
Cache Showdown: The Good, Bad, and Ugly

Bhavesh Mehta, Dana Vantrease, Luke Yen

Computer Sciences Department

University of Wisconsin, Madison

Abstract

Prefetching algorithms have been mainly studied in the context of the Coverage and Accuracy metrics.

While this is an appropriate metric for prefetching into separate stream buffers, it is a poor assessment of

prefetching into a shared cache structure where cache pollution can become a serious factor. Traditionally,

prefetches have been categorized as ”good” or ”bad” if they are accessed or are evicted without being

accessed, respectively. We propose a new categorization of ”good”, ”bad”, and ”ugly” that takes into

account prefetches that cause harmful cache pollution.

This paper proposes a novel structure called the Evict Table (ET) that gauges the amount of cache

pollution caused by prefetching into a shared data structure, such as a cache. We show the value of the ET

in the context of a chip-multiprocessors, where prefetching among several processing nodes may further

increase the contention for cache real-estate. Specifically, we use the ET as an aid in evaluating the effects

of Unistride and Czone prefetching algorithms on a chip-multiprocessor’s shared L2 cache across a varying

number of cache sizes.

1

1 Background

While processor speeds have been increasing dramatically, memory systems have not been able to keep

pace, causing a steadily increasing gap between processor cycles and memory access cycles. This has given

rise to various latency tolerance mechanisms such as multilevel cache hierarchies and out-of-order instruction

execution. With the advent of aggressive superscalar processors where multiple instructions are in flight at any

point of time, the role of cache hierarchies have become more critical and demanding. Prefetching [14] is a

technique to reduce memory latency by obtaining data before potential accesses to it occur. Cache prefetching

refers to bringing cache lines into the cache preemptively before a demand miss occurs to those lines. This

technique has actually always been used in cache memories. When we miss on a particular word, we not only

bring that word into the cache but also fetch the whole cache line containing that word. This is called Implicit

prefetching. The effectiveness of this technique generally increases as the cache line size is increased, up to

the point of high bandwidth costs in uniprocessors and false sharing in multiprocessors. Exploiting the same

technique more aggressively gives rise to what is called Explicit prefetching. For example, upon a miss we

could not only fetch the cache line containing the word missed upon, but also choose to fetch a larger set of

cache lines. When to start and stop prefetching, what lines to prefetch, and where to put prefetch lines are

some of the trade-offs to consider when evaluating prefetch strategies.

Prefetched data might be placed into named locations, such as processor registers. This kind of prefetch is

called binding prefetch. Alternatively, using the idea of non-binding prefetch we can place the prefetched data

into a cache in the memory hierarchy or into separate structures like stream buffers [9]. When prefetching

into a cache we must be weary of cache pollution. Cache pollution is when a prematurely prefetched block

displaces useful data in the cache. That is, if the block had not been displaced, the processor would have hit

to it, but because of prefetching, a miss results.

In order for prefetches to be useful, they must be timely. In one case, if a useful prefetch is prematurely

allocated, it may be evicted from the prefetch structure before its use. In another case, an unused prefetch

may be poorly timed in such a way that it pollutes the cache, evicting live cache data. There are several

prefetch policies that try to alleviate these situations. One of them is tagged prefetch [13], which provides

timeliness by keeping a tag associated with all prefetch lines, and only issuing additional prefetch requests

when a previous prefetch line’s tag has been set, which occurs when that prefetch line is accessed. Another

policy is prefetching only from the miss address stream, which is less aggressive than initiating prefetches by

watching the entire address stream, and is based on the idea of miss addresses being localized (misses to an

2

address usually lead to additional misses around that address).

There are two measures that have traditionally been used to quantitatively measure prefetch schemes.

The first, accuracy, refers to the fraction of all prefetches that are actually used. The second, coverage, is the

fraction of all memory requests that can be elminated by a particular prefetching scheme. To measure cover-

age and accuracy all prefetches have been in the past categorized into “Good”(G) and “Bad”(B) prefetches.

According to Srinivasan et. al, a ”Good” prefetch is one that is accessed before it is replaced, while a ”Bad”

prefetch is one that is replaced before it is accessed. Quantitatively [6], if the total number of misses are M

without prefetching,

Coverage = G/M

Accuracy = G/(G+B)

2 Introduction

Prefetching has been effective in uniprocessors [1, 4, 5, 7, 8, 9, 10]. It is also important in Chip-Multiprocessors

(CMPs) (e.g. Power4 [3]). We consider the case of CMPs with private L1 caches and a shared L2 cache that

is shared amongst prefetches and cached values. There are extra benefits to prefetching into a CMP’s shared

L2 over a uniprocessor’s private L2. For example, good prefetching will not only help avoid misses from

one processor but also potentially avoid misses from other processors, if there is sharing. However, CMPs

are may be susceptible to inaccurate prefetches because resources wasted by inaccurate prefetches are shared

among all processors and hence all the processors might be affected. Such effects, in particular the effects of

prefetch-provoked cache pollution across the processing nodes, are the focus of this study.

We use an Evict Table 3 to evaluate different prefetching policies in terms of cache pollution. In particular

we compare Unistride and Czone prefetching techniques. The unistride scheme, or the fixed-stride scheme,

is based upon the idea that if we miss to a particular cache line we are likely to access the next cache line also

(spatial locality). Czone [12] prefetching is an arbitrary stride prefetching scheme, and is shown in figure 1.

According to Palacharla et. al, in Czone we partition each word address into two parts: the Concentration

zone (Czone) and the address tag. In addition, there is a filter table associated with the prefetcher, which

keeps some state for each address that initiates any prefetch requests and is used by the prefetcher’s finite

state machine (FSM) whenever it tries to decide whether to issue prefetches to that address or not. Each

entry of the non-unistride filter table, in addition to the tag of the Czone partition, has a few state bits, and

3

last address and stride fields which are required to implement the stride detecting FSM. At the end of three

consecutive strided references a stream is allocated and the entry in filter is freed.

The rest of this paper is as follows. In section 3 we introduce Evict Table and its functionality, in section 4

we present the simulation methodology. Section 5 discusses the results of our simulation. Section 6 talks

about related work. In section 7 we conclude and in section 8 we discuss some of the issues we want to

handle in future.

3 Evict Table

3.1 Description

The Evict Table (ET) is a mechanism by which we can track the effects a given prefetch policy has on a cache

that shares its real-estate with prefetches. Its primary function is to keep track of the fraction of all prefetches

Match

in

Table??

Stride

Verified??

Non Unistride Filter

TAG CZONE

Tag Last Address Stride State

Issue
 Prefetch

Physical Address

L1
Miss

NoNo

Yes
Yes

Enter in Table Issue Demand Miss

Figure 1: Czone scheme.

4

issued that are useful, harmful, and useless (also known as ”good”, ”bad”, and ”ugly” prefetches). Useful

prefetches are those that are actually accessed, while harmful prefetches are those that are never accessed

and are a direct cause of misses to cache lines that were displaced by that prefetch line. Finally, useless

prefetches are those that are never accessed. In this sense, the primary negative effect of this type of prefetch

line is consuming unnecessary memory bandwidth. We have not yet explored quantitatively the amount of

memory bandwidth consumed, but rather we measure the negative effects of useless prefetches indirectly by

comparing the fraction of useless prefetches to useful and harmful prefetches.

The definitions of ”good”, ”bad”, and ”ugly” prefetches differ from the traditional senses of ”good” and

”bad” prefetches in key ways. In particular, ”good” prefetches are still described with accesses to prefetch

data, however they have been adjusted to take into account cache pollution. Thus, whenever prefetch induced

cache pollution is a problem, the number of ”good” prefetches, as we define it, will always be less than the

traditional naive definition. In fact, the traditional definition is susceptible to overestimating the usefulness

of prefetches and can actually lump our notion of ”bad” prefetches in with the ”good” prefetches. ”Bad”

prefetches, as we define them, have no equivalent terminology in the realm of prefetching. ”Ugly” prefetches

are equivalent in meaning to traditional ”bad” prefetches. We avoid using the term ”bad” here and prefer

using ugly because a prefetch going unused is (in most cases) much less harmful than one that evicts soon-

to-be-accessed data.

In implementation, we calculate ”good”, ”bad”, and ”ugly” in the following way:

Good Prefetches = # Hits to Prefetched Data - # Hits to Evicted Data

Bad Prefetches = # Hits to Evicted Data

Ugly Prefetches = Total # of Prefetches - # Hits to Prefetched Data

The ET functions by keeping an additional structure which holds the address tags of the cache line victims

which have been displaced due to prefetch lines. At any point in execution, the union of the non-prefetched

tags in the cache and the evict tags in the ET give the state of of cache as if prefetching had never occurred.

In order to ensure the latter, time-stamps must accompany all tags in the cache and the ET. Since the ET

acts solely as a monitor indicating whether or not a prefetch was harmful, it does not provide a recovery

mechanism (such as the cache line’s data) when misses occur. Currently, our ET has as many entries as

there are total numbers of cache blocks. This was chosen so that we could keep track of all the last victims

displaced by prefetch lines, and so that we could easily ensure that several ET invariants could be maintained.

The first invariant is that for each prefetch line in the cache, there must be a corresponding victim in

5

the ET. The term victim does not necessarily mean a true cache line that was displaced by the prefetch line,

since a prefetch into an invalid block does not displace a victim at all. Rather, for this scenario we maintain

the invariant by inserting a special NULL entry, which does not keep any real information except a valid

timestamp, which is used in order to participate in LRU replacement of ET entries. Thus the first invariant

can be stated as follows:

of Prefetch Lines in the Cache Set = # of Victim Entries in the ET Set

The second invariant for the ET is as follows: at any given time, the number of victims in a given ET set

plus the number of non-prefetch cache lines for that set in the cache should always be less than or equal to

the associativity of the cache:

of Victim Entries in ET Set + # of Valid Non-Prefetch Cache Lines in Set ≤ Cache Set Associativity

This invariant is true because the number of valid non-prefetch cache lines must always be less than or

equal to the cache associativity, and the remaining cache blocks for that set can be taken up by prefetch lines,

which must have a corresponding victim entry in the ET.

We now describe, in several different scenarios, the operations of the ET, which depend on the state of

the cache at any given snapshot in time.

3.2 Inserting Prefetches

The first scenario involves prefetch lines being inserted into invalid cache blocks (see Figure 2). As mentioned

earlier since there is no valid data line being evicted we will simply insert a NULL entry in the ET set in order

to satisfy our two invariants.

The second scenario (see Figure 2) is when a prefetch line evicts a valid cache line. In this case, we must

insert the victim’s address tag into an ET entry in the same set, and give the entry the current timestamp.

Note that we must have space available in the ET for this set, since the victim we are replacing is a cache

line; hence there must be at least one unoccupied ET entry for this set corresponding to the cache line. In this

case we still maintain both of our invariants because each prefetch has a corresponding victim ET entry for

the set, and the sum of the victims plus the number of valid non-prefetch cache lines is less than or equal to

the cache set associativity.

The third scenario involves an incoming prefetch line evicting another prefetch line in the cache (see

Figure 2). In this case we do not add or remove entries in the ET for this set because we have not evicted any

6

non-prefetch cache lines. Therefore, the current victim entry in the ET corresponding to the victim prefetch

line is sufficient to maintain our two invariants. It is worth noting that the prefetch evicted might have been a

useful prefetch, and though our ET does not capture this chain of prefetches replacing prefetches, it could be

extended to do such.

INVALID

INVALID

INVALID

INVALID

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

INVALID

INVALID

INVALID

Prefetch NULL

EMPTY

EMPTY

EMPTY

EMPTY EMPTY

EMPTY

EMPTY

PrefetchData

Data

Data

Data

Data

Data

Data

DataD

A

B

C

A

B

C

D

Data

Data

A

B

Data C

Prefetch A Data

EMPTY

EMPTY

EMPTY

D Prefetch B

Data A

Data B

Data C

Data D

EMPTY

EMPTY

EMPTY

Prefetch A

Data B

Prefetch B

Data D

Data

EMPTY

Data C

EMPTY

Data A

Data B

Prefetch B

Data D

EMPTY

EMPTY

EMPTY

Data C

E

Data

Data

Prefetch

Prefetch

B

C

A

B

Data

Data

EMPTY

EMPTY

D

E

Data

Data

Prefetch

Prefetch

A

A

B

C

EMPTY

EMPTY

Data B

Data E

Prefetch

Prefetch

Prefetch B

Data A

Data A

BEFORE AFTER

Scenario 1

Scenario 2

Scenario 3

Scenario

Scenario

4

5

L2 Set ET Set L2 Set ET Set

* *

* *

* *

* *

* *

*

*

* *

* *

* *

* *

* = LRU Entry

Figure 2: How Evict Table works

7

The fourth scenario (see Figure 2) involves an incoming non-prefetch cache line replacing a prefetch

cache line. In this case, due to our first invariant, there is a victim ET entry for this set and when evicting

the prefetch cache line we must also evict its corresponding victim ET entry. Therefore our two invariants

are still maintained after these actions since we have one less ET entry and one less prefetch cache line than

before, but we also increased the number of non-prefetch cache lines.

The final scenario for our ET occurs when an incoming non-prefetch cache line replaces another non-

prefetch cache line, and there exists prefetch cache lines in the (see Figure 2). In this case, we must evict

the Least Recently Used(LRU) ET entry, allocate a new ET entry and fill it with the address tag of the cache

line which is going to be evicted. The reason for doing these two steps can be explained in the following

way. If at least one of the prefetch cache lines in the cache had not existed, there would be a possibility of the

incoming non-prefetch line co-existing with the victim non-prefetch cache line. However we have eliminated

this possibility due to the existence of at least one prefetch cache line. Therefore we must update our victim

list to account for this possibility, which is done by evicting the LRU ET entry and allocating a new entry

based on the address tag of the evicted non-prefetch cache line. Note that it is important that we follow these

two steps because of the need to maintain our two invariants.

3.3 Servicing Requests

Table 1 describes how the ET goes about servicing requests in a manner that ensures all of the invariants are

held. Though there is a one-to one correspondence between the prefetch entries and the evict table entries, no

single prefetch entry is bound to an evict table entry. This allows LRU to continue in a natural progression.

Thus, all entries from the ET are removed in LRU order. In some cases, such as a hit to the ET, a specific

entry is to be removed. We accomplish this by calling a setLRU function to ensure that when the miss comes

back the entry which is hit to is removed. By simply setting the ET entry to LRU, rather than removing it

before the miss is serviced, this prevents race conditions between the prefetch port and the request/response

port from violating the invariants.

4 Simulation Setup

To explore various CMP prefetching techniques, we used the Multifacet simulation infrastructure to simulate

a multiprocessor server [2] running scientific and commercial workloads. Our target system is a 4-processor

8

Table 1: Interactions with the Cache and its Evict Table

Cache Cache Evict Table Cache Action ET Action Comment
Non-prefetched Prefetched Hit

Hit Hit

No No No Issue Miss No action No changes
No No Yes Issue Miss Bad Prefetch, Prefetch

set LRU evicted useful data
No Yes No Hit, goto Good Prefetch, Prefetch hit

non-prefetched remove LRU before data
state

No Yes Yes Hit, goto setLRU, Useful data evicted
non-prefetched remove LRU and prefetched

state backed in
Yes No No Hit No Action Nothing changes
Yes No Yes Hit setLRU Useful data evicted,

prefetched back in
and hit to

Yes Yes No No No action Impossible: Cannot have
identical tags in cache

Yes Yes Yes No No action Impossible: Cannot have
identical tags in cache

system (1 CMP with 4 processors), running Solaris v9. Each processor has its own L1 Data and Instruction

caches. The L1 Cache is writeback and maintains inclusion with L2. The four processors on a chip share an

L2 cache. Each chip has a point to point link with a coherence protocol controller, and a memory controller

for its part of the globally shared memory. The system implements sequential consistency using directory-

based cache coherence. The L1 uses the MSI cache coherency protocol, and the shared L2 uses MOSI cache

coherency. We evaluated two prefetching schemes, Czone and unistride prefetching at the L2. Prefetches are

allocated in the L2 and the ET resides at the L2. We used Kyle Nesbit and Nick Lindberg’s [11] implemen-

tation of the Czone prefetcher, and modified it to also allow unistride prefetching. For both schemes we set

the prefetch degree to 1. In all cases we used infinite bandwidth for the links so that they would not be the

bottleneck in the system. The system configurations is shown in Table 2.

5 Results and Analysis

We compared the two prefetching schemes, Czone and unistride, by fixing the prefetch degree at 1, and

varying the sizes of the shared L2 cache into which the prefetch lines go into. We then ran simulations using

9

Table 2: System Parameters

Total Number of Processors 4

Processors per Chip 4

L1 I-Cache 64KB 2-way set associative

L1 D-Cache 64KB 2-way set associative

Shared L2 cache 1-16MB 4-way set associative

Total TBEs 128 entries

the Apache, Barnes, Ecperf, JBB, Ocean, OLTP, and Zeus benchmarks (using short runs). In all instances

we collected data using our Evict Table as well as using the statistics from Ruby in order to compare the two

prefetching schemes and their performance differences as we varied the cache size.

Figure 3: Normalized L1 misses 1.

First, we examined the total number of L1 cache misses, which includes both instruction and data cache

10

misses. We normalized the results for our two prefetching schemes against the Base configuration for the

same cache configuration but with no prefetching at all. As can be seen in Figures 3 and 4, for the Apache,

Barnes, ECperf, JBB, Ocean, and Zeus the total L1 cache misses did not differ much between the Base,

Czone, and Unistride prefetching schemes. OLTP experience some variations in L1 cache misses as we

varied the cache size and also used different prefetching schemes. On one hand, these results indicate that

cache pollution affecting inclusive data in the L2 cache is not a major problem for these benchmarks, since

the L1 cache misses stay relatively constant in light of prefetching. However, according to data in Figure 5

as we increase the cache size the total number of prefetches decreases. This increase of prefetches compared

to total number of prefetches in bigger cache sizes can be explained by the following. Our prefetch scheme

currently initiates prefetches by observing the L1 miss address stream or by hits to prefetches which haven’t

received its data from main memory (hence it is in some intermediate cache coherency state). Since we are not

issuing many more L1 misses as compared to the Base case, we assume the miss traffic in both quantity and

content is similar. Thus we hypothesize that the large prefetch number comes from another source: hitting to

the prefetches in the intermediate cache state. According to our protocol, such hits invoke more prefetches.

We have not extensively explored this phenomenon, and this should be investigated further in future work.

Likewise, we see that in Figures 6 and 7, all of the benchmarks with the exception of OLTP and ECperf

Figure 4: Normalized L1 misses 2.

11

experienced relatively the same quantity of L2 misses. OLTP was unlike the others due to its inconsistent

behaviors, which does not mesh well with prefetchers. Similarly, due to the short simulations of ECperf we

could not concretely categorize its behavior as consistent as we could with the remaining benchmarks. In

summary, there was a slight decrease in the total number of L2 cache misses, but it was not significant and

could be attributed to the randomized nature of the simulator.

The effects of the cache misses, particularly the L2 cache misses, directly translates to the performance

data we see in Figure 8. As we stated earlier, OLTP was not amenable to prefetching, and therefore experi-

enced a little more than 20% increase in cycles per transaction. The other benchmarks had a slight decrease

in cycles per transaction, which results in some performance improvement (around 1%).

We next discuss how our ET focuses on the categorization of prefetches into “good”, “bad”, and “ugly”.

Some benchmarks, such as Barnes, ECperf, and Ocean are less sensitive to bad prefetches than others and

experience few bad prefetches. This phenomenon is likely the result of the application being mostly read-

only or the benchmarks having a small working set that is unaffected by the area prefetches consume.. In

Figure 5: Total Number of Prefetches.

12

Figure 6: Normalized L2 misses 1.

Figure 7: Normalized L2 misses 2.

13

Figure 8: Cycles per Transaction Performance.

other benchmarks, including Apache, Jbb, OLTP, and Zeus, this was not the case. The percentage of bad

prefetches is directly linked to the cache size, and as the cache becomes larger, the pollution is less serious.

As a side effect experecing less cache-pollution it becomes more probable that prefetches will be categorized

as “good’.

Cache pollution in smaller caches, compounded with prefetching more at smaller cache sizes (Figure 5),

contributes to the cache pollution. Despite cache-pollution being a problem, in terms of misses, more

prefetches are “good” than “bad” in simulations. This is not to say, however, that the number of “bad” misses

is insignificant. Note that the “bad” prefetches make up as much as 20% of the prefetches and these quantify

the mis-classification of prefetches which traditionally have been considered “good”. This is a significant

enough percentage to give the wrong impression of a prefetching scheme’s effectiveness.

14

Figure 9: Good, Bad, Ugly Distribution 1.

Figure 10: Good, Bad, Ugly Distribution 2.

15

6 Related Work

Prefetching has been explored and discussed in great detail in literature [1, 4, 5, 7, 8, 10]. Recently, Viji

Srinivasan et. al. [6] introduced a rigorous way to evaluate the “goodness” of a prefetch scheme by intro-

ducing costs to every memory action. They quantified these costs at a high level by categorizing the amount

of extra requests and extra cache misses prefetching introduces. They provided a similar analysis to ours by

comparing a cache which had prefetching to a cache, of the same size and configuration, that did not have

prefetching. They provided analysis based on the different scenarios that could occur, depending on whether

the evicted cache line is accessed later on. In this manner their coverage of the different scenarios can be

mapped directly to the scenarios covered by our ET, albeit at a more simplistic setting.

In contrast, our simulated system is much more complex than the one they simulated on. Their results

were for a single cache system that did not have inclusion, and using a prefetcher that issued prefetches

regardless of whether they already existed in the cache. Our simulation system uses a cache hierarchy that

maintains inclusion, withe the private L1 caches being writeback caches, and also using a prefetcher that drops

prefetch requests if the address tags already exist in the L2 cache. Srinivasan et. al evaluates the effectiveness

of prefetching in a mathematical way, which would be very complex and tedious for our simulated system

due to the overwhelming number of factors that need to be accounted for when making that type of analysis.

In addition, their analysis assumes an arbitrary prefetch scheme, whereas we performed our analysis with two

specific prefetching schemes, Czone and unit-stride.

7 Conclusions

In this paper we introduce a novel structure, the Evict Table, which captures the side effects a particular

prefetching scheme has on caches. It captures the “good”, “bad”, and “ugly” prefetches (corresponding to

useful, harmful, and useless prefetches, respectively) for any given prefetch scheme, and allows accurate

feedback on how that scheme performs for a given system configuration.

We also compared the performance of two prefetching schemes, the Czone arbitrary stride prefetcher

and the unistride prefetcher, under different shared L2 cache configurations varying from 1-16MB. Both

prefetching schemes perform similarly for a prefetch degree of 1, and while we have not presented graphs

of the schemes using prefetch degree 8 we have found that both schemes degrade drastically at this prefetch

degree. Regardless of what prefetch degree is used for the prefetcher we feel that the Evict Table can provide

16

an accurate analysis of the effectiveness of the prefetching scheme and its effects on the memory hierarchy.

We have preliminary results showing that cache-associativity is a factor in how consequential cache pol-

lution is when prefetching into a shared cache. In general as cache size increases the fraction of “good”

prefetches increases and the fraction of “bad” prefetches decreases for all the benchmarks. In addition, the

fraction of useless prefetches fluctuates across different benchmarks, so no conclusive trend exists as we in-

crease the cache size. However, by categorizing prefetches into these three categories we have provided a

valuable tool into how prefetches affect the memory hierarchy.

8 Future Work

There are a number of issues we need to explore in future work. The first issue has to do with memory band-

width. Although we have captured the number of useless (“ugly”) prefetches for both Czone and Unistride

prefetching schemes for varying cache sizes, we have not quantitatively measured this excess bandwidth as a

fraction of the total memory bandwidth in the system. In order to do this precisely we need to explore different

bandwidth configurations and to see the impact of Czone and Unistride prefetching assuming a fixed cache

configuration. Related to this is how we might use this information as feedback into the prefetcher. Since

the ET can potentially be a hardware structure, we might be able to use the fraction of harmful prefetches (as

gathered by the ET) as iterative feedback into the prefetcher, and to use this information to gouge when to

turn off prefetching and when to restart it (either by some intelligent scheme or by using random restart).

The second has to do with communication invalidates. This is a problem in with multiple chips in a CMP

because if multiple prefetchers on multiple CMP chips issue prefetches to the same address, and one of the

chips issues a GETX request because it wants to write to that block, the other chips now have to invalidate that

block. This would not have occurred if there had not been prefetches to that same block. Although this has

always been a problem in multiprocessor systems in which individual chips have private prefetchers, it might

be more or less of a problem in CMPs due to shared caches and smaller wire delays. In order to examine this

problem in greater detail we need to collect data on how often communication invalidates due to prefetches

occur, and if there is potential in using some hardware in order to alleviate these invalidates.

Thirdly, we have assumed during our simulations that we prefetch into a shared L2 cache, which has the

potential of prefetching for other processing nodes at the expense of causing cache pollution. To expand our

analysis further we can see the effectiveness of prefetching into a victim cache or stream buffer [9]. We can

then compare the results against our ET results to see whether the additional hardware overhead of using

17

these separate structures to avoid cache pollution is justified.

Finally, we need to explore using other cache coherency protocols to examine its effects on cache pol-

lution when prefetching into a shared cache. We have utilized an inclusive cache coherency protocol in

our simulations. However, there are some subtle effects that may cause cyclic dependencies to form when

we are using inclusive caches. This is because we are initiating prefetches by examining the miss address

stream, and the combination of prefetching into a shared L2 cache and possibly evicting inclusive L1 data

might cause additional L1 cache misses. Since the prefetcher acts upon miss addresses this effect initiates

the prefetcher, which might once again cause additional L1 misses, which forms the cyclic dependency be-

tween the L1 cache and the prefetcher at the L2 cache. This situation might be entirely avoided by utilizing

exclusive caches along with an exclusive cache coherency protocol, or by using separate prefetch structures

as mentioned above.

References
[1] T.F. Chen and J.L. Baer. Effective hardware-based data prefetching for high performance processors. IEEE Transactions on

Computers, pages 609–623, May 1995.

[2] Alaa R. Alameldeen et. al. Simulating a $2M commercial server on a $2K PC. IEEE Computer, February 2003.

[3] J. M. Tendler et. al. Power4 system microarchitecture. IBM Technical White Paper, 2001.

[4] John W. C. Fu et. al. Stride directed prefetching in scalar processors. In Proceedings of the 25th annual international symposium
on Microarchitecture, pages 102–110, 1992.

[5] Timothy Sherwood et. al. Phase tracking and prediction. In Proceedings of the 30th annual international symposium on Computer
architecture, pages 336–349, 2003.

[6] Viji Srinivasan et. al. A prefetch taxonomy. IEEE Computer, pages 126–140, February 2004.

[7] Z. Martonosi Hu and S. M. Kaxiras. TCP: tag correlating prefetchers. In The Ninth International Symposium on High-Performance
Computer Architecture, February 2003.

[8] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. IEEE Transactions on Computers, 48(2):121–133, 1999.

[9] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch
buffers. In Proceedings of the 17th International Symposium on Computer Architecture, pages 364–373, May 1990.

[10] S. Kim and A. V. Veidenbaum. Stride–directed prefetching for secondary caches. In Proceedings of the 1997 International
Conference on Parallel Processing, pages 314–321, August 1997.

[11] Kyle Nesbit and Nick Lindberg. CMP prefetching. http://www.cs.wisc.edu/ david/courses/cs838/projects/nesbit.pdf, 2004.

[12] S. Palacharla and R. Kessler. Evaluating stream buffers as a secondary cache replacement. In Int’l Symp. Computer Architecture,
pages 24–33, 1994.

[13] Alan J. Smith. Cache memories. Computing Surveys, pages 473–530, September 1982.

[14] Steven VanderWiel and David Lilja. Data prefetch mechanisms. ACM Computing Surveys, 32(2):174–199, June 2000.

18

