
» Thisiswhat we typically want for inductive learning
— Can also perform diagnostic reasoning:

« Backward (bottom-up) from effects to causes
41

= Bayesian Networks

[ ST SaT ST =saT ]
cloa o1 08 02 |
Each node (variable) hasa

conditional probability table
(CPT) over its parents

The DAG is a compressed representation of the FIPT over all
of the variables, e.g. P(Sorm, TourGroup,..., ForestFire):
n

P(X,h X,) = U P(x | ParentsOf (x.))




= Bayesian Networks

m Toillustrate how compressed Bayes Nets are relative to the
FJPT they represent consider the following structure of
Boolean random variables:

0 e G To represent these 8 variablesin a FIPT
would take 28 entries = 256

Q For aBayes Net, however, the number of
values needed for all the CPTs can be
computed as:
e G e m size(BN) = ZZ\Parmlst(v)l

VBN
=20+20+204+8+21+20+20+21=19
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= Naive Bayes vs. Bayes Nets

Note that the naive Bayes classifier is simply a special
instance of a Bayes Net: one where the probabilities for the
the input features x,,...x, (which are all independent) are
conditioned on class label ¢
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= Computing Joint Probabilities

m We want to compute P(A, B, C, D) e Q
— e.g. Thejoint probability of al events A,...,D
m Recall that the net approximates the FIPT:

P(X,0s X,) = |j P(x | ParentsOf (x))

®
@

m Then thejoint probability reduces to:
P(A, B, C, D) = P(A|B) x P(B | C,D) x P(C) x P(D)
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= Bayes Net Learning

m Learning probabilities for a Bayesian Network isa
straightforward extension of naive Bayes |earning

— Maintain a probability estimate for each entry in the
- conditional probability table (CPT) for each node

— Update the counts in these tables conditioned on the
parent nodes of the variable (not the “class label”)

— In the end, divide through to get probabilities

— We also usually want to initialize counts to a small
Laplacian value to “smooth” out zero probabilities
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= Probability Learning Example

m Consider this Bayes Net being trained @\ @
on thefollowing training set D:

Xx=TFT f(x)=T x=TFF f(x)=T
- x=TTF f(x)=F x=FTF f(x)=F
Xx=TFT f(x)=T x=FTT fx)=T
x=TTT f(x)=T x=FTF f(x)=F

[Po) Tos25] [Pixa [o5]

| ‘)(2,><3 Xy X3 Xp X3 qxz,qx3| | ‘ X; -xll
[Py [ 05 10 03 10 | [Pn |o8 o33
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= Bayes Net Inference

m Inlogic, we used inference procedures to show
that one sentence a logically followed from others
(i.e KBEa)
m In probability theory, we also need aBayesian
- inference procedure to figure probabilities on an
effect E, and is an observed cause/causes C

* Since the network is a compressed FJPT, all the
information we need is there somewhere...
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Bayes Net Inference

m A nice property about Bayesian networks s that
we can calculate the probability of any variable we
want!

— Predictiveinferenceis called top-down because we
compute P(E | C), the probability of an effect E given
causal evidence C (its anscestors)

— Diagnostic inference is bottom-up because we wish to
compute P(C | E), the probability of cause C given
evidence for an effect E (its descendent)
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= Inference Example

= Most people who are colorblind @
are male, so the Bayes net structure

to theright is reasonable SN[ v am]
ot
m Now we want to perform diagnostic
|| inference to compute the probability of being male given
you are colorblind:

Wedon't know P(C) exactly,
P(M|C)= PICIM)*P(M) but we can still computeit by
P(©) “summing out” over M:
- (0.(0.45)
=8I0 | poys pe) M)y x PM
@104 +eopess | 9T HENEOT
=089 %

General Bayesian Inference

P(CIM)*xP(M)

PO = B(C M) <P(M) + P(C M) < P(=M)

m The formula above is what we ended up with by using
Bayes' Rule and “summing out” over the probability P(C)

— Thisisequivalent to computing the joint probabilities P(M,C) and
P(=M,C) and normalizing... we already know how to do that!

m |t turns out, we can generalize this to an arbitrary number
of variables (not just two)

— Givenevidence E,,...,E, and query A, we can compute the joint
probabilities P(A, E,,...,E) and P(= A, E,,...,E,), then normalize...
thisisidentical to P(A | E,,...,E,)

* Note: thisonly worksif all other variablesin the Bayesian
network are observed!
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= Complex Bayesian Inference

m Another unique feature of Bayes nets: @ @
— If we have missing evidence, we can still

perform inference a
— The other variables may have evidence, and
- might not be conditionally independent anymore @

m In general, though, Bayes Net inferenceis
an NP-Hard problem:

— Asmore variables go unobserved, the closer we get to
calculating the FIPT from the network... and this

defeats the purpose!
— Deterministic and stochastic inference methods that can
to thisare discussed in CS-731 52

Bayes Net Inference Examples

m Thereisafreeware Bayes Net construction and
inference system called JavaBayes
— Clearly implemented in Java
— http:/lwww-2.cs.cmu.edu/~javabayes/Home/

m Comes with many classic “textbook” Bayesian
network structures and CPT examples, aswell asa
few that were trained using ML techniques
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= Bayes Net Structure Learning

m Aswith neural networks, the structure of
the Bayesian network is very important

— We need to make sure the directed edges
- represent dependenciesin the real world

* Sometimes we don’'t know what the real
dependencies are... can the agent learn the
structure as well ??




Bayes Net Structure Learning

m Aswith dmost al of Al, we can formulatethisas
an optimization problem:
— States: candidate Bayes Net structures
— Actions: add, reverse, or delete and edge
— Objective function: maximize posterior probability of
examplesin the training set D

m However... aswith al optimization problems, we
are sensitive to the start state (structure), and run
therisk of reaching local optima
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Summary

m Bayesian probability theory has many applications
in modern Al and machine learning

m Thebasis for the minimum description length
principle, which isatheoretical defense of
Occam' s razor in learning tasks

m Can also be used in Bayesian classifiers, which
compute the most likely classification of
examples, if features are treated as “ evidence”
— Continuous features must be descretized
— Not well-suited to regression problems

Summary

m Thenaive Bayes classifier isafast and very
popular machine learning algorithm

— Uses the assumption that all features are independent of
one another

I« Bayesian Bdief Networks (Bayes Nets) are

generalizations of naive Bayes
— Can learn both probabilities and structures for concepts
with rich dependencies
— Any variable in the network can be queried
— Not all of the features need to be observed for a
probability to be computed
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