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Probability 101 
•  frequentist interpretation: the probability of an event is the

 proportion of the time events of same kind will occur in the
 long run 

•  examples 
–  the probability my flight to Chicago will be on time 
–  the probability this ticket will win the lottery 
–  the probability it will rain tomorrow 

•  always a number in the interval [0,1] 
0 means “never occurs” 
1 means “always occurs” 



Sample Spaces 
•  sample space: a set of possible outcomes for some event 

•  examples 
–  flight to Chicago: {on time, late} 
–  lottery:{ticket 1 wins, ticket 2 wins,…,ticket n wins} 
–  weather tomorrow:  

{rain, not rain} or 
{sun, rain, snow} or 
{sun, clouds, rain, snow, sleet} or… 



Random Variables 
•  random variable: a variable representing the outcome of an

 experiment 
•  example: 

–  X represents the outcome of my flight to Chicago 
–  we write the probability of my flight being on time as  

 Pr(X = on-time) 
–  or when it’s clear which variable we’re referring to, we

 may use the shorthand Pr(on-time) 



Notation 
•  uppercase letters and capitalized words denote random

 variables 
•  lowercase letters and uncapitalized words denote values 
•  we’ll denote a particular value for a variable as follows 

•  we’ll also use the shorthand form 

•  for Boolean random variables, we’ll use the shorthand 

)Pr( trueFever =)Pr( xX =

)Pr(for      )Pr( xXx =

)Pr(for    )Pr( trueFeverfever =
)Pr(for    )Pr( falseFeverfever =¬



Probability Distributions 

•  if X is a random variable, the function given by Pr(X = x) for
 each x is the probability distribution of X 

•  requirements: 
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Joint Distributions 
•  joint probability distribution: the function given by     

 Pr(X = x, Y = y) 
•  read “X equals x and Y equals y” 
•   example 

x, y Pr(X = x, Y = y) 
sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

probability that it’s sunny  
and my flight is on time 



Marginal Distributions 
•  the marginal distribution of X is defined by 

“the distribution of X ignoring other variables” 

•  this definition generalizes to more than two variables, e.g. 
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Marginal Distribution Example 

x, y Pr(X = x, Y = y) 
sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x Pr(X = x) 
sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distribution for X 



Conditional Distributions 

•  the conditional distribution of X given Y is defined as:  

 “the distribution of X given that we know Y ” 
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Conditional Distribution Example 

x, y Pr(X = x, Y = y) 
sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x  Pr(X = x|Y=on-time) 
sun 0.20/0.45 = 0.444 

rain 0.20/0.45 = 0.444 

snow  0.05/0.45 = 0.111 

joint distribution 
conditional distribution for X  
given Y=on-time 



Independence 

•  two random variables, X and Y, are independent if  

yxyxyx  and  allfor     )Pr()Pr(),Pr( ×=



Independence Example #1 

x, y Pr(X = x, Y = y) 

sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x Pr(X = x) 
sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distributions 

y Pr(Y = y) 
on-time 0.45 

late 0.55 

Are X and Y independent here? NO. 



Independence Example #2 

x, y Pr(X = x, Y = y) 

sun, fly-United 0.27 

rain, fly-United 0.45 

snow, fly-United 0.18 

sun, fly-Northwest 0.03 

rain, fly-Northwest 0.05 

snow, fly-Northwest 0.02 

x Pr(X = x) 
sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distributions 

y Pr(Y = y) 
fly-United 0.9 

fly-Northwest 0.1 

Are X and Y independent here?   YES. 



Conditional Independence 

 )|Pr(),|Pr( ZXZYX =

•  two random variables X and Y are conditionally independent 
 given Z if  

“once you know the value of Z, knowing Y doesn’t tell you
 anything about X ” 

•  alternatively 

zyxzyzxzyx ,, allfor    )|Pr( )|Pr()|,Pr( ×=



Conditional Independence Example 
Flu Fever Vomit Pr 
true true true 0.04 
true true false 0.04 
true false true 0.01 
true false false 0.01 
false true true 0.009 
false true false 0.081 
false false true 0.081 
false false false 0.729 

)Pr()Pr(),Pr(  e.g. vomitfevervomitfever ×≠Fever and Vomit are not independent: 
Fever and Vomit are conditionally independent given Flu: 

etc.
)|Pr()|Pr()|,Pr(

)|Pr()|Pr()|,Pr(
fluvomitflufeverfluvomitfever

fluvomitflufeverfluvomitfever
¬×¬=¬

×=



Bayes Theorem 

•  this theorem is extremely useful 
•  there are many cases when it is hard to estimate Pr(x | y)

 directly, but it’s not too hard to estimate Pr(y | x) and Pr(x) 
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Bayes Theorem Example 
•  MDs usually aren’t good at estimating                

 Pr(Disorder | Symptom) 
•  they’re usually better at estimating Pr(Symptom | Disorder)  
•  if we can estimate Pr(fever | flu) and Pr(flu) we can use

 Bayes’ Theorem to do diagnosis 
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Expected Values 
•  the expected value of a random variable that takes on

 numerical values is defined as: 

this is the same thing as the mean 

•  we can also talk about the expected value of a function of a
 random variable 
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Expected Value Example 

[ ]( )
     (winning) Pr(winning) (losing) Pr(losing)
     ($100 $1) 0.001 $1 0.999
     $0.90

E gain Lottery
gain gain

=

+ =

− × − × =

−

•  Suppose each lottery ticket costs $1 and the winning ticket
 pays out $100.  The probability that a particular ticket is
 the winning ticket is 0.001. 



Probabilistic Sequence Models in
 Computational Biology 

•  there are many cases in which we would like to represent
 the statistical regularities of some class of sequences 
–  genes 
–  various regulatory sites in DNA (e.g. where RNA

 polymerase and transcription factors bind) 
–  proteins in a given family 



Probability Of A Sequence 
•  given some sequence x of length L, we want to compute its

 probability (likelihood) 
•  one way to compute this is the joint probability of all the

 characters in the sequence: 

€ 

Pr(x) = Pr(x1,x2,...,xL )
        = Pr(x1)Pr(x2 | x1)...Pr(xL | x1,...,xL−1)

€ 

Pr(cggt) =  Pr(c)Pr(g | c)Pr(g | cg)Pr (t|cgg)
•  for example: 

•  problem: biological sequences tend to be very long; that’s
 too many conditional probabilities to estimate! 



The Markov Assumption 
•  trick: assume the probability of a character is only

 dependent on the previous character, not the entire prefix 

€ 

Pr(x) = Pr(x1,x2,...,xL )
        ≈ Pr(x1)Pr(x2 | x1)...Pr(xL−1 | xL−2)Pr(xL|xL−1)

        = Pr(x1) Pr(xi
i= 2

L

∏ | xi−1)

€ 

Pr(cggt) =  Pr(c)Pr(g | c)Pr(g | g)Pr (t|g)
•  now our probabilities are easier to estimate: 

•  this trick is called the Markov assumption, and a statistical
 process that uses it is called a Markov chain 
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Markov Chain Models 

begin end 

A 

T C 

G 

•  can also have an end state; allows the model to represent 
–  a distribution over sequences of different lengths 
–  preferences for ending sequences with certain symbols 



Markov Chain Models 
•  a Markov chain model is defined by 

–  a set of states 
•  some states emit symbols 
•  other states (e.g. the begin and end states) are silent 

–  a set of transitions with associated probabilities 
•  the transitions emanating from a given state define a

 distribution over the possible next states 



Markov Chain Notation 
•  the transition parameters can be denoted by             where 

•  similarly we can denote the probability of a sequence x as 

where          represents the transition from the begin state  
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The Probability of a Sequence for
 a Given Markov Chain Model 

end 

A 

T C 

G 

begin 

€ 

Pr(cggt) =  Pr(c)Pr(g | c)Pr(g | g)Pr (t|g)Pr(end | t)



Estimating the Model Parameters 
•  given some data (e.g. a set of sequences), how can we

 determine the probability parameters of our model? 

•  one approach: maximum likelihood estimation 
–  given a set of data D 
–  set the parameters θ to maximize 

–  i.e. make the data D look as likely as possible under the
 model θ 

)|Pr( θD



Maximum Likelihood Estimation 
•  suppose we want to estimate the parameters: 

  Pr(a), Pr(c), Pr(g), Pr(t) 
•  and we’re given the sequences 

accgcgctta 
gcttagtgac 
tagccgttac 

•  then the maximum likelihood estimates are 
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Maximum Likelihood Estimation 
•  suppose instead we saw the following sequences 

gccgcgcttg 
gcttggtggc 
tggccgttgc 

•  then the maximum likelihood estimates are 
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A Bayesian Approach 
•  instead of estimating parameters strictly from the data, we

 could start with some prior belief for each 
•  for example, we could use Laplace estimates 

•  where       represents the number of occurrences of
 character i 
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•  using Laplace estimates with the sequences 
gccgcgcttg 
gcttggtggc 
tggccgttgc 
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A Bayesian Approach 
•  a more general form: m-estimates 
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•  with m=8 and uniform priors 
gccgcgcttg 
gcttggtggc 
tggccgttgc 

number of  “virtual” instances 

prior probability of a 
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Estimation for 1st Order Probabilities 
•  to estimate a 1st order parameter (where each character

 depends on 1 previous character), such as Pr(c|g), we
 count the number of times that c follows the history g in
 our given sequences 

•  using Laplace estimates with the sequences: 

gccgcgcttg 
gcttggtggc 
tggccgttgc 

412
12)|Pr(

412
13)|Pr(

412
17)|Pr(

412
10)|Pr(

+

+
=

+

+
=

+

+
=

+

+
=

gt

gg

gc

ga



47
10)|Pr(

+

+
=ca



Higher Order Markov Chains 
•  the Markov property specifies that the probability of a state

 depends only on the probability of the previous state 
•  but we can build more “memory” into our states by using a

 higher order Markov model 
•  in an nth order Markov model 

),...,|Pr(),...,,|Pr( 1121 niiiiii xxxxxxx −−−− =



Selecting the Order of a  
Markov Chain Model 

•  higher order models remember more “history” 
•  additional history can have predictive value 
•  example: 

–  predict the next word in this sentence fragment  
“…finish _____”  (up, it, first, last, …?) 

–  now predict it given more history                             
“nice guys finish _____” 



Selecting the Order of a  
Markov Chain Model 

•  but the number of parameters we need to estimate grows
 exponentially with the order 
–  for modeling DNA we need                 parameters for an

 nth order model 

•  the higher the order, the less reliable we can expect our
 parameter estimates to be 
–  estimating the parameters of a 2nd order Markov chain

 from the complete genome of E. Coli, we’d see each
 “word” 72,000+ times on average 

–  estimating the parameters of an 8th order chain, we’d
 see each “word” about 5 times on average 

)4( 1+nO



Higher Order Markov Chains 
•  an nth order Markov chain over some alphabet         is

 equivalent to a first order Markov chain over the alphabet        
 of n-tuples 

•  example: a 2nd order Markov model for DNA can be
 treated as a 1st order Markov model over alphabet 
    AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT,

 TA, TC, TG, TT 

•  caveat: we process a sequence one character at a time 
A C G G T 

A

nA

AC GG CG GT 



A Fifth Order Markov Chain 

GCTAC 

AAAAA 

TTTTT 

CTACG 

CTACA 
CTACC 

CTACT 

Pr(A | GCTAC) 
begin 

Pr(GCTAC) 

Pr(C | GCTAC) 



A Fifth Order Markov Chain 

GCTAC 

AAAAA 

CTACG 

CTACA 
CTACC 

CTACT 

Pr(A | GCTAC) 
begin 

Pr(GCTAC) 

)|Pr()Pr )Pr( gctaca(gctacgctaca =



Example Application 
•  language classification 
•  given: 

–  passages of text from different languages 
–  e.g. newspaper articles written in English, French,

 Spanish, German, and Italian 
•  do: 

–  learn a Markov chain model for each language 
–  use these models to determine the most likely language

 for some new passage of text 

•  http://pages.cs.wisc.edu/~bsettles/webtoys/polyglot/ 



Example Biological Application 
•  CpG islands 

–  CG dinucleotides are rarer in eukaryotic genomes than
 expected given the marginal probabilities of C and G 

–  but the regions upstream of genes are richer in CG
 dinucleotides than elsewhere – CpG islands 

–  useful evidence for finding genes 



Example Biological Application 
•  given sequences from CpG islands, and sequences from

 other regions, we can construct 
–  a model to represent CpG islands 
–  a null model to represent the other regions 

•  can then score a test sequence by: 

)model null|Pr(
)modelCpG |Pr(log)(

x
xxscore =



Example Biological Application 

+ a c g t 
a .18 .27 .43 .12 
c .17 .37 .27 .19 
g .16 .34 .38 .12 
t .08 .36 .38 .18 

- a c g t 
a .30 .21 .28 .21 
c .32 .30 .08 .30 
g .25 .24 .30 .21 
t .18 .24 .29 .29 

•  parameters estimated for CpG and null models 
–  human sequences containing 48 CpG islands 
–  60,000 nucleotides 

Pr( | )c a

CpG null 



Example Biological Application 
•  light bars represent

 negative sequences 
•  dark bars represent

 positive sequences 
•  the actual figure here is

 not from a CpG island
 discrimination task,
 however 

Figure from A. Krogh, “An Introduction to Hidden Markov Models for Biological Sequences” in Computational Methods
 in Molecular Biology, Salzberg et al. editors, 1998. 



Example Biological Application 

)|Pr(
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•  why use 

•  Bayes’ rule tells us 

•  if we’re not taking into account prior probabilities of two
 classes (                and               ) then we just need to
 compare                     and 

)Pr(CpG
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Hidden Markov Models 

A 

T C 

G A 

T C 

G 

•  given say a T in our input sequence, which state emitted it? 



Hidden State 
•  we’ll distinguish between the observed parts of a problem

 and the hidden parts 
•  in the Markov models we’ve considered previously, it is

 clear which state accounts for each part of the observed
 sequence 

•  in this example, there are multiple states that could account
 for each part of the observed sequence 
–  this is the hidden part of the problem 
–  hidden Markov models (HMMs) are Markov chain

 models with hidden state 



Simple HMM for Gene Finding 
Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences 
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HMM Applications 
•  classification 

–  given: a set of models representing different sequence classes (e.g.
 protein families), and a test sequence 

–  do: determine which model/class best explains the sequence 
–  use Forward algorithm to calculate probability of sequence under

 each each model 

•  segmentation 
–  given: a model representing different sequence classes,                              

 a test sequence 
–  do: segment the sequence into subsequences, predicting the state

 labels for each subsequence 
–  use Viterbi algorithm to find most probable path for sequence 



Example: Protein Classification 
given: amino-acid sequence of a protein 
do: predict the family to which it belongs 

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH 



Alignment of Globin Family Proteins 

  The sequences 
in a family may 
vary in length 

  Some positions 
are more 
conserved than 
others 



Profile HMMs 

i 2 i 3 i 1 i 0 

d 1 d 2 d 3 

m 1 m 3 m 2 start end Match states represent 
key conserved positions 

Insert states account 
for extra characters 
in some sequences 

Delete states are silent; they 
Account for characters missing 
in some sequences 

•  profile HMMs are commonly used to model
 families of sequences 

A  0.01 
R  0.12 
D  0.04 
N  0.29 
C  0.01 
E  0.03 
Q  0.02 
G  0.01 Insert and match states have 

emission distributions over 
sequence characters 



Profile HMM Accuracy 

Figure from Jaakola et al., ISMB 1999 

BLAST-based  
methods 

profile HMM-based  
methods 

•  classifying 2447proteins into 33 families 
•  x-axis represents the median # of negative sequences that score as high

 as a positive sequence for a given family’s model 



Example: Gene Finding 
given: an uncharacterized DNA sequence 
do: locate the genes in the sequence, including the

 coordinates of individual exons and introns 

image from the UCSC Genome Browser 
http://genome.ucsc.edu/ 



Eukaryotic Gene Structure 



Parsing a DNA Sequence 

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA 

The Viterbi path
 represents a parse of a
 given sequence,
 predicting exons,
 introns, etc 



Example: Information Extraction
 From Biomedical Literature 

given: a passage of text from a scientific article 
do: identify mentions of genes or proteins, annotate the

 article with this information in a database 



Next Time… 

•  basic molecular biology 
•  sequence alignment 
•  probabilistic sequence models 
•  gene expression analysis 
•  protein structure prediction 

–  by Ameet Soni 


