

Announcements (7/23)

■ Grades to date (including grades for HW\#2) are on the class website

- "Late days" means the number of late days that have been used so far this semester

■ Homework \#5 is still in the works...

Learning With Probabilities

- Sometimes machine learning algorithms are too rigid or brittle to be applied in many real-world problems
- e.g. How would decision trees or k-NN fare in stochastic, dynamic, or partially observable environments?
- Sometimes the agent should make decisions based on what is most likely to happen, or what the world is likely to actually be like
- The agent can then use its experience to learn these sorts of probabilities
- But let's take a break from talking about learning for a moment, and introduce what it means to be Bayesian you're still interested in improving your Mancala playing agent

Thomas Bayes (1702-1761)

- Thomas Bayes was a Nonconformist Presbyterian minister in England in the early $18^{\text {th }}$ century
- Described by William Wiston as "... a dissenting Minister... and a successor, though not immediate, to Mr. Humphrey Ditton, and like him a very good mathematician."

Thomas Bayes

- Bayes was elected a Fellow of the Royal Society of London (sort the M.I.T. of the day) in 1742
- Despite the fact that at that time he had no published works on mathematics to his name
- He actually had published one anonymously: a critique of George Berkeley's attack on the logic of probability
- Apparently Bayes tried to retire from the chapel in Tunbridge Wells (where he was minister) in 1749
- Perhaps to focus more on his math "hobby"
- But didn't actually retire until 1752
- Stayed in Tunbridge Wells until his death in 1761

Thomas Bayes

- In 1764, Bayes' friend Richard Price found one of his papers, "Essay towards solving a problem in the doctrine of chances" and submitted it to the Royal Society
- Bayes' first scientific publication: printed in the Philosophical Transactions of the Royal Society of London, 3 years after he died
- The principles in this paper were accepted by Pierre-Simon Laplace (of differential equation fame) and Marquis de Condorcet (infinitesimals) later in the on century
* Bayes' findings are the basis for much of modern probability theory (certainly the parts that we use in AI, anyway)

Probability Theory

- Joint probabilities specify the probabilities for the conjunction of propositions
- e.g. $P(A, B)$ or $P(A \wedge B)$
- A full joint probability distribution:
- Completely specifies all of the possible probabilities by enumerating all possible variable-value combinations
- Kind of like a truth table
- Intractable representation: since table grows exponentially in size k^{n} where n variables each have k possible values

Probability Theory

- Conditional (posterior) probabilities:
- Formalize the process of accumulating evidence and updating probabilities based on new evidence
- Specify the belief in one proposition (event, conclusion, diagnosis, etc.) conditioned on another proposition (evidence, feature, symptom, etc.)
- $P(A \mid B)$ is the conditional probability of A given evidence B is known to be true

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Probability Theory

■ Conditional probabilities behave like standard probabilities:

- e.g. $0 \leq P(A \mid B) \leq 1$
- Conditional probabilities are within the range 0 to 1 , inclusive
$-P\left(A=a_{1} \mid B\right)+P\left(A=a_{2} \mid B\right)+\ldots+P\left(A=a_{n} \mid B\right)=1$
- Conditional probabilities sum to 1

■ Can have P (conjunction of events $\mid B$)

- $P(A \wedge B \wedge C \mid E)$ is the agent's belief in the sentence
" $A \wedge B \wedge C$ " conditioned on the evidence E being true

Independence

- Unconditional (absolute) Independence: variables that have no connection to each other
- Taking CS-540 has no relationship to having a hayfever
- $P(c s 540 \mid$ hayfever $)=P(c s 540)$
- $P($ hayfever \mid cs540 $)=P($ hayfever $)$
- $P($ cs540 \wedge hayfever $)=P(c s 540) \times P($ hayfever $)$
- Conditional Independence: variables that are connected only through another variable
- Sneezing and drowsiness connected to hayfever, but not each other
- $P($ sneeze \mid drowsy \wedge hayfever $)=P($ sneeze \mid hayfever $)$
- $P($ drowsy \mid sneeze \wedge hayfever $)=P($ drowsy \mid hayfever $)$
- $P($ sneeze \wedge drowsy \mid hayfever $)=P($ sneeze \mid hayfever $) \times$ $P($ drowsy hayfever $)$

Rules of Probability Theory

Chain Rule	$P(A \wedge B \wedge C)=$ Generalization of the product rule for any number of events:
Conditional Chain Rule $P(A \mid B \wedge C) \times P(B \mid C) \times P(C)$	
Variant of the chain rule for conditional probabilities:	$P(A \mid B \wedge C) \times P(B \mid C)$
Total Probability	
"Summing out" over mutually	
exclusive events B_{1}, \ldots, B_{n}	

Bayes' Rule

Bayes' Rule is the basis for efficiently computing unknown conditional probabilities, as derived from the product rule:

$$
\begin{aligned}
& P(A \wedge B)= \\
& P(A \mid B) \times P(B)=P(B \mid A) \times P(A) \\
& P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}
\end{aligned}
$$

Bayes' Rule Examples

Bayes' Rule:	$P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}$
$P($ happy \mid sunny $)=0.95$	$P($ sneeze \mid cold $)=0.75$
$P($ sunny $)=0.5$	$P($ cold $)=0.1$
$P($ happy $)=0.75$	$P($ sneeze $)=0.2$
$P($ sunny \mid happy $)=$	$P($ cold \mid sneeze $)=$
$(0.95 \times 0.5) / 0.75=$	$(0.75 \times 0.1) / 0.2=$
0.63	0.375

Relationship to Machine Learning

- For inductive learning, we are given a training set D of examples, from which we are to approximate a concept function f
- We have a set of hypotheses H (i.e. the hypothesis space), from which we want to choose a single hypothesis h such that $h \approx f$
* Then it makes sense to choose the most probable hypothesis $\mathrm{h} \in \mathrm{H}$ given the training data D

Choosing Hypotheses

Using Bayes' Rule, we can measure the probability of a hypothesis h given evidence of the training data D :

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

Generally, we want to find the most probable hypothesis $h \in H$, called the maximum a posteriori hypothesis $h_{M A P}$:
$h_{M A P}=\underset{h \in H}{\arg \max } P(h \mid D)=\underset{h \in H}{\arg \max } \frac{P(D \mid h) \times P(h)}{P(D)}=\underset{h \in H}{\arg \max } P(D \mid h) \times P(h)$

If we assume $P\left(h_{i}\right)=P\left(h_{j}\right)$, all hypotheses are equally probable, and we can further simplify to the maximum likelihood hypothesis $h_{M L}$:

$$
h_{M L}=\underset{h \in H}{\arg \max } P\left(D \mid h_{i}\right)
$$

$h_{h \in H}$

Bayesian Learning

- Bayesian learning is, generally speaking, the method of selecting the best hypothesis $h \in H$ in terms of how well it can explain the observed training data D :
- If hypotheses have different probabilities:

$$
h_{M A P}=\underset{h \in H}{\arg \max } P(D \mid h) \times P(h)
$$

- If hypotheses are equally likely:

$$
h_{M L}=\underset{h_{i} \in H}{\arg \max } P\left(D \mid h_{i}\right)
$$

Surprise Candy!

- Consider this example from p. 712 of the textbook:
- A surprise candy comes in two flavors (cherry, lime)
- There are 5 kinds of unmarked candy bags:

$h_{1}=100 \%$ cherry	$P\left(h_{1}\right)=0.1$
$h_{2}=75 \%$ cherry, 25% lime	$P\left(h_{2}\right)=0.2$
$h_{3}=50 \%$ cherry, 50\% lime	$P\left(h_{3}\right)=0.4$
$h_{4}=25 \%$ cherry, 75% lime	$P\left(h_{4}\right)=0.2$

$P\left(h_{5}\right)=0.1$

- Since you love cherry but hate lime, you want to hypothesize about (e.g. learn) which bag you have

Surprise Candy!

- At this point, you believe that the bag is most likely h_{3} (50% cherry, 50% lime), because it has this highest probability $P\left(h_{3}\right)=0.4$
- However, as you take the candies out to examine them (i.e. collect training data), the most probable hypothesis will change
- Since each hypothesis has a different probability (some bags are more common than others), we want to find the $h_{M A P}$ hypothesis
- Each h_{i} is scored by $P\left(D \mid h_{i}\right) \times P\left(h_{i}\right)$, where:

$$
P\left(D \mid h_{i}\right)=\prod_{d \in D} P\left(d \mid h_{i}\right)
$$

Surprise Candy!

- After examining 10 candies that are all lime, the probabilities for each bag (hypothesis) are:

$P\left(h_{1} \mid D\right)$	$=(0.0)^{10} \times 0.1$	
$P\left(h_{2} \mid D\right)$	$=(0.25)^{10} \times 0.2$	
$=2 \times 10^{-7}$		
$P\left(h_{3} \mid D\right)$	$=(0.5)^{10} \times 0.4$	
$P\left(0_{4} \mid D\right)$	$=(0.75)^{10} \times 0.2$	
$P\left(0^{-4}\right.$		
$P\left(h_{5} \mid D\right)$	$=(1.0)^{10} \times 0.1$	
		$=0.1$

- It should be intuitively obvious to us that, after 10 lime candies in a row, this is an all-lime bag, but now we can give the agent a similar intuition!

Surprise Candy!

Bayesian Learning in Practice

■ Consider our inductive learning framework, specifically inducing decision trees:

- Hypothesis space $H=$ set of all possible decision trees for the problem
- A training set D (assume that it is noise-free)
* Does ID3 find a MAP hypothesis?

Decision Trees and MAP

- Recall the definition of a $M A P$ hypothesis:

$$
h_{M A P}=\underset{h \in H}{\arg \max } P(D \mid h) \times P(h)
$$

- Since D is assumed to be noise-free, any tree h that we induce (regardless of heuristic) will be fully consistent with D, thus $P(D \mid h)=1.0$
- So the key factor is $P(h) \ldots$ but how can we measure that?

Probability of Hypotheses

- Interesting fact from information theory: the optimal code (i.e. shortest expected "coding length") for an event with probability p is $-\log _{2} p$ bits...

$$
\begin{aligned}
h_{M A P} & =\underset{h \in H}{\arg \max } P(D \mid h) \times P(h) \\
& =\underset{h \in H}{\arg \max } \log _{2} P(D \mid h)+\log _{2} P(h) \\
& =\underset{h \in H}{\arg \min }-\log _{2} P(D \mid h)-\log _{2} P(h)
\end{aligned}
$$

Minimum Description Length

$h_{M A P}=\underset{h \in H}{\arg \min }-\log _{2} P(D \mid h)-\log _{2} P(h)$

- We can interpret:
$-\log _{2} P(h)$ to be the "size" of hypothesis h
$-\log _{2} P(D \mid h)$ to be the number of h 's misclassifications in D (e.g. "impurity" of predictions on D given hypothesis h)

■ We call this the the minimum description length principle - We want to trade-off hypothesis size (complexity) for accuracy

- For a decision tree h and noise-free training set D, then $-\log _{2} P(D \mid h)=0$, so we want the want the smallest tree h - A theoretical defense for Occam's Razor!

Bayesian Classification

- So far, we've just talked about finding the most probable hypothesis h given data D
- Boils down to Occam's razor: doesn't teach us anything new!
- Given a test example x, what is its most probable classification? Is it necessarily $h_{M A P}(x)$?
- Consider:
- Four hypotheses
- $P\left(h_{1} \mid D\right)=.4 \quad P\left(h_{2} \mid D\right)=.2 \quad P\left(h_{3} \mid D\right)=.2 \quad P\left(h_{4} \mid D\right)=.2$
- And a new instance x
- $h_{1}(x)=$ YES $\quad h_{2}(x)=\mathrm{NO} \quad h_{3}(x)=\mathrm{NO} \quad h_{4}(x)=\mathrm{NO}$
- What's the most probable label for example x ?

Bayesian Classification

- It turns out that we can also use Bayes' Rule to do inductive learning
- Consider input features x_{1}, \ldots, x_{n} to be evidence
- Probability of a class label c is $\mathrm{P}\left(c \mid x_{1}, \ldots, x_{n}\right)$

■ There are many different inductive learning algorithms that use Bayesian probability theory to predict the most likely class label

- Naïve Bayes Classifier	We'll talk
- Bayesian Belief Network (Bayes Net)	

Naïve Bayes Classifier

■ Along side decision trees, k-NN, and neural nets, a naïve Bayes classifier one of the most practical and widely-used inductive learning algorithms
■ Naïve Bayes classifiers are extremely fast:

- Training scales linearly with respect to $|D|$ (number of training examples)
- Testing is linear in $|x|$ (number of features)

■ Makes the naïve Bayes assumption:

- All features (evidence) are independent of each other
- In other words, if one feature should be conditioned on another, the classifier is "naïve" (unaware of it)

Naïve Bayes Classifier

- A concept function $f: X \rightarrow C$, where $c \in C$ is a class label, and $x \in X$ is described by a feature vector $\left\langle x_{1}, \ldots, x_{n}\right\rangle$:

$$
\begin{aligned}
c_{M A P} & =\underset{c \in C}{\arg \max } P\left(c \mid x_{1}, \ldots, x_{n}\right) \\
& =\underset{c \in C}{\arg \max } \frac{P\left(x_{1}, \ldots, x_{n} \mid c\right) \times P(c)}{P\left(x_{1}, \ldots, x_{n}\right)} \\
& =\underset{c \in C}{\arg \max } P\left(x_{1}, \ldots, x_{n} \mid c\right) \times P(c)
\end{aligned}
$$

- The Naïve Bayes assumption is that all the features are independent (e.g. Sunny has nothing to do with Windy)

$$
c_{N B}=\underset{c \in C}{\arg \max } P(c) \times \prod_{n} P\left(x_{n} \mid c\right)
$$

Naïve Bayes Algorithm

- To learn from training set D :
- For each concept class c
- $P E(c) \leftarrow$ estimation of $P(c)$ according to D
- For each input feature observation x_{n}
- $P E\left(x_{n} \mid c\right) \leftarrow$ estimation of $P\left(x_{n} \mid c\right)$ according to D
- Then, to classify an new example x :
- Score each c by: $P E(c) \times \Pi_{n}\left[P E\left(x_{n} \mid c\right)\right]$
- Return the c with the highest probability

Naïve Bayes Example

- Recall our "circus" example from a few lectures ago...
- Let's use a Naïve Bayes classifier to predict if $>1,000$ people will attend the circus based on the following weather forecast:
$x=\langle$ Outlook=Sunny, Temp $=$ Cool, Humid=High, Wind=Strong \rangle
- So we want to compute:

$$
c_{N B}=\underset{c \in C}{\arg \max } P(c) \times \prod_{n} P\left(x_{n} \mid c\right)
$$

$P(Y) \times P($ Sunny $\mid \boldsymbol{Y}) \times P($ Cool $\mid Y) \times P($ High $\mid Y) \times P($ Strong $\mid Y)=.005$ $P(N) \times P($ Sunny $\mid N) \times P($ Cool $\mid N) \times P($ High $\mid N) \times P($ Strong $\mid N)=.021$

$$
\rightarrow c_{N B}=N o
$$

Issues With Naïve Bayes

- In order to use naïve Bayes classification, our features need to be a set of events/propositions on which to condition the probability estimates
- This is straightforward for Boolean features
- For discrete features, we can do what we did with neural nets: enumerate all the feature-value pairs
- But what about continuous features?
- The only thing we can do is generate new Boolean features from the older continuous ones
- Could use the method we used for splitting in decision trees
- More commonly, we want a wider discretized range, so we make k equally-sized "bins" to represent continuous value ranges

Issues With Naïve Bayes

■ Similar to the problems with continuous features, notice that we call this a naïve Bayes "classifier" - Not a "naïve Bayes regression learning algorithm"

■ Naïve Bayes is not well-suited to solving regression problems at all

- In fact, in the 2-class instance, it learns a linearlyseparating hyperplane just like a perceptron
- That means that for every perceptron, there is an equivalent naïve Bayes classifier (though the proof of this is a bit involved)

Issues With Naïve Bayes

- Another big problem with naïve Bayes: often the independence assumption is violated
- Consider the task of classifying whether or not a certain word is a corporation name
- e.g. "Google," "Microsoft," "IBM," and "ACME"
- Two useful features we might want to use are captialized, and all-capitals
- Naïve Bayes will assume that these two features are independent of one another, but this clearly isn't the case (things that are all-caps must also be capitalized)!!

Using Conditional Independence

- Clearly the naïve Bayes assumption is too restrictive for many types of problems
- One alternative is to estimate the full-joint probability table
- But recall that this takes an exponential amount of space
- Our training probably isn't large enough to estimate every cell in the FJPT, either! It's huge!
- Recall, though, absolute vs. conditional independence:
- Independence: two variables are completely unrelated (NB)
- Conditional independence: two variables are unrelated to each other, but can be related through a common variable
■ Perhaps we can compress the FJPT by using a conditional independence assumption instead?

Bayesian Networks

- Bayes Nets are directed acyclic graphs (DAGs):
- One node for each random variable (e.g. feature)
- A directed edge from cause A to its effect B represents a direct causal relationships (B is conditioned on A)
- Each node is conditionally independent of its nondescendents, given its parents
- A node is conditioned on its parents, and its descendents are conditioned on it
- So if there is evidence for its parents, then it is conditionally independent of anything not dependent on it
- Let the agent learn these probabilities for itself

Bayesian Networks

■ For a set of variables, draw an edge from one variable to one that is conditioned on it

- Represents direct causal relationships between variables
- Support for B due to the evidence of A (e.g. $P(B \mid A))$ is called "diagnostic" or "evidential" support
■ Can be used to reason in different ways:
- Predictive (or causal) reasoning:
- Forward (top-down) from causes to effects
- This is what we typically want for inductive learning
- Can also perform diagnostic reasoning:
- Backward (bottom-up) from effects to causes

Bayesian Networks

The DAG is a compressed representation of the FJPT over all of the variables, e.g. P(Storm, TourGroup,..., ForestFire):

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { Parents } O f\left(x_{i}\right)\right)
$$

Bayesian Networks

- To illustrate how compressed Bayes Nets are relative to the FJPT they represent consider the following structure of Boolean random variables:

To represent these 8 variables in a FJPT would take 2^{8} entries $=\mathbf{2 5 6}$

For a Bayes Net, however, the number of values needed for all the CPTs can be computed as:

$$
\operatorname{size}(B N)=\sum_{v \in B N} 2^{\mid \text {Parentsof }(v) \mid}
$$

$$
=2^{0}+2^{0}+2^{0}+2^{3}+2^{1}+2^{1}+2^{1}+2^{1}=\mathbf{1 9}
$$

Computing Joint Probabilities

■ We want to compute $P(A, B, C, D)$

- e.g. The joint probability of all events A,..,D
- Recall that the net approximates the FJPT:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { Parents } O f\left(x_{i}\right)\right)
$$

- Then the joint probability reduces to:

$$
P(A, B, C, D)=P(A \mid B) \times P(B \mid C, D) \times P(C) \times P(D)
$$

Bayes Net Learning

- Learning probabilities for a Bayesian Network is a straightforward extension of naïve Bayes learning
- Maintain a probability estimate for each entry in the conditional probability table (CPT) for each node
- Update the counts in these tables conditioned on the parent nodes of the variable (not the "class label")
- In the end, divide through to get probabilities
- We also usually want to initialize counts to a small Laplacian value to "smooth" out zero probabilities

Probability Learning Example

- Consider this Bayes Net being trained on the following training set D :

$$
\begin{array}{llll}
x=\text { TFT } & f(x)=\text { T } & x=\text { TFF } & f(x)=\text { T } \\
x=\text { TTF } & f(x)=\text { F } & x=\text { FTF } & f(x)=\text { F } \\
x=\text { TFT } & f(x)=\text { T } & x=\text { FTT } & f(x)=\text { T } \\
x=\text { TTT } & f(x)=\text { T } & x=\text { FTF } & f(x)=\text { F }
\end{array}
$$

$P\left(x_{2}\right)$	0.625
	$P\left(x_{3}\right)$

	x_{2}, x_{3}	$\boldsymbol{r}_{2}, x_{3}$	$x_{2}, \mathcal{V r}_{3}$	$\mathfrak{\sim x}_{2}, \mathfrak{\sim x}_{3}$
$P\left(x_{1}\right.$	0.5	1.0	0.33	1.0

	x_{1}	$\mathcal{\tau}_{1}$
$P(f)$	0.8	0.33

47

Bayes Net Inference

- In logic, we used inference procedures to show that one sentence α logically followed from others (i.e. $K B \vDash \alpha$)
- In probability theory, we also need a Bayesian inference procedure to figure probabilities on an effect E, and is an observed cause/causes C
* Since the network is a compressed FJPT, all the information we need is there somewhere...

Bayes Net Inference

- A nice property about Bayesian networks is that we can calculate the probability of any variable we want!
- Predictive inference is called top-down because we compute $P(E \mid C)$, the probability of an effect E given causal evidence C (its anscestors)
- Diagnostic inference is bottom-up because we wish to compute $P(C \mid E)$, the probability of cause C given evidence for an effect E (its descendent)

General Bayesian Inference

$$
P(M \mid C)=\frac{P(C \mid M) \times P(M)}{P(C \mid M) \times P(M)+P(C \mid \neg M) \times P(\neg M)}
$$

■ The formula above is what we ended up with by using Bayes' Rule and "summing out" over the probability $P(C)$ - This is equivalent to computing the joint probabilities $P(M, C)$ and $P(\neg M, C)$ and normalizing \ldots we already know how to do that!

- It turns out, we can generalize this to an arbitrary number of variables (not just two)
- Given evidence E_{1}, \ldots, E_{n} and query A, we can compute the joint probabilities $P\left(A, E_{1}, \ldots, E_{n}\right)$ and $P\left(\neg A, E_{1}, \ldots, E_{n}\right)$, then normalize... this is identical to $P\left(A \mid E_{1}, \ldots, E_{n}\right)$
* Note: this only works if all other variables in the Bayesian network are observed!

Inference Example

- Most people who are colorblind are male, so the Bayes net structure to the right is reasonable
- Now we want to perform diagnostic

inference to compute the probability of being male given you are colorblind:

$$
\begin{aligned}
P(M \mid C) & =\frac{P(C \mid M) \times P(M)}{P(C)} \\
& =\frac{(0.1)(0.45)}{(0.1)(0.45)+(0.01)(0.55)} \\
& =\mathbf{0 . 8 9}
\end{aligned}
$$

We don't know $P(C)$ exactly, but we can still compute it by "summing out" over M :
$P(C)=P(C \mid M) \times P(M)+$
$P(C \mid \neg M) \times P(\neg M)$

Complex Bayesian Inference

- Another unique feature of Bayes nets:
- If we have missing evidence, we can still perform inference
- The other variables may have evidence, and might not be conditionally independent anymore
■ In general, though, Bayes Net inference is an NP-Hard problem:
- As more variables go unobserved, the closer we get to calculating the FJPT from the network... and this defeats the purpose!
- Deterministic and stochastic inference methods that can to this are discussed in CS-731

Bayes Net Structure Learning

■ As with neural networks, the structure of the Bayesian network is very important

- We need to make sure the directed edges represent dependencies in the real world
* Sometimes we don't know what the real dependencies are... can the agent learn the structure as well??

Bayes Net Structure Learning

- As with almost all of AI, we can formulate this as an optimization problem:
- States: candidate Bayes Net structures
- Actions: add, reverse, or delete and edge
- Objective function: maximize posterior probability of examples in the training set D
- However... as with all optimization problems, we are sensitive to the start state (structure), and run the risk of reaching local optima

Summary

- Bayesian probability theory has many applications in modern AI and machine learning
- The basis for the minimum description length principle, which is a theoretical defense of Occam's razor in learning tasks
■ Can also be used in Bayesian classifiers, which compute the most likely classification of examples, if features are treated as "evidence"
- Continuous features must be descretized
- Not well-suited to regression problems

Summary

- The naïve Bayes classifier is a fast and very popular machine learning algorithm
- Uses the assumption that all features are independent of one another
■ Bayesian Belief Networks (Bayes Nets) are generalizations of naïve Bayes
- Can learn both probabilities and structures for concepts with rich dependencies
- Any variable in the network can be queried
- Not all of the features need to be observed for a probability to be computed

