# Lecture 3 Probabilistic Sequence Models

Burr Settles IBS Summer Research Program 2008 bsettles@cs.wisc.edu www.cs.wisc.edu/~bsettles/ibs08/

# Probability 101

- *frequentist* interpretation: the probability of an event is the proportion of the time events of same kind will occur in the long run
- examples
  - the probability my flight to Chicago will be on time
  - the probability this ticket will win the lottery
  - the probability it will rain tomorrow
- always a number in the interval [0,1]
  - 0 means "never occurs"
  - 1 means "always occurs"

#### Sample Spaces

- *sample space*: a set of possible outcomes for some event
- examples
  - flight to Chicago: {on time, late}
  - lottery:{ticket 1 wins, ticket 2 wins,...,ticket n wins}
  - weather tomorrow:
    - {rain, not rain} or
    - {sun, rain, snow} or
    - {sun, clouds, rain, snow, sleet} or...

#### Random Variables

- *random variable*: a variable representing the outcome of an experiment
- example:
  - *X* represents the outcome of my flight to Chicago
  - we write the probability of my flight being on time as
     Pr(X = on-time)
  - or when it's clear which variable we're referring to, we may use the shorthand Pr(on-time)

### Notation

- uppercase letters and capitalized words denote random variables
- lowercase letters and uncapitalized words denote values
- we'll denote a particular value for a variable as follows

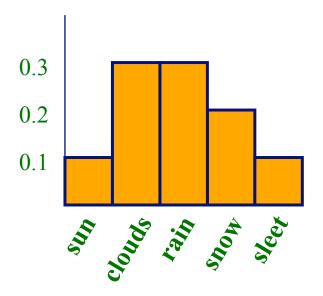
Pr(X = x) Pr(Fever = true)

- we'll also use the shorthand form Pr(x) for Pr(X = x)
- for Boolean random variables, we'll use the shorthand Pr(*fever*) for Pr(*Fever = true*) Pr(¬*fever*) for Pr(*Fever = false*)

#### **Probability Distributions**

- if X is a random variable, the function given by Pr(X = x) for each x is the *probability distribution* of X
- requirements:

 $Pr(x) \ge 0$  for every x $\sum_{x} Pr(x) = 1$ 



## Joint Distributions

- *joint probability distribution*: the function given by Pr(X = x, Y = y)
- read "X equals x and Y equals y"
- example

| <i>x</i> , <i>y</i> | $\Pr(X=x, Y=y)$ |                                                                          |
|---------------------|-----------------|--------------------------------------------------------------------------|
| sun, on-time        | 0.20            | <ul> <li>probability that it's sunny and my flight is on time</li> </ul> |
| rain, on-time       | 0.20            | und my mgnt is on time                                                   |
| snow, on-time       | 0.05            |                                                                          |
| sun, late           | 0.10            |                                                                          |
| rain, late          | 0.30            |                                                                          |
| snow, late          | 0.15            |                                                                          |

## Marginal Distributions

• the *marginal distribution* of *X* is defined by

$$\Pr(x) = \sum_{y} \Pr(x, y)$$

"the distribution of X ignoring other variables"

• this definition generalizes to more than two variables, e.g.

$$\Pr(x) = \sum_{y} \sum_{z} \Pr(x, y, z)$$

## Marginal Distribution Example

| joint distribution  |                 | marginal di | marginal distribution for $X$ |  |
|---------------------|-----------------|-------------|-------------------------------|--|
| <i>x</i> , <i>y</i> | $\Pr(X=x, Y=y)$ | <i>x</i>    | $\Pr(X=x)$                    |  |
| sun, on-time        | 0.20            | sun         | 0.3                           |  |
| rain, on-time       | 0.20            | rain        | 0.5                           |  |
| snow, on-time       | 0.05            | snow        | 0.2                           |  |
| sun, late           | 0.10            |             | -                             |  |
| rain, late          | 0.30            |             |                               |  |
| snow, late          | 0.15            |             |                               |  |

#### **Conditional Distributions**

• the *conditional distribution* of *X* given *Y* is defined as:

$$\Pr(X = x \mid Y = y) = \frac{\Pr(X = x, Y = y)}{P(Y = y)}$$

"the distribution of *X* given that we know *Y*"

#### Conditional Distribution Example

#### joint distribution

conditional distribution for *X* given *Y*=on-time

| <i>x</i> , <i>y</i> | $\Pr(X=x, Y=y)$ | <i>x</i> | $\Pr(X = x   Y = on-time)$ |
|---------------------|-----------------|----------|----------------------------|
| sun, on-time        | 0.20            | sun      | 0.20/0.45 = 0.444          |
| rain, on-time       | 0.20            | rain     | 0.20/0.45 = 0.444          |
| snow, on-time       | 0.05            | snow     | 0.05/0.45 = 0.111          |
| sun, late           | 0.10            |          | -                          |
| rain, late          | 0.30            |          |                            |
| snow, late          | 0.15            |          |                            |

#### Independence

• two random variables, *X* and *Y*, are *independent* if  $Pr(x, y) = Pr(x) \times Pr(y)$  for all *x* and *y* 

# Independence Example #1

| joint distribution  |                 | marginal c | marginal distributions |  |
|---------------------|-----------------|------------|------------------------|--|
| <i>x</i> , <i>y</i> | $\Pr(X=x, Y=y)$ | x          | $\Pr(X=x)$             |  |
| sun, on-time        | 0.20            | sun        | 0.3                    |  |
| rain, on-time       | 0.20            | rain       | 0.5                    |  |
| snow, on-time       | 0.05            | snow       | 0.2                    |  |
| sun, late           | 0.10            | У          | $\Pr(Y=y)$             |  |
| rain, late          | 0.30            | on-time    | 0.45                   |  |
| snow, late          | 0.15            | late       | 0.55                   |  |

#### Are *X* and *Y* independent here? NO.

# Independence Example #2

| joint distri        | bution          | marginal dist | tributions |
|---------------------|-----------------|---------------|------------|
| <i>x</i> , <i>y</i> | $\Pr(X=x, Y=y)$ | x             | $\Pr(X=x)$ |
| sun, fly-United     | 0.27            | sun           | 0.3        |
| rain, fly-United    | 0.45            | rain          | 0.5        |
| snow, fly-United    | 0.18            | snow          | 0.2        |
| sun, fly-Northwest  | 0.03            | <i>y</i>      | $\Pr(Y=y)$ |
| rain, fly-Northwest | 0.05            | fly-United    | 0.9        |
| snow, fly-Northwest | 0.02            | fly-Northwest | 0.1        |

Are *X* and *Y* independent here? YES.

#### **Conditional Independence**

• two random variables *X* and *Y* are *conditionally independent* given *Z* if

$$\Pr(X \mid Y, Z) = \Pr(X \mid Z)$$

"once you know the value of *Z*, knowing *Y* doesn't tell you anything about *X*"

• alternatively

 $Pr(x, y | z) = Pr(x | z) \times Pr(y | z)$  for all x, y, z

### Conditional Independence Example

| Flu   | Fever | Vomit | Pr    |
|-------|-------|-------|-------|
| true  | true  | true  | 0.04  |
| true  | true  | false | 0.04  |
| true  | false | true  | 0.01  |
| true  | false | false | 0.01  |
| false | true  | true  | 0.009 |
| false | true  | false | 0.081 |
| false | false | true  | 0.081 |
| false | false | false | 0.729 |

Fever and Vomit are not independent: e.g.  $Pr(fever, vomit) \neq Pr(fever) \times Pr(vomit)$ Fever and Vomit are conditionally independent given Flu:  $Pr(fever, vomit | flu) = Pr(fever | flu) \times Pr(vomit | flu)$  $Pr(fever, vomit | \neg flu) = Pr(fever | \neg flu) \times Pr(vomit | \neg flu)$ 

etc.

# Bayes Theorem $Pr(x \mid y) = \frac{Pr(y \mid x)Pr(x)}{Pr(y)} = \frac{Pr(y \mid x)Pr(x)}{\sum_{x} Pr(y \mid x)Pr(x)}$

- this theorem is extremely useful
- there are many cases when it is hard to estimate Pr(x | y) directly, but it's not too hard to estimate Pr(y | x) and Pr(x)

## Bayes Theorem Example

- MDs usually aren't good at estimating Pr(*Disorder* | *Symptom*)
- they're usually better at estimating Pr(*Symptom* | *Disorder*)
- if we can estimate Pr(*fever* | *flu*) and Pr(*flu*) we can use Bayes' Theorem to do diagnosis

 $\Pr(flu \mid fever) = \frac{\Pr(fever \mid flu) \Pr(flu)}{\Pr(fever \mid flu) \Pr(flu) + \Pr(fever \mid \neg flu) \Pr(\neg flu)}$ 

#### **Expected Values**

• the *expected value* of a random variable that takes on numerical values is defined as:

$$E[X] = \sum_{x} x \times \Pr(x)$$

this is the same thing as the mean

• we can also talk about the expected value of a function of a random variable

$$E[g(X)] = \sum_{x} g(x) \times \Pr(x)$$

## Expected Value Example

• Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100. The probability that a particular ticket is the winning ticket is 0.001.

$$E[gain(Lottery)] =$$

$$gain(winning) Pr(winning) + gain(losing) Pr(losing) =$$

$$(\$100 - \$1) \times 0.001 - \$1 \times 0.999 =$$

$$-\$0.90$$

# Probabilistic Sequence Models in Computational Biology

- there are many cases in which we would like to represent the statistical regularities of some class of sequences
  - genes
  - various regulatory sites in DNA (e.g. where RNA polymerase and transcription factors bind)
  - proteins in a given family

# Probability Of A Sequence

- given some sequence *x* of length *L*, we want to compute its probability (likelihood)
- one way to compute this is the joint probability of all the characters in the sequence:

$$Pr(x) = Pr(x_1, x_2, ..., x_L)$$
  
=  $Pr(x_1) Pr(x_2 | x_1) ... Pr(x_L | x_1, ..., x_{L-1})$ 

• for example:

Pr(cggt) = Pr(c)Pr(g|c)Pr(g|cg)Pr(t|cgg)

• *problem*: biological sequences tend to be very long; that's too many conditional probabilities to estimate!

## The Markov Assumption

• trick: assume the probability of a character is only dependent on the *previous character*, not the entire prefix

$$Pr(x) = Pr(x_1, x_2, ..., x_L)$$
  

$$\approx Pr(x_1) Pr(x_2 | x_1) ... Pr(x_{L-1} | x_{L-2}) Pr(x_L | x_{L-1})$$
  

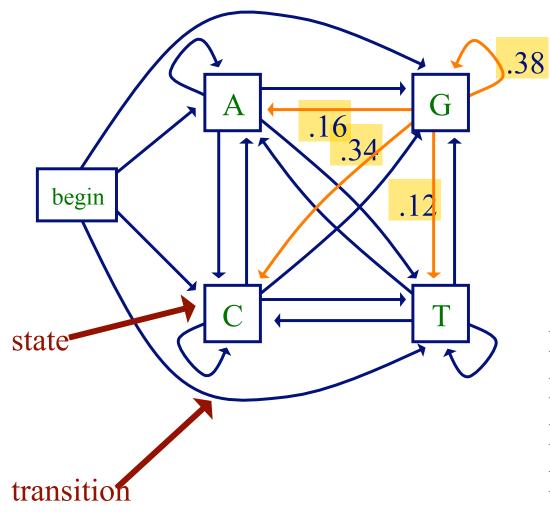
$$= Pr(x_1) \prod_{i=2}^{L} Pr(x_i | x_{i-1})$$

• now our probabilities are easier to estimate:

Pr(cggt) = Pr(c)Pr(g | c)Pr(g | g)Pr(t/g)

• this trick is called the *Markov assumption*, and a statistical process that uses it is called a *Markov chain* 

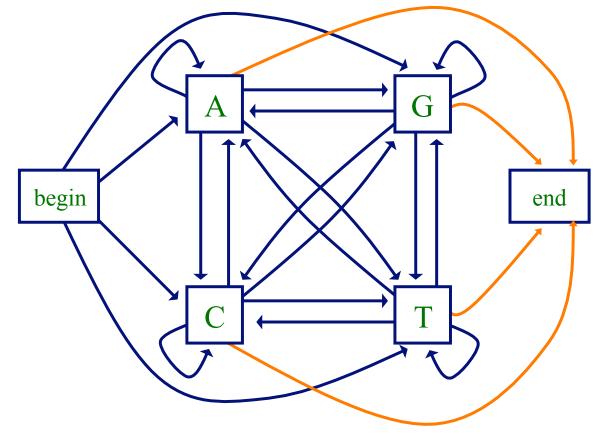
#### Markov Chain Models



transition probabilities  $Pr(x_i = a | x_{i-1} = g) = 0.16$   $Pr(x_i = c | x_{i-1} = g) = 0.34$   $Pr(x_i = g | x_{i-1} = g) = 0.38$  $Pr(x_i = t | x_{i-1} = g) = 0.12$ 

## Markov Chain Models

- can also have an *end* state; allows the model to represent
  - a distribution over sequences of different lengths
  - preferences for ending sequences with certain symbols



#### Markov Chain Models

- a Markov chain model is defined by
  - a set of states
    - some states *emit* symbols
    - other states (e.g. the *begin* and *end* states) are *silent*
  - a set of transitions with associated probabilities
    - the transitions emanating from a given state define a distribution over the possible next states

#### Markov Chain Notation

• the transition parameters can be denoted by  $a_{x_{i-1}x_i}$  where

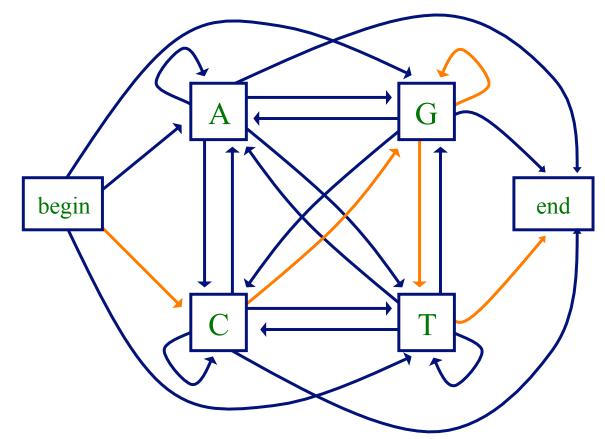
$$a_{x_{i-1}x_i} = \Pr(x_i \mid x_{i-1})$$

• similarly we can denote the probability of a sequence *x* as

$$a_{Bx_1} \prod_{i=2}^{L} a_{x_{i-1}x_i} = \Pr(x_1) \prod_{i=2}^{L} \Pr(x_i \mid x_{i-1})$$

where  $a_{Bx_1}$  represents the transition from the *begin* state

# The Probability of a Sequence for a Given Markov Chain Model



Pr(cggt) = Pr(c)Pr(g | c)Pr(g | g)Pr(t/g)Pr(end | t)

#### Estimating the Model Parameters

- given some data (e.g. a set of sequences), how can we determine the probability parameters of our model?
- one approach: *maximum likelihood estimation* 
  - given a set of data D
  - set the parameters  $\theta$  to maximize
    - $\Pr(D \mid \theta)$
  - i.e. make the data D look <u>as likely as possible</u> under the model  $\theta$

#### Maximum Likelihood Estimation

- suppose we want to estimate the parameters: Pr(a), Pr(c), Pr(g), Pr(t)
- and we're given the sequences
  - accgcgctta
  - gcttagtgac
  - tagccgttac

$$\Pr(a) = \frac{n_a}{\sum_i n_i}$$

• then the maximum likelihood estimates are

$$Pr(a) = \frac{6}{30} = 0.2 \qquad Pr(g) = \frac{7}{30} = 0.233$$
$$Pr(c) = \frac{9}{30} = 0.3 \qquad Pr(t) = \frac{8}{30} = 0.267$$

## Maximum Likelihood Estimation

- suppose instead we saw the following sequences gccgcgcttg gcttggtggc tggccgttgc
- then the maximum likelihood estimates are

$$Pr(a) = \frac{0}{30} = 0$$

$$Pr(g) = \frac{13}{30} = 0.433$$

$$Pr(c) = \frac{9}{30} = 0.3$$

$$Pr(t) = \frac{8}{30} = 0.267$$

do we really want to set this to 0?

# A Bayesian Approach

- instead of estimating parameters strictly from the data, we could start with some prior belief for each
- for example, we could use *Laplace estimates*

$$Pr(a) = \frac{n_a + 1}{\sum_{i} (n_i + 1)} pseudocount$$

- where  $n_i$  represents the number of occurrences of character i
- using Laplace estimates with the sequences gccgcgcttg gcttggtggc tggccgttgc  $Pr(a) = \frac{0+1}{34}$  $Pr(c) = \frac{9+1}{34}$

#### A Bayesian Approach

• a more general form: *m-estimates* 

$$Pr(a) = \frac{n_a + p_a m}{\left(\sum_{i} n_i\right) + m}$$
 prior probability of *a*  
( $\sum_{i} n_i$ ) + *m* number of "virtual" instances

• with *m*=8 and uniform priors

gccgcgcttg gcttggtggc tggccgttgc  $Pr(c) = \frac{9 + 0.25 \times 8}{30 + 8} = \frac{11}{38}$ 

#### Estimation for 1<sup>st</sup> Order Probabilities

- to estimate a 1<sup>st</sup> order parameter (where each character depends on 1 previous character), such as Pr(c|g), we count the number of times that c follows the history g in our given sequences
- using Laplace estimates with the sequences:

geogegettg gettggtgge tggeogttge  $Pr(a \mid g) = \frac{0+1}{12+4} \quad Pr(a \mid c) = \frac{0+1}{7+4}$   $Pr(c \mid g) = \frac{7+1}{12+4}$   $Pr(g \mid g) = \frac{3+1}{12+4}$   $Pr(t \mid g) = \frac{2+1}{12+4}$ 

### Higher Order Markov Chains

- the Markov property specifies that the probability of a state depends only on the probability of the previous state
- but we can build more "memory" into our states by using a higher order Markov model
- in an *n*th order Markov model

$$\Pr(x_i \mid x_{i-1}, x_{i-2}, ..., x_1) = \Pr(x_i \mid x_{i-1}, ..., x_{i-n})$$

# Selecting the Order of a Markov Chain Model

- higher order models remember more "history"
- additional history can have predictive value
- example:
  - predict the next word in this sentence fragment
    "...finish" (up, it, first, last, ...?)
  - now predict it given more history "nice guys finish \_\_\_\_"

## Selecting the Order of a Markov Chain Model

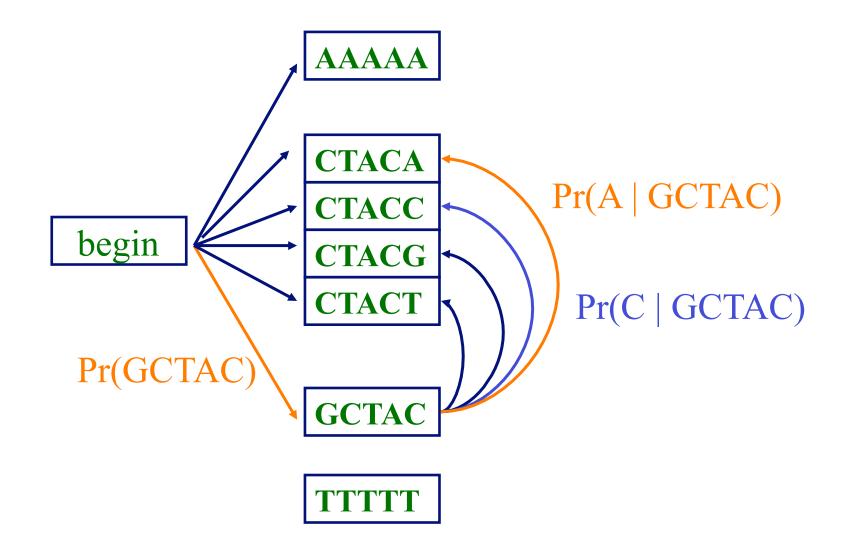
- but the number of parameters we need to estimate grows exponentially with the order
  - for modeling DNA we need  $O(4^{n+1})$  parameters for an *n*th order model
- the higher the order, the less reliable we can expect our parameter estimates to be
  - estimating the parameters of a 2<sup>nd</sup> order Markov chain from the complete genome of E. Coli, we'd see each "word" 72,000+ times on average
  - estimating the parameters of an 8<sup>th</sup> order chain, we'd see each "word" about 5 times on average

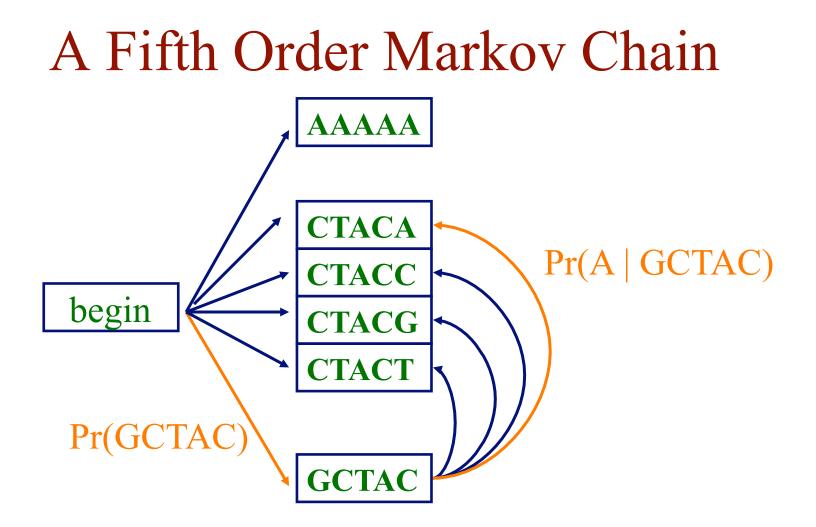
## Higher Order Markov Chains

- an *n*th order Markov chain over some alphabet A is equivalent to a first order Markov chain over the alphabet of *n*-tuples  $A^n$
- example: a 2<sup>nd</sup> order Markov model for DNA can be treated as a 1<sup>st</sup> order Markov model over alphabet AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT
- caveat: we process a sequence one character at a time
   A C G G T

$$AC \longrightarrow CG \longrightarrow GG \longrightarrow GT$$

#### A Fifth Order Markov Chain





 $\Pr(gctaca) = \Pr(gctac) \Pr(a \mid gctac)$ 

## **Example Application**

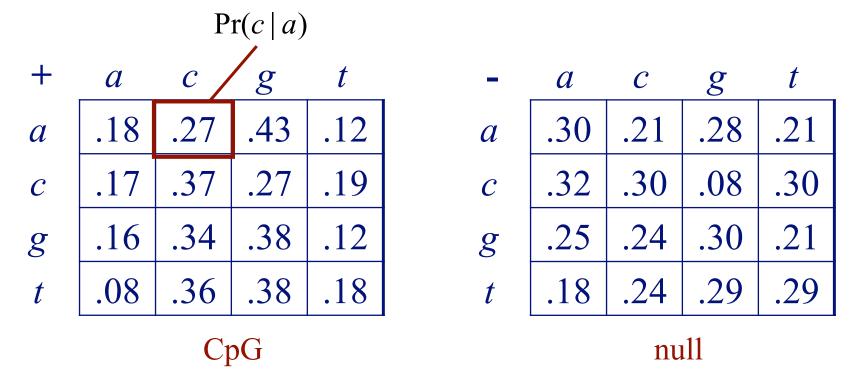
- language classification
- given:
  - passages of text from different languages
  - e.g. newspaper articles written in English, French, Spanish, German, and Italian
- do:
  - learn a Markov chain model for each language
  - use these models to determine the most likely language for some new passage of text
- http://pages.cs.wisc.edu/~bsettles/webtoys/polyglot/

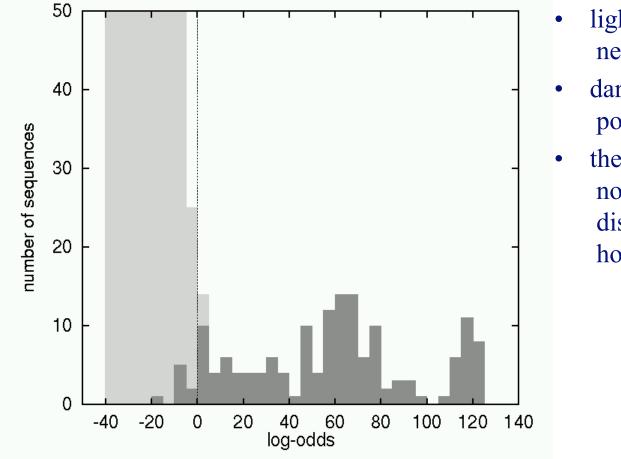
- CpG islands
  - CG dinucleotides are rarer in eukaryotic genomes than expected given the marginal probabilities of C and G
  - but the regions upstream of genes are richer in CG dinucleotides than elsewhere CpG islands
  - useful evidence for finding genes

- given sequences from CpG islands, and sequences from other regions, we can construct
  - a model to represent CpG islands
  - a *null model* to represent the other regions
- can then score a test sequence by:

$$score(x) = \log \frac{\Pr(x \mid \text{CpG model})}{\Pr(x \mid \text{null model})}$$

- parameters estimated for CpG and null models
  - human sequences containing 48 CpG islands
  - 60,000 nucleotides





- light bars represent negative sequences
- dark bars represent positive sequences
- the actual figure here is not from a CpG island discrimination task, however

Figure from A. Krogh, "An Introduction to Hidden Markov Models for Biological Sequences" in Computational Methods in Molecular Biology, Salzberg et al. editors, 1998.

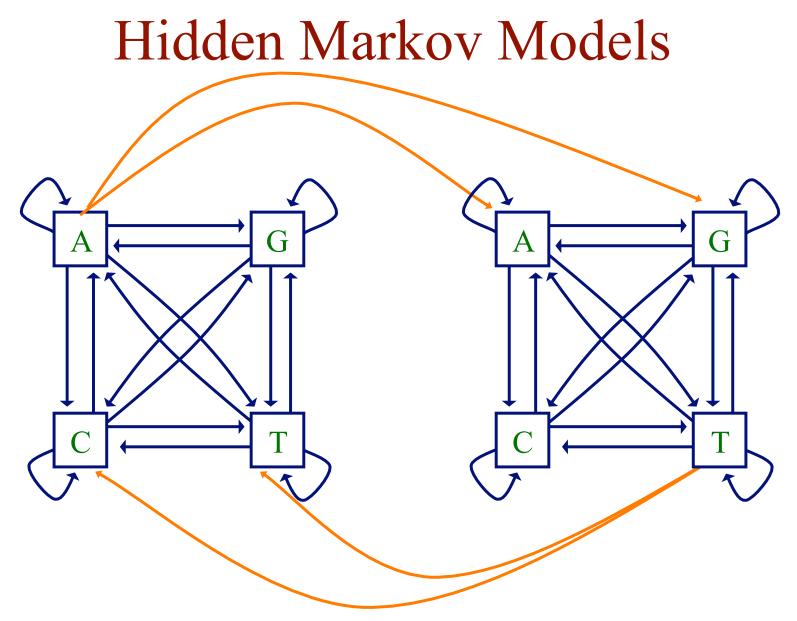
• why use

$$score(x) = \log \frac{\Pr(x \mid CpG)}{\Pr(x \mid null)}$$

• Bayes' rule tells us

$$Pr(CpG \mid x) = \frac{Pr(x \mid CpG) Pr(CpG)}{Pr(x)}$$
$$Pr(null \mid x) = \frac{Pr(x \mid null) Pr(null)}{Pr(x)}$$

• if we're not taking into account prior probabilities of two classes (Pr(CpG) and Pr(null)) then we just need to compare Pr(x | CpG) and Pr(x | null)



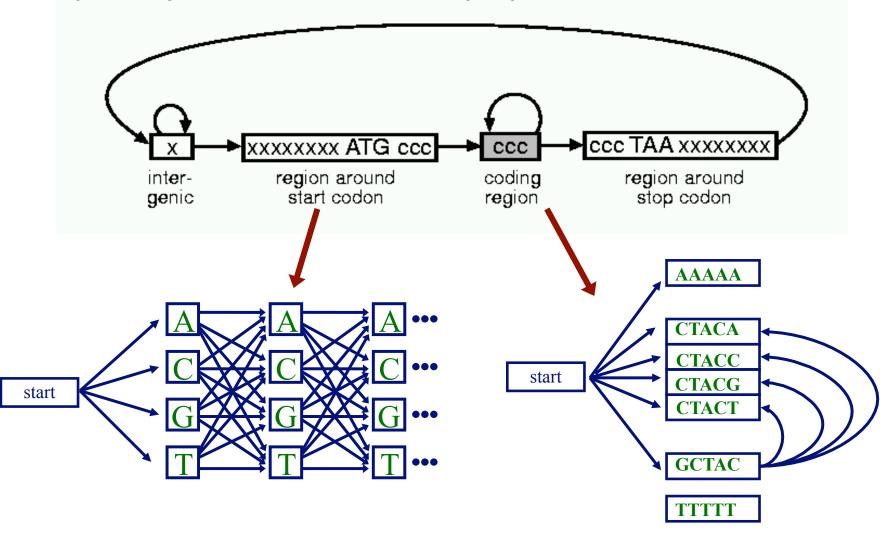
• given say a *T* in our input sequence, which state emitted it?

### Hidden State

- we'll distinguish between the *observed* parts of a problem and the *hidden* parts
- in the Markov models we've considered previously, it is clear which state accounts for each part of the observed sequence
- in this example, there are multiple states that could account for each part of the observed sequence
  - this is the *hidden* part of the problem
  - *hidden Markov models* (HMMs) are Markov chain models with hidden state

## Simple HMM for Gene Finding

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences



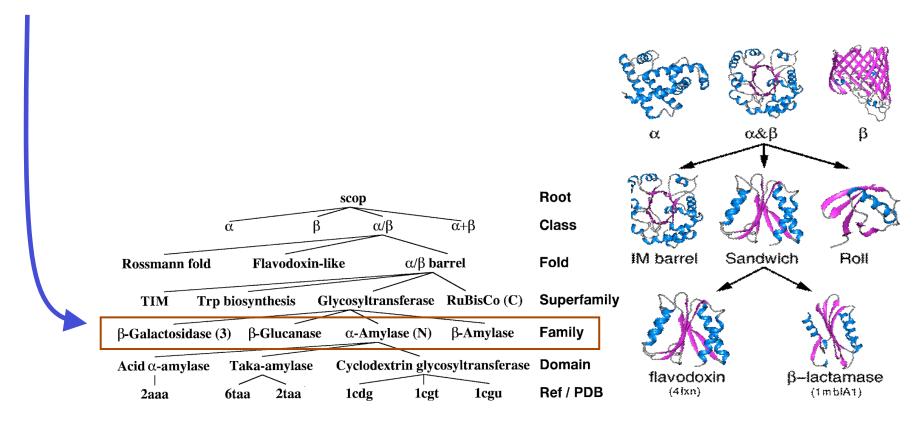
## HMM Applications

- classification
  - *given*: a set of models representing different sequence classes (e.g. protein families), and a test sequence
  - *do*: determine which model/class best explains the sequence
  - use Forward algorithm to calculate probability of sequence under each each model
- segmentation
  - *given*: a model representing different sequence classes, a test sequence
  - *do*: segment the sequence into subsequences, predicting the state labels for each subsequence
  - use Viterbi algorithm to find most probable path for sequence

## Example: Protein Classification

## *given*: amino-acid sequence of a protein *do*: predict the *family* to which it belongs





## Alignment of Globin Family Proteins

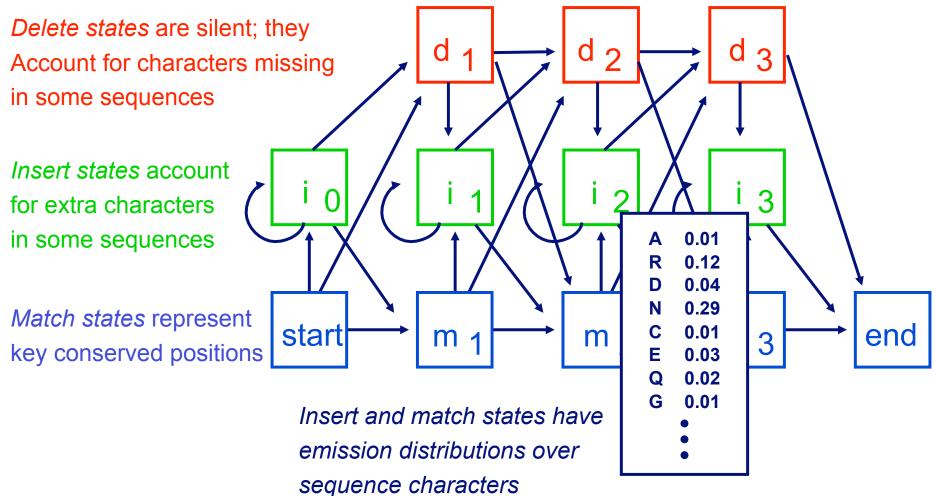
 The sequences in a family may vary in length

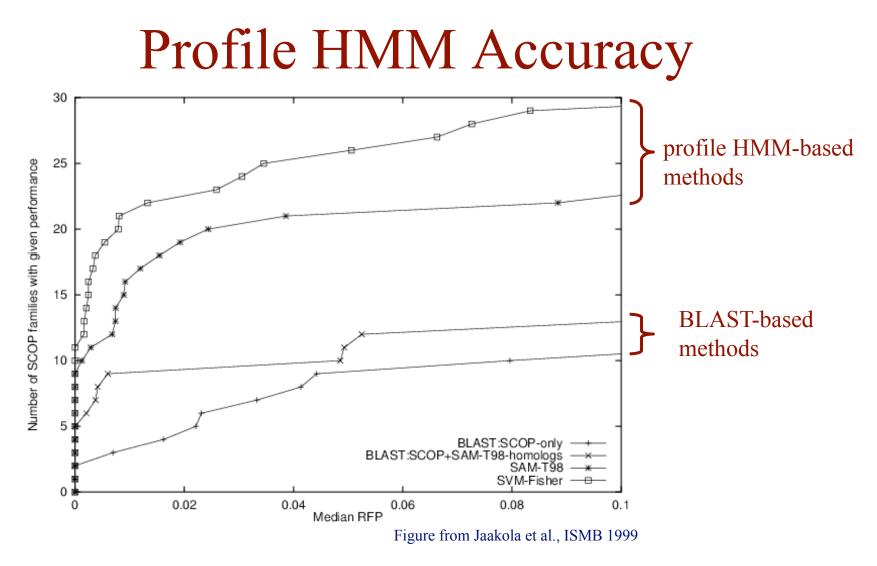
 Some positions are more conserved than others

|                                                 | A0 A4    | <b>A</b> 8            |                        | В1                                       | B6                    | B14     | c2                   | CD 1 CI               |    |
|-------------------------------------------------|----------|-----------------------|------------------------|------------------------------------------|-----------------------|---------|----------------------|-----------------------|----|
|                                                 | + +      | ł                     | ţ                      | ł                                        | Ļ                     | ÷       | Ļ                    | ÷ i                   | ļ  |
| Hb_aV                                           | E SE AD  |                       | ANCE                   | GAHAG                                    | EVCAEA                |         | CEDTI                | KTYFPH                | 17 |
| Hb_bVH                                          |          |                       |                        | VNVD                                     |                       |         |                      | QRFFES                |    |
| Mb_SWV                                          |          |                       |                        | EADVA                                    |                       |         |                      | LEKEDR                |    |
| LegHbGA                                         |          |                       |                        | NANIP                                    |                       |         |                      |                       |    |
| BacHbLDQ                                        |          |                       |                        | IGV-                                     |                       |         |                      | RPLF                  |    |
| SeaHb GGTLAIQAQGD                               |          |                       |                        | MRNKT                                    |                       |         |                      | ONKFPO                |    |
| AscHb                                           |          |                       |                        | AKVDTSNEAR                               |                       |         |                      |                       |    |
| Eryt                                            | L SADQ   | ISTVQ                 | )AS <mark>FDK</mark>   | KG                                       | -DPVGI                | LYAVFK  | AD <mark>P</mark> S1 | MAK <mark>F</mark> TQ | F  |
|                                                 |          |                       |                        |                                          |                       |         |                      | -                     |    |
| D1                                              |          | E7                    |                        | EF 3                                     |                       | F4      | F.8                  | FG2 FG                |    |
| ł                                               | Ļ        | ł                     | ł                      | ł                                        | Ļ                     | Ļ       | ł                    | + +                   |    |
| Hb_a -DLSHG                                     | SAOVE    | GHCKK                 | VADAL                  | INAVAHVDD-                               | MPi                   | NATSA   | SDLHA                |                       | D  |
| Hb_b GDLSTPDAVMG                                |          |                       |                        | SD <mark>GLAHLDN-</mark>                 |                       |         |                      |                       |    |
| Mb_SW KHLKTEAEMKA                               |          |                       |                        | GATLKKKGH-                               |                       |         |                      |                       |    |
| LegHb KGTSEVPQN                                 |          |                       |                        | YEAAIQLEVT                               |                       |         |                      |                       |    |
| BacHb                                           |          | - OPKA                |                        | LAAAQNIEN-                               |                       |         |                      |                       |    |
| SeaHb AGMSA-SQLRS                               | SRQMQ    | AHAIR                 | VSSIM                  | SE <mark>YV</mark> EELDS-                | DILP                  | ELLATL  | ARTHE                | LNKV                  | G  |
| Aschb REEYTAEDVON                               | DPFFA    | KQGQK                 | (ILLAC)                | HVLCATYDD-                               | -RET <mark>F</mark> N | AYTREL  | LDR <mark>H</mark> A | RDHVHM                | P  |
| Eryt. A-GKDLESIKG                               | T AP F E | T <mark>HA</mark> NR  | IVGFF                  | SKIIGELPN-                               | <mark>I</mark> E.     | ADVNT 📑 | VASHB                | (PRG <mark>V</mark> ) | г  |
| G5 G1                                           |          | 000                   |                        |                                          |                       |         |                      |                       |    |
|                                                 | 2 010    | GH2                   |                        |                                          | 1                     |         |                      |                       |    |
| 7 1                                             | 1        | •                     |                        | 11                                       | ,                     |         |                      |                       |    |
| hb_a PVNFKLLSHCL                                | T. VTT.A | AHT.PA                | EFTPA                  | VHASLDKELA                               | SVSTVI.               | TSKYR   |                      |                       |    |
| hb_b PENFRLLGNVL                                |          |                       |                        |                                          |                       |         |                      |                       |    |
| Mb_SW IKYLEFISEAI                               |          |                       |                        | AQGAMNKALE                               |                       |         | LGYOG                | ;                     |    |
| LegHb DAHFPVVKEAI                               |          |                       |                        |                                          |                       |         |                      |                       |    |
| BacHb AAHYPIVGQEL                               |          |                       |                        | ILD <mark>AW</mark> GK <mark>AY</mark> G |                       |         |                      | v                     |    |
| SeaHb ADHYNLFAKVL                               |          | A EL <mark>G</mark> S | S <mark>D F</mark> NEK | FRD <mark>AW</mark> AK <mark>AF</mark> S | V VQAVL               | LVKHG   |                      |                       |    |
| AscHb PEVWTD <mark>F</mark> WKLF                |          |                       |                        |                                          |                       |         |                      |                       |    |
| Eryt. HDQ <mark>L</mark> NN <mark>F</mark> RAGF | V SYMK   | AH                    | -TDFAG                 | AEA <mark>AW</mark> GA <mark>TL</mark> D | T F FGMI              | FSKM    |                      |                       |    |

## Profile HMMs

• profile HMMs are commonly used to model families of sequences





- classifying 2447proteins into 33 families
- *x*-axis represents the median # of negative sequences that score as high as a positive sequence for a given family's model

## Example: Gene Finding

given: an uncharacterized DNA sequencedo: locate the genes in the sequence, including the coordinates of individual *exons* and *introns* 

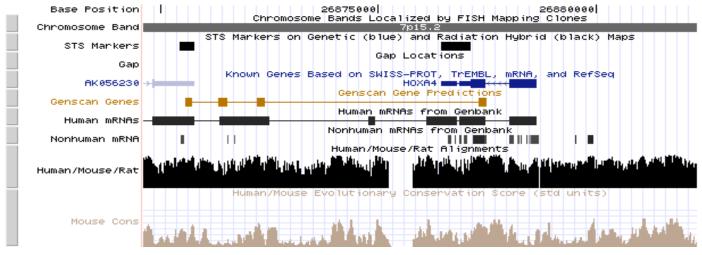
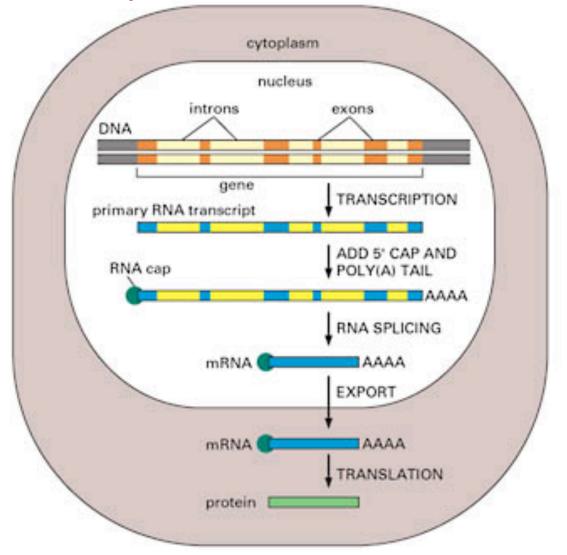
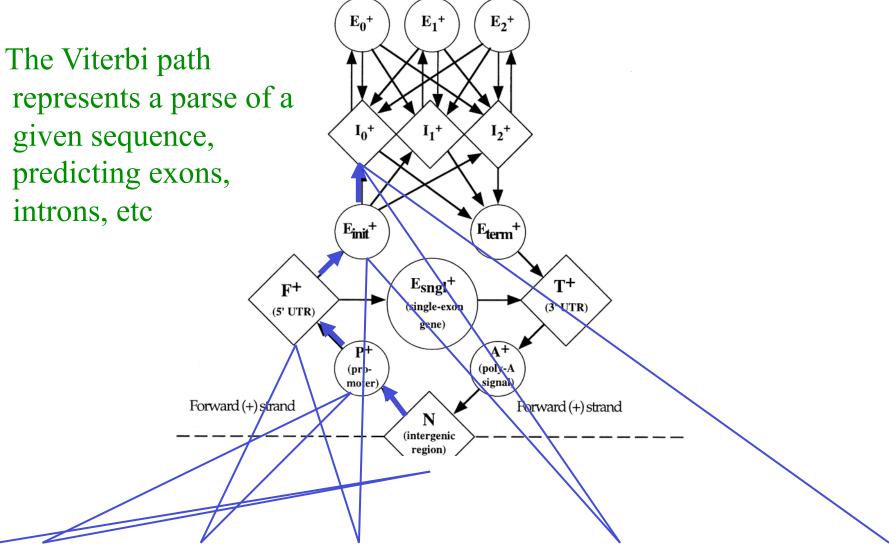


image from the UCSC Genome Browser http://genome.ucsc.edu/

#### Eukaryotic Gene Structure



## Parsing a DNA Sequence



## Example: Information Extraction From Biomedical Literature

# given: a passage of text from a scientific articledo: identify mentions of genes or proteins, annotate the article with this information in a database

| Annotated Text                       |                                                                        |
|--------------------------------------|------------------------------------------------------------------------|
| Analysis of <b>myeloid</b> -         | associated genes in human hematopoietic progenitor cells .             |
| Bello-Fernandez et al.               | Exp Hematol. 1997 Oct ; 25 ( 11 ) : 1158-66 .                          |
| The distribution of <mark>m</mark> y | eloid lineage-associated cytokine receptors and lysosomal              |
| proteins was analyze                 | d in human CD34+ cord blood cell (CB) subsets at different stages      |
| of myeloid commitme                  | nt by reverse-transcriptase polymerase chain reaction (RT-PCR).        |
| The highly specific <b>gr</b>        | anulomonocyte-associated lysosomal proteins myeloperoxidase            |
| (MPO) and lysozym                    | e (LZ), as well as the <b>transcription factor PU.1</b> , were already |
| detectable in the most               | immature CD34+ Thy-1+ subset .                                         |
| Messenger RNA (m                     | RNA ) levels for the granulocyte-colony stimulating factor ( G-CSF)    |
| intity Recognition 1                 | ools<br>Annotate! protein DNA RNA cell line cell type                  |

## Next Time...

- basic molecular biology
- sequence alignment
- probabilistic sequence models
- gene expression analysis
- protein structure prediction
  - by Ameet Soni