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Abstract

We present a framework for active learning in the multiple-instance (MI) setting.
In an MI learning problem, instances are naturally organized into bags and it is
the bags, instead of individual instances, that are labeled for training. MI learners
assume that every instance in a bag labeled negative is actually negative, whereas
at least one instance in a bag labeled positive is actually positive. We consider
the particular case in which an MI learner is allowed to selectively query unla-
beled instances from positive bags. This approach is well motivated in domains
in which it is inexpensive to acquire bag labels and possible, but expensive, to
acquire instance labels. We describe a method for learning from labels at mixed
levels of granularity, and introduce two active query selection strategies moti-
vated by the MI setting. Our experiments show that learning from instance labels
can significantly improve performance of a basic MI learning algorithm in two
multiple-instance domains: content-based image retrieval and text classification.

1 Introduction

A limitation of supervised learning is that it requires a set of instance labels which are often difficult
or expensive to obtain. The multiple-instance (MI) learning framework [3] can, in some cases, ad-
dress this handicap by relaxing the granularity at which labels are given. In the MI setting, instances
are grouped into bags (i.e., multi-sets) which may contain any number of instances. A bag is labeled
negative if and only if it contains all negative instances. A bag is labeled positive, however, if at
least one of its instances is positive. Note that positive bags may also contain negative instances.
The MI setting was formalized by Dietterich et al. in the context of drug activity prediction [3], and
has since been applied to a wide variety of tasks including content-based image retrieval [1, 6, 8],
text classification [1, 9], stock prediction [6], and protein family modeling [10].

Figure 1 illustrates how the MI representation can be applied to (a) content-based image retrieval
(CBIR) and (b) text classification tasks. For the CBIR task, images are represented as bags and in-
stances correspond to segmented regions of the image. A bag representing a given image is labeled
positive if the image contains some object of interest. The multiple-instance paradigm is well suited
to this task because only a few regions of an image may represent the object of interest, such as the
gold medal in Figure 1(a). An advantage of the MI representation here is that it is significantly easier
to label an entire image than it is to label each segment. For text classification, documents are repre-
sented as bags and instances correspond to short passages (e.g., paragraphs) in the documents. This
formulation is useful in classification tasks for which document labels are freely available or cheaply
obtained, but the target concept is represented by only a few passages. For example, consider the
task of classifying articles according whether or not they contain information about the sub-cellular
location of proteins. The article in Figure 1(b) is labeled by the Mouse Genome Database [4] as a
citation for the protein catalase that specifies its sub-cellular location. However, the text that states
this is only a short passage on the second page of the article. The MI approach is therefore com-
pelling because document labels can be cheaply obtained (say from the Mouse Genome Database),
but the labeling is not readily available at the most appropriate level of granularity (passages).



bag: image = { instances: segments }

The catalase-containing structures 
represent peroxisomes as concluded 
from the co-localization with the peroxi-
somal membrane marker, PMP70.

(a) (b)

bag: document = { instances: passages }

Figure 1: Motivating examples for multiple-instance active learning. (a) In content-based image retrieval,
images are represented as bags and instances correspond to segmented image regions. An active MI learner
may query which segments belong to the object of interest, such as the gold medal shown in this image. (b) In
text classification, documents are bags and the instances represent passages of text. In MI active learning, the
learner may query specific passages to determine if they are representative of the positive class at hand.

The main challenge of multiple-instance learning is that, to induce an accurate model of the tar-
get concept, the learner must determine which instances in positive bags are actually positive, even
though the ratio of negatives to positives in these bags can be arbitrarily high. For many MI prob-
lems, such as the tasks illustrated in Figure 1, it is possible to obtain labels both at the bag level
and directly at the instance level. Fully labeling all instances, however, is expensive. As mentioned
above, the rationale for formulating the learning task as an MI problem is that it allows us to take
advantage of coarse labelings that may be available at low cost, or even for free. The approach
that we consider here is one that involves selectively obtaining the labels of certain instances in the
context of MI learning. In particular, we consider obtaining labels for selected instances in positive
bags, since the labels for instances in negative bags are known.

In active learning [2], the learner is allowed to ask queries about unlabeled instances. In this way, the
oracle (or human annotator) is required to label only instances that are assumed to be most valuable
for training. In the standard supervised setting, pool-based active learning typically begins with an
initial learner trained with a small set of labeled instances. Then the learner can query instances
from a large pool of unlabeled instances, re-train, and repeat. The goal is to reduce the total amount
of labeling effort required for the learner to achieve a certain level of accuracy.

We argue that whereas multiple-instance learning reduces the burden of labeling data by getting
labels at a coarse level of granularity, we may also benefit from selectively labeling some part of
the training data at a finer level of granularity. Hence, we explore the approach of multiple-instance
active learning as a way to efficiently overcome the ambiguity of the MI framework while keeping
labeling costs low.

There are several MI active learning scenarios we might consider. The first, which is analogous to
standard supervised active learning, is simply to allow the learner to query for the labels of unlabeled
bags. A second scenario is one in which all bags in the training set are labeled and the learner is
allowed to query for the labels of selected instances from positive bags. For example, the learner
might query on particular image segments or passages of text in the CBIR and text classification
domains, respectively. If an instance-query result is positive, the learner now has direct evidence
for the positive class. If the query result is negative, the learner knows to focus its attention to
other instances from that bag, also reducing ambiguity. A third scenario involves querying selected
positive bags rather than instances, and obtaining labels for any (or all) instances in such bags. For
example, the learner might query a positive image in the CBIR domain, and ask the oracle to label as
many segments as desired. A final scenario would assume that some bags are labeled and some are
not, and the learner would be able to query on (i) unlabeled bags, (ii) unlabeled instances in positive



bags, or (iii) some combination thereof. In the present work, we focus on the second formulation
above, where the learner queries selected unlabeled instances from labeled, positive bags.

The rest of this paper is organized as follows. First, we describe the algorithms we use to train
MI classifiers and select instance queries for active learning. Then, we describe our experiments to
evaluate these approaches on two data sets in the CBIR and text classification domains. Finally, we
discuss the results of our experiments and offer some concluding remarks.

2 Algorithms

MI Logistic Regression. We train probabilistic models for multiple-instance tasks using a gen-
eralization of the Diverse Density framework [6]. For MI classification, we seek the conditional
probability that the label yi is positive for bag Bi given n constituent instances: P (yi = 1|Bi =
{Bi1, Bi2, . . . , Bin}). If a classifier can provide an equivalent probability P (yij = 1|Bij) for in-
stance Bij , we can use a combining function (such as softmax or noisy-or) to combine posterior
probabilities of all the instances in a bag and estimate its posterior probability P (yi = 1|Bi). The
combining function here explicitly encodes the MI assumption. If the model finds an instance likely
to be positive, the output of the combining function should find its corresponding bag likely to be
positive as well.

In our work, we train classifiers using multiple-instance logistic regression (MILR) which has been
shown to be a state-of-the-art MI learning algorithm, and appears to be a competitive method for
text classification and CBIR tasks [9]. MILR uses logistic regression with parameters θ = (w, b) to
estimate conditional probabilities for each instance:

oij = P (yij = 1|Bij) =
1

1 + e−(w·Bij+b)
.

Here Bij represents a vector of feature values representing the jth instance in the ith bag, and w
is a vector of weights associated with the features. In order to combine these class probabilities for
instances into a class probability for a bag, MILR uses the softmax function:

oi = P (yi = 1|Bi) = softmaxα(oi1, . . . , oin) =

∑n
j=1 oije

αoij∑n
j=1 eαoij

,

where α is a constant that determines the extent to which softmax approximates a hard max function.

In the general MI setting we do not know the labels of instances in positive bags. Because the equa-
tions above represent smooth functions of the model parameters θ, however, we can learn parameter
values using a gradient-based optimization method and an appropriate objective function. In the
present work, we minimize squared error over the bags E(θ) = 1

2

∑
i(yi − oi)2, where yi ∈ {0, 1}

is the known label of bag Bi. While we describe our MI active learning methods below in terms
of this formulation of MILR, it is important to note that they generalize to any classifier that out-
puts instance-level probabilities used with differentiable combining and objective functions. Diverse
Density [6], for example, couples a Gaussian instance model with a noisy-or combining function.

Learning from Labels at Mixed Granularities. Suppose our active MI learner queries instance
Bij and the corresponding instance label yij is provided by the oracle. We would like to include a
direct training signal for this instance in the optimization procedure above. However, E(θ) is defined
in terms of bag-level error, not instance-level error. Consider, though, that in MI learning a labeled
instance is effectively the same as a labeled bag that contains only that instance. So when the label
for instance Bij is known, we transform the training set for each query by adding a new training tuple
〈{Bij}, yij〉, where {Bij} is a new singleton bag containing only a copy of the queried instance,
and yij is the corresponding label. A copy of the query instance Bij also remains in the original bag
Bi, enabling the learner to compute the remaining instance gradients as described below.

Since the objective function will guide the learner toward classifying the singleton query instance
Bij in the positive tuple 〈{Bij}, 1〉 as positive, it will tend to classify the original bag Bi positive as
well. Conversely, if we add the negative tuple 〈{Bij}, 0〉, the learner will tend to classify the instance



negative in the original bag, which will affect the other instance gradients via the combining function
and guides the learner to focus on other potentially positive instances in that bag.

It may seem that this effect on the original bag could be achieved by clamping the instance output oij

to yij during training, but this has the undesirable property of eliminating the training signal for the
bag and the instance. If yij = 1, the combining function output would be extremely high, making
bag error nearly zero, thus minimizing the objective function without any actual parameter updates.
If yij = 0, the instance would output nothing to the combining function, thus the learner would get
no training signal for this instance (though in this case the learner can still focus on other instances
in the bag). It is possible to combine clamped instance outputs with our singleton bag approach to
overcome this problem, but our experiments indicate that this has no practical advantage over adding
singleton bags alone.

Also note that simply adding singleton bags will alter the objective function by adding weight, albeit
indirectly, to bags that have been queried more often. To control this effect, we uniformly weight
each bag and all its queried singleton bags to sum to 1 when computing the value and gradient for
the objective function during training. For example, an unqueried bag has weight 1, a bag with one
instance query and its derived singleton bag each have weight 0.5, and so on.

Uncertainty Sampling. Now we turn our attention to strategies for selecting query instances for
labeling. A common approach to active learning in the standard supervised setting is uncertainty
sampling [5]. For probabilistic classifiers, this involves applying the classifier to each unlabeled
instance and querying those with most uncertainty about the class label. Recall that the learned
model estimates oij = P (yij = 1|Bij), the probability that instance Bij is positive. We represent
the uncertainty U(Bij) by the Gini measure:

U(Bij) = 2oij(1 − oij).

Note that the particular measure we use here is not critical; the important properties are that its
minima are at zero and one, its maximum is at 0.5, and it is symmetric about 0.5.

MI Uncertainty (MIU). We argue that when doing active learning in a multiple-instance setting,
the selection criterion should take into account not just uncertainty about a given instance’s class
label, but also the extent to which the learner can adequately “explain” the bag to which the instance
belongs. For example, the instance that the learner finds most uncertain may belong to the same
bag as the instance it finds most positive. In this case, the learned model will have a high value of
P (yi = 1|Bi) for the bag because the value computed by the combining function will be dominated
by the output of the positive-looking instance. We propose an uncertainty-based query strategy that
weights the uncertainty of Bij in terms of how much it contributes to the classification of bag Bi.
As such, we define the MI Uncertainty (MIU) of an instance to be the derivative of bag output with
respect to instance output (i.e., the derivative of the softmax combining function) times instance
uncertainty:

MIU(Bij) =
∂oi

∂oij
U(Bij).

Expected Gradient Length (EGL). Another query strategy we consider is to identify the instance
that would impart the greatest change to the current model if we knew its label. Since we train
MILR with gradient descent, this involves querying the instance which, if 〈{Bij}, yij〉 is added to
the training set, would create the greatest change in the gradient of the objective function (i.e., the
largest gradient vector used to re-estimate values for θ). Let ∇E(θ) be the gradient of E with respect
to θ, which is a vector whose components are the partial derivatives of E with respect to each model
parameter: ∇E(θ) = [ ∂E

∂θ1
, ∂E

∂θ2
, . . . , ∂E

∂θm
].

Now let ∇E+
ij(θ) be the new gradient obtained by adding the positive tuple 〈{Bij}, 1〉 to the training

set, and likewise let ∇E−
ij (θ) be the new gradient if a query results in the negative tuple 〈{Bij}, 0〉

being added. Since we do not know which label the oracle will provide in advance, we instead
calculate the expected length of the gradient based on the learner’s current belief oij in each outcome.
More precisely, we define the Expected Gradient Length (EGL) to be:

EGL(Bij) = oij‖∇E+
ij(θ)‖ + (1 − oij)‖∇E−

ij (θ)‖.



Note that this selection strategy does not explicitly encode the MI bias. Instead, it employs class
probabilities to determine the expected label for candidate queries, with the goal of maximizing
parameter changes to what happens to be an MI learning algorithm. This strategy can be generalized
to query for other properties in non-MI active learning as well. For example, Zhu et al. [11] use
a related approach to determine the expected label of candidate query instances when combining
active learning with graph-based semi-supervised learning. Rather than trying to maximize the
expected change in the learning model, however, they select for the expected reduction in estimated
error over unlabeled instances.

3 Data and Experiments

Since no MI data sets with instance-level labels previously existed, we augmented an existing MI
data set by manually adding instance labels. SIVAL1 is a collection for content-based image retrieval
that includes 1500 images, each labeled with one of 25 class labels. The images contain complex
objects photographed in a variety of positions, orientations, locations, and lighting conditions. The
images (bags) have been transformed and segmented into approximately 30 segments (instances)
each. Each segment is represented by a 30-dimensional feature vector describing color and texture
attributes of the segment and its neighbors. For more details, see Rahmani & Goldman [8]. We
modified the collection by manually annotating the instance segments that belong to the labeled
object for each image using a graphical interface we developed.

We also created a semi-synthetic MI data set for text classification, using the 20 Newsgroups2 corpus
as a base. This corpus was chosen because it is an established benchmark for text classification,
and because the source texts—newsnet posts from the early 1990s—are relatively short (in the MI
setting, instances are usually paragraphs or short passages [1, 9]). For each of the 20 news categories,
we generate artificial bags of approximately 50 posts (instances) each by randomly sampling from
the target class (i.e., newsgroup category) at a rate of 3% for positive bags, with remaining instances
(and all instances for negative bags) drawn uniformly from the other classes. The texts are processed
with stemming, stop-word removal, and information-gain ranked feature selection. The TFIDF
values of the top 200 features are used to represent the instance texts. We construct a data set of 100
bags (50 positives and 50 negatives) for each class.

We compare our MI Uncertainty (MIU) and Expected Gradient Length (EGL) selection strategies
from Section 2 against two baselines: Uncertainty (using only the instance-model’s uncertainty), and
instances chosen uniformly at Random from positive bags (to evaluate the advantage of “passively”
labeling instances). The MILR model uses α = 2.5 for the softmax function and is trained by
minimizing squared loss via L-BFGS [7]. The instance-labeled MI data sets and MI learning source
code used in these experiments are available online3.

We evaluate our methods by constructing learning curves that plot the area under the ROC curve
(AUROC) as a function of instances queried for each data set and selection strategy. The initial point
in all experiments is the AUROC for a model trained on labeled bags from the training set without
any instance queries. Following previous work on the CBIR problem [8], we average results for
SIVAL over 20 independent runs for each image class, where the learner begins with 20 randomly
drawn positive bags (from which instances may be queried) and 20 random negative bags. The
model is then evaluated on the remainder of the unlabeled bags, and labeled query instances are
added to the training set in batches of size q = 2. For 20 Newsgroups, we average results using
10-fold cross-validation for each newsgroup category, using a query batch size of q = 5.

Due to lack of space, we cannot show learning curves for every task. Figure 2 shows three represen-
tative learning curves for each of the two data sets. In Table 1 we summarize all curves by reporting
the average improvement made by each query selection strategy over the initial MILR model (before
any instance queries) for various points along the learning curve. Table 2 presents a more detailed
comparison of the initial model against each query selection method at a fixed point early on in
active learning (10 query batches).

1http://www.cs.wustl.edu/accio/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://pages.cs.wisc.edu/˜bsettles/amil/
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Figure 2: Sample learning curves from SIVAL (top row) and 20 Newsgroups (bottom row) tasks.

Table 1: Summary of learning curves. The average AUROC improvement over the initial MI model (before
any instance queries) is reported for each selection strategy. Numbers are averaged across all tasks in each data
set at various points during active learning. The winning algorithm at each point is indicated with a box.

Instance SIVAL Tasks 20 Newsgroups Tasks
Queries Random Uncert. EGL MIU Random Uncert. EGL MIU

10 +0.023 +0.043 +0.039 +0.050 -0.001 +0.002 +0.002 +0.009
20 +0.033 +0.065 +0.063 +0.070 -0.002 +0.015 +0.015 +0.029
50 +0.057 +0.084 +0.085 +0.087 +0.002 +0.046 +0.045 +0.051
80 +0.065 +0.088 +0.093 +0.090 +0.003 +0.052 +0.056 +0.056
100 +0.068 +0.092 +0.095 +0.090 +0.008 +0.055 +0.055 +0.058

4 Discussion of Results

We can draw several interesting conclusions from these results. First and most germane to MI
active learning is that MI learners benefit from instance-level labels. With the exception of random
selection on 20 Newsgroups data, instance-level labels almost always improve the accuracy of the
learner, often with statistical significance after only a few queries.

Second, we see that active query strategies (e.g., Uncertainty, EGL, and MIU) perform better than
passive (random) instance labeling. On SIVAL tasks, random querying steadily improves accuracy,
but very slowly. As Table 1 shows, random selection at 100 queries fails to be competitive with the
three active query strategies after half as many queries. On 20 Newsgroups tasks, random selection
has a slight negative effect (if any) early on, possibly because it lacks a focused search for positive
instances (of which there are only one or two per bag). All three active selection methods, on the
other hand, show significant gains fairly quickly on both data sets.

Finally, MIU appears to be a well-suited query strategy for this formulation of MI active learning.
On both data sets, it consistently improves the initial MI learner, usually with statistical significance,
and often approaches the asymptotic level of accuracy with fewer labeled instances than the other
two active methods. Uncertainty and EGL seem to perform quite comparably, with EGL performing
slightly better between the two. MIU’s gains over these other query strategies are not usually statis-
tically significant, however, and in the long run it is generally matched or slightly surpassed by them.
MIU shows the greatest advantage early in the active instance-querying process, perhaps because it
is the only method we tested that explicitly encodes the MI assumption by taking advantage of the
combining function in its estimation of value to the learner.



Table 2: Detailed comparison of the initial MI learner against various query strategies after 10 query batches
(20 instances for SIVAL, 50 instances for 20 Newsgroups). Average AUROC values are shown for each al-
gorithm on each task. Statistically significant gains over the initial learner (using a two-tailed t-test at 95%)
are shown in bold. The winning algorithm for each task is indicated with a box, and a tally of wins for each
algorithm is reported below each column.

Task Initial Random Uncert. EGL MIU

ajaxorange 0.547 0.564 0.633 0.638 0.627
apple 0.431 0.418 0.469 0.455 0.459
banana 0.440 0.463 0.514 0.511 0.507
bluescrunge 0.410 0.426 0.508 0.470 0.491
candlewithholder 0.623 0.662 0.646 0.656 0.677
cardboardbox 0.430 0.437 0.451 0.442 0.454
checkeredscarf 0.662 0.749 0.765 0.772 0.765
cokecan 0.668 0.727 0.693 0.713 0.736
dataminingbook 0.445 0.480 0.505 0.522 0.519
dirtyrunningshoe 0.620 0.701 0.703 0.697 0.708
dirtyworkgloves 0.455 0.497 0.491 0.496 0.497
fabricsoftenerbox 0.417 0.534 0.617 0.594 0.634
feltflowerrug 0.743 0.754 0.794 0.799 0.792
glazedwoodpot 0.444 0.464 0.528 0.515 0.526
goldmedal 0.496 0.544 0.622 0.602 0.605
greenteabox 0.563 0.595 0.614 0.619 0.639
juliespot 0.479 0.490 0.571 0.580 0.564
largespoon 0.436 0.403 0.406 0.394 0.408
rapbook 0.478 0.455 0.463 0.454 0.457
smileyfacedoll 0.556 0.612 0.675 0.640 0.655
spritecan 0.670 0.711 0.749 0.746 0.750
stripednotebook 0.477 0.478 0.486 0.519 0.489
translucentbowl 0.548 0.614 0.678 0.665 0.702
wd40can 0.599 0.658 0.687 0.700 0.707
woodrollingpin 0.416 0.435 0.420 0.426 0.429

alt.atheism 0.812 0.836 0.863 0.839 0.877
comp.graphics 0.720 0.690 0.789 0.783 0.819
comp.os.ms-windows.misc 0.772 0.768 0.764 0.742 0.714
comp.sys.ibm.pc.hardware 0.716 0.690 0.687 0.694 0.707
comp.sys.mac.hardware 0.716 0.728 0.861 0.855 0.878
comp.windows.x 0.835 0.827 0.888 0.894 0.882
misc.forsale 0.769 0.748 0.758 0.777 0.771
rec.autos 0.768 0.785 0.872 0.872 0.860
rec.motorcycles 0.844 0.844 0.871 0.879 0.883
rec.sport.baseball 0.838 0.846 0.871 0.869 0.899
rec.sport.hockey 0.918 0.918 0.966 0.962 0.964
sci.crypt 0.770 0.770 0.887 0.893 0.913
sci.electronics 0.719 0.751 0.731 0.733 0.725
sci.med 0.827 0.819 0.837 0.845 0.862
sci.space 0.822 0.824 0.901 0.905 0.893
soc.religion.christian 0.768 0.780 0.769 0.771 0.789
talk.politics.guns 0.847 0.855 0.860 0.870 0.858
talk.politics.mideast 0.791 0.793 0.874 0.880 0.876
talk.politics.misc 0.789 0.797 0.878 0.866 0.856
talk.religion.misc 0.759 0.773 0.785 0.773 0.793

TOTAL NUMBER OF WINS 4 3 9 12 19



It is also interesting to note that in an earlier version of our learning algorithm, we did not normalize
weights for bags and instance-query singleton bags when learning with labels at mixed granularities.
Instead, all such bags were weighted equally and the objective function was slightly altered. In
those experiments, MIU’s accuracy was roughly equivalent to the figures reported here, although
the improvement for all other query strategies (especially random selection) were lower.

5 Conclusion

We have presented multiple-instance active learning, a novel framework for reducing the labeling
burden by obtaining labels at a coarse granularity, and then selectively labeling at finer levels. This
approach is useful when bag labels are easily acquired, and instance labels can be obtained but are
expensive. In the present work, we explored the case where an MI learner may query unlabeled
instances from positively labeled bags in order reduce the inherent ambiguity of the MI representa-
tion, while keeping label costs low. We also described a simple method for learning from labels at
both the bag-level and instance-level, and showed that querying instance-level labels through active
learning is beneficial in content-based image retrieval and text categorization problems. In addition,
we introduced two active query selection strategies motivated by this work, MI Uncertainty and
Expected Gradient Length, and demonstrated that they are well-suited to MI active learning.

In future work, we plan to investigate the other MI active learning scenarios mentioned in Section 1.
Of particular interest is the setting where, initially, some bags are labeled and others are not, and
the learner is allowed to query on (i) unlabeled bags, (ii) unlabeled instances from positively labeled
bags, or (iii) some combination thereof. We also plan to investigate other selection methods for
different query formats, such as “label any or all positive instances in this bag,” which may be more
natural for some MI learning problems.
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