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Announcements (7/23)

� Grades to date (including grades for HW#2) 
are on the class website
– “Late days”  means the number of late days that 

have been used so far this semester

� Homework #5 is still in the works…
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Announcements (7/24)

� Homework #5 is finally done!
– Good news: due date for HW4 and HW5 are extended 

to Tuesday, 7/29

– Bad news: no late days (apologies if you have been 
saving them up!)

� TA’s solution to HW2 is on the website as well if 
you’ re still interested in improving your Mancala 
playing agent
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Learning With Probabilities

� Sometimes machine learning algorithms are too rigid or 
brittle to be applied in many real-world problems
– e.g. How would decision trees or k-NN fare in stochastic, dynamic, 

or partially observable environments?
� Sometimes the agent should make decisions based on what 

is most likely to happen, or what the world is likely to 
actually be like
– The agent can then use its experience to learn these sorts of 

probabilities
� But let’s take a break from talking about learning for a 

moment, and introduce what it means to be Bayesian
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Thomas Bayes (1702-1761)

� Thomas Bayes was a 
Nonconformist Presbyterian 
minister in England in the 
early 18th century

� Described by William 
Wiston as “ … a dissenting 
Minister… and a successor, 
though not immediate, to 
Mr. Humphrey Ditton, and 
like him a very good 
mathematician.”
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Thomas Bayes

� Bayeswas elected a Fellow of the Royal Society of 
London (sort the M.I.T. of the day) in 1742
– Despite the fact that at that time he had no published 

works on mathematics to his name
– He actually had published one anonymously: a critique 

of George Berkeley’s attack on the logic of probability
� Apparently Bayes tried to retire from the chapel in

TunbridgeWells (where he was minister) in 1749
– Perhaps to focus more on his math “hobby”
– But didn’ t actually retire until 1752
– Stayed in Tunbridge Wells until his death in 1761
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Thomas Bayes

� In 1764, Bayes’ friend Richard Price found one of his 
papers, “Essay towards solving a problem in the doctrine 
of chances”  and submitted it to the Royal Society
– Bayes’ first scientific publication: printed in the Philosophical 

Transactions of the Royal Society of London, 3 years after he died
– The principles in this paper were accepted by Pierre-Simon 

Laplace (of differential equation fame) and Marquis de Condorcet
(infinitesimals) later in the on century

� Bayes’ findings are the basis for much of modern 
probability theory (certainly the parts that we use 
in AI, anyway)
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Probability Theory

� A Random variable (RV): a variable that takes on values 
from a set of mutually exclusive and exhaustive values

� A=a: a proposition, variable A has a particular value a
– This can correspond to a percept or feature, e.g. Wind=Weak

� P(A=a): single probability of RV A=a, which is the degree 
of belief in a proposition in the absence of any other 
relevant information
– e.g. P(Wind=Weak), etc.

� P(A): probability distribution, i.e. set of P(A=ai) for all i
– e.g. P(Wind) = {  P(Wind=Weak), P(Wind=Strong) }
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Probability Theory

� Joint probabilities specify the probabilities
for the conjunction of propositions
– e.g. P(A,B) or P(A∧B) 

� A full joint probability distribution:
– Completely specifies all of the possible probabilities by 

enumerating all possible variable-value combinations
– Kind of like a truth table
– Intractable representation: since table grows 

exponentially in size kn where n variables each have k
possible values
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Probability Theory

� Conditional (posterior) probabilities:
– Formalize the process of accumulating evidence

and updating probabilities based on new evidence

– Specify the belief in one proposition (event, conclusion, 
diagnosis, etc.) conditioned on another proposition 
(evidence, feature, symptom, etc.)

� P(A | B) is the conditional probability of A given 
evidence B is known to be true

)(

)(
)|(

BP

BAP
BAP

∧=

11

Probability Theory

� Conditional probabilities behave like 
standard probabilities:
– e.g. 0 ≤ P(A|B) ≤ 1

• Conditional probabilities are within the range
0 to 1, inclusive

– P(A=a1|B) + P(A=a2|B) + ... + P(A=an|B) = 1
• Conditional probabilities sum to 1

� Can have P(conjunction of events|B)
– P(A∧ B∧ C| E) is the agent’s belief in the sentence 

“A∧ B∧ C” conditioned on the evidence E being true
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Independence

� Unconditional (absolute) Independence: variables that have 
no connection to each other
– Taking CS-540 has no relationship to having a hayfever

• P(cs540 | hayfever) = P(cs540)
• P(hayfever | cs540) = P(hayfever)
• P(cs540 ∧ hayfever) = P(cs540) × P(hayfever)

� Conditional Independence: variables that are connected 
only through another variable
– Sneezing and drowsiness connected to hayfever, but not each other

• P(sneeze | drowsy ∧ hayfever) = P(sneeze | hayfever)
• P(drowsy | sneeze ∧ hayfever) = P(drowsy | hayfever)
• P(sneeze ∧ drowsy | hayfever) = P(sneeze | hayfever) ×

P(drowsy | hayfever)
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Rules of Probability Theory

Negation
Probability event A being false:
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Product Rule
Probability of a conjunction of 
two events A and B:
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Sum Rule
Probability of a disjunction of two 
events A and B:
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Rules of Probability Theory

Conditional Chain Rule
Variant of the chain rule for 
conditional probabilities: )|()|(
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Total Probability
“Summing out” over mutually 
exclusive events B1,…,Bn
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Chain Rule
Generalization of the product rule 
for any number of events: )()|()|(
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Bayes’ Rule
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Bayes’  Rule is the basis for efficiently computing 
unknown conditional probabilities, as derived from 
the product rule:
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Bayes’ Rule Examples

P(happy | sunny) = 0.95
P(sunny) = 0.5
P(happy) = 0.75
P(sunny | happy) =

(0.95 ×××× 0.5)/0.75 =
0.63
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P(sneeze | cold) = 0.75
P(cold) = 0.1
P(sneeze) = 0.2
P(cold | sneeze) =

(0.75 ×××× 0.1)/0.2 =
0.375

Bayes’  Rule:
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Relationship to Machine Learning

� For inductive learning, we are given a training set 
D of examples, from which we are to approximate 
a concept function f

� We have a set of hypotheses H (i.e. the hypothesis 
space), from which we want to choose a single 
hypothesis h such that h ≈ f

� Then it makes sense to choose the most probable 
hypothesis h∈ H given the training data D
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Choosing Hypotheses
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Using Bayes’ Rule, we can measure the probability of a hypothesis h
given evidence of the training data D:

Generally, we want to find the most probable hypothesis h ∈ H, called 
the maximum a posteriori hypothesis hMAP:

If we assume P(hi) = P(hj), all hypotheses are equally probable, and we 
can further simplify to the maximum likelihood hypothesis hML:
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Bayesian Learning

� Bayesian learning is, generally speaking, the 
method of selecting the best hypothesis h∈H in 
terms of how well it can explain the observed 
training data D:
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– If hypotheses have different probabilities:

– If hypotheses are equally likely:
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Surprise Candy!

� Consider this example from p.712 of the textbook:
– A surprise candy comes in two flavors (cherry, lime)
– There are 5 kinds of unmarked candy bags:

h1 = 100% cherry P(h1) = 0.1
h2 = 75% cherry, 25% lime P(h2) = 0.2
h3 = 50% cherry, 50% lime P(h3) = 0.4
h4 = 25% cherry, 75% lime P(h4) = 0.2
h5 = 100% lime P(h5) = 0.1

� Since you love cherry but hate lime, you want to 
hypothesize about (e.g. learn) which bag you have
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Surprise Candy!

� At this point, you believe that the bag is most likely h3 
(50% cherry, 50% lime), because it has this highest 
probability P(h3) = 0.4

� However, as you take the candies out to examine them (i.e. 
collect training data), the most probable hypothesis will 
change
– Since each hypothesis has a different probability (some bags are

more common than others), we want to find the hMAP hypothesis
– Each hi is scored by P(D | hi) × P(hi), where:

∏
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Surprise Candy!

� After examining 10 candies that are all lime, the 
probabilities for each bag (hypothesis) are:

P(h1 | D)   = (0.0)10 × 0.1 = 0
P(h2 | D)   = (0.25)10 × 0.2 = 2×10-7

P(h3 | D)   = (0.5)10 × 0.4 = 4×10-4

P(h4 | D)   = (0.75)10 × 0.2 = 0.01
P(h5 | D)   = (1.0)10 × 0.1 = 0.1

� It should be intuitively obvious to us that, after 10 
lime candies in a row, this is an all-lime bag, but 
now we can give the agent a similar intuition!
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Surprise Candy!

24

Bayesian Learning in Practice

� Consider our inductive learning framework, 
specifically inducing decision trees:
– Hypothesis space H = set of all possible 

decision trees for the problem

– A training set D (assume that it is noise-free)

�Does ID3 find a MAP hypothesis?
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Decision Trees and MAP

� Since D is assumed to be noise-free, any tree h
that we induce (regardless of heuristic) will be 
fully consistent with D, thus P(D | h) = 1.0

� So the key factor is P(h)… but how can we 
measure that?

)()|(maxarg hPhDPh
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∈

� Recall the definition of a MAP hypothesis:
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Probability of Hypotheses

� Interesting fact from information theory: the optimal code 
(i.e. shortest expected “coding length” ) for an event with 
probability p is –log2 p bits…
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Minimum Description Length

� We can interpret:
–log2 P(h) to be the “size”  of hypothesis h
–log2 P(D | h) to be the number of h’ smisclassifications in D
(e.g. “ impurity”  of predictions on D given hypothesis h)

� We call this the the minimum description length principle
– We want to trade-off hypothesis size (complexity) for accuracy

� For a decision tree h and noise-free training set D, then 
–log2 P(D | h) = 0, so we want the want the smallest tree h
– A theoretical defense for Occam’s Razor!
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Bayesian Classification

� So far, we’ve just talked about finding the most probable 
hypothesis h given data D
– Boils down to Occam’s razor: doesn’ t teach us anything new!

� Given a test example x, what is its most probable 
classification? Is it necessarily hMAP(x)?

� Consider:
– Four hypotheses

• P(h1 | D) = .4    P(h2 | D)=.2    P(h3 | D)=.2    P(h4 | D)=.2

– And a new instance x
• h1(x)=YES h2(x)=NO   h3(x)= NO   h4(x)= NO 

– What’s the most probable label for example x?
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Bayesian Classification

� It turns out that we can also use Bayes’  Rule to do 
inductive learning
– Consider input features x1,…,xn to be evidence
– Probability of a class label c is P(c | x1,…,xn)

� There are many different inductive learning 
algorithms that use Bayesian probability theory to 
predict the most likely class label
– NaïveBayes Classifier
– Bayesian Belief Network (Bayes Net)
– Bayes Optimal Classifier
– Gibbs Classifier

We’ ll talk 
about these
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Naïve Bayes Classifier

� Along side decision trees, k-NN, and neural nets, a 
naïve Bayesclassifier one of the most practical 
and widely-used inductive learning algorithms

� Naïve Bayes classifiers are extremely fast:
– Training scales linearly with respect to |D| 

(number of training examples)
– Testing is linear in |x| (number of features)

� Makes the naïve Bayes assumption:
– All features (evidence) are independent of each other
– In other words, if one feature should be conditioned on 

another, the classifier is “naïve”  (unaware of it)
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Naïve Bayes Classifier

� A concept function f : X → C, where c ∈ C is a class label, 
and x∈X is described by a feature vector � x1,…,xn� :
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� The Naïve Bayes assumption is that all the features are 
independent (e.g. Sunny has nothing to do with Windy)
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Naïve Bayes Algorithm

� To learn from training set D:
– For each concept class c

• PE(c) ← estimation of P(c) according to D

• For each input feature observation xn

– PE(xn | c) ← estimation of P(xn | c) according to D

� Then, to classify an new example x:

– Score each c by: PE(c) × Πn [PE(xn | c)]

– Return the c with the highest probability
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Naïve Bayes Example

� Recall our “circus”  example from a few lectures ago…
� Let’s use a Naïve Bayes classifier to predict if >1,000 

people will attend the circus based on the following 
weather forecast:

x = � Outlook=Sunny, Temp=Cool, Humid=High, Wind=Strong�
� So we want to compute: 

)|()(maxarg cxPcPc n
nCc

NB ∏×=
∈

P(Y) ×××× P(Sunny | Y) ×××× P(Cool | Y) ×××× P(High | Y) ×××× P(Strong | Y) = .005

P(N) ×××× P(Sunny | N) ×××× P(Cool | N) ×××× P(High | N) ×××× P(Strong | N) = .021

→ cNB = No 34

Issues With Naïve Bayes

� In practice, we estimate the probabilities by maintaining countsas we 
pass through the training data, and then divide through at the end� But what happens if, when classifying, we come across a feature-value 
we didn’ t see in training (e.g. Temperature=Sub-Zero)?

0)|( =cxPE n

0)|()( =×∏
n

n cxPEcPE

… therefore…

� Typically, we can get around this by initializing all the counts to 
Laplacian priors (small uniform values) instead of 0
– This way, the probability will still be small, but not impossible
– This is also called “smoothing”
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Issues With Naïve Bayes

� In order to use naïve Bayes classification, our features 
need to be a set of events/propositions on which to 
condition the probability estimates
– This is straightforward for Boolean features
– For discrete features, we can do what we did with neural nets: 

enumerate all the feature-value pairs
� But what about continuous features?

– The only thing we can do is generate new Boolean features from 
the older continuous ones

– Could use the method we used for splitting in decision trees
– More commonly, we want a wider discretized range, so we make k

equally-sized “bins”  to represent continuous value ranges
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Issues With Naïve Bayes

� Similar to the problems with continuous features, 
notice that we call this a naïve Bayes “classifier”
– Not a “naïve Bayes regression learning algorithm”

� Naïve Bayes is not well-suited to solving 
regression problems at all
– In fact, in the 2-class instance, it learns a linearly-

separating hyperplane just like a perceptron
– That means that for every perceptron, there is an 

equivalent naïve Bayes classifier (though the proof of 
this is a bit involved)



7

37

Issues With Naïve Bayes

� Another big problem with naïve Bayes: often the 
independence assumption is violated
– Consider the task of classifying whether or not a certain 

word is a corporation name
• e.g. “Google,”  “Microsoft,”  “ IBM,”  and “ACME”

– Two useful features we might want to use are 
captialized, and all-capitals

– Naïve Bayes will assume that these two features are 
independent of one another, but this clearly isn’ t the 
case (things that are all-caps must also be capitalized)!!
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Using Conditional Independence

� Clearly the naïve Bayes assumption is too restrictive for 
many types of problems

� One alternative is to estimate the full-joint probability table
– But recall that this takes an exponential amount of space
– Our training probably isn’ t large enough to estimate every cell in 

the FJPT, either! It’ s huge!
� Recall, though, absolutevs. conditional independence:

– Independence: two variables are completely unrelated (NB)
– Conditional independence: two variables are unrelated to each 

other, but can be related through a common variable
� Perhaps we can compress the FJPT by using a conditional 

independence assumption instead?
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Bayesian Networks

� A Bayesian Belief Network (or BayesNet) is an 
AI model that describes the conditional 
independencies among subsets of variables

� We can use any prior knowledge we might have 
about the relationships between features

� Yet, we can also take advantage of the inductive 
learning framework
– Let the agent learn these probabilities for itself
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Bayesian Networks

� BayesNets are directed acyclic graphs (DAGs):
– One node for each random variable (e.g. feature)

– A directed edge from cause A to its effect B represents a 
direct causal relationships (B is conditioned on A)

– Each node is conditionally independent of its non-
descendents, given its parents

• A node is conditioned on its parents, and its descendents are 
conditioned on it

• So if there is evidence for its parents, then it is conditionally 
independent of anything not dependent on it
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Bayesian Networks

� For a set of variables, draw an edge from one 
variable to one that is conditioned on it
– Represents direct causal relationships between variables
– Support for B due to the evidence of A (e.g. P(B | A)) is 

called “diagnostic”  or “evidential”  support
� Can be used to reason in different ways:

– Predictive (or causal) reasoning:
• Forward (top-down) from causes to effects
• This is what we typically want for inductive learning

– Can also perform diagnostic reasoning:
• Backward (bottom-up) from effects to causes
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Bayesian Networks

Storm

Lightning

Thunder

TourGroup

Campfire

ForestFire

The DAG is a compressed representation of the FJPT over all 
of the variables, e.g. P(Storm, TourGroup,…, ForestFire):

Each node (variable) has a 
conditional probability table 
(CPT) over its parents

∏
=

=
n

i
iin xParentsOfxPxxP

1
1 ))(|(),...,(
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Bayesian Networks

� To illustrate how compressed Bayes Nets are relative to the 
FJPT they represent consider the following structure of 
Boolean random variables:

To represent these 8 variables in a FJPT 
would take 28 entries= 256

A B C

D

E F G H

For a Bayes Net, however, the number of 
values needed for all the CPTs can be 
computed as: �

∈
=

BNv

vParentsOfBNsize )|(|2)(

= 20 + 20 + 20 + 23 + 21 + 21 + 21 + 21 = 19
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Computing Joint Probabilities

� Then the joint probability reduces to:
P(A, B, C, D) = P(A | B) × P(B | C,D) × P(C) × P(D)

C D

B

A

∏
=

=
n

i
iin xParentsOfxPxxP

1
1 ))(|(),...,(

� We want to compute P(A, B, C, D)
– e.g. The joint probability of all events A,…,D

� Recall that the net approximates the FJPT:
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Naïve Bayes vs. Bayes Nets

c

Note that the naïve Bayes classifier is simply a special 
instance of a Bayes Net: one where the probabilities for the 
the input features x1,…xn (which are all independent) are 
conditioned on class label c

x1 x2 x3 x4 x5 xn……
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Bayes Net Learning

� Learning probabilities for a Bayesian Network is a 
straightforward extension of naïve Bayes learning
– Maintain a probability estimate for each entry in the 

conditional probability table (CPT) for each node

– Update the counts in these tables conditioned on the 
parent nodes of the variable (not the “class label” )

– In the end, divide through to get probabilities

– We also usually want to initialize counts to a small 
Laplacian value to “smooth”  out zero probabilities
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Probability Learning Example

� Consider this Bayes Net being trained 
on the following training set D:

x2 x3

x1

f

0.5P(x3)0.625P(x2)

1.00.331.00.5P(x1)

¬¬¬¬x2, ¬¬¬¬x3x2, ¬¬¬¬x3¬¬¬¬x2, x3x2, x3

0.330.8P(f)

¬¬¬¬x1x1

x = TFT   f(x) = T

x = TTF   f(x) = F

x = TFT   f(x) = T

x = TFF   f(x) = T

x = FTF   f(x) = F

x = FTT   f(x) = T

x = TTT   f(x) = T x = FTF   f(x) = F
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Bayes Net Inference

� In logic, we used inference procedures to show 
that one sentence α logically followed from others 
(i.e. KB �  α)

� In probability theory, we also need a Bayesian 
inference procedureto figure probabilities on an 
effect E, and is an observed cause/causes C

� Since the network is a compressed FJPT, all the 
information we need is there somewhere…
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Bayes Net Inference

� A nice property about Bayesian networks is that 
we can calculate the probability of any variable we 
want!
– Predictive inference is called top-down because we 

compute P(E | C), the probability of an effect E given 
causal evidence C (its anscestors)

– Diagnostic inference is bottom-up because we wish to 
compute P(C | E), the probability of cause C given 
evidence for an effect E (its descendent)
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Inference Example

� Most people who are colorblind 
are male, so the Bayes net structure 
to the right is reasonable

� Now we want to perform diagnostic
inference to compute the probability of being male given 
you are colorblind:

Male

Colorblind

0.45P(M)

0.010.1P(C)

¬¬¬¬MM

)(

)()|(
)|(

CP

MPMCP
CMP

×=

)55.0)(01.0()45.0)(1.0(

)45.0)(1.0(

+
=

= 0.89

P(C) = P(C | M) × P(M) +
P(C | ¬M) × P(¬M) 

We don’ t know P(C) exactly, 
but we can still compute it by 
“ summing out”  over M:
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General Bayesian Inference

� The formula above is what we ended up with by using 
Bayes’  Rule and “summing out”  over the probability P(C)
– This is equivalent to computing the joint probabilities P(M,C) and 

P(¬M,C) and normalizing… we already know how to do that!
� It turns out, we can generalize this to an arbitrary number 

of variables (not just two)
– Given evidence E1,…,En and query A, we can compute the joint 

probabilities P(A, E1,…,En) and P(¬A, E1,…,En), then normalize… 
this is identical to P(A | E1,…,En)

� Note: this only works if all other variables in the Bayesian 
network are observed!

)()|()()|(

)()|(
)|(

MPMCPMPMCP

MPMCP
CMP

¬×¬+×
×=
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Complex Bayesian Inference

� Another unique feature of Bayes nets:
– If we have missing evidence, we can still 

perform inference

– The other variables may have evidence, and 
might not be conditionally independent anymore

x2 x3

x1

f

x1

� In general, though, Bayes Net inference is 
an NP-Hard problem:
– As more variables go unobserved, the closer we get to 

calculating the FJPT from the network… and this 
defeats the purpose!

– Deterministic and stochastic inference methods that can 
to this are discussed in CS-731
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Bayes Net Inference Examples

� There is a freeware Bayes Net construction and 
inference system called JavaBayes
– Clearly implemented in Java

– http://www-2.cs.cmu.edu/~javabayes/Home/

� Comes with many classic “ textbook” Bayesian 
network structures and CPT examples, as well as a 
few that were trained using ML techniques
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Bayes Net Structure Learning

� As with neural networks, the structure of 
the Bayesian network is very important
– We need to make sure the directed edges 

represent dependencies in the real world

�Sometimes we don’ t know what the real 
dependencies are… can the agent learn the 
structure as well??
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Bayes Net Structure Learning

� As with almost all of AI, we can formulate this as 
an optimization problem:
– States: candidate Bayes Net structures
– Actions: add, reverse, or delete and edge
– Objective function: maximize posterior probability of 

examples in the training set D

� However… as with all optimization problems, we 
are sensitive to the start state (structure), and run 
the risk of reaching local optima
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Summary

� Bayesian probability theory has many applications 
in modern AI and machine learning

� The basis for the minimum description length
principle, which is a theoretical defense of 
Occam’s razor in learning tasks

� Can also be used in Bayesian classifiers, which 
compute the most likely classification of 
examples, if features are treated as “evidence”
– Continuous features must be descretized
– Not well-suited to regression problems
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Summary

� The naïve Bayes classifier is a fast and very 
popular machine learning algorithm
– Uses the assumption that all features are independent of 

one another
� Bayesian Belief Networks (Bayes Nets) are 

generalizations of naïve Bayes
– Can learn both probabilities and structures for concepts 

with rich dependencies
– Any variable in the network can be queried
– Not all of the features need to be observed for a 

probability to be computed


