Lecture 2
Sequence Alignment

Burr Settles
IBS Summer Research Program 2008
bsettles@cs.wisc.edu
www.cs.wisc.edu/~bsettles/ibs08/
Sequence Alignment: Task Definition

• given:
 – a pair of sequences (DNA or protein)
 – a method for scoring a candidate alignment

• do:
 – determine the correspondences between substrings in the sequences such that the similarity score is maximized
Why Do Alignment?

- *homology*: similarity due to descent from a common ancestor
- often we can infer homology from similarity
- thus we can sometimes infer structure/function from sequence similarity
Homology Example: Evolution of the Globins
Homology

• homologous sequences can be divided into two groups
 – *orthologous sequences*: sequences that differ because they are found in different species (e.g. human α-globin and mouse α-globin)
 – *paralogous sequences*: sequences that differ because of a gene duplication event (e.g. human α-globin and human β-globin, various versions of both)
Issues in Sequence Alignment

• the sequences we’re comparing probably differ in length
• there may be only a relatively small region in the sequences that match
• we want to allow partial matches (i.e. some amino acid pairs are more substitutable than others)
• variable length regions may have been inserted/deleted from the common ancestral sequence
Sequence Variations

- sequences may have diverged from a common ancestor through various types of mutations:
 - substitutions (ACGA → AGGA)
 - insertions (ACGA → ACCGGAGA)
 - deletions (ACGGAGA → AGA)
- the latter two will result in gaps in alignments
Insertions, Deletions and Protein Structure

- Why is it that two “similar” sequences may have large insertions/deletions?
 - some insertions and deletions may not significantly affect the structure of a protein

loop structures: insertions/deletions here not so significant
Example Alignment: Globins

- figure at right shows prototypical structure of globins

- figure below shows part of alignment for 8 globins (’s indicate gaps)
Three Key Questions

• Q1: what do we want to align?

• Q2: how do we “score” an alignment?

• Q3: how do we find the “best” alignment?
Q1: What Do We Want to Align?

- **global alignment**: find best match of both sequences in their entirety
- **local alignment**: find best subsequence match
- **semi-global alignment**: find best match without penalizing gaps on the ends of the alignment
The Space of Global Alignments

• some possible global alignments for \textbf{ELV} and \textbf{VIS}

\begin{align*}
\text{ELV} & \quad \text{-ELV} & \quad \text{--ELV} & \quad \text{ELV-} \\
\text{VIS} & \quad \text{VIS-} & \quad \text{VIS--} & \quad \text{-VIS} \\
\text{E-LV} & \quad \text{ELV--} & \quad \text{EL-V} \\
\text{VIS-} & \quad \text{--VIS} & \quad \text{-VIS}
\end{align*}
Q2: How Do We Score Alignments?

- gap penalty function
 - \(w(k) \) indicates cost of a gap of length \(k \)

- substitution matrix
 - \(s(a, b) \) indicates score of aligning character \(a \) with character \(b \)
Linear Gap Penalty Function

- different gap penalty functions require somewhat different dynamic programming algorithms
- the simplest case is when a linear gap function is used

\[w(k) = g \times k \]

where \(g \) is a constant
- we’ll start by considering this case
Scoring an Alignment

• the score of an alignment is the sum of the scores for pairs of aligned characters plus the scores for gaps
• example: given the following alignment

\[
\begin{align*}
\text{VAHV} & \quad \text{---D} \quad \text{---DMPNALSALS} \quad \text{DLHAHKL} \\
\text{AIQLQVTGVVVTDATLKNLGSVHSKG}
\end{align*}
\]

• we would score it by

\[
s(V,A) + s(A,I) + s(H,Q) + s(V,L) + 3g + s(D,G) + 2g \ldots
\]
Q3: How Do We Find the Best Alignment?

- simple approach: compute & score all possible alignments
- but there are

\[
\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{\pi n}}
\]

possible global alignments for 2 sequences of length \(n \)
- e.g. two sequences of length 100 have \(\approx 10^{77} \) possible alignments
Pairwise Alignment Via Dynamic Programming

- **dynamic programming**: solve an instance of a problem by taking advantage of solutions for subparts of the problem
 - reduce problem of best alignment of two sequences to best alignment of all prefixes of the sequences
 - avoid recalculating the scores already considered
 - example: Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34…

- first used in alignment by Needleman & Wunsch, *Journal of Molecular Biology*, 1970
Dynamic Programming Idea

- consider last step in computing alignment of **AAAC** with **AGC**
- three possible options; in each we’ll choose a different pairing for end of alignment, and add this to best alignment of previous characters

```
AAA  C
AG   C
AAA  C
AGC  -

AAA  C
AG   C
AAAC -
AG   C
```

consider best alignment of these prefixes + score of aligning this pair
Dynamic Programming Idea

- given an n-character sequence x, and an m-character sequence y
- construct an $(n+1) \times (m+1)$ matrix F
- $F(i, j) =$ score of the best alignment of $x[1…i]$ with $y[1…j]$

```
A   G   C
A
A
A
A
C
```

score of best alignment of AAA to AG
Needleman-Wunch Algorithm

- one way to specify the DP is in terms of its recurrence relation:

\[
F(i, j) = \max \begin{cases}
F(i-1, j-1) + s(x_i, y_j) \\
F(i-1, j) + g \\
F(i, j-1) + g
\end{cases}
\]
DP Algorithm Sketch: Global Alignment

- initialize first row and column of matrix
- fill in rest of matrix from top to bottom, left to right
- for each $F(i,j)$, save pointer(s) to cell(s) that resulted in best score
- $F(m,n)$ holds the optimal alignment score; trace pointers back from $F(m,n)$ to $F(0,0)$ to recover alignment
Initializing Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>2g</td>
<td>3g</td>
</tr>
<tr>
<td>2g</td>
<td>2g</td>
<td>2g</td>
<td>2g</td>
</tr>
<tr>
<td>3g</td>
<td>3g</td>
<td>3g</td>
<td>3g</td>
</tr>
<tr>
<td>4g</td>
<td>4g</td>
<td>4g</td>
<td>4g</td>
</tr>
</tbody>
</table>
Global Alignment Example

- suppose we choose the following scoring scheme:
 \[s(x_i, y_i) = \]
 \[+1 \quad \text{when} \quad x_i = y_i \]
 \[-1 \quad \text{when} \quad x_i \neq y_i \]
 \[g \text{ (penalty for aligning with a gap) } = -2 \]
Global Alignment Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The scoring function is defined as:

\[
s(x_i, y_i) = \begin{cases}
+1 & \text{when } x_i = y_i \\
-1 & \text{when } x_i \neq y_i
\end{cases}
\]

\[
g = -2
\]
Global Alignment Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>A</td>
<td>-4</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>A</td>
<td>-6</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>C</td>
<td>-8</td>
<td>-5</td>
<td>-1</td>
</tr>
</tbody>
</table>

One optimal alignment:

- x: A A A A C C
- y: A G C C

x: A A A A C C

y: A G C C
Equally Optimal Alignments

- many optimal alignments may exist for a given pair of sequences
- can use preference ordering over paths when doing traceback

- highroad and lowroad alignments show the two most different optimal alignments
Highroad & Lowroad Alignments

Table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>A</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>C</td>
<td>-8</td>
<td>-5</td>
<td>-4</td>
</tr>
</tbody>
</table>

Diagram

- **Highroad Alignment**
 - x: A A A A C C
 - y: A G - C

- **Lowroad Alignment**
 - x: A A A A C C
 - y: - A G C
DP Comments

- works for either DNA or protein sequences, although the substitution matrices used differ
- finds an optimal alignment
- the exact algorithm (and computational complexity) depends on gap penalty function (we’ll come back to this)
Local Alignment

• so far we have discussed *global alignment*, where we are looking for best match between sequences from one end to the other

• more commonly, we will want a *local alignment*, the best match between subsequences of x and y
Local Alignment Motivation

- useful for comparing protein sequences that share a common *motif* (conserved pattern) or *domain* (independently folded unit) but differ elsewhere
- useful for comparing DNA sequences that share a similar *motif* but differ elsewhere
- useful for comparing protein sequences against *genomic DNA sequences* (long stretches of uncharacterized sequence)
- more sensitive when comparing highly diverged sequences
Local Alignment DP Algorithm

- interpretation of array values is somewhat different
 - $F(i, j) =$ score of the best alignment of a suffix of $x[1…i]$ and a suffix of $y[1…j]$
Local Alignment DP Algorithm

- the recurrence relation is slightly different than for global algorithm

\[F(i, j) = \max \begin{cases}
F(i-1, j-1) + s(x_i, y_j) \\
F(i-1, j) + g \\
F(i, j-1) + g \\
0
\end{cases} \]
Local Alignment DP Algorithm

• initialization: first row and first column initialized with 0’s
• traceback:
 – find maximum value of $F(i, j)$; can be anywhere in matrix
 – stop when we get to a cell with value 0
Local Alignment Example

\[
s(x_i, y_i) = \\
+1 \text{ when } x_i = y_i \\
-1 \text{ when } x_i \neq y_i
\]

\[g = -2\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local Alignment Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

x: A A G
y: A A G
More On Gap Penalty Functions

- a gap of length k is more probable than k gaps of length 1
 - a gap may be due to a single mutational event that inserted/deleted a stretch of characters
 - separated gaps are probably due to distinct mutational events
- a linear gap penalty function treats these cases the same
- it is more common to use an affine gap penalty function, which involves two terms:
 - a penalty h associated with opening a gap
 - a smaller penalty g for extending the gap
Gap Penalty Functions

- **linear**

 \[w(k) = gk \]

- **affine**

 \[w(k) = \begin{cases}
 h + gk, & k \geq 1 \\
 0, & k = 0
\end{cases} \]
Dynamic Programming for the Affine Gap Penalty Case

- To do in $O(n^2)$ time, need 3 matrices instead of 1

\begin{align*}
M(i, j) & \quad \text{best score given that } x[i] \text{ is aligned to } y[j] \\
I_x(i, j) & \quad \text{best score given that } x[i] \text{ is aligned to a gap} \\
I_y(i, j) & \quad \text{best score given that } y[j] \text{ is aligned to a gap}
\end{align*}
Global Alignment DP for the
Affine Gap Penalty Case

\[M(i, j) = \max \begin{cases}
M(i - 1, j - 1) + s(x_i, y_j) & \text{match } x_i \text{ with } y_j \\
I_x(i - 1, j - 1) + s(x_i, y_j) & \text{insertion in } x \\
I_y(i - 1, j - 1) + s(x_i, y_j) & \text{insertion in } y
\end{cases} \]

\[I_x(i, j) = \max \begin{cases}
M(i - 1, j) + h + g & \text{open gap in } x \\
I_x(i - 1, j) + g & \text{extend gap in } x
\end{cases} \]

\[I_y(i, j) = \max \begin{cases}
M(i, j - 1) + h + g & \text{open gap in } y \\
I_y(i, j - 1) + g & \text{extend gap in } y
\end{cases} \]
Global Alignment DP for the Affine Gap Penalty Case

- initialization
 \[M(0,0) = 0 \]
 \[I_x(i,0) = h + g \times i \]
 \[I_y(0,j) = h + g \times j \]
 other cells in top row and leftmost column = \(-\infty\)

- traceback
 - start at largest of \(M(m,n), I_x(m,n), I_y(m,n) \)
 - stop at any of \(M(0,0), I_x(0,0), I_y(0,0) \)
 - note that pointers may traverse all three matrices
Global Alignment Example

(Affine Gap Penalty)

\[h = -3, \ g = -1 \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>M : 0</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
</tr>
<tr>
<td>I_x : -3</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
</tr>
<tr>
<td>I_y : -3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-8</td>
</tr>
<tr>
<td>A</td>
<td>-\infty</td>
<td>1</td>
<td>-5</td>
<td>-4</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
<td>-\infty</td>
</tr>
<tr>
<td></td>
<td>-\infty</td>
<td>-\infty</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>A</td>
<td>-\infty</td>
<td>-3</td>
<td>0</td>
<td>-2</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>-3</td>
<td>-9</td>
<td>-8</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td>-\infty</td>
<td>-\infty</td>
<td>-7</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-\infty</td>
<td>-6</td>
<td>-4</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>-4</td>
<td>-4</td>
<td>-6</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>-\infty</td>
<td>-\infty</td>
<td>-10</td>
<td>-8</td>
<td>-5</td>
</tr>
</tbody>
</table>
Global Alignment Example (Continued)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>M : 0</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
</tr>
<tr>
<td>I_x : -3</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
</tr>
<tr>
<td>I_y : -3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-8</td>
</tr>
<tr>
<td>A</td>
<td>-∞</td>
<td>1</td>
<td>-5</td>
<td>-4</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
<td>-∞</td>
</tr>
<tr>
<td></td>
<td>-∞</td>
<td>-∞</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>A</td>
<td>-∞</td>
<td>-3</td>
<td>0</td>
<td>-2</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>-3</td>
<td>-9</td>
<td>-8</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td>-∞</td>
<td>-∞</td>
<td>-7</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-∞</td>
<td>-6</td>
<td>-4</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>-4</td>
<td>-10</td>
<td>-8</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>-∞</td>
<td>-∞</td>
<td>-10</td>
<td>-5</td>
<td>-6</td>
</tr>
</tbody>
</table>

three optimal alignments:
ACACT
AA--T
ACACT
A--AT
ACACT
--AAT
Local Alignment DP for the Affine Gap Penalty Case

\[
M(i, j) = \max \begin{cases}
M(i - 1, j - 1) + s(x_i, y_j) \\
I_x(i - 1, j - 1) + s(x_i, y_j) \\
I_y(i - 1, j - 1) + s(x_i, y_j) \\
0
\end{cases}
\]

\[
I_x(i, j) = \max \begin{cases}
M(i - 1, j) + h + g \\
I_x(i - 1, j) + g
\end{cases}
\]

\[
I_y(i, j) = \max \begin{cases}
M(i, j - 1) + h + g \\
I_y(i, j - 1) + g
\end{cases}
\]
Local Alignment DP for the Affine Gap Penalty Case

- initialization

 \[M(0,0) = 0 \]
 \[M(i,0) = 0 \]
 \[M(0,j) = 0 \]

 cells in top row and leftmost column of \(I_x, I_y = -\infty \)

- traceback

 - start at largest \(M(i,j) \)

 - stop at \(M(i,j) = 0 \)
Gap Penalty Functions

- **linear:** \(w(k) = gk \)

- **affine:**
 \[
 w(k) = \begin{cases}
 h + gk, & k \geq 1 \\
 0, & k = 0
 \end{cases}
 \]

- **concave:** a function for which the following holds for all \(k, l, m \geq 0 \)
 \[
 w(k + m + l) - w(k + m) \leq w(k + l) - w(k)
 \]
 e.g. \(w(k) = h + g \times \log(k) \)
Concave Gap Penalty Functions

\[w(k + m + l) - w(k + m) \leq w(k + l) - w(k) \]
More On Scoring Matches

• so far, we’ve discussed multiple gap penalty functions, but only one match-scoring scheme:

\[s(x_i, y_i) = \]

\[+1 \text{ when } x_i = y_i \]

\[-1 \text{ when } x_i \neq y_i \]

• for protein sequence alignment, some amino acids have similar structures and can be substituted in nature:

aspartic acid (D) glutamic acid (E)
Substitution Matrices

• two popular sets of matrices for protein sequences
 – PAM matrices [Dayhoff et al., 1978]
 – BLOSUM matrices [Henikoff & Henikoff, 1992]

• both try to capture the relative substitutability of amino acid pairs in the context of evolution
BLOSUM62 Matrix

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	X	
A		4																				
R	-1		5																			
N	-2	0	6																			
D	-2	-2	1	6																		
C	0	-3	-3	-3	9																	
Q	-1	1	0	0	-3	5																
E	-1	0	0	2	-4	2	5															
G	0	-2	0	-1	-3	-2	-2	6														
H	-2	0	1	-1	-3	0	0	-2	8													
I	-1	-3	-3	-3	-1	-3	-3	-3	-4	-3												
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4											
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5										
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	1	5									
F	-2	-3	-3	-2	-3	-3	-3	-1	0	0	0	-3	0	6								
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7							
S	1	-1	1	0	-1	0	0	-1	-2	-2	0	-1	-2	-1	4							
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-2	1	1	5						
W	-3	-3	-4	-4	-2	-2	-3	-2	-3	-2	-3	-1	1	4	-3	-2	11					
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	1	3	-3	-2	-2	2	7			
V	0	-3	-3	-3	-1	-2	-2	-3	3	1	-2	1	-1	-2	-2	0	-3	1	4			
X	0	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	2	-1	-1	-1						

Positive for chemically similar substitution

Common amino acids have low weights

Rare amino acids have high weights
Heuristic Methods

• the algorithms we learned today take $O(nm)$ time to align sequences, which is too slow for searching large databases
 – imagine an internet search engine, but where queries and results are protein sequences

• heuristic methods do fast approximation to dynamic programming
 – example: BLAST [Altschul et al., 1990; Altschul et al., 1997]
 – break sequence into small (e.g. 3 base pair) “words”
 – scan database for word matches
 – extend all matches to seek high-scoring alignments
 – tradeoff: sensitivity for speed
Multiple Sequence Alignment

- we’ve only discussed aligning 2 sequences, but we may want to do more
- discover common motifs in a set of sequences (e.g. DNA sequences that bind the same protein)
- characterize a set of sequences (e.g. a protein family)
- much more complex

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences
Next Time…

• basic molecular biology
• sequence alignment
• **probabilistic sequence models**
• gene expression analysis
• protein structure prediction
 – by Ameet Soni