Lecture 3
 Probabilistic Sequence Models

Burr Settles
IBS Summer Research Program 2008
bsettles@cs.wisc.edu
www.cs.wisc.edu/~bsettles/ibs08/

Probability 101

- frequentist interpretation: the probability of an event is the proportion of the time events of same kind will occur in the long run
- examples
- the probability my flight to Chicago will be on time
- the probability this ticket will win the lottery
- the probability it will rain tomorrow
- always a number in the interval $[0,1]$

0 means "never occurs"
1 means "always occurs"

Sample Spaces

- sample space: a set of possible outcomes for some event
- examples
- flight to Chicago: \{on time, late\}
- lottery: \{ticket 1 wins, ticket 2 wins, ...,ticket n wins $\}$
- weather tomorrow:
\{rain, not rain\} or
\{sun, rain, snow\} or
\{sun, clouds, rain, snow, sleet\} or...

Random Variables

- random variable: a variable representing the outcome of an experiment
- example:
- X represents the outcome of my flight to Chicago
- we write the probability of my flight being on time as $\operatorname{Pr}(X=$ on-time $)$
- or when it's clear which variable we're referring to, we may use the shorthand Pr (on-time)

Notation

- uppercase letters and capitalized words denote random variables
- lowercase letters and uncapitalized words denote values
- we'll denote a particular value for a variable as follows

$$
\operatorname{Pr}(X=x) \quad \operatorname{Pr}(\text { Fever }=\text { true })
$$

- we'll also use the shorthand form

$$
\operatorname{Pr}(x) \text { for } \operatorname{Pr}(X=x)
$$

- for Boolean random variables, we'll use the shorthand

$$
\begin{aligned}
& \operatorname{Pr}(\text { fever }) \text { for } \operatorname{Pr}(\text { Fever }=\text { true }) \\
& \operatorname{Pr}(\neg \text { fever }) \text { for } \operatorname{Pr}(\text { Fever }=\text { false })
\end{aligned}
$$

Probability Distributions

- if X is a random variable, the function given by $\operatorname{Pr}(X=x)$ for each x is the probability distribution of X
- requirements:

$$
\begin{aligned}
& \operatorname{Pr}(x) \geq 0 \text { for every } x \\
& \sum_{x} \operatorname{Pr}(x)=1
\end{aligned}
$$

Joint Distributions

- joint probability distribution: the function given by

$$
\operatorname{Pr}(X=x, Y=y)
$$

- read " X equals x and Y equals y "
- example

x, y	$\operatorname{Pr}(X=x, Y=y)$		
sun, on-time	$0.20 \longleftarrow$		probability that it's sunny
:---			
and my flight is on time			

Marginal Distributions

- the marginal distribution of X is defined by

$$
\operatorname{Pr}(x)=\sum_{y} \operatorname{Pr}(x, y)
$$

"the distribution of X ignoring other variables"

- this definition generalizes to more than two variables, e.g.

$$
\operatorname{Pr}(x)=\sum_{y} \sum_{z} \operatorname{Pr}(x, y, z)
$$

Marginal Distribution Example

joint distribution

x, y	$\operatorname{Pr}(X=x, Y=y)$
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

marginal distribution for X

x	$\operatorname{Pr}(X=x)$
sun	0.3
rain	0.5
snow	0.2

Conditional Distributions

- the conditional distribution of X given Y is defined as:

$$
\operatorname{Pr}(X=x \mid Y=y)=\frac{\operatorname{Pr}(X=x, Y=y)}{P(Y=y)}
$$

"the distribution of X given that we know Y "

Conditional Distribution Example

conditional distribution for X given $Y=$ on-time

x, y	$\operatorname{Pr}(X=x, Y=y)$		x	$\operatorname{Pr}(X=x \mid Y=$ on-time $)$
sun, on-time	0.20		sun	$0.20 / 0.45=0.444$
rain, on-time	0.20		rain	$0.20 / 0.45=0.444$
snow, on-time	0.05		snow	$0.05 / 0.45=0.111$
sun, late	0.10			
rain, late	0.30			
snow, late	0.15			

Independence

- two random variables, X and Y, are independent if

$$
\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \times \operatorname{Pr}(y) \quad \text { for all } x \text { and } y
$$

Independence Example \#1

joint distribution

x, y	$\operatorname{Pr}(X=x, Y=y)$
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

marginal distributions

x	$\operatorname{Pr}(X=x)$
sun	0.3
rain	0.5
snow	0.2

y	$\operatorname{Pr}(Y=y)$
on-time	0.45
late	0.55

Are X and Y independent here? NO.

Independence Example \#2

joint distribution

x, y	$\operatorname{Pr}(X=x, Y=y)$
sun, fly-United	0.27
rain, fly-United	0.45
snow, fly-United	0.18
sun, fly-Northwest	0.03
rain, fly-Northwest	0.05
snow, fly-Northwest	0.02

marginal distributions

x	$\operatorname{Pr}(X=x)$
sun	0.3
rain	0.5
snow	0.2

y	$\operatorname{Pr}(Y=y)$
fly-United	0.9
fly-Northwest	0.1

Are X and Y independent here? YES.

Conditional Independence

- two random variables X and Y are conditionally independent given Z if

$$
\operatorname{Pr}(X \mid Y, Z)=\operatorname{Pr}(X \mid Z)
$$

"once you know the value of Z, knowing Y doesn't tell you anything about X "

- alternatively

$$
\operatorname{Pr}(x, y \mid z)=\operatorname{Pr}(x \mid z) \times \operatorname{Pr}(y \mid z) \text { for all } x, y, z
$$

Conditional Independence Example

Flu	Fever	Vomit	Pr
true	true	true	0.04
true	true	false	0.04
true	false	true	0.01
true	false	false	0.01
false	true	true	0.009
false	true	false	0.081
false	false	true	0.081
false	false	false	0.729

Fever and Vomit are not independent: e.g. $\operatorname{Pr}($ fever, vomit $) \neq \operatorname{Pr}($ fever $) \times \operatorname{Pr}($ vomit $)$
Fever and Vomit are conditionally independent given Flu:
$\operatorname{Pr}($ fever, vomit \mid flu $)=\operatorname{Pr}($ fever \mid flu $) \times \operatorname{Pr}($ vomit \mid flu $)$
$\operatorname{Pr}($ fever, vomit $\mid \neg f l u)=\operatorname{Pr}($ fever $\mid \neg f l u) \times \operatorname{Pr}($ vomit $\mid \neg f l u)$
etc.

Bayes Theorem

$$
\operatorname{Pr}(x \mid y)=\frac{\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)}{\operatorname{Pr}(y)}=\frac{\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)}{\sum_{x}^{\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)}}
$$

- this theorem is extremely useful
- there are many cases when it is hard to estimate $\operatorname{Pr}(x \mid y)$ directly, but it's not too hard to estimate $\operatorname{Pr}(y \mid x)$ and $\operatorname{Pr}(x)$

Bayes Theorem Example

- MDs usually aren't good at estimating Pr(Disorder \mid Symptom $)$
- they're usually better at estimating $\operatorname{Pr}($ Symptom \mid Disorder $)$
- if we can estimate $\operatorname{Pr}(f e v e r \mid f l u)$ and $\operatorname{Pr}(f l u)$ we can use Bayes’ Theorem to do diagnosis

$$
\operatorname{Pr}(f l u \mid \text { fever })=\frac{\operatorname{Pr}(\text { fever } \mid f l u) \operatorname{Pr}(f l u)}{\operatorname{Pr}(f \text { fever } \mid f l u) \operatorname{Pr}(f l u)+\operatorname{Pr}(f e v e r \mid \neg f l u) \operatorname{Pr}(\neg f l u)}
$$

Expected Values

- the expected value of a random variable that takes on numerical values is defined as:

$$
E[X]=\sum_{x} x \times \operatorname{Pr}(x)
$$

this is the same thing as the mean

- we can also talk about the expected value of a function of a random variable

$$
E[g(X)]=\sum_{x} g(x) \times \operatorname{Pr}(x)
$$

Expected Value Example

- Suppose each lottery ticket costs $\$ 1$ and the winning ticket pays out $\$ 100$. The probability that a particular ticket is the winning ticket is 0.001 .
$E[\operatorname{gain}($ Lottery $)]=$
gain $($ winning $) \operatorname{Pr}($ winning $)+$ gain $($ losing $) \operatorname{Pr}($ losing $)=$ $(\$ 100-\$ 1) \times 0.001-\$ 1 \times 0.999=$
- \$0.90

Probabilistic Sequence Models in Computational Biology

- there are many cases in which we would like to represent the statistical regularities of some class of sequences
- genes
- various regulatory sites in DNA (e.g. where RNA polymerase and transcription factors bind)
- proteins in a given family

Probability Of A Sequence

- given some sequence x of length L, we want to compute its probability (likelihood)
- one way to compute this is the joint probability of all the characters in the sequence:

$$
\begin{aligned}
\operatorname{Pr}(x) & =\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{L}\right) \\
& =\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(x_{2} \mid x_{1}\right) \ldots \operatorname{Pr}\left(x_{L} \mid x_{1}, \ldots, x_{L-1}\right)
\end{aligned}
$$

- for example:

$$
\operatorname{Pr}(c g g t)=\operatorname{Pr}(c) \operatorname{Pr}(g \mid c) \operatorname{Pr}(g \mid c g) \operatorname{Pr}(t \mid c g g)
$$

- problem: biological sequences tend to be very long; that's too many conditional probabilities to estimate!

The Markov Assumption

- trick: assume the probability of a character is only dependent on the previous character, not the entire prefix

$$
\begin{aligned}
\operatorname{Pr}(x) & =\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{L}\right) \\
& \approx \operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(x_{2} \mid x_{1}\right) \ldots \operatorname{Pr}\left(x_{L-1} \mid x_{L-2}\right) \operatorname{Pr}\left(x_{L} \mid x_{L-1}\right) \\
& =\operatorname{Pr}\left(x_{1}\right) \prod_{i=2}^{L} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
\end{aligned}
$$

- now our probabilities are easier to estimate:

$$
\operatorname{Pr}(c g g t)=\operatorname{Pr}(c) \operatorname{Pr}(g \mid c) \operatorname{Pr}(g \mid g) \operatorname{Pr}(t \mid g)
$$

- this trick is called the Markov assumption, and a statistical process that uses it is called a Markov chain

Markov Chain Models

$$
\begin{aligned}
& \quad \text { transition probabilities } \\
& \operatorname{Pr}\left(x_{i}=a \mid x_{i-1}=g\right)=0.16 \\
& \operatorname{Pr}\left(x_{i}=c \mid x_{i-1}=g\right)=0.34 \\
& \operatorname{Pr}\left(x_{i}=g \mid x_{i-1}=g\right)=0.38 \\
& \operatorname{Pr}\left(x_{i}=t \mid x_{i-1}=g\right)=0.12
\end{aligned}
$$

Markov Chain Models

- can also have an end state; allows the model to represent
- a distribution over sequences of different lengths
- preferences for ending sequences with certain symbols

Markov Chain Models

- a Markov chain model is defined by
- a set of states
- some states emit symbols
- other states (e.g. the begin and end states) are silent
- a set of transitions with associated probabilities
- the transitions emanating from a given state define a distribution over the possible next states

Markov Chain Notation

- the transition parameters can be denoted by $a_{x_{i-1} x_{i}}$ where

$$
a_{x_{i-1} x_{i}}=\operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
$$

- similarly we can denote the probability of a sequence x as

$$
a_{\mathrm{B} x_{1}} \prod_{i=2}^{L} a_{x_{i-1} x_{i}}=\operatorname{Pr}\left(x_{1}\right) \prod_{i=2}^{L} \operatorname{Pr}\left(x_{i} \mid x_{i-1}\right)
$$

where $a_{\mathrm{B} x_{1}}$ represents the transition from the begin state

The Probability of a Sequence for a Given Markov Chain Model

$\operatorname{Pr}(c g g t)=\operatorname{Pr}(c) \operatorname{Pr}(g \mid c) \operatorname{Pr}(g \mid g) \operatorname{Pr}(t \mid g) \operatorname{Pr}($ end $\mid t)$

Estimating the Model Parameters

- given some data (e.g. a set of sequences), how can we determine the probability parameters of our model?
- one approach: maximum likelihood estimation
- given a set of data D
- set the parameters θ to maximize

$$
\operatorname{Pr}(D \mid \theta)
$$

- i.e. make the data D look as likely as possible under the model θ

Maximum Likelihood Estimation

- suppose we want to estimate the parameters:

$$
\operatorname{Pr}(\mathrm{a}), \operatorname{Pr}(\mathrm{c}), \operatorname{Pr}(\mathrm{g}), \operatorname{Pr}(\mathrm{t})
$$

- and we're given the sequences accgcgetta gcttagtgac tagccgttac

$$
\operatorname{Pr}(a)=\frac{n_{a}}{\sum_{i} n_{i}}
$$

- then the maximum likelihood estimates are

$$
\begin{array}{ll}
\operatorname{Pr}(a)=\frac{6}{30}=0.2 & \operatorname{Pr}(g)=\frac{7}{30}=0.233 \\
\operatorname{Pr}(c)=\frac{9}{30}=0.3 & \operatorname{Pr}(t)=\frac{8}{30}=0.267
\end{array}
$$

Maximum Likelihood Estimation

- suppose instead we saw the following sequences

gccgegcttg
 gcttggtggc
 tggccgttgc

- then the maximum likelihood estimates are

$$
\begin{aligned}
& \operatorname{Pr}(g)=\frac{13}{30}=0.433 \\
& \operatorname{Pr}(t)=\frac{8}{30}=0.267
\end{aligned}
$$

do we really want to set this to 0 ?

A Bayesian Approach

- instead of estimating parameters strictly from the data, we could start with some prior belief for each
- for example, we could use Laplace estimates

$$
\operatorname{Pr}(a)=\frac{n_{a}+1}{\sum_{i}\left(n_{i}+1\right)} \quad \text { pseudocount }
$$

- where n_{i} represents the number of occurrences of character i
- using Laplace estimates with the sequences
gccgegcttg

$$
\begin{aligned}
& \operatorname{Pr}(a)=\frac{0+1}{34} \\
& \operatorname{Pr}(c)=\frac{9+1}{34}
\end{aligned}
$$

A Bayesian Approach

- a more general form: m-estimates

$$
\operatorname{Pr}(a)=\frac{n_{a}+p_{a} m}{\left(\sum_{i} n_{i}\right)+m} \text { prior probability of } a
$$

- with $m=8$ and uniform priors
gccgcgettg gcttggtggc
$\operatorname{tgg} c \mathrm{~g} \operatorname{ttg} \mathrm{c}$

$$
\operatorname{Pr}(c)=\frac{9+0.25 \times 8}{30+8}=\frac{11}{38}
$$

Estimation for $1^{\text {st }}$ Order Probabilities

- to estimate a $1^{\text {st }}$ order parameter (where each character depends on 1 previous character), such as $\operatorname{Pr}(c \mid g)$, we count the number of times that c follows the history g in our given sequences
- using Laplace estimates with the sequences:
gccgegcttg
gcttggtggc

$$
\begin{array}{ll}
\operatorname{Pr}(a \mid g)=\frac{0+1}{12+4} & \operatorname{Pr}(a \mid c)=\frac{0+1}{7+4} \\
\operatorname{Pr}(c \mid g)=\frac{7+1}{12+4} & \vdots \\
\operatorname{Pr}(g \mid g)=\frac{3+1}{12+4} & \\
\operatorname{Pr}(t \mid g)=\frac{2+1}{12+4} &
\end{array}
$$

$\operatorname{tggccgttg} \mathrm{c}$

Higher Order Markov Chains

- the Markov property specifies that the probability of a state depends only on the probability of the previous state
- but we can build more "memory" into our states by using a higher order Markov model
- in an nth order Markov model

$$
\operatorname{Pr}\left(x_{i} \mid x_{i-1}, x_{i-2}, \ldots, x_{1}\right)=\operatorname{Pr}\left(x_{i} \mid x_{i-1}, \ldots, x_{i-n}\right)
$$

Selecting the Order of a Markov Chain Model

- higher order models remember more "history"
- additional history can have predictive value
- example:
- predict the next word in this sentence fragment "...finish ___" (up, it, first, last, ...?)
- now predict it given more history
"nice guys finish \qquad

Selecting the Order of a Markov Chain Model

- but the number of parameters we need to estimate grows exponentially with the order
- for modeling DNA we need $O\left(4^{n+1}\right)$ parameters for an nth order model
- the higher the order, the less reliable we can expect our parameter estimates to be
- estimating the parameters of a $2^{\text {nd }}$ order Markov chain from the complete genome of E. Coli, we'd see each "word" 72,000+ times on average
- estimating the parameters of an $8^{\text {th }}$ order chain, we'd see each "word" about 5 times on average

Higher Order Markov Chains

- an nth order Markov chain over some alphabet A is equivalent to a first order Markov chain over the alphabet of n-tuples A^{n}
- example: a $2^{\text {nd }}$ order Markov model for DNA can be treated as a $1^{\text {st }}$ order Markov model over alphabet

$$
\begin{aligned}
& \text { AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, } \\
& \text { TA, TC, TG, TT }
\end{aligned}
$$

- caveat: we process a sequence one character at a time

$$
\begin{aligned}
& \mathrm{ACCGGT} \\
& \mathrm{AC} \rightarrow \mathrm{CG} \rightarrow \mathrm{GG} \rightarrow \mathrm{GT}
\end{aligned}
$$

A Fifth Order Markov Chain

A Fifth Order Markov Chain

$$
\operatorname{Pr}(\text { gctaca })=\operatorname{Pr}(\text { gctac }) \operatorname{Pr}(a \mid \text { gctac })
$$

Example Application

- language classification
- given:
- passages of text from different languages
- e.g. newspaper articles written in English, French, Spanish, German, and Italian
- do:
- learn a Markov chain model for each language
- use these models to determine the most likely language for some new passage of text
- http://pages.cs.wisc.edu/~bsettles/webtoys/polyglot/

Example Biological Application

- CpG islands
- CG dinucleotides are rarer in eukaryotic genomes than expected given the marginal probabilities of C and G
- but the regions upstream of genes are richer in CG dinucleotides than elsewhere $-C p G$ islands
- useful evidence for finding genes

Example Biological Application

- given sequences from CpG islands, and sequences from other regions, we can construct
- a model to represent CpG islands
- a null model to represent the other regions
- can then score a test sequence by:

$$
\operatorname{score}(x)=\log \frac{\operatorname{Pr}(x \mid \text { CpG model })}{\operatorname{Pr}(x \mid \text { null model })}
$$

Example Biological Application

- parameters estimated for CpG and null models
- human sequences containing 48 CpG islands
- 60,000 nucleotides

$+$	$\operatorname{Pr}(c \mid a)$			
	a		g	t
a	. 18	. 27	. 43	. 12
c	. 17	. 37	. 27	. 19
g	. 16	. 34	. 38	. 12
t	. 08	. 36	. 38	. 18

-	a	c	g	t
a	. 30	. 21	. 28	. 21
c	. 32	. 30	. 08	. 30
g	. 25	. 24	. 30	. 21
t	. 18	. 24	. 29	. 29

Example Biological Application

- light bars represent negative sequences
- dark bars represent positive sequences
- the actual figure here is not from a CpG island discrimination task, however

Figure from A. Krogh, "An Introduction to Hidden Markov Models for Biological Sequences" in Computational Methods in Molecular Biology, Salzberg et al. editors, 1998.

Example Biological Application

- why use

$$
\operatorname{score}(x)=\log \frac{\operatorname{Pr}(x \mid C p G)}{\operatorname{Pr}(x \mid \text { null })}
$$

- Bayes' rule tells us

$$
\begin{aligned}
& \operatorname{Pr}(C p G \mid x)=\frac{\operatorname{Pr}(x \mid C p G) \operatorname{Pr}(C p G)}{\operatorname{Pr}(x)} \\
& \operatorname{Pr}(\text { null } \mid x)=\frac{\operatorname{Pr}(x \mid \text { null }) \operatorname{Pr}(\text { null })}{\operatorname{Pr}(x)}
\end{aligned}
$$

- if we're not taking into account prior probabilities of two classes $(\operatorname{Pr}(C p G)$ and $\operatorname{Pr}($ null $))$ then we just need to compare $\operatorname{Pr}(x \mid C p G)$ and $\operatorname{Pr}(x \mid$ null $)$

Hidden Markov Models

- given say a T in our input sequence, which state emitted it?

Hidden State

- we'll distinguish between the observed parts of a problem and the hidden parts
- in the Markov models we've considered previously, it is clear which state accounts for each part of the observed sequence
- in this example, there are multiple states that could account for each part of the observed sequence
- this is the hidden part of the problem
- hidden Markov models (HMMs) are Markov chain models with hidden state

Simple HMM for Gene Finding

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences

HMM Applications

- classification
- given: a set of models representing different sequence classes (e.g. protein families), and a test sequence
- do: determine which model/class best explains the sequence
- use Forward algorithm to calculate probability of sequence under each each model
- segmentation
- given: a model representing different sequence classes, a test sequence
- do: segment the sequence into subsequences, predicting the state labels for each subsequence
- use Viterbi algorithm to find most probable path for sequence

Example: Protein Classification

given: amino-acid sequence of a protein do: predict the family to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH

Alignment of Globin Family Proteins

- The sequences in a family may vary in length
- Some positions are more conserved than others

Profile HMMs

- profile HMMs are commonly used to model families of sequences

Delete states are silent; they Account for characters missing in some sequences

Insert states account for extra characters in some sequences

Match states represent key conserved positions
 sequence characters

Profile HMM Accuracy

- classifying 2447proteins into 33 families
- x-axis represents the median \# of negative sequences that score as high as a positive sequence for a given family's model

Example: Gene Finding

given: an uncharacterized DNA sequence $d o$: locate the genes in the sequence, including the coordinates of individual exons and introns

image from the UCSC Genome Browser
http://genome.ucsc.edu/

Eukaryotic Gene Structure

Parsing a DNA Sequence

The Viterbi path represents a parse of a given sequence, predicting exons, introns, etc

Example: Information Extraction From Biomedical Literature

given: a passage of text from a scientific article $d o$: identify mentions of genes or proteins, annotate the article with this information in a database

```
Annotated Text
Analysis of myeloid-associated genes in human hematopoietic progenitor cells
Bello-Fernandez et al. Exp Hematol. 1997 Oct ; 25 (11): 1158-66.
The distribution of myeloid lineage-associated cytokine receptors and lysosomal proteins was analyzed in human CD34+ cord blood cell (CB) subsets at different stages of myeloid commitment by reverse-transcriptase polymerase chain reaction (RT-PCR).
The highly specific granulomonocyte-associated lysosomal proteins myeloperoxidase (MPO) and ly sozyme (LZ), as well as the transcription factor PU.1, were already detectable in the most immature CD34+ Thy-1+ subset
Messenger RNA (mRNA) levels for the granulocyte-colony stimulating factor (G-CSF)
```


Entity Recognition Tools

[^0]
Next Time...

- basic molecular biology
- sequence alignment
- probabilistic sequence models
- gene expression analysis
- protein structure prediction
- by Ameet Soni

[^0]: Annotate! protein DNA RNA cell line cell type

