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Probability 101

| frequentistinterpretation: the probability of an event is the
proportion of the time events of same kind will occur in the
long run

I examples
—I'the probability my flight to Chicago will be on time
—! the probability this ticket will win the lottery
—!the probability it will rain tomorrow

! always a number 1n the interval [0,]1]
0 means “never occurs”
1 means “always occurs”



Sample Spaces

! sample space set of possible outcomes for some event

| examples
—!'flight to Chicago: {on time, late}
—I'ottery: {ticket 1 wins, ticket 2 wins,...,ticket N wins}
—!I'weather tomorrow:
{rain, not rain} or
{sun, rain, Snow} or

{sun, clouds, rain, snow, sleet} or...



Random Variables

! random variablea variable representing the outcome of an
experiment

! example:
—I Xrepresents the outcome of my flight to Chicago

—!'we write the probability of my flight being on time as
Pr(X = on-time)

—!l'or when 1t’s clear which variable we’re referring to, we
may use the shorthand Pr(on-time)



Notation

uppercase letters and capitalized words denote random
variables

I lowercase letters and uncapitalized words denote values
I we’ll denote a particular value for a variable as follows

Pr(X=x) Pr(Fever =true)

we’ll also use the shorthand form

Pr(X) for Pr(X =X)

I for Boolean random variables, we’ll use the shorthand

Pr(fevern for Pr(Fever=true)
Pr(Afevel) for Pr(Fever= false)



Probability Distributions

el 1f X'1s a random variable, the function given by Pr(X = X) for
each X is the probability distributionof X

! requirements:
Pr(x)! O foreveryx

| Pr(x) =1

X

0.3
0.2
0.1




Joint Distributions

! joint probability distribution the function given by
Pr( X=X, Y=Y)

! read “Xequals X and Y equals y”

ol example
X,y Pr(X=Xx, Y=Y)
sun, on-time 020 probability that it’s sunny
' . and my flight is on time
rain, on-time 0.20
snow, on-time 0.05
sun, late 0.10
rain, late 0.30
snow, late 0.15




Marginal Distributions

! the marginal distributionof X is defined by
Pr(x)=1 Pr(xy)

y

“the distribution of X ignoring other variables™

ol this definition generalizes to more than two variables, e.g.

Prey=1 1 Pr(xy,2)

Yy z



Marginal Distribution Example

joint distribution marginal distribution for X
X, Y Pr(X=X, Y=Y) X Pr(X=X)

sun, on-time 0.20 sun 03

rain, on-time 0.20 rain 0.5

Snow, on-time 0.05 SNOW 0.2

sun, late 0.10

rain, late 0.30

snow, late 0.15




Conditional Distributions

! the conditional distributionof X given Y is defined as:
Pr(X =x,Y =vy)

Pr(X =x|Y=y)= P(Y = y)

“the distribution of X given that we know Y ”



Conditional Distribution Example

conditional distribution for X

joint distribution given Y=on-time
X,y Pr(X=X, Y=Y) X Pr(X = X|Y=0n-time)
sun, on-time 0.20 sun 0.20/0.45 = 0.444
rain, on-time 0.20 rain 0.20/0.45 = 0.444
snow, on-time 0.05 Snow 0.05/0.45=0.111
sun, late 0.10
rain, late 0.30
snow, late 0.15




Independence

! two random variables, X and Y, are independenif

Pr(X,y) =Pr(X)! Pr(y) forallXxandy



Independence Example #1

joint distribution marginal distributions

X, Y Pr(X=X, Y=Y) X Pr(X = X)
sun, on-time 0.20 sun 0.3
rain, on-time 0.20 rain 0.5
sSnow, on-time 0.05 SNOW 0.2
sun, late 0.10 y Pr(Y =)
rain, late 0.30 on-time 0.45
snow, late 0.15 late 0.55

Are X and Y independent here? NO.



Independence Example #2

joint distribution marginal distributions

X, Y Pr(X=Xx,Y=Yy) X Pr(X = X)
sun, fly-United 0.27 sun 0.3
rain, fly-United 0.45 rain 0.5
snow, fly-United 0.18 SNOW 0.2
sun, fly-Northwest 0.03 y Pr(Y =)
rain, fly-Northwest 0.05 fly-United 0.9
snow, fly-Northwest 0.02 fly-Northwest 01

Are X and Y independent here? YES.



Conditional Independence

! two random variables X and Y are conditionally independent
given Z if

Pr(X |Y,Z) = Pr(X | Z)

“once you know the value of Z, knowing Y doesn’t tell you
anything about X ”

ol alternatively

Pr(x,y|z) =Pr(x|2)! Pr(y|z) forallx,y,z



Conditional Independence Example

Flu Fever Vomit Pr
true true true 0.04
true true false 0.04
true false true 0.01
true false false 0.01
false true true 0.009
false true false 0.081
false false true 0.081
false false false 0.729

Fever and Vomit are not independent: e.qg. Pr(fever,vomit)" Pr(fever)! Pr(vomit)

Fever and Vomit are conditionally independent given Flu:
Pr(fever,vomit | flu) = Pr(fever | flu)! Pr(vomit | flu)
Pr(fever,vomit | Aflu) = Pr(fever | Aflu)! Pr(vomit | Aflu)
etc.



Bayes Theorem

Pr(y | x) Prix) _  Pr(y|x)Pr(x)
Pr(y) | Pr(y|x)Pr(x)

Prix|y) =

el this theorem 1s extremely useful

el there are many cases when it 1s hard to estimate Pr(X | y)
directly, but 1t’s not too hard to estimate Pr(y | X) and Pr(X)



Bayes Theorem Example

! MDs usually aren’t good at estimating
Pr(Disorder| Symptom
| they’re usually better at estimating Pr(Symptom Disorder)

ol if we can estimate Pr(fever| flu) and Pr(flu) we can use
Bayes’ Theorem to do diagnosis

Pr(fever| flu) Pr(flu)

Pr(flu| fevern = ~ -
Pr(fever| flu) Pr(flu) + Pr(fever| Aflu) Pr(Afiu)



Expected Values

| the expected valuef a random variable that takes on
numerical values 1s defined as:

E[X = 3 xxPr()

this 1s the same thing as the mean

! we can also talk about the expected value of a function of a
random variable

Elg(x)]= ¥ g(x)x Pr(x)



Expected Value Example

I Suppose each lottery ticket costs $1 and the winning ticket
pays out $100. The probability that a particular ticket is
the winning ticket is 0.001.

E[gain(Lottery)]=
gain(winning) Pr(winning) + gain(losing) Pr(losing) =
($100! $1)" 0.001! $1" 0.999 =
1 $0.90



Probabilistic Sequence Models 1in
Computational Biology

ol there are many cases in which we would like to represent
the statistical regularities of some class of sequences

—l genes
—I'various regulatory sites in DNA (e.g. where RNA
polymerase and transcription factors bind)

—!'proteins 1n a given family



Probability Of A Sequence

! given some sequence X of length L, we want to compute its
probability (likelithood)

I one way to compute this is the joint probability of all the
characters in the sequence:

Pr(x) = Pr(x,x,,...,x,)
= Pr(x,)Pr(x, | x,)...Pree, |x,..00x, ;)

! for example:
Pricggy) = Pr(c)Pr(g|c)Pr(g|cg) Pr(tlcgg

| problem biological sequences tend to be very long; that’s
too many conditional probabilities to estimate!



The Markov Assumption

ol trick: assume the probability of a character 1s only
dependent on the previous charactemot the entire prefix

Pr(X) = Pr(X,,X,,...,X_ )
" Pr(X) Pr(X, 1X))...Pr(X_y 1 X ) Pr(X X 4)

L
=Pr(x)P Pr(x; | X,
i=2
I now our probabilities are easier to estimate:

Prcggy) = Pr(c)Pr(g|c)Pr(g|g)Pr(t|g)

o| this trick is called the Markov assumptiqrand a statistical
process that uses it is called a Markov chain



Markov Chain Models

begin

transition probabilities
Pr(xi =a| X1 = g)=0.16

Pr(xi =C | Xiq= g) =0.34

/ Pr(x =g[x=9)=0.38
transitio Pr(x =t|x_ =9g)=0.12




Markov Chain Models

| can also have an endstate; allows the model to represent
—!'a distribution over sequences of different lengths
—!'preferences for ending sequences with certain symbols

begin end




Markov Chain Models

! a Markov chain model 1s defined by
—l'a set of states
I some states emitsymbols
ol other states (e.g. the beginand endstates) are silent
—l'a set of transitions with associated probabilities

el the transitions emanating from a given state define a
distribution over the possible next states



Markov Chain Notation

! the transition parameters can be denoted by &, , where

aXi!lxi = Pr(xl |Xi!1)
! similarly we can denote the probability of a sequence X as

%Xllja_lxi _ Pr(xl)]j Pr(x | %)

where @, represents the transition from the beginstate



The Probability of a Sequence for
a Given Markov Chain Model

Pr(cggt)= Pr(c)Pr(glc)Pr(glg)Pr(t/g)Pr(end |?)



Estimating the Model Parameters

! given some data (e.g. a set of sequences), how can we
determine the probability parameters of our model?

! one approach: maximum likelihood estimation
—l'given a set of data D
—!'set the parameters ! to maximize

Pr(D |0)

—I1.e. make the data D look as likely as possible under the
model !




Maximum Likelithood Estimation

! suppose we want to estimate the parameters:
Pr(a), Pr(c), Pr(g), Pr(t)

! and we’re given the sequences
accgcgctta N
gcttagtgac Pr@) =+
tagccgttac

i
| then the maximum likelihood estimates are

6 7
Pr(a)=—=0.2 Pr(g)=—=0.233
@=3 (9)=7;

9 8
Pr(c)=—=0.3 Pr(t)=—
© =35 O=35

=0.267



Maximum Likelithood Estimation

! suppose instead we saw the following sequences
gcecgegcettg
gcttggtggc

tggccgttgc
| then the maximum likelihood estimates are

0) 13
(@) 30 g) 30
9 8
Pr(c) = — = 0.3 Pr() = — = 0.267
30 30

do we really want to set this to 0?



A Bayesian Approach

! 1nstead of estimating parameters strictly from the data, we
could start with some prior belief for each

ol for example, we could use Laplace estimates

n, +1

Pr(a) = | (n +1) pseudocount

|
o) where Ik represents the number of occurrences of

character |

! using Laplace estimates with the sequences

gocgegettg Pr(q) =

gettggtggc 34
9+1

tggecgttgc Pr(c) =

34



A Bayesian Approach

! a more general form: m-estimates

N, + MmN
& ni+m

O0i " X~ number of “virtual” instances

prior probability of a

Pr(a) =

!l with m=8 and uniform priors

gecegegcettg
gcttggtooc PF(C) _ 9+ 0.25x8 B 11

tggeegttgce 30+8 53




Estimation for 15 Order Probabilities

el to estimate a 1% order parameter (where each character
depends on 1 previous character), such as Pr(cC|g), we
count the number of times that C follows the history g in
our given sequences

! using Laplace estimates with the sequences:

geegegettg 0+1 0+1
Pr(a| Q) = Pria|c) =
gottggtgge @lo=pny Pleld=97
tggcegttgc _T+1 !
Pr(C =
(c19) 12+4
3+1
Pr =
(919)=
2+1
Pr(t|g) =

12+4



Higher Order Markov Chains

! the Markov property specifies that the probability of a state
depends only on the probability of the previous state

! but we can build more “memory” into our states by using a
higher order Markov model

| 1n an Nth order Markov model

Prix, [x, 0,5 5,-0x) = Prie | x50 ,)



Selecting the Order of a
Markov Chain Model

! higher order models remember more “history”
ol additional history can have predictive value
I example:

—I'predict the next word in this sentence fragment
“...finish ” (up, it, first, last, ...?)

—I'now predict it given more history
“nice guys finish 7



Selecting the Order of a
Markov Chain Model

! but the number of parameters we need to estimate grows
exponentially with the order

—! for modeling DNA we need O(4™") parameters for an
nth order model

ol the higher the order, the less reliable we can expect our
parameter estimates to be

—! estimating the parameters of a 2" order Markov chain
from the complete genome of E. Coli, we’d see each
“word” 72,000+ times on average

—! estimating the parameters of an 8™ order chain, we’d
see each “word” about 5 times on average



Higher Order Markov Chains

ol an nth order Markov chain over some alphabet A is
equivalent to a first order Markov chain over the alphabet
of n-tuples A’

| example: a 2" order Markov model for DNA can be
treated as a 1* order Markov model over alphabet

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT,
TA, TC, TG, TT

] caveat: we process a sequence one character at a time
ACGGT

AC|—|CG |GG || GT




A Fifth Order Markov Chain

AAAAA

CTACA
CTACC Pr(A | GCTAC)

begin CTACG

CTACT Pr(C | GCTAC)

Pr(GCTAC)

GCTAC

TTTTT




A Fifth Order Markov Chain

AAAAA

CTACA
CTACC Pr(A | GCTAC)

begin CTACG

CTACT

Pr(GCTAC)

GCTAC

Pr(gctacg = Pr(gctag Pr(a| gctag



Example Application

! language classification
ol griven:
—I'passages of text from different languages

—l'e.g. newspaper articles written in English, French,
Spanish, German, and Italian

! do:
—!learn a Markov chain model for each language

—l'use these models to determine the most likely language
for some new passage of text

! http://pages.cs.wisc.edu/~bsettles/webtoys/polyglot/



Example Biological Application

ol CpG 1slands
—!I'CG dinucleotides are rarer in eukaryotic genomes than
expected given the marginal probabilities of C and G

—!'but the regions upstream of genes are richer in CG
dinucleotides than elsewhere — CpG islands

—luseful evidence for finding genes



Example Biological Application

! given sequences from CpG i1slands, and sequences from
other regions, we can construct

—I'a model to represent CpG 1slands
—l'a null modelto represent the other regions

! can then score a test sequence by:

Pr(x|CpGmode)
Pr(x| null mode)

scord X) =log



Example Biological Application

! parameters estimated for CpG and null models

—I'human sequences containing 48 CpG islands

—160,000 nucleotides
Pr(c|a)

a

A7

C

g

37

18 43

27

16

34

38

—~ Q O 9 4+

.08

36

38

(] L] L] [ ]
A Y [ Y [ BY A Y
F F F r

CpG

~+ Q O D

.30

21

28

21

32

30

.08

.30

25

24

.30

21

18

24

29

29

null




Example Biological Application

0 — — T ! light bars represent
negative sequences

40 | 41 ! dark bars represent
o positive sequences
§ 30 L | ¢l the actual figure here is
3 not from a CpG island
5 discrimination task,
g 20 7 however
5
cC

10 | -

o Lo

40 20 0 20 40 60 80 100 120 140
log-odds

Figure from A. Krogh, “An Introduction to Hidden Markov Models for Biological Sequences” in Computational Methods
in Molecular Biology, Salzberg et al. editors, 1998.



Example Biological Application

! why use

Pr(x | CpG)
Pr(x | null)

score(x) =log

! Bayes’ rule tells us
Pr(x | CpG)Pr(CpG)
Pr(x)
Pr(x | null) Pr(null)
Pr(X)

! 1f we’re not taking into account prior probabilities of two

classes (Pr(CpG) and Pr(null) ) then we just need to
compare Pr(x |CpG) and Pr(x |null)

Pr(CpG | x) =

Pr(null | X) =



Hidden Markov Models

! given say a T in our input sequence, which state emitted it?



Hidden State

I we’ll distinguish between the observegarts of a problem
and the hiddenparts

! 1n the Markov models we’ve considered previously, it 1s
clear which state accounts for each part of the observed
sequence

! 1n this example, there are multiple states that could account
for each part of the observed sequence

—! this 1s the hiddenpart of the problem

—!'hidden Markov modeldMMs) are Markov chain
models with hidden state



Simple HMM for Gene Finding

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences
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HMM Applications

| classification

—! given a set of models representing different sequence classes (e.g.
protein families), and a test sequence

—! do: determine which model/class best explains the sequence

—!' use Forward algorithm to calculate probability of sequence under
each each model

! segmentation

—! given a model representing different sequence classes,
a test sequence

—! do: segment the sequence into subsequences, predicting the state
labels for each subsequence

—! use Viterbi algorithm to find most probable path for sequence



Example: Protein Classification

given amino-acid sequence of a protein
do: predict the family to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH

scop Root
//‘7-\
a B o/ o+B Class
Rossmann fold Flavodoxin-like /B barrel Fold IM barrel  Sandwich

=

TIM Trp biosynthesis ~ Glycosyltransferase RuBisCo (C) Superfamily

B-Galactosidase (3) B-Glucanase  a-Amylase (N) p-Amylase  Family

Acid a-amylase Taka-amylase  Cyclodextrin glycosyltransferase Domain R
| /T~ — [ T flavodoxin B-lactarmase
2aaa 6taa  2taa lcdg lcgt 1cgu Ref/ PDB {(4¥xn) {TmblA1}



Alignment ot Globin Family Pr

The sequences
In a family may
vary in length

SeaHb
AscHb

t

AAWGRVGA----HAGEY
HVWARVEA----DVAGH
SSWEEFNA----NIPKH
K TWHQLMR -~ -NKTS F
SLEHAKVDTSNEARQ

B

b

oteins

' P

LSFPTTKTYEPHF
VVYPWTQRFFESF
KSHPETLEKFDRF
EIAPAAKDLE SFL
AKHPEVRPLF ---
AYDP SAQNKFPQM
ENYPPLRKYFKS~

Eryt. ASFDEVKG====F=== KADP STMAKF TQF

Some positions ‘ ' totob

Hb_a =DL-==-- KVADALTNAVAHVDD----- SDLHAHE-LRVD
are more Hb_b GDLSTPDAVMGNPKVEANGKEVLGAFSDGLARLDN-~~~~ LKGTFATRSELHCDE-LHVD
Mb_SW KHLKTEAEMEASEDLEKHGVIVLTALGAILKKKGH--~~~ HEAELKPBAQSHATE-HKIP
LegHb KGTSE--VPQNNPELQAMAGEVFKLVYEAATIQLEVTGVVVIDATLKNNEGSVHVSE-G-VA
Conserved than BacHb ========-s-s-eca-QPKALAMTVLAAAQNIEN--LPAILPAVKKEAVKHCQA-G-VA
SeaHb AGMSA-SQLRSSROMOANMTRVSSIMSEYVEELDS---DILPELLATBARTHDL=-NKVG
()tf]f?ff; AscHb REEYTAEDVQNDPFFAK@GOKILLACH VLCATYDD--RETFNAYTRESLDR HARDHVHMP

Eryt. A-GKDLESIKGTAPFET IVGFFSKIIGELPN==~~~ IEADVNTEVASHEKP=-RGVT

tt

PVNFKLL SHCLLVTLAAHLBAEFTPAVHASLDKFLASVSTVLTSKYR

hb_a

hb_b

Mb_SW
LegHb
BacHb
SeaHb
AscHb
Exryt.

PENFRLLGNVLVCVLAHHF
IKYLEFISEAIIHVLHSRH
DAHFPVVKEAILKTIKE

AAHYPIVGQELLGAIKEVL

EFTPPVQAAYQKVVAGVANALAHKYH
DFGADAQGAMNKALELFRKDIAAKYK ELGYQG
WSEELNSAWTIAYDELAIVIKKEMDDAA
AATDDILDAWGKAYGVIADVF IQVEADLYAQAV
ADHYNLF AKVLMEALQAELGSDFNEKTRDAWAKAFSVVQAVLLVKHG
PEVHTDFWKLFEEYLGKKTS-TLDEPTKQAWHEIGREFAKEINK
HDQLNNFRAGFVSYMKAH~-S~-EDFAGAEAAWGATLDT FFGMI FSKM




Profile HMMs

! profile HMMs are commonly used to model

families of sequences

Delete states are silent; they

Account for characters missing

.

INn some sequences

Insert states account
for extra characters
INn some sequences

Match states represent
key conserved positions

do

10

|

)

Start

mi

m

Insert and match states have
emission distributions over
sequence characters

OOoOmMmOZ0O X >

0.01
0.12
0.04
0.29
0.01
0.03
0.02
0.01

end




Number of SCOP families with given performance

30

BLAST:SCOP-only —+—
BLAST:SCOP+SAM-T98-homologs —=—
SAM-TY98 —%—
SVM-Fisher —&—

L I

—

_—

0 0.02

0.04 0.06
Median RFP

0.08

0.1

Profile HMM Accuracy
, —

> profile HMM-based
methods

BLAST-based
methods

Figure from Jaakola et al., ISMB 1999

ol classifying 2447proteins into 33 families

! X-axis represents the median # of negative sequences that score as high
as a positive sequence for a given family’s model



Example: Gene Finding

given an uncharacterized DNA sequence

do: locate the genes in the sequence, including the
coordinates of individual exonsand introns

Base Fosition | 26575608| 26550800
Chromosome Bands Localized by FISH Mapping Clones
Chromosome Band 7pis.2
STS Markers on Genetic (blue) and Radiation Hubrid (black) Maps
STE Markers
Gap Locations

Gap
Known Genes Based on SWISS-FROT, TrEMBEL, mRNA, and RefSeq
AKBS6238 HOXA4
Genscan Gene Fredictions
Genscan Genes o O 0
Human mRNAs from Genbank
Human mRNAs — I
Nonhuman mRNAs from Genbank
Nonhuman mRNA I Il i e (I

Human /Mouse /Rat Alignments

image from the UCSC Genome Browser
http://genome.ucsc.edu/



Eukaryotic Gene Structure

gene
primary RNA transcript lmmscmmon
| — — - — -

ADD 5° CAP AND
RNA cap POLY(A) TAIL

= N AAAA

l RNA SPLICING
mANA (U AAAA




Parsing a DNA Sequence
(= Gor) (=3

The Viterbi path !’\’:;;’(‘!

represents a parse of a & g X
given sequence, %&0

predicting exons, ‘\”‘

introns, etc | @
N\
Ft+ Es

(5' UTR)

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA



Example: Information Extraction
From Biomedical Literature

given a passage of text from a scientific article

do: identify mentions of genes or proteins, annotate the
article with this information in a database

Annotated Text

Analysis of myeloid-associated genes in human hematopoietic progenitor cells . z
Bello-Fernandez et al. Exp Hematol. 1997 Oct ; 25(11):1158-66 .

The distribution of myeloid lineage-associated cytokine receptors and lysosomal (-
proteins was ahalyzed in human CD34+ cord blood cell { CB) subsets at different stages
of myeloid commitment by reverse-transcriptase polymerase chain reaction { RT-PCR ).

The highly specific granulomonocyte-associated lysosomal proteins myeloperoxidase
{ MPO ) and lysozyme (LZ ), as well as the transcription factor PU.1 , were already
detectable in the most immature CD34+4+ Thy-1+ subset .

Messenger RNA { mRNA ) levels for the granulocyte-colony stimulating factor { G-CSF) | ¥

Entity Recognition Tools

Annotate! protein DNA RNA cell line cell type

= =J




Next Time...

o] basic molecular biology

I sequence alignment

ol probabilistic sequence models
| gene expression analysis

ol protein structure prediction
—Iby Ameet Soni



