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Abstract
For centuries, scholars have explored the deep links among human languages. In this
thesis, we present a class of probabilistic models that exploit these links as a form
of naturally occurring supervision. These models allow us to substantially improve
performance for core text processing tasks, such as morphological segmentation,
part-of-speech tagging, and syntactic parsing. Besides these traditional NLP tasks,
we also present a multilingual model for lost language decipherment. We test this
model on the ancient Ugaritic language. Our results show that we can automatically
uncover much of the historical relationship between Ugaritic and Biblical Hebrew,
a known related language.
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Chapter 1

Introduction

As I write this sentence, millions of human beings are busy communicating with

one another through the written word. In fact, reading and writing now consti-

tute a greater part of human communication than ever before. As populations be-

come more literate and world-wide access to technology increases, communication

through electronic text has also become more linguistically diverse. Many dozens

of languages are used everyday on the web, in emails, and in text messages.

In this age of written communication, the development of human language tech-

nology takes on greater importance than ever before. One of the chief goals of this

enterprise is to develop models that can automatically analyze large bodies of text

and quickly perform the kinds of tasks that would normally require intense human

effort. Some examples of these tasks include the automatic translation between

languages and the automatic extraction of information from text. The primary dif-

ficulty in achieving human performance on these tasks is that natural language is

ambiguous.

This thesis aims to tackle the problem of natural language ambiguity within a

novel framework: multilingual learning. Throughout this thesis, we will argue that

by carefully modeling cross-lingual connections, we can push the state-of-the-art in

language technology to new limits. The key idea is that patterns of ambiguity differ

across languages. By jointly modeling the latent structure of multiple languages,

the idiosyncratic ambiguities of each language can be more effectively resolved. This

13



Figure 1-1: Example of an Ugaritic text found at Ras Shamra. We thank Dr. N.
Wyatt and Dr. J. B.. Lloyd of the Ras Shamra project at University of Edinburgh
for the use of this image.

thesis presents several novel findings:

Multilingual modeling improves accuracy for classical text analysis tasks.

These tasks are of fundamental importance and have been studied extensively within

the statistical NLP community. Some tasks, such as grammar induction, involve

the prediction of complex latent structure. Even so, we show that cross-lingual

regularities can be captured while still allowing realistic language variation. We also

show that multilingual accuracy continues to grow as more languages are added.

These results point to a future multilingual NLP paradigm.

Multilingual modeling enables new language analysis tasks. In particular,

we present the first model to successfully decipher a lost language. It took scholars

14



four years to initially crack the ancient Ugaritic language. Decades of painstaking

scholarship has continued to flesh out its relationship to other Semitic languages.

We present a statistical model which automatically uncovers much of the historical

relationship between Ugaritic and Biblical Hebrew. We design our model to capture

the many intuitions that have guided human scholars. By modeling these intuitions,

we can automatically decipher a substantial portion of the Ugaritic vocabulary.

1.1 Chapter Overview

The next two sections outline some of the practical and scientific motivations driving

the work of this thesis. Section 1.2 starts with the practical side: In it we discuss

the recent rise of the (electronic) written word as a means of communication and its

increasingly multilingual nature. We argue that in order to develop intelligent text-

processing tools for the world’s languages, new techniques are needed. Section 1.3

turn to some scientific motivations. We discuss the need to preserve the hundreds of

languages in danger of immediate extinction and the thousands of languages under

threat of extinction over the coming decades. We also look to the past and discuss

the need for technology to help us better understand languages from our ancient

history. Section 1.4 introduces the reader to the main ideas and contributions of

this thesis. First we describe the diversity of linguistic structure and the nature of

human language ambiguity. We then introduce multilingual learning as a conceptual

framework. Finally, we show how we applied this framework to several tasks of

automatic linguistic analysis. Section 1.5 then outlines some previous research on

multilingual language technology and discusses the relationship of our thesis to that

work. Finally, section 1.6 provides the reader with an overview and roadmap for

the remainder of the thesis.

15



1.2 Practical Motivation

World literacy rates have skyrocketed from 66% to 84% over the past six decades.

Even more recently, we have witnessed a revolution in our ability to communicate

with one another through the written word. An astounding volume of human

communication now takes place through text: We send an average of 4.1 billion

text messages and 47 billion non-spam emails each day [27, 115]. Indeed, text plays

a larger role in language communication than ever before in human history; this

trend is likely to continue.

Until recently, the technology infrastructure fueling this rapid growth was con-

fined to a handful of countries. As a result, the World Wide Web was initially

dominated by English speaking users. Such users constituted a majority of all web

users until the turn of the century. Starting in the year 2000, however, the percent-

age of web users from non-English speaking countries began to rapidly increase. It

is estimated that, as of today, native English speakers only constitute a third of all

internet users.

As the number of non-English technology consumers has increased, so has the

number of non-English electronic texts. In the year 2000, over 70% of webpages

were written in English [125]. Seven years later, this number had dropped to 45%.1

In addition, the web has become an increasingly dynamic and interactive environ-

ment. Because of this, much of the world population of internet users now produces

electronic text in their native languages. For example, the percentage of non-English

Wikipedia articles has risen from 10% in 2002 to more than 75% in 2007. Indeed,

by 2007 about a third of all Wikipedia articles were not even written in the top 10

languages of the web.2

Research within the language technology community has not kept pace with

this explosion of language diversity. At the 2008 meeting of the Association for

Computational Linguistics: Human Language Technologies (ACL 2008), 119 long

1http://dtil.unilat.org/LI/2007/ro/resultados_ro.htm
2http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
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papers were presented. Fewer than one-fifth of these papers examined multiple

languages [5].3 Unsurprisingly, English still dominates the field as an object of

study: 63% of single-language papers focused exclusively on English [5].

There are a variety of reasons for the continued dominance of English as an

object of study and technology. Some of these are sociological in nature. A dispro-

portionate number of NLP researchers are themselves native English speakers, and

it is quite simply easier to develop technology for a familiar language. In addition,

there is the phenomenon of data-set inertia. The standardization of data-sets can

result in incentives to evaluate one’s system on a very narrow range of languages

(and genres).

Perhaps more important, though, is the paucity of rich linguistic resources for

most languages of the world. As we discuss in the next section, human languages

are rife with ambiguity. One way of dealing with this phenomenon is to first have

humans annotate texts to resolve the relevant ambiguities, and to then train com-

puter models on these annotated texts. Unfortunately, the time and expense in-

volved in creating such resources can be prohibitive. One groundbreaking resource,

The Penn English Treebank, took a team of professional computer scientists and

linguists years to create [77]. It is therefore unlikely that such richly annotated text

corpora will be created for a large portion of the world’s languages anytime soon.

Recently, a number of unsupervised approaches have been developed in the nat-

ural language processing community. These are methods which are trained solely

on raw text, without the input of a human annotator. While this is a promising

avenue of research, the performance of purely unsupervised systems largely remains

too low for practical use. Thus, it is important to look to other ideas and sources

of information.

The alternative that we propose in this thesis is multilingual learning. The main

idea is that we can leverage varying cross-lingual patterns of ambiguity as a form

of naturally occurring supervision. As we show throughout the thesis, utilizing

this source of information can lead to significant gains in accuracy without the

3Or multiple language-pairs in the case of machine translation papers.
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involvement of human annotation.

1.3 Scientific Motivation

In the previous section we discussed the practical motivation for multilingual mod-

eling. Namely, that it can enable the rapid development of text analysis tools for

the growing number of languages used in electronic communication. In this section

we turn to less practical but equally important motivations for our work.

One of these is the threat of language extinction. Of the world’s 6,900 spoken

languages, hundreds are at risk of immediate extinction and thousands more are

likely to disappear over the coming decades. Hale et al. [50] predict that 90% of the

world’s linguistic diversity will be lost by the year 2100. Without immediate and

sustained efforts to document the world’s languages, our ability to understand the

nature of language may be irreparably harmed.

While language documentation is considered a high priority in the field of lin-

guistics, the computer science community has yet to make substantial contributions

to this effort [1]. Immediately developing large annotated corpora for every at-risk

language is simply not feasible. Abney and Bird [1] instead propose that we start

with a single reference text and then rapidly collect translations of this text into

every endangered language possible. Linguistic annotations of this massively par-

allel text can then be slowly built up through a combination of automatic methods

and human supervision.

The methods we have developed dovetail nicely with this goal. Throughout

this thesis we endeavor to show that multilingual parallel texts can serve as (an

imperfect) replacement for human annotation. We also show that performance

continues to improve as more languages are added to the mix. Thus, multilingual

learning should prove invaluable as a first step in the automatic glossing of such a

universal language corpus.

A complete understanding of human languages must also include knowledge of

their history and evolution. The scholarly enterprise of lost language decipherment

18



endeavors to fill in some of the historical gaps. Many ancient texts have indeed

been deciphered over the past two centuries [100], some after decades of scholarly

effort. It is hard to overestimate the importance of these discoveries. The history

of writing and the earliest forms of human literature have been revealed.

Nonetheless, several crucial languages and scripts have yet to be understood.

We believe that computational and statistical methods will be invaluable to such

future decipherment efforts. This motivates our development of the first statistical

model for lost language decipherment.

1.4 This Thesis

We now introduce the key contributions of this thesis. We first present the frame-

work of multilingual learning at a conceptual level and then show how we realized

this framework at the practical level. Because so much of this thesis is based on the

idea of systematic differences across languages, we begin with a brief exposition of

that topic.

1.4.1 Language Diversity

Anyone who has attempted to learn a foreign language knows that it requires much

more than memorizing a bilingual dictionary. Rote learning of a new vocabulary

is certainly difficult. Even more challenging, though, is learning to express oneself

and communicate in a new tongue. Part of the reason for this difficulty is that

languages differ from one another in a variety of ways. In particular, languages

vary in the way meaning is mapped to linguistic structure.

Perhaps the most obvious manifestation of this diversity is the systematic dif-

ference in word order across languages. Consider the following pair of English and

Japanese sentences:

19



English: IBM bought Lotus.

Japanese: IBM Lotus bought.

English: Sources said that IBM bought Lotus yesterday.

Japanese: Sources yesterday IBM Lotus bought that said.

As Collins [25] points out, the correspondence between the Japanese and English

versions of these sentences can be succinctly captured by a single rule. In English,

the standard word order is subject-verb-object. In Japanese, however, the position

of the verb and object are reversed: subject-object-verb.

Another striking example of language difference comes from morphology, which

studies how words are formed from smaller units of meaning (called morphemes).

Consider the pair of English and Hebrew sentences:

English: I took a walk.

Hebrew: ṭayalti

The first thing we might notice is the difference in sentence lengths. The meaning

which we express in English using four words, is expressed using only one word in

Hebrew. However, if we examine this Hebrew word more closely, we will see that

it is composed of two smaller morphemes, each bearing a distinct meaning:

(1) ṭayal-/took a walk (2)-ti/I

In general, Hebrew and many other languages can pack a lot of complex meaning

into single words by forming them from multiple morphemes. The exact manner in

which this is done is language-specific, but given any set of languages, consistent

cross-lingual patterns will become apparent. In fact, morphology interacts with

word-order in an interesting way. For languages such as English, word order is

the primary indicator of the grammatical role of words. In our first example, we
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knew that IBM was the company that purchased Lotus (rather than the other way

around) because of the order of the words. In many other languages, though, the

grammatical role of individual words is determined through the addition of a case

marker. 4 As a result, the word order of these languages tends to be much more

free and can vary to provide different emphases.

Finally, we make one final observation about our English-Hebrew example. The

English verb phrase took a walk corresponds to the intransitive Hebrew verb ṭayal.

Most of the semantic weight in the English verb phrase is carried by the noun walk

(took in this context is an instance of a “light verb” ). In contrast, Hebrew packs the

same meaning into a single, semantically weighty verb. Some languages (e.g. Urdu)

use light verb constructions much more regularly than others. Thus, we see that

languages can also differ in how they inject meaning into different parts-of-speech.

1.4.2 Multilingual Learning: The Main Idea

On the face of it, this vast linguistic diversity would make the development of

multilingual language processing tools very difficult. Techniques developed for one

language, or one set of languages, may not account for the kinds of linguistic struc-

tures encountered in other languages. In this thesis, however, we argue on the

contrary, that it is actually possible to harness linguistic diversity and use it to

our advantage. To do so, we develop the framework of multilingual learning. Our

underlying hypothesis is that cross-lingual variations in linguistic forms correspond

to systematic variations in ambiguity. As a result, the ambiguities encountered in

each language differ to some degree; by jointly modeling multiple languages, the

overall ambiguity can be drastically reduced. Before we flesh this idea out in a

systematic way, we must briefly discuss the notion of ambiguity itself.

4A case marker is a suffix that specifies the grammatical role of the word.
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Language Ambiguity

According to its most basic definition, ambiguity occurs when an observed signal

can be interpreted in more than one way. This definition takes on more meaning

when we contrast natural human languages with computer programming languages.

Programming languages are explicitly designed to avoid ambiguity. That is, every

syntactically valid program must compile into a single Abstract Syntax Tree. In

contrast, sentences in natural languages are fraught with ambiguity. Consider the

famous example:

I saw the man on the hill with the telescope.

This sentence can be interpreted in many different way. The most salient ambiguity

is the location of the telescope. Is it the man who has the telescope? Was the viewing

of the man performed with the telescope? Or is it the hill that has a telescope

on it? This example demonstrates that there is a lot more to language than the

explicit signal that we observe, whether it be auditory or a textual. Language is

rife with latent structure. In this example, the different interpretations regarding

the placement and use of the telescope each correspond to a different latent parse

tree of the sentence. Now, in the context of a larger communicative narrative, the

intended interpretation of this sentence would probably be completely obvious. In

fact, in normal human communication we seem to nearly always resolve ambiguity

with ease. To do so, we use our vast store of world knowledge, a deep unconscious

understanding of language structures, as well as contextual cues. To a large degree

then, ambiguity is in the eyes of the beholder.

Computers, however, are particularly bad at resolving natural language ambi-

guity. To some degree this can’t be helped: We know very little about the way

humans process language and represent facts about the world. So, in a certain

sense, it is not even clear what it would mean for a computer to correctly resolve

all the ambiguities of a sentence. However, there are certain ambiguities that we

might reasonably expect a computer to settle. For example, we might expect the

computer to provide the kind of formal analysis that a linguist would give for the

22



sentence: a parse tree, a sequence of parts-of-speech, and a morphological analysis

of each word. Thus, in our context, ambiguity refers to the very complex relation-

ship between the observed signs of the sentence and the latent formal linguistic

structure.

Two Motivating Examples

We can now return to our hypothesis: Cross-lingual variations in linguistic structure

correspond to variations in ambiguity. We start by illustrating this idea with two

examples. First consider the following phrase in English, Arabic, and Hebrew:

English: in my house

Arabic: fi   bayt-i

Hebrew: b-bayt-i

For this example, the languages are given in increasing order of morphological com-

plexity. English, a morphologically simple language, employs three distinct words,

each consisting of only one morpheme. Hebrew and Arabic, on the other hand, both

express the possessive pronoun my as a suffix -i on the possessed noun. In this ex-

ample at least, Hebrew displays a bit more morphological complexity than Arabic,

expressing the preposition in with the prefix b- rather than with the separate word

fi. Now suppose our goal were to uncover the latent morphology of each language.

In this case, the separate Arabic preposition would provide a clue that Hebrew

is employing a prefix. Furthermore, the three word English phrase would provide

powerful evidence regarding the prefixes and suffixes of the two other languages.

Now consider two pairs of sentences in English and French:
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English: I  like  fish.

French: J'aime les poissons.

English: I  like  to fish.

French: J'aime  pêcher.

The first thing we might notice here is that the English word fish displays part-

of-speech ambiguity. It can function either as a noun (as in the first sentence), or

as a verb (as in the second sentence). In fact, this kind of noun/verb ambiguity is

extremely common in English. In contrast, French deploys two very distinct words

to express these two meanings: poissons for the noun, and pêcher for the verb.

Thus, we can see here that the part-of-speech ambiguity in the English sentences

simply doesn’t exist in the French counterparts. Thus, if our goal were to predict

the latent part-of-speech categories for English, having French translations could

be enormously beneficial.

These examples are instances of a more general phenomenon: what one language

leaves implicit, and thus ambiguous for computers (or perhaps even humans), an-

other will express directly through overt linguistic forms. Thus, when jointly mod-

eling multiple languages, we can treat these variations in ambiguity as a form of

naturally occurring supervision in order to more accurately predict latent structure.

Conceptual Framework

One might conclude from these examples that for any pair of languages, one would

consistently provide more explicit information in some linguistic category than the

other. For example, languages with more complex morphology may systematically

provide more explicit syntactic cues (in the form of case markings) than languages
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Intended Meaning Latent Structure

M L
Observed Sentence

S

Figure 1-2: Conceptual overview of ambiguity. The intended meaningM first
produces a latent linguistic structure L which in turn produce the observed sentence
S. Ambiguity arises since spurious latent structures could have produced the same
sentence.

which rely solely on word order. Languages in the latter category, in turn, may

systematically yield rich information regarding the morphology of their morpholog-

ically complex fellow languages.

However, we can make the argument for multilingual learning more general and

symmetric if we approach things from a slightly different perspective. To start,

we can view the phenomenon of ambiguity as a result of the language-production

process sketched in figure 1-2. First some intended meaningM arises in the mind

of the speaker or writer. That meaning then gets mapped to some set of abstract

linguistic structures L, such as parse trees, parts-of-speech, and morphemes. Finally,

the linguistic structures produce a physical signal representing the observed sentence

S. However, the mapping between abstract linguistic structures and sentences is

not one-to-one. As a result, any given sentence may have been generated by any

number of spurious latent structures.

Figure 1-3 extends this scheme to the production of bilingual parallel sentences.

We assume (somewhat unrealistically, see below) that the same meaning and latent

linguistic structure underly the sentences in each language. The languages diverge

only in the final stage, when each one maps structure to signal in a unique, idiosyn-

cratic way. How does this affect ambiguity? In figure 1-3, we show two entirely
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Observed SentencesIntended Meaning Latent Structure

M L S1,S2

Figure 1-3: Conceptual overview of multilingual learning 1. Observing a
parallel bilingual sentence pair S1,S2 reduces ambiguity: The sets of spurious latent
structures for the two sentences do not overlap; only the true latent structure L
produces both sentences.

disjoint sets of spurious latent structures for the two sentences. According to this

picture, then, ambiguity simply ceases to exist in the bilingual scenario: Only the

true latent structure could have simultaneously produced both sentences. This is

obviously unrealistic, but it illustrates the idea well. More sensibly, we could expect

some subset of the spurious latent structures to apply to both sentences, leading

to a reduction in ambiguity. Either way, the assumption we make is the following.

At least some of the spurious structures arise from language-specific features of

the structure-to-signal mapping. Consequently, many of these ambiguities will be

idiosyncratic to some language.

According to this argument, even languages with very similar coarse linguistic

properties should provide each other with mutual benefit. For example, consider

two languages that are equally morphologically rich — i.e. assume that the average

number of morphemes per word is identical. Even so, the languages will surely differ

somewhat in their inventory of morphemes and in their exact patterns of morpheme

combination. Thus, for a given meaning, the distinct patterns and rules for each

language are likely to yield a sentence with correspondingly distinct morphological

ambiguities.

In figure 1-4 we remove one of the simplifying assumptions of the previous figure.
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Observed SentencesIntended Meaning Latent Structures

M S1,S2L1,L2

Figure 1-4: Conceptual overview of multilingual learning 2. Even when
expressing the same meaning, languages often differ in latent structure. Systematic
word-level correspondences in the sentences serve as a guide for finding shared
structure.

Previously we had assumed that for parallel sentences, the languages would share a

single latent structure. In reality, even for parallel sentences, the latent parse trees,

morphemes, and parts-of-speech can differ in significant ways. Figure 1-4 reflects

this reality by positing two overlapping latent structures, L1 and L2. Each such

structure is produced by a language-specific mapping from the shared meaning.

This realization brings out one of the key technical challenges of multilingual

learning. We need to identify underlying shared structure (i.e. the intersection L1∩

L2), while still allowing robust language-specific idiosyncrasies (i.e. the symmetric

difference of L1 and L2). Fortunately, figure 1-4 also displays a source of information

that will help us in this task – cross-lingual word alignments.

To clarify, we will say that word w in sentence S1 is aligned to word w′ in

sentence S2 when we observe a general pattern of w and w′ appearing in parallel

sentences. If this is the case, it is likely that w and w′ share the same meaning or

syntactic function across the two languages. In other words, it is likely that they

are translations of one another. Throughout this thesis, we will assume that such

alignments are observed.5 We will further assume that these alignments reflect the

underlying shared structure of the two sentences. In this way, they will repeatedly

5In practice, we use the output of the ++ alignment tool [90], which assumes no prior knowl-
edge of either language.
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guide our learning algorithms in identifying both shared and idiosyncratic language

structure.

1.4.3 Multilingual Learning: In Practice

Now we discuss our methods for realizing the multilingual framework discussed

above. In designing probabilistic multilingual models, we employ the hierarchical

Bayesian modeling framework (see Gelman [39] and Robert [99] for reference texts).

In this framework, we model the observed word-aligned sentences as the final out-

come of a cascade of unobserved random variables. By specifying the dependency

structure and conditional probabilities of this hierarchy of variables, we provide an

inductive bias for our model. For example, if our goal is to discover the latent

parts-of-speech of each sentence, then we structure our latent variables as a se-

quence, mirroring the words themselves. If, on the other hand, our goal is to induce

latent parse trees, then we structure our latent variables into trees. In all cases, we

predict the latent variable values which have highest posterior probability, given

the observed sentences and alignments.

To put it more succinctly: The definition of a model specifies the structure of

the latent patterns we wish to find. The inference algorithm then searches for those

latent patterns which best mirror the observed patterns of words and sentences.

This Bayesian framework allows us to neatly capture the main intuition of mul-

tilingual learning. Namely, that each sentence pair is the result of a probabilistic

process involving both shared and language-specific latent variables. Even so, the

scope of the shared explanatory mechanism is often unknown: some sets of languages

exhibit a much larger degree of shared structure than others. For example, related

languages like Hebrew and Arabic will tend to mirror each other in morphological

structure much more than unrelated language pairs (such as English and Hebrew).

To account for this variability, we employ non-parametric statistical methods which

allow for a flexible number of shared variables, as dictated by the languages and

data at hand.

In the remainder of the section, we will briefly describe how we applied mul-
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tilingual learning to three different tasks: part-of-speech tagging, grammar induc-

tion, and lost language decipherment. In each case, we designed our models and

experiments to touch on some fundamental questions about the viability of the

multilingual framework:

Question 1: Will multilingual learning provide more or less benefit when the

languages in question are from the same family (e.g. Hebrew and Arabic, Italian

and French, German and Dutch)? One might argue either way. One the one hand,

related languages are likely to have a greater degree of shared latent structure. On

the other hand, if their patterns of ambiguity are almost identical then little benefit

would be gained.

Question 2: Can multilingual learning be made to scale-up beyond pairs of lan-

guages? It seems that the a priori arguments in favor of multilingual learning would

only be strengthened as additional languages are modeled. Each language may pro-

vide some unique disambiguation cues lacking in the others. As a practical matter,

massively multilingual data-sets do exist (e.g. the Bible, which has been translated

into over 1,000 languages) and an ideal multilingual learning technique would thus

scale gracefully in the number of languages.

Question 3: Can multilingual learning account for complex latent structure where

cross-lingual shared elements are minimal and difficult to discern? To do so effec-

tively and efficiently will require an unobtrusive representation of whatever shared

structure exists.

Question 4: Can multilingual learning be effective without parallel data? Through-

out this section our arguments have depended on the existence of parallel sentences

as a computational Rosetta stone. However, if the languages in question come from

the same family, it may be possible to use language-wide structural correspondences

rather than the correspondences delivered by parallel text.
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I love fish J’ adore les poisson

ani ohev dagim Mujhe machchli pasand hai

I

s2 s3s1

Figure 1-5: Part-of-speech graphical model structure for example sentence. In this
instance, we have three superlingual tags: one for the cluster of words corresponding
to English “I”, one for the cluster of words corresponding to English “love”, and
one for the cluster of words corresponding to English “fish.”

Answering all of these questions conclusively is beyond the scope of this thesis.

Nevertheless, as we discuss in the concluding chapter, our experiments yield some

initial answers.

Part-of-Speech Tagging

Perhaps the simplest of the three tasks is unsupervised part-of-speech tagging. As

input for the task, we are given (i) a multilingual parallel text corpus and (ii) a seed

dictionary which lists parts-of-speech for some subset of words in each language. For

example, the word “can” in English would be listed with three part-of-speech tags:

an auxiliary verb, a noun, and a regular verb. The goal is to automatically select

the contextually appropriate part-of-speech for each word in the corpus. Although

we utilize the multilingual parallel corpus for training, we test our performance

separately for each language on a monolingual test corpus.

For this task, the latent structure we wish to induce for each sentence is very sim-

ple: fixed-length sequences of part-of-speech tags, one for each language. Because

of this simplicity, we view this as an ideal task for multilingual experimentation.

We designed two models for this task. The first is inherently bilingual and helps

address the first of our questions, namely whether pairings within a language family
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will be more or less beneficial than pairings of unrelated languages.

The second model was designed from the beginning to scale gracefully in the

number of languages. As such it can provide some answers to the second of our

questions: whether multilingual learning can keep providing additional benefit as

languages are added to the mix. Here we give a brief overview of the structure of

this second model.

We posit a separate Hidden Markov Model (HMM) for each language, in which

the hidden states correspond to part-of-speech tags. In order to model shared

cross-lingual structure, we posit an additional layer of latent variables, referred to

as superlingual tags. We place such a tag over each cluster of aligned words in the

sentence.6 Intuitively, the superlingual tag propagates information across languages

by encouraging cross-lingual regularities.

In a standard HMM, we can write the joint probability of a sequence of words

w and part-of-speech tags y as product of transition and emission probabilities:

P (w,y) =
∏
i

P (yi|yi−1)P (wi|yi)

Under our latent variable model, the probability of bilingual parallel sentences

(w1,w2), bilingual part-of-speech sequences (y1,y2), and superlingual tags s is given

by:

∏
i

P (si)∏
j

P
(
y1j |y1j−1, sf(j,1)

)
P (w1

j |y1j )∏
k

P
(
y2k|y2k−1, sf(k,2)

)
P (w2

k|y2k),

where f(m,n) gives the index of the superlingual tag associated with word m in

language n. Notice that the part-of-speech tagging decisions of each language are

independent when conditioned on the superlingual tags s. It is this conditional

6The word alignments are produced by an standard word alignment tool and are considered fixed.

31



(i) (ii) (iii)

Figure 1-6: A pair of trees (i) and two possible alignment trees. In (ii), no empty
spaces are inserted, but the order of one of the original tree’s siblings has been
reversed. In (iii), only two pairs of nodes have been aligned (indicated by arrows)
and many empty spaces inserted.

independence which gives our model some of its crucial properties. Superlingual

variables promote cross-lingual regularities. Yet word order, part-of-speech selec-

tion, and even part-of-speech inventory are permitted to vary arbitrarily across

languages. In addition, this architecture allows our model to scale linearly in the

number of languages: when a language is added to the mix we simply add new

directed edges from the existing set of superlingual tags for each sentence.

Findings: Accuracy for each of the eight languages we studied improves substan-

tially over a state-of-the-art monolingual baseline. In one scenario, the gap between

unsupervised and supervised performance was cut by two-thirds without any hu-

man annotation. These are the first results to show that performance continues to

improve as languages are added to the mix.

Grammar Induction

A more complex task is that of unsupervised grammar induction. The goal is now to

induce the underlying grammatical structure of each sentence in the form of a tree

bracketing. In the monolingual setting, learning accurate parsing models without

human-annotated texts has proven quite difficult [20, 64]. Here we consider the

unsupervised bilingual scenario, where parsing models are induced simultaneously

for pairs of languages using parallel texts. As before, we train our model on the

bilingual corpus, but test our performance on separate monolingual data.
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In the previous task of part-of-speech tagging, the structure of the latent vari-

ables was essentially observed, as they were determined by the sentences and their

word alignments. In contrast, grammar induction is a task of structure prediction.

In the monolingual scenario, the latent structure is a single tree. However, even

for very literal translations, parse trees across languages can diverge significantly.

Consider the following pair of parsed sentences in English and Hindi:

John  climbed  Everest John  Everest  on  climbed

English Hindi

Even in this simplest of sentence pairs, we notice syntactic divergence. While

the English sentence uses the simple transitive verb “climbed” to express the fact

that John completed his climb of Everest, the verb in the Hindi sentence takes

the post-positional argument “Everest on.” The syntactic divergence in real-life

examples can be much more severe.

This task addresses the third in our list of questions. Can we induce complex

latent structure for each language with minimal shared elements? The key chal-

lenge here is representational. We need to parse both sentences with possibly quite

divergent trees, while recognizing shared syntactic elements. In effect, we seek to

produce two loosely bound trees.

We achieve this loose binding of trees by adapting the formalism of unordered

tree alignment [60] to a probabilistic setting. Under this formalism, any two trees

can be aligned using an alignment tree. The alignment tree embeds the original

two trees within it: each node is labeled by a pair (x, y), (λ, y), or (x, λ) where x

is a node from the first tree, y is a node from the second tree, and λ is an empty

space. The individual structure of each tree must be essentially preserved under

the embedding.
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The flexibility of this formalism can be demonstrated by two extreme cases: (1)

an alignment between two trees may actually align none of their individual nodes,

instead inserting an empty space λ for each of the original two trees’ nodes. (2) if the

original trees are isomorphic to one another, the alignment may match their nodes

exactly, without inserting any empty spaces. See Figure 1-6 for an example. An

additional benefit of this formalism is computational: The marginalized probability

over all possible alignments for any two trees can be efficiently computed with a

dynamic program in polynomial time in the size of the two trees.

We embed this formalism in a Bayesian probabilistic model. The key objective

underlying our model is the following: We want to predict tree pairs (T1, T2) with

tree alignments A such that:

1. Tree T1 best explains the grammatical regularities of language 1.

2. Tree T2 best explains the grammatical regularities of language 2.

3. The tree alignment A best explains the bilingual word alignments.

4. Aligned constituents best explain cross-lingual grammatical regularities.

Findings: For each of three different language pairs, our bilingual model outper-

forms a state-of-the-art baseline, sometimes by quite substantial margins. These

are the first results to show that the complex correspondences between bilingual

parse trees can be effectively captured in a probabilistic model.

Lost Language Decipherment

The two tasks just discussed all assumed the existence of multilingual parallel text.

For traditional text processing tasks this is a reasonable assumption, as parallel

texts are readily available for many of the world’s languages. In contrast, we now

turn to the task of lost language decipherment.

When a lost script or language is discovered we rarely have the luxury of parallel

data. Typically, our only hope of recovering the language comes from a cross-lingual
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structural analysis that links the lost writing system to a known language. Such

analysis can take humans decades to perform. Dozens of lost languages and scripts

have been manually deciphered by scholars over the last two centuries. Perhaps

surprisingly, computers have never played a role in the successful decipherment of

any language.

This task then, addresses the final of our four questions above. We have no

parallel corpus directly linking sentences in the lost language to a known language.

Nevertheless, we hope to discover language-wide similarities connecting the lost

language to a living relative.

Our definition of the computational decipherment task closely follows the setup

typically faced by human decipherers [100]. Our input consists of texts in a lost

language and a corpus of non-parallel data in a known related language. The

decipherment itself involves two related sub-tasks: (i) finding the mapping between

alphabets of the known and lost languages, and (ii) translating words in the lost

language into corresponding cognates of the known language.

We formulate a Bayesian probabilistic model which captures many of the intu-

itions that have guided human decipherers. First among these is that both character

and lexical correspondences across related languages should be consistent. In ad-

dition, morphological analysis plays a key role in our model, as correspondences

between highly frequent prefixes and suffixes can be particularly revealing (and

easy to find). Finally, we develop a novel prior that encodes a crucial intuition:

that the mapping between alphabets should be structurally sparse. Each character

in the lost language should map to a very limited number of characters in the re-

lated language, and vice versa. We applied our decipherment model to a corpus of

Ugaritic, an ancient Semitic language discovered in 1928 and manually deciphered

four years later, using knowledge of Hebrew, a related language. As input to our

model, we use the corpus of Ugaritic texts along with a Hebrew lexicon extracted

from the Hebrew Bible.
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Findings: Our model yields an almost perfect decipherment of the Ugaritic al-

phabetic symbols. In addition, our model successfully deciphers 63% of all Ugaritic

words with Hebrew cognates. These are the first results showing the automatic

decipherment of a lost language.

1.5 Previous Approaches

In this section we outline several past approaches to multilingual NLP to better

highlight the novelty of our work.

Interest in developing language technology in a multilingual setting goes back

to the early days of statistical NLP. In its most basic form, this can simply refer to

studies which considered the performance of a model on a large range of languages

(without any explicit cross-lingual modeling). To cite just two recent examples,

Ganchev et al. [38] studied whether better bilingual word alignments in text lead

to more accurate translation models for six different language pairs. Nivre and

McDonald [88] present a dependency parsing model which they test on a suite of 13

languages from many different families. More generally, a community-wide interest

in multilingual experiments has certainly been growing. This interest is reflected

in the fact that several of the past few shared tasks at the Conference on Com-

putational Natural Language Learning (CoNLL) have utilized data-sets spanning

multiples languages [15, 87, 49]. Establishing a norm of multilingual experimenta-

tion helps avoid communal “overfitting” of models to the English language [5].

Certain tasks are also inherently multilingual. Thus, the tasks of machine trans-

lation and bilingual dictionary construction, by their nature, occur in multilingual

settings. Some researchers have shown that by considering more than two lan-

guages at a time, even bilingual dictionaries can be more accurately induced auto-

matically [41, 76]. Likewise, by considering multiple source languages, automatic

translations can be improved [89, 118, 24, 21, 8]. In contrast, this thesis focuses on

the accurate induction ofmonolingual language structure, albeit by jointly modeling

multiple languages.
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Another influential line of prior work starts with the observation that rich lin-

guistic resources exist for some languages but not others. The idea then is to project

linguistic information from one language onto others. Yarowsky and his collabo-

rators first pioneered this idea and applied it to the problems of part-of-speech

tagging, noun-phrase bracketing, and morphology induction [128, 127, 126]. In all

three cases, the existence of a bilingual parallel text along with highly accurate

predictions for one of the languages was assumed. Projection methods have now

been applied to a wide variety of NLP tasks, from parsing [58, 124] to semantic role

labeling [91]. In addition, some recent work even eschews the use of parallel texts.

Instead of projecting information at the annotation-level, projection occurs at the

parameter-level. The learned parameters of a supervised system in one language

are directly applied to related languages. This idea has been applied to the tasks of

morphology induction and part-of-speech tagging for Slavic languages [53, 35]. In

stark contrast to the line of research sketched out above, this thesis does not assume

that accurate supervised systems or annotations exist for any of the languages in

question. Instead, it is the cross-lingual patterns themselves which are regarded as

a rich source of information.

Perhaps closest to the spirit of this thesis is a line of work begun even earlier.

Dagan et al. [29] propose the use of bilingual parallel texts for automatic word sense

disambiguation. The main idea was that patterns of word-meaning ambiguity vary

in systematic ways across languages. For example, the Hebrew verb laḥtom has

various meanings, including (a) to sign and (b) to to finish. One way to automati-

cally distinguish between these two senses would be to consult the parallel English

sentence. If the English word sign is used, then we assign meaning (a), and if the

English word finish is used, then we assign meaning (b). This idea has been taken

up by quite a number of researchers who have developed word-sense disambigua-

tion systems using bilingual texts [97, 31, 9, 86]. Dagan et al. [29] even suggest

that this idea could be extended to multiple languages and to other tasks of lin-

guistic analysis. To a large degree, this thesis can be viewed as fully taking up that

challenge.
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In particular, we extend the vision of multilingual learning to a broad range

of classical NLP problems, including part-of-speech tagging, grammar induction,

and morphological analysis. In all cases, we show substantial gains over state-

of-the-art unsupervised models. In one case, the gap between unsupervised and

supervised performance is cut by over two-thirds, without any human annotation.

We show for the first time that performance continues to improve as additional

languages are thrown into the mix. We also demonstrate for the first time that

cross-lingual syntactic structures can be modeled while still allowing significant

language variation. Finally, we present the first statistical model to automatically

decipher a lost language. This model also demonstrates that multilingual analysis

can be effective even in the absence of parallel corpora.

1.6 Thesis Overview

Chapter 2 provides full details regarding our two multilingual part-of-speech mod-

els. The first model was designed exclusively for bilingual data, whereas the second

model can easily scale up to large numbers of languages. We compare the perfor-

mance of both models, and conclude that when multiple languages are available

the latter model is preferable. However, in certain bilingual circumstances the first,

simpler model may yield better results. We present several experiments designed to

answer some fundamental questions regarding multilingual learning. First, what is

the impact of language relatedness on performance? And second, how does the num-

ber of languages impact average performance? Much of the work in this chapter was

originally described by Snyder et al. [111], Snyder et al. [112], and Naseem et al. [85].

Chapter 3 considers the application of multilingual learning to grammar in-

duction. The main challenge for this problem is representational. How can we

simultaneously represent two distinct parse trees which may be related in com-

plex, unpredictable ways? We adapt a flexible, yet computationally tractable tree

alignment formalism to a Bayesian probabilistic setting. We tested our bilingual

grammar induction model on three language pairs, and show a 19% reduction in

38



error relative to a state-of-the-art baseline and a theoretical upper bound. Much of

the work in this chapter was originally described by Snyder and Barzilay [110].

Chapter 4 considers the difficult problem of lost language decipherment. In

this scenario, we are given some texts in a dead language with no direct knowledge

of the writing system or any other features of the language. Our goal is to use

knowledge from known related languages to recover information about the alphabet

and vocabulary of the lost language. The key departure from previous chapters is

that in this scenario we do not have access to multilingual parallel data. Instead,

our model must ferret out language-wide structural similarities between the the

lost and known languages. We conduct numerous experiments, all focused on the

ancient language of Ugaritic. We show that our model can automatically decipher a

large portion of this dead language. Much of the work in this chapter was originally

described by Snyder and Barzilay [109].

Chapter 5 concludes the thesis with some final thoughts and directions for

future work. Finally, we note that the exposition throughout this thesis will assume

basic familiarity with probabilistic models, though not with the particular tasks we

study.
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Chapter 2

Unsupervised Multilingual

Part-of-speech Tagging

We were all taught, long ago in some elementary school classroom, that verbs are

words for “actions” and that nouns are words for “things.” Eventually, we learned

to distinguish among many different parts-of-speech (pronouns, articles, adjectives,

adverbs, to name a few). We also realized that the distinctions can be more subtle

than we at first thought. In some sentences the nouns convey much more “ac-

tion” than the verbs (“seeing is believing”). Nevertheless, as far as latent linguistic

structure goes, part-of-speech categories are fairly straightforward. As such, their

automatic prediction serves as a first test of the multilingual learning framework.

More formally, this chapter deals with the classical NLP task of part-of-speech

tagging in an unsupervised setting. For this task, we are given written texts in

some language without any human annotation. We are also given a dictionary

which lists the possible parts-of-speech for some (but perhaps not all) of the words.

Our goal is to automatically assign the most likely part-of-speech to each word in

the written text, depending on its context. As an example, consider the following

English sentence as input:

That factory can definitely can a good can.

41



Our goal would be to label the sentence with a sequence of part-of-speech tags: 1

       
That factory can definitely can a good can

Note that the word “can” serves as three distinct parts-of-speech in this sentence,

an auxiliary verb, a regular verb, and a noun. The goal of a part-of-speech tagger

is to resolve this ambiguity by examining the surrounding words.

2.1 Chapter Overview

Section 2.2 gives a broad introduction to the chapter. We argue that a multilin-

gual approach will lead to more accurate part-of-speech predictions. We sketch

two multilingual models, the first of which is designed for language pairs, and the

second of which scales to larger language groupings, and we summarize our main

experimental findings. Section 2.3 compares our approach with previous work on

multilingual learning and unsupervised part-of-speech tagging. Section 2.4 presents

an overview of our two approaches to modeling multilingual tag sequences. Sec-

tion 2.5 presents our bilingual model, and section 2.6 details our corresponding

inference procedure. Section 2.7 presents our multilingual model, and section 2.8

details our corresponding inference procedure. Section 2.9 provides implementation

details for both models. Section 2.10 describes corpora used in the experiments,

preprocessing steps and various evaluation scenarios. The results of the experi-

ments and their analysis are given in Sections 2.11, and 2.12. We summarize our

contributions and consider directions for future work in Section 2.13.

2.2 Introduction

In this chapter, we explore the application of multilingual learning to unsupervised

part-of-speech tagging. The underlying idea throughout this chapter is that the

1 = determiner,  = noun,  = auxiliary verb,  = verb,  = adverb,  = adjective.
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patterns of ambiguity in part-of-speech tag assignments differ across languages. At

the lexical level, a word with part-of-speech tag ambiguity in one language may

correspond to an unambiguous word in the other language. As we saw above, the

word “can” in English may function as an auxiliary verb, a noun, or a regular

verb. However, many other languages express these different senses with three

distinct lexemes. Languages also differ in their patterns of structural ambiguity.

For example, the presence of an article in English (e.g. “the”) greatly reduces

the ambiguity of the succeeding tag. In languages without articles, however, this

constraint is obviously absent. The key idea of multilingual learning is that by

combining natural cues from multiple languages, the structure of each becomes

more apparent.

Even in expressing the same meaning, languages take different syntactic routes,

leading to cross-lingual variation in part-of-speech patterns. Therefore, an effec-

tive multilingual model must accurately represent common linguistic structure, yet

remain flexible to the idiosyncrasies of each language. This tension only becomes

stronger as additional languages are added to the mix. Thus, a key challenge of mul-

tilingual learning is to capture cross-lingual correlations while preserving individual

language tagsets, tag selections, and tag orderings.

In this chapter, we explore two different approaches for modeling cross-lingual

correlations. The first approach directly merges pairs of tag sequences into a sin-

gle bilingual sequence, employing joint distributions over aligned tag-pairs; for un-

aligned tags, language-specific distributions are still used. The second approach

models multilingual context using latent variables instead of explicit node merging.

For a group of aligned words, the multilingual context is encapsulated in the value

of a corresponding latent variable. Conditioned on the latent variable, the tagging

decisions for each language remain independent. In contrast to the first model, the

architecture of the hidden variable model allows it to scale gracefully as the number

of languages increases.

Both approaches are formulated as hierarchical Bayesian models with an un-

derlying trigram HMM substructure for each language. The first model operates
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as a simple directed graphical model with only one additional coupling parameter

beyond the transition and emission parameters used in monolingual HMMs. The

latent variable model, on the other hand, is formulated as a non-parametric model;

it can be viewed as performing multilingual clustering on aligned sets of tag vari-

ables. Each latent variable value indexes a separate distribution on tags for each

language, appropriate to the given context. For both models, we perform inference

using Markov Chain Monte Carlo sampling techniques.

We evaluate our models on a parallel corpus of eight languages: Bulgarian,

Czech, English, Estonian, Hungarian, Romanian, Serbian, and Slovene. We consider

a range of scenarios that vary from combinations of bilingual models to a single

model that is jointly trained on all eight languages. Our results show consistent

and robust improvements over a monolingual baseline for almost all combinations of

languages. When a complete tag lexicon is available and the latent variable model is

trained using eight languages, average performance increases from 91.1% accuracy to

95%, more than halving the gap between unsupervised and supervised performance.

In more realistic cases, where the lexicon is restricted to only frequently occurring

words, we see even larger gaps between monolingual and multilingual performance.

In one such scenario, average multilingual performance increases to 82.8% from

a monolingual baseline of 74.8%. For some language pairs, the improvement is

especially noteworthy; for instance, in complete lexicon scenario, Serbian improves

from 84.5% to 94.5% when paired with English.

We find that in most scenarios the latent variable model achieves higher perfor-

mance than the merged structure model, even when it too is restricted to pairs of

languages. Moreover the hidden variable model can effectively accommodate large

numbers of languages which makes it a more desirable framework for multilingual

learning. However, we observe that the latent variable model is somewhat sensitive

to lexicon coverage. The performance of the merged structure model, on the other

hand, is more robust in this respect. In the case of the drastically reduced lexicon

(with 100 words only), its performance is clearly better than the hidden variable

model. This indicates that the merged structure model might be a better choice for
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the languages that lack lexicon resources.

A surprising discovery of our experiments is the marked variation in the level of

improvement across language pairs. If the best pairing for each language is chosen

by an oracle, average bilingual performance reaches 95.4%, compared to average

performance of 93.1% across all pairs. Our experiments demonstrate that this

variability is influenced by cross-lingual links between languages as well as by the

model under consideration. We identify several factors that contribute to the success

of language pairings, but none of them can uniquely predict which supplementary

language is most helpful. These results suggest that when multi-parallel corpora

are available, a model that simultaneously exploits all the languages – such as the

latent variable model proposed here – is preferable to a strategy that selects one of

the bilingual models. We found that performance tends to improves steadily as the

number of available languages increases.

In realistic scenarios, tagging resources for some number of languages may al-

ready be available. Our models can easily exploit any amount of tagged data in any

subset of available languages. As our experiments show, as annotation is added,

performance increases even for those languages lacking resources.

2.3 Related Work

We identify two broad areas of related work: multilingual learning and inducing

part-of-speech tags without labeled data. Our discussion of multilingual learning

focuses on unsupervised approaches that incorporate two or more languages. We

then describe related work on unsupervised and semi-supervised models for part-

of-speech tagging.

2.3.1 Multilingual Learning

The potential of multilingual data as a rich source of linguistic knowledge has been

recognized since the early days of empirical natural language processing. Because

patterns of ambiguity vary greatly across languages, unannotated multilingual data
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can serve as a learning signal in an unsupervised setting. We are especially interested

in methods to leverage more than two languages jointly, and compare our approach

with relevant prior work.

Multilingual learning may also be applied in a semi-supervised setting, typically

by projecting annotations across a parallel corpus to another language where such

resources do not exist [127, 31, 92, 124]. As our primary focus is on the unsupervised

induction of cross-linguistic structures, we do not address this area.

Bilingual Learning

Word sense disambiguation (WSD) was among the first successful applications of

automated multilingual learning [29, 14]. Lexical ambiguity differs across languages

– each sense of a polysemous word in one language may translate to a distinct

counterpart in another language. This makes it possible to use aligned foreign-

language words as a source of noisy supervision. Bilingual data has been leveraged

in this way in a variety of WSD models [14, 97, 86, 31, 73, 9], and the quality

of supervision provided by multilingual data closely approximates that of manual

annotation [86]. Polysemy is one source of ambiguity for part-of-speech tagging;

thus our model implicitly leverages multilingual WSD in the context of a higher-

level syntactic analysis.

Multilingual learning has previously been applied to syntactic analysis; a pio-

neering effort was the inversion transduction grammar of Wu [121]. This method

is trained on an unannotated parallel corpus using a probabilistic bilingual lexicon

and deterministic constraints on bilingual tree structures. The inside-outside al-

gorithm [3] is used to learn parameters for manually specified bilingual grammar.

These ideas were extended by subsequent work on synchronous grammar induction

and hierarchical phrase-based translation [123, 22].

One characteristic of this family of methods is that they were designed for inher-

ently multilingual tasks such as machine translation and lexicon induction. While

we share the goal of learning from multilingual data, we seek to induce monolingual

syntactic structures that can be applied even when multilingual data is unavailable.
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In this respect, our approach is closer to the unsupervised multilingual gram-

mar induction work of Kuhn [70]. Starting from the hypothesis that trees induced

over parallel sentences should exhibit cross-lingual structural similarities, Kuhn

uses word-level alignments to constrain the set of plausible syntactic constituents.

These constraints are implemented through hand-crafted deterministic rules, and

are incorporated in expectation-maximization grammar induction to assign zero

likelihood to illegal bracketings. The probabilities of the productions are then es-

timated separately for each language, and can be applied to monolingual data di-

rectly. Kuhn shows that this form of multilingual training yields better monolingual

parsing performance.

Our methods incorporate cross-lingual information in a fundamentally different

manner. Rather than using hand-crafted deterministic rules – which may require

modification for each language pair – we estimate probabilistic multilingual patterns

directly from data. Moreover, the estimation of multilingual patterns is incorpo-

rated directly into the tagging model itself.

Beyond Bilingual Learning

While most work on multilingual learning focuses on bilingual analysis, some models

operate on more than one pair of languages. For instance, Genzel [41] describes a

method for inducing a multilingual lexicon from a group of related languages. This

work first induces bilingual models for each pair of languages and then combines

them. We take a different approach by simultaneously learning from all languages,

rather than combining bilingual results.

A related thread of research is multi-source machine translation [89, 118, 24,

21, 8] where the goal is to translate from multiple source languages to a single

target language. By using multi-source corpora, these systems alleviate sparseness

and increase translation coverage, thereby improving overall translation accuracy.

Typically, multi-source translation systems build separate bilingual models and then

select a final translation from their output. For instance, a method developed by

Och and Ney [89] generates several alternative translations from source sentences
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expressed in different languages and selects the most likely candidate. Cohn and

Lapata [24] consider a different generative model: rather than combining alternative

sentence translations in a post-processing step, their model estimates the target

phrase translation distribution by marginalizing over multiple translations from

various source languages. While their model combines multilingual information at

the phrase level, at its core are estimates for phrase tables that are obtained using

bilingual models.

In contrast, we present an approach for unsupervised multilingual learning that

builds a single joint model across all languages. This makes maximal use of unla-

beled data and sidesteps the difficult problem of combining the output of multiple

bilingual systems without supervision.

2.3.2 Unsupervised Part-of-Speech Tagging

Unsupervised part-of-speech tagging involves predicting the tags for words, with-

out annotations of the correct tags for any word tokens. Generally speaking, the

unsupervised setting does permit the use of declarative knowledge about the rela-

tionship between tags and word types, in the form of a dictionary of the permissible

tags for the most common words. This setup is referred to as “semi-supervised”

by Toutanova and Johnson [116], but is considered “unsupervised” in most other

papers on the topic [43]. Our evaluation considers tag dictionaries of varying levels

of coverage.

Since the work of Merialdo [79], the hidden Markov model (HMM) has been the

most common representation2 for unsupervised tagging [4]. Part-of-speech tags are

encoded as a linear chain of hidden variables, and words are treated as emitted ob-

servations. Recent advances include the use of a fully Bayesian HMM [61, 43], which

places prior distributions on tag transition and word-emission probabilities. Such

Bayesian priors permit integration over parameter settings, yielding models that

perform well across a range of settings. This is particularly important in the case of

2In addition to the basic HMM architecture, other part-of-speech tagging approaches have been
explored [13, 81]

48



small datasets, where many of the counts used for maximum-likelihood parameter

estimation will be sparse. The Bayesian setting also facilitates the integration of

other data sources, and thus serves as the departure point for our work.

Several recent papers have explored the development of alternative training pro-

cedures and model structures in an effort to incorporate more expressive features

than permitted by the generative HMM. Smith and Eisner [106] maintain the HMM

structure, but incorporate a large number of overlapping features in a conditional

log-linear formulation. Contrastive estimation is used to provide a training crite-

rion which maximizes the probability of the observed sentences compared to a set

of similar sentences created by perturbing word order. The use of a large set of

features and a discriminative training procedure led to strong performance gains.

Toutanova and Johnson [116] propose an LDA-style model for unsupervised part-

of-speech tagging, grouping words through a latent layer of ambiguity classes. Each

ambiguity class corresponds to a set of permissible tags; in many languages this set is

tightly constrained by morphological features, thus allowing an incomplete tagging

lexicon to be expanded. Haghigi and Klein [47] also use a variety of morphological

features, learning in an undirected Markov Random Field that permits overlapping

features. They propagate information from a small number of labeled “prototype”

examples using the distributional similarity between prototype and non-prototype

words.

Our focus is to effectively incorporate multilingual evidence, and we require a

simple model that can easily be applied to multiple languages with widely varying

structural properties. We view this direction as orthogonal to refining monolingual

tagging models for any particular language.

2.4 Model Overviews

The motivating hypothesis of this work is that patterns of ambiguity at the part-

of-speech level differ across languages in systematic ways. By considering multiple

languages simultaneously, the total inherent ambiguity can be reduced in each lan-
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I love fish J’ adore les poisson

ani ohev dagim Mujhe machchli pasand hai

I love fish

J’ adore les poisson

I love fish

J’ adore les poisson

(a) (b)

(c)

Figure 2-1: Example graphical structures of (a) two standard monolingual HMMs,
(b) our merged node model, and (c) our latent variable model with three superlin-
gual variables.
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guage. But with the potential advantages of leveraging multilingual information

comes the challenge of respecting language-specific characteristics such as tag in-

ventory, selection and order. To this end, we develop models that jointly tag parallel

streams of text in multiple languages, while maintaining language-specific tag sets

and parameters over transitions and emissions.

Part-of-speech tags reflect the syntactic and semantic function of the tagged

words. Across languages, pairs of word tokens that are known to share semantic

or syntactic function should have tags that are related in systematic ways. The

word alignment task in machine translation is to identify just such pairs of words

in parallel sentences. Aligned word pairs serve as the cross-lingual anchors of our

model, allowing information to be shared via joint tagging decisions. Research in

machine translation has produced robust tools for identifying word alignments; we

use such a tool as a black box and treat its output as a fixed, observed property of

the parallel data.

Given a set of parallel sentences, we posit a hidden Markov model (HMM) for

each language, where the hidden states represent the tags and the emissions are the

words. In the unsupervised monolingual setting, inference on the part-of-speech

tags is performed jointly with estimation of parameters governing the relationship

between tags and words (the emission probabilities) and between consecutive tags

(the transition probabilities). Our multilingual models are built upon this same

structural foundation, so that the emission and transition parameters retain an

identical interpretation as in the monolingual setting. Thus, these parameters can

be learned on parallel text and later applied to monolingual data.

We consider two alternative approaches for incorporating cross-lingual informa-

tion. In the first model, the tags for aligned words are merged into single bi-tag

nodes; in the second, latent variable model, an additional layer of hidden superlin-

gual tags instead exerts influence on the tags of clusters of aligned words. The first

model is primarily designed for bilingual data, while the second model operates over

any number of languages. Figure 2-1 provides a graphical model representation of

the monolingual, merged node, and latent variable models instantiated over a single
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parallel sentence.

Both the merged node and latent variable approaches are formalized as hierar-

chical Bayesian models. This provides a principled probabilistic framework for inte-

grating multiple sources of information, and offers well-studied inference techniques.

table 2.1 summarizes the mathematical notation used throughout this section. We

now describe each model in depth.

2.5 Bilingual Unsupervised Tagging: A Merged

Node Model

In the bilingual merged node model, cross-lingual context is incorporated by creating

joint bi-tag nodes for aligned words. It would be too strong to insist that aligned

words have an identical tag; indeed, it may not even be appropriate to assume that

two languages share identical tag sets. However, when two words are aligned, we do

want to choose their tags jointly. To enable this, we allow the values of the bi-tag

nodes to range over all possible tag pairs ⟨t, t′⟩ ∈ T × T ′, where T and T ′ represent

the tagsets for each language.

The tags t and t′ need not be identical, but we do believe that they are system-

atically related. This is modeled using a coupling distribution ω, which is multino-

mial over all tag pairs. The parameter ω is combined with the standard transition

distribution ϕ in a product-of-experts model. Thus, the aligned tag pair ⟨yi, y′j⟩

is conditioned on the predecessors yi−1 and y′j−1, as well as the coupling parame-

ter ω(yi, y′j).3 The coupled bi-tag nodes serve as bilingual “anchors” – due to the

Markov dependency structure, even unaligned words may benefit from cross-lingual

information that propagates from these nodes.

We now present a generative account of how the words in each sentence and the

parameters of the model are produced. This generative story forms the basis of our

3While describing the merged node model, we consider only the two languages ℓ and ℓ′, and use
a simplified notation in which we write ⟨y, y′⟩ to mean ⟨yℓ, yℓ′⟩. Similar abbreviations are used for
the language-indexed parameters.
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Notation used in both models

xℓ – The sequence of words in language ℓ.
yℓ – The corresponding part-of-speech tag sequence in lan-

guage ℓ.
xℓi – The ith word token in language ℓ.
yℓi – The ith part-of-speech tag in language ℓ.
aℓ,ℓ′ – The word alignments for the language pair ⟨ℓ, ℓ′⟩.
ϕℓ
t – The transition distribution (over tags), conditioned on

tag t in language ℓ. We describe a bigram transition
model, though our implementation uses trigrams (with-
out bigram interpolations); the extension is trivial.

θℓt – The emission distribution (over words), conditioned on
tag t in language ℓ.

ϕ0 – The parameter of the symmetric Dirichlet prior on the
transition distributions.

θ0 – The parameter of the symmetric Dirichlet prior on the
emission distributions.

Notation used in the merged node model

ω – A coupling parameter that assigns probability mass to
each pair of aligned tags.

ω0 – A Dirichlet prior on the coupling parameter.
Ab – Distribution over bilingual alignments.

Notation used in the latent variable model

π – A multinomial over the superlingual tags z.
α – The concentration parameter for π, controlling how

much probability mass is allocated to the first few val-
ues.

zj – The setting of the jth superlingual tag, ranging over the
set of integers, and indexing a distribution set in Ψ.

Ψz = ⟨ψ1
z , ψ

2
z , . . . , ψ

n
z ⟩ – The zth set of distributions over tags in all languages ℓ1

through ℓn.
G0 – A base distribution from which the Ψz are drawn, whose

form is a set of n symmetric Dirichlet distributions each
with a parameter ψ0.

Am – Distribution over multilingual alignments.

Table 2.1: Summary of notation used in the description of both models. As each
sentence is treated in isolation (conditioned on the parameters), the sentence in-
dexing is left implicit.
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sampling-based inference procedure.

2.5.1 Generative Story

Our generative story assumes the existence of two tagsets, T and T ′, and two

vocabularies W and W ′ – one of each for each language. For ease of exposition, we

formulate our model with bigram tag dependencies. However, in our experiments

we used a trigram model (without any bigram interpolation), which is a trivial

extension of the described model.

1. Transition and Emission Parameters. For each tag t ∈ T , draw a tran-

sition distribution ϕt over tags T , and an emission distribution θt over words

W . Both the transition and emission distributions are multinomial, so they

are drawn from their conjugate prior, the Dirichlet [39]. We use symmetric

Dirichlet priors, which encode only an expectation about the uniformity of

the induced multinomials, but not do encode preferences for specific words or

tags.

For each tag t ∈ T ′, draw a transition distribution ϕ′
t over tags T ′, and an

emission distribution θ′t over words W ′, both from symmetric Dirichlet priors.

2. Coupling Parameter. Draw a bilingual coupling distribution ω over tag

pairs T × T ′. This distribution is multinomial with dimension |T | · |T ′|, and is

drawn from a symmetric Dirichlet prior ω0 over all tag pairs.

3. Data. For each bilingual parallel sentence:

(a) Draw an alignment a from a bilingual alignment distribution Ab. The

alignments and their distribution are defined formally below.

(b) Draw a bilingual sequence of part-of-speech tags (y1, ..., ym), (y′1, ..., y′n)

according to: P ((y1, ..., ym), (y′1, ..., y′n)|a, ϕ, ϕ′, ω).4 This joint distribution

4We use a special end state, rather than explicitly modeling sentence length. Thus the values of
m and n are determined stochastically.
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thus conditions on the alignment structure, the transition probabilities

for both languages, and the coupling distribution; a formal definition is

given in Formula 2.1.

(c) For each part-of-speech tag yi in the first language, emit a word from the

vocabulary W : xi ∼ θyi,

(d) For each part-of-speech tag y′j in the second language, emit a word from

the vocabulary W ′: x′j ∼ θ′y′j
.

This completes the outline of the generative story. We now provide more detail

on how alignments are handled, and on the distribution over coupled part-of-speech

tag sequences.

Alignments

An alignment a defines a bipartite graph between the words x and x′ in two parallel

sentences . In particular, we represent a as a set of integer pairs, indicating the

word indices. Crossing edges are not permitted, as these would lead to cycles in

the resulting graphical model; thus, the existence of an edge (i, j) precludes any

additional edges (i + a, j − b) or (i − a, j + b), for a, b ≥ 0. From a linguistic

perspective, we assume that the edge (i, j) indicates that the words xi and x′j share

some syntactic and/or semantic role in the bilingual parallel sentences.

From the perspective of the generative story, alignments are treated as draws

from a distribution Ab. Since the alignments are always observed, we can remain

agnostic about the distribution Ab, except to require that it assign zero probability

to alignments which either: (i) align a single index in one language to multiple

indices in the other language or (ii) contain crossing edges. The resulting alignments

are thus one-to-one, contain no crossing edges, and may be sparse or even possibly

empty. Our technique for obtaining alignments that display these properties is

described in Section 2.10.2.
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Generating Tag Sequences

In a standard hidden Markov model for part-of-speech tagging, the tags are drawn

as a Markov process from the transition distribution. This permits the probability

of a tag sequence to factor across the time steps. Our model employs a similar

factorization: the tags for unaligned words are drawn from their predecessor’s tran-

sition distribution, while joined tag nodes are drawn from a product involving the

coupling parameter and the transition distributions for both languages.

More formally, given an alignment a and sets of transition parameters ϕ and ϕ′,

we factor the conditional probability of a bilingual tag sequence (y1, ..., ym), (y′1, ..., y′n)

into transition probabilities for unaligned tags, and joint probabilities over aligned

tag pairs:

P ((y1, ..., ym), (y
′
1, ..., y

′
n)|a, ϕ, ϕ′, ω) =

∏
unaligned i

ϕyi−1
(yi)

∏
unaligned j

ϕ′
y′j−1

(y′j)∏
(i,j)∈a

P (yi, y
′
j|yi−1, y

′
j−1, ϕ, ϕ

′, ω). (2.1)

Because the alignment contains no crossing edges, we can still model the tags

as generated sequentially by a stochastic process. We define the distribution over

aligned tag pairs to be a product of each language’s transition probability and the

coupling probability:

P (yi, y
′
j|yi−1, y

′
j−1, ϕ, ϕ

′, ω) =
ϕyi−1

(yi) ϕ
′
y′j−1

(y′j)ω(yi, y
′
j)

Z
(2.2)

The normalization constant here is defined as:

Z =
∑
y,y′

ϕyi−1
(y) ϕ′

y′j−1
(y′) ω(y, y′)

This factorization allows the language-specific transition probabilities to be shared

across aligned and unaligned tags.

Another way to view this probability distribution is as a product of three ex-

perts: the two transition parameters and the coupling parameter. Product-of-expert
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Algorithm 1: Gibbs sampler for merged-node part-of-speech tagging model.
Input: A bilingual corpus consisting of word sequences (x,x′) (spanning

multiple sentences). Corresponding word-level alignments a
Output: 200 samples of corresponding part-of-speech tag sequences (y,y′)

Initialize part-of-speech tags;
for r ← 1 to 200 do

foreach unaligned word xi ∈ x (i.e. ¬∃j : (i, j) ∈ a) do
Sample tag yi // Section 2.6.1

foreach unaligned word x′j ∈ x′ (i.e. ¬∃i : (i, j) ∈ a) do
Sample tag y′j // Section 2.6.1

foreach aligned word-pair xi, x′j (i.e. (i, j) ∈ a) do
Sample tag-pair yi, y′j // Section 2.6.2

models [56] allow each information source to exercise very strong negative influence

on the probability of tags that they consider to be inappropriate, as compared with

additive models. This is ideal for our setting, as it prevents the coupling distribution

from causing the model to generate a tag that is unacceptable from the perspective

of the monolingual transition distribution. In preliminary experiments we found

that a multiplicative approach was strongly preferable to additive models.

2.6 Merged Node Model: Inference

The goal of our inference procedure is to obtain transition and emission parameters

θ and ϕ that can be applied to monolingual test data. Ideally we would choose the

parameters that have the highest marginal probability, conditioned on the observed

words x and alignments a:

θ̂, ϕ̂ = argmax
θ,ϕ

∫
P (θ, ϕ,y, ω|x,a, θ0, ϕ0, ω0)dydω

While the structure of our model permits us to decompose the joint probability,

it is not possible to analytically marginalize all of the hidden variables. We resort

to standard Monte Carlo approximation, in which marginalization is performed
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through sampling. By repeatedly sampling individual hidden variables according

to the appropriate distributions, we obtain a Markov chain that is guaranteed to

converge to a stationary distribution centered on the desired posterior. Thus, af-

ter an initial burn-in phase, we can use the samples to approximate a marginal

distribution over any desired parameter [42].

The core element of our inference procedure is Gibbs sampling [40]. Gibbs

sampling begins by randomly initializing all unobserved random variables; at each

iteration, each random variable ui is then sampled from the conditional distribution

P (ui|u−i), where u−i refers to all variables other than ui. Eventually, the distribu-

tion over samples drawn from this process will converge to the unconditional joint

distribution P (u) of the unobserved variables. When possible, we avoid explicitly

sampling variables which are not of direct interest, but rather integrate over them.

This technique is known as collapsed sampling; it is guaranteed never to increase

sampling variance, and will often reduce it [74].

In the merged node model, we need sample only the part-of-speech tags and

the priors. We are able to exactly marginalize the emission parameters θ and

approximately marginalize the transition and coupling parameters ϕ and ω (the

approximations are required due to the re-normalized product of experts — see

below for more details). We draw repeated samples of the part-of-speech tags, and

construct a sample-based estimate of the underlying tag sequence. After sampling,

we construct maximum a posteriori estimates of the parameters of interest for each

language, θ and ϕ. See algorithm 1 for an overview of the Gibbs sampler. In the

remainder of the section we describe the individual sampling equations.

2.6.1 Sampling Unaligned Tags

For unaligned part-of-speech tags, the conditional sampling equations are similar

to the monolingual Bayesian hidden Markov model. The posterior probability of

each tag decomposes into two factors, one for transitions and one for emissions. To
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arrive at this decomposition we apply Bayes’ rule:

P (yi | y−i,y′,x,x′, θ0, ϕ0, ϕ
′
0, ω0)

=
P (xi | y,y′,x−i,x′, θ0, ϕ0, ϕ

′
0, ω0) · P (yi | y−i,y′,x−i,x′, θ0, ϕ0, ϕ

′
0, ω0)

P (xi | y−i,y′,x−i,x′, θ0, ϕ0, ϕ′
0, ω0)

∝ P (xi | y,x−i, θ0) · P (yi | y−i,y′, ϕ0, ϕ
′
0, ω0)

The notation y−i denotes all the sampled tags other than yi and x−i denotes all

the observed words besides xi. In the last equality we exploited several conditional

independencies of our model. In particular, the transition factor is conditionally

independent of the words in either language, and the emission factor is conditionally

independent of the words and tags of the other language. We now derive the form of

each of these two factors, marginalizing out the emission parameters θ, the transition

parameters ϕ, and the coupling parameter ω.

For the emission factor, we can exactly marginalize out the emission distribution

θ, whose prior is Dirichlet with hyperparameter θ0. The resulting distribution is a

ratio of counts, where the prior acts as a pseudo-count:

P (xi|y,x−i, θ0, ϕ
′
0, ω0) =

∫
θyi

θyi(xi)P (θyi|y,x−i, θ0)dθyi =
n(yi, xi) + θ0
n(yi) + |Wyi|θ0

(2.3)

Here, n(yi) is the number of occurrences of the tag yi in y−i, n(yi, xi) is the number

of occurrences of the tag-word pair (yi, xi) in (y−i,x−i), and Wyi is the set of word

types in the vocabulary W that can take tag yi. The integral is tractable due to

Dirichlet-multinomial conjugacy, and an identical marginalization was applied in

the monolingual Bayesian HMM of [43].

The transition factor is more complicated. We start by again applying Bayes’ rule:

P (yi | y−i,y′, ϕ0)

∝ P (yi+1 | y−(i+1),y′, ϕ0, ϕ
′
0, ω0) · P (yi | y−(i,i+1),y′, ϕ0, ϕ

′
0, ω0)
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Here, y−(i,i+1) denotes all tags y besides yi and yi+1. The first factor corresponds

to the transition from yi to yi+1, and the second factor corresponds to the transi-

tion from yi−1 to yi. For both factors, we seek to marginalize out the transition

distribution ϕ. This is difficult to do exactly, as the tags of the other language, y′,

exert a subtle influence on the probabilities of the tags y, through the renormal-

ized product-of-experts (equation 2.2). Nevertheless, we approximate the marginal

using monolingual transition counts:

P (yi | y−(i,i+1),y′, ϕ0, ϕ
′
0, ω0) =∫

ϕyi−1

ϕyi−1
(yi) P (ϕyi−1

| y−(i,i+1),y′, ϕ0, ϕ
′
0, ω0) dϕyi−1

≈ n(yi−1, yi) + ϕ0

n(yi−1) + |T |ϕ0

(2.4)

The factors here are similar to the emission probability: n(yi−1) is the number

of occurrences of the tag yi in y−(i,i+1), n(yi−1, yi) is the number of occurrences

of the tag sequence (yi−1, yi), and T is the tagset. We can understand this ap-

proximation in the following way. Each aligned tag-pair (y, y′) in the corpus was

generated by a renormalized product of three factors: ϕ, ϕ′, and ω. However, for

the purposes of integrating over the transition parameter ϕ, we treat all tags y as

having been generated solely by ϕ. This allows us to treat these tags as observed

draws from a multinomial, which in turn allows the use of the standard closed-forms

given by Dirichlet-multinomial conjugacy. We will use similar approximations when

marginalizing over ϕ′ and ω.

The probability for the transition from i to i+ 1 is exactly analogous when yi+1

is also unaligned. Here we consider the more complex case where yi+1 is aligned

to some tag y′j+1 in the other language. The sampling formulas must now account

for the effect of yi on the joint probability of the succeeding tags, which is no

longer a simple multinomial transition probability. In this case, we approximate
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the transition probability as:

P (yi+1 | y−(i+1),y′, ϕ0, ϕ
′
0, ω0) ∝ P (yi+1, y

′
j+1 | y−i,y′

−(j+1), ϕ0, ϕ
′
0, ω0) =

∫
ω,ϕ,ϕ′

[
ω(yi+1, y

′
j+1)ϕyi(yi+1)ϕ

′
y′j
(y′j+1)

Z

]
P (ω, ϕyi , ϕ

′
y′j
|y−(i+1),y′

−(j+1), ϕ0, ϕ
′
0, ω0)dωdϕdϕ

′

≈
(
n(yi, yi+1) + ϕ0

n(yi) + |T |ϕ0

)
·
(
n(y′j, y

′
j+1) + ϕ0

n(y′j) + |T |ϕ0

)
·
(
n(yi+1, y

′
j+1) + ω0

N(a) + |T × T ′|ω0

)
·
(

1

Z ′

)

∝
(
n(yi, yi+1) + ϕ0

n(yi) + |T |ϕ0

)
·
(
n(yi+1, y

′
j+1) + ω0

N(a) + |T × T ′|ω0

)
·
(

1

Z ′

)
(2.5)

As before (equation 2.4), the transition factor is approximated using the language-

specific transition counts. Similarly, the coupling factor is approximated using

coupling counts (as if the coupling parameter had produced all aligned tag-pairs

on its own): n(yi+1, y
′
j+1) is the number of times tags yi+1 and y′j+1 were aligned,

excluding (yi+1, y
′
j+1) itself, and N(a) is the total number of alignments. As above,

the hyperparameter ω0 appears as a smoothing factor; in the denominator it is mul-

tiplied by the dimensionality of ω, which is the size of the cross-product of the two

tagsets. The normalization term Z ′ is given by:

Z ′ =
∑
t,t′

[(
n(yi, t) + ϕ0

n(yi) + |T |ϕ0

)
·
(
n(y′j, t

′) + ϕ0

n(y′j) + |T |ϕ0

)
·
(

n(t, t′) + ω0

N(a) + |T × T ′|ω0

)]

Intuitively, if the coupling counts are concentrated on a single assignment yi+1 =

t, y′j+1 = t′, then the transition from i to i + 1 becomes almost irrelevant, since

the product-of-experts will be dominated by the coupling term. Conversely, if the

coupling counts are indifferent and assigns equal probability to all pairs ⟨t, t′⟩, then

the sampling formula becomes proportional to the transition factor, which is the

same as if yi+1 and yj+1 were not aligned. In general, as the entropy of the coupling

increases, the transition to the succeeding nodes exerts a greater influence on our

selection yi.
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2.6.2 Jointly Sampling Aligned Tags

The situation for tags of aligned words is similar. We sample these tags jointly,

considering all |T × T ′| possibilities. We begin by decomposing the probability into

three factors, using Bayes’ rule:

P (yi, y
′
j | y−i,y′

−j,x,x′,a, θ0, θ′0, ϕ0, ϕ
′
0, ω0) ∝

P (xi | y,x−i, θ0) P (x
′
j | y′,x′

−j, θ
′
0) P (yi, y

′
j | y−i,y′

−j,a, ϕ0, ϕ
′
0, ω0)

The first two factors are emissions, and are handled identically to the unaligned case

(equation 2.3). The expansion of the final, joint factor depends on the alignment of

the succeeding tags. If neither of the successors are aligned, we have a product of

the bilingual coupling probability and four transition probabilities:

P (yi, y
′
j|y−i,y′

−j, ϕ0, ϕ
′
0, ω0) ∝

≈
(
n(yi−1, yi) + ϕ0

n(yi−1) + |T |ϕ0

)
·
(
n(y′j−1, y

′
j) + ϕ0

n(y′j−1) + |T |ϕ0

)
·
(

n(yi, y
′
j) + ω0

N(a) + |T × T ′|ω0

)

·
(
n(yi, yi+1) + ϕ0

n(yi) + |T |ϕ0

)
·
(
n(y′j, y

′
j+1) + ϕ0

n(y′j) + |T |ϕ0

)

The derivation is similar to equation 2.5, except now the normalization term Z ′

need not be computed (since it is unaffected by either yi or yj). Whenever one or

more of the succeeding words is aligned, the sampling formulas must account for

the effect of the sampled tag on the joint probability of the succeeding tags, which

is no longer a simple multinomial transition probability. In these cases, the final

two transition factors are supplemented by the coupling and normalization factors

given in equation 2.5.

The alternative to approximately marginalizing all these parameters would be

to sample them using a Metropolis-Hastings scheme as in the work by [111]. The

use of approximate marginalizations represents a bias-variance tradeoff, where the

decreased sampling variance justifies the bias introduced by the approximations, for

practical numbers of samples.
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2.7 Multilingual Unsupervised Tagging: A La-

tent Variable Model

The model described in the previous section is designed for bilingual aligned data;

as we will see in Section 2.11, it exploits such data very effectively. However, many

resources contain more than two languages: for example, Europarl contains eleven,

and the Multext-East corpus contains eight. This raises the question of how best

to exploit all available resources when multi-aligned data is available.

One possibility would be to train separate bilingual models and then combine

their output at test time, either by voting or some other heuristic. However, we

believe that cross-lingual information reduces ambiguity at training time, so it would

be preferable to learn from multiple languages jointly during training. Indeed, the

results in Section 2.11 demonstrate that joint training outperforms such a voting

scheme.

Another alternative would be to try to extend the bilingual model developed in

the previous section. While such an extension is possible in principle, the merged

node model does not scale well in the case of multi-aligned data across more than

two languages. Recall that we use merged nodes to represent both tags for aligned

words; the state space of such nodes grows as |T |L, exponential in the number of

languages L. Similarly, the coupling parameter ω has the same dimension, so that

the counts required for estimation become too sparse as the number of languages

increases. Moreover, the bi-tag model required removing crossing edges in the

word-alignment, so as to avoid cycles. This is unproblematic for pairs of aligned

sentences, usually requiring the removal of less than 5% of all edges (see table B.2

in appendix B). However, as the number of languages grows, an increasing number

of alignments will have to be discarded.

Instead, we propose a new architecture specifically designed for the multilingual

setting. As before, we maintain HMM substructures for each language, so that the

learned parameters can easily be applied to monolingual data. However, rather

than merging tag nodes for aligned words, we introduce a layer of superlingual
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tags. The role of these latent nodes is to capture cross-lingual patterns. Essentially

they perform a non-parametric clustering over sets of aligned tags, encouraging

multilingual patterns that occur elsewhere in the corpus.

More concretely, for every set of aligned words, we add a superlingual tag with

outgoing edges to the relevant part-of-speech nodes. An example configuration is

shown in Figure 2-1c. The superlingual tags are each generated independently, and

they influence the selection of the part-of-speech tags to which they are connected.

As before, we use a product-of-experts model to combine these cross-lingual cues

with the standard HMM transition model.

This setup scales well. Crossing and many-to-many alignments may be used

without creating cycles, as all cross-lingual information emanates from the hidden

superlingual tags. Furthermore, the size of the model and its parameter space scale

linearly with the number of languages. We now describe the role of the superlingual

tags in more detail.

2.7.1 Propagating Cross-lingual Patterns with Superlingual

Tags

Each superlingual tag specifies a set of distributions — one for each language’s

part-of-speech tagset. In order to learn repeated cross-lingual patterns, we need to

constrain the number of values that the superlingual tags can take and thus the

number of distributions they provide. For example, we might allow the superlin-

gual tags to take on integer values from 1 to K, with each integer value indexing a

separate set of tag distributions. Each set of distributions should correspond to a

discovered cross-lingual pattern in the data. For example, one set of distributions

might favor nouns in each language and another might favor verbs, though heteroge-

nous distributions (e.g., favoring determiners in one language and prepositions in

others) are also possible.

Rather than fixing the number of superlingual tag values to an arbitrary size

K, we leave it unbounded, using a non-parametric Bayesian model. To encourage
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the desired multilingual clustering behavior, we use a Dirichlet process prior [36].

Under this prior, high posterior probability is obtained only when a small number

of values are used repeatedly. The actual number of sampled values will thus be

dictated by the data.

We draw an infinite sequence of distribution sets Ψ1,Ψ2, . . . from some base

distribution G0. Each Ψi is a set of distributions over tags, with one distribution

per language, written ψ(ℓ)
i . To weight these sets of distributions, we draw an infinite

sequence of mixture weights π1, π2, . . . from a stick-breaking process, which defines a

distribution over the integers with most probability mass placed on some initial set

of values. The pair of sequences π1, π2, . . . and Ψ1,Ψ2, . . . now define the distribution

over superlingual tags and their associated distributions on parts-of-speech. Each

superlingual tag z ∈ N is drawn with probability πz, and is associated with the set

of multinomials ⟨ψℓ
z, ψ

ℓ′
z , . . .⟩.

As in the merged node model, the distribution over aligned part-of-speech tags

is governed by a product of experts. In this case, the incoming edges are from the

superlingual tags (if any) and the predecessor tag. We combine these distributions

via their normalized product. Assuming tag position i of language ℓ is connected

to M superlingual tags, the part-of-speech tag yi is drawn according to,

yi ∼
ϕyi−1

(yi)
∏M

m=1 ψ
ℓ
zm(yi)

Z
, (2.6)

where ϕyi−1
indicates the transition distribution, zm is the value of themth connected

superlingual tag, and ψℓ
zm(yi) indicates the tag distribution for language ℓ given by

Ψzm . The normalization Z is obtained by summing this product over all possible

values of yi.

This parameterization allows for a relatively simple parameter space. It also

leads to a desirable property: for a tag to have high probability, each of the incoming

distributions must allow it. That is, any expert can “veto” a potential tag by

assigning it low probability, generally leading to consensus decisions.

We now formalize this description by giving the stochastic generative process for
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the observed data (raw parallel text and alignments), according to the multilingual

model.

2.7.2 Generative Story

For n languages, we assume the existence of n tagsets T 1, . . . , T n and vocabularies,

W 1, . . . ,W n, one for each language. Table 2.1 summarizes all relevant parame-

ters. For clarity the generative process is described using only bigram transition

dependencies, but our experiments use a trigram model, without any bigram inter-

polations.

1. Transition and Emission Parameters. For each language ℓ = 1, ..., n and

for each tag t ∈ T ℓ, draw a transition distribution ϕℓ
t over tags Tℓ and an

emission distribution θℓt over words W ℓ, all from symmetric Dirichlet priors of

appropriate dimension.

2. Superlingual Tag Parameters. Draw an infinite sequence of sets of dis-

tributions over tags Ψ1,Ψ2, . . ., where each Ψi is a set of n multinomials

⟨ψ1
i , ψ

2
i , . . . ψ

n
i ⟩, one for each of n languages. Each multinomial ψℓ

i is a dis-

tribution over the tagset T ℓ, and is drawn from a symmetric Dirichlet prior;

these priors together comprise the base distribution G0, from which each Ψi

is drawn.

At the same time, draw an infinite sequence of mixture weights π ∼ GEM(α),

where GEM(α) indicates the stick-breaking distribution [103] with concen-

tration parameter α = 1. These parameters define a distribution over super-

lingual tags, or equivalently over the part-of-speech distributions that they

index:

z ∼
∑∞

k πkδk=z (2.7)

Ψ ∼
∑∞

k πkδΨ=Ψk
(2.8)

where δΨ=Ψk
is defined as one when Ψ = Ψk and zero otherwise. From For-
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Algorithm 2: Gibbs sampler for latent variable part-of-speech tagging
model.

Input: An n-language corpus consisting of aligned sentence-tuples
(x1, . . . ,xn), and corresponding word-level alignments a

Output: 1000 samples of part-of-speech tags (y1, . . . ,yn) for each aligned
sentence

Initialize part-of-speech tags;
for r ← 1 to 1000 do

foreach sentence-tuple (x1, . . . ,xn) and word alignment a do
foreach word xℓi ∈ (x1, . . . ,xn) do
Sample part-of-speech tag yℓi // Section 2.8.1

foreach word alignment ai ∈ a do
Sample superlingual tag zi // Section 2.8.2

mula 2.8, we can say that the set of multinomials Ψ is drawn from a Dirichlet

process, conventionally written DP (α,G0).

3. Data. For each multilingual parallel sentence:

(a) Draw an alignment a from multilingual alignment distribution Am. The

alignment a specifies sets of aligned indices across languages; each such

set may consist of indices in any subset of the languages.

(b) For each set of indices in a, draw a superlingual tag value z according to

Formula 2.7.

(c) For each language ℓ, for i = 1, . . . (until end-tag reached):

i. Draw a part-of-speech tag yi ∈ T ℓ according to Formula 2.6.

ii. Draw a word wi ∈ W ℓ according to the emission distribution θyi.

One important difference from the merged node model generative story is that

the distribution over multilingual alignments Am is unconstrained: we can generate

crossing and many-to-one alignments as needed. To perform Bayesian inference

under this model we again use Gibbs sampling, marginalizing parameters whenever

possible.

67



2.8 Latent Variable Model: Inference

As in section 2.6, we employ a sampling-based inference procedure. Again, standard

closed forms are used to analytically marginalize the emission parameters θ, and

approximate marginalizations are applied to transition parameters ϕ, and superlin-

gual tag distributions ψℓ
i ; similar techniques are used to marginalize the superlingual

tag mixture weights π. As before, these approximations would be exact if each of

the parameters in the numerator of Formula 2.6 were solely responsible for other

sampled tags.

We still must sample the part-of-speech tags y and superlingual tags z. See

algorithm 2 for an overview of the sampler. The remainder of the section describes

the individual sampling equations.

2.8.1 Sampling Part-of-speech Tags

To sample the part-of-speech tag for language ℓ at position i we draw from:

P (yℓi |y−(ℓ,i),x,a, z) ∝

P (xℓi |xℓ
−i,yℓ) P (yℓi+1|yℓi ,y−(ℓ,i),a, z) P (yℓi |y−(ℓ,i),a, z),

(2.9)

where y−(ℓ,i) refers to all tags except yℓi . The first factor handles the emissions, and

the latter two factors are the generative probabilities of (i) the current tag given the

previous tag and superlingual tags, and (ii) the next tag given the current tag and

superlingual tags. These two quantities are similar to equation 2.6, except here we

integrate over the transition parameter ϕyi−1
and the superlingual tag parameters

ωℓ
z. We end up with a product of integrals, each of which we compute in closed

form.

Terms involving the transition distributions ϕ and the emission distributions θ

are identical to the bilingual case, as described in Section 2.6. The closed form for
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integrating over the parameter of a superlingual tag with value z is given by:

∫
ψℓ
z(yi) P (ψ

ℓ
z | ψℓ

0) dψ
ℓ
z =

n(z, yi, ℓ) + ψℓ
0

n(z, ℓ) + T ℓ ψℓ
0

where n(z, yi, ℓ) is the number of times that tag yi is observed together with super-

lingual tag z in language ℓ, n(z, ℓ) is the total number of times that superlingual

tag z appears with an edge into language ℓ, and ψℓ
0 is a symmetric Dirichlet prior

over tags for language ℓ.

2.8.2 Sampling Superlingual Tags

For each set of aligned words in the observed alignment a we need to sample a

superlingual tag z. Recall that z is an index into an infinite sequence

⟨ψℓ1
1 , . . . , ψ

ℓn
1 ⟩, ⟨ψℓ1

2 , . . . , ψ
ℓn
2 ⟩, . . . ,

where each ψℓ
z is a distribution over the tagset T ℓ. The generative distribution over

z is given by Formula 2.7. In our sampling scheme, however, we integrate over all

possible settings of the mixture weights π using the standard Chinese Restaurant

Process closed form [34]:

P
(
zi
∣∣z−i,y

)
∝

∏
ℓ

P
(
yℓi
∣∣zi, z−i,y−(ℓ,i)

)
·


1

k+α
n(zi) if zi ∈ z−i

α
k+α

otherwise
(2.10)

The first group of factors is the product of closed form probabilities for all tags con-

nected to the superlingual tag, conditioned on zi. Each of these factors is calculated

in the same manner as equation 2.9 above. The final factor is the standard Chi-

nese Restaurant Process closed form for posterior sampling from a Dirichlet process

prior. In this factor, k is the total number of sampled superlingual tags, n(zi) is the

total number of times the value zi occurs in the sampled superlingual tags, and α

is the Dirichlet process concentration parameter (see Step 2 in Section 2.7.2).
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2.9 Implementation

This section describes implementation details that are necessary to reproduce our

experiments. We present details for the merged node and latent variable models,

as well as our monolingual baseline.

2.9.1 Initialization

An initialization phase is required to generate initial settings for the word tags and

hyperparameters, and for the superlingual tags in the latent variable model. The

initialization is as follows:

• Monolingual Model

– Tags: Random, with uniform probability among tag dictionary entries

for the emitted word.

– Hyperparameters θ0, ϕ0: Initialized to 1.0

• Merged Node Model

– Tags: Random, with uniform probability among tag dictionary entries

for the emitted word. For joined tag nodes, each slot is selected from the

tag dictionary of the emitted word in the appropriate language.

– Hyperparameters θ0, ϕ0, ω0: Initialized to 1.0

• Latent Variable Model

– Tags: Set to the final estimate from the monolingual model.

– Superlingual Tags: Initially a set of 14 superlingual tag values is as-

sumed — each value corresponds to one part-of-speech tag. Each align-

ment is assigned one of these 14 values based on the most common initial

part-of-speech tag of the words in the alignment.

– Hyperparameters θℓ0, ϕℓ
0: Initialized to 1.0
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– Base Distribution Gℓ
0: Set to a symmetric Dirichlet distribution with

parameter value fixed to 1.0

– Concentration Parameter α: Set to 1.0 and remains fixed throughout.

2.9.2 Hyperparameter Estimation

Both models have symmetric Dirichlet priors θ0 and ϕ0, for the emission and transi-

tion distributions respectively. The merged node model also has symmetric Dirichlet

prior ω0 on the coupling parameter. We re-estimate these priors during inference,

based on non-informative hyperpriors.

Hyperparameter re-estimation applies the Metropolis-Hastings algorithm after

each full epoch of sampling the tags. In addition, we run an initial 200 iterations to

speed convergence. Metropolis-Hastings is a sampling technique that draws a new

value u from a proposal distribution, and makes a stochastic decision about whether

to accept the new sample [39]. This decision is based on the proposal distribution

and on the joint probability of u with the observed and sampled variables xℓ and

yℓ.

We assume an improper prior P (u) that assigns uniform probability mass over

the positive reals, and use a Gaussian proposal distribution with the mean set to

the previous value of the parameter and variance set to one-tenth of the mean.5

For non-pathological proposal distributions, the Metropolis-Hastings algorithm is

guaranteed to converge in the limit to a stationary Markov chain centered on the

desired joint distribution. We observe an acceptance rate of approximately 1/6,

which is in line with standard recommendations for rapid convergence [39].

2.9.3 Final Parameter Estimates

The ultimate goal of training is to learn models that can be applied to unaligned

monolingual data. Thus, we need to construct estimates for the transition and

5This proposal is identical to the parameter re-estimation applied for emission and transition
priors by [43].
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emission parameters ϕ and θ. Our sampling procedure focuses on the tags y. We

construct maximum a posteriori estimates ŷ, indicating the most likely tag se-

quences for the aligned training corpus. The predicted tags ŷ are then combined

with priors ϕ0 and θ0 to construct maximum a posteriori estimates of the transition

and emission parameters. These learned parameters are then applied to the mono-

lingual test data to find the highest probability tag sequences using the Viterbi

algorithm.

For the monolingual and merged node models, we perform 200 iterations of

sampling, and select the modal tag settings in each slot. Further sampling was not

found to produce different results. For the latent variable model, we perform 1000

iterations of sampling, and select the modal tag values from the last 100 samples.

2.10 Experimental Setup

We perform a series of empirical evaluations to quantify the contribution of bilingual

and multilingual information for unsupervised part-of-speech tagging. Our first

evaluation follows the standard procedures established for unsupervised part-of-

speech tagging: given a tag dictionary (i.e., a set of possible tags for each word

type), the model selects the appropriate tag for each token occurring in a text.

We also evaluate tagger performance when the available dictionaries are incomplete

[106, 43]. In all scenarios, the model is trained using only untagged text.

In this section, we first describe the parallel data and part-of-speech annota-

tions used for system evaluation. Next we describe a monolingual baseline and the

inference procedure used for testing.

2.10.1 Data

As a source of parallel data, we use Orwell’s novel “Nineteen Eighty Four” in the

original English as well as its translation to seven languages — Bulgarian, Czech,
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Estonian, Hungarian, Slovene, Serbian and Romanian.6 Each translation was pro-

duced by a different translator and published in print separately by different pub-

lishers.

This dataset has representatives from four language families — Slavic, Romance,

Ugric and Germanic. This data is distributed as part of the publicly available

Multext-East corpus, Version 3 [33]. The corpus provides detailed morphological

annotation at the token level, including part-of-speech tags. In addition, a lexicon

for each language is provided.

The corpus consists of 118,426 English words in 6,736 sentences (see table 2.3).

Of these sentences, the first 75% are used for training, taking advantage of the

multilingual alignments. The remaining 25% are used for evaluation. In the eval-

uation, only monolingual information is made available to the model, to simulate

performance on non-parallel data.

2.10.2 Alignments

In our experiments we use sentence-level alignments provided in the Multext-East

corpus. Word-level alignments are computed for each language pair using ++ [90].

The procedures for handling these alignments are different for the merged node and

latent variable models.

Merged Node Model

We obtain 28 parallel bilingual corpora by considering all pairings of the eight

languages. To generate one-to-one alignments at the word level, we intersect the

one-to-many alignments going in each direction. This process results in alignment

of about half the tokens in each bilingual parallel corpus. We further automatically

remove crossing alignment edges, as these would induce cycles in the graphical

model. We employ a simple heuristic: crossing alignment edges are removed based

6In our initial publication [111], we used a subset of this data, only including sentences that
have one-to-one alignments between all four languages considered in that paper. The current set-up
makes use of all the sentences available in the corpus.
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Percentage Aligned
Sentences Words        

 6681 101175 - 41.7 50.5 33.5 31.3 41.5 45.4 45.9
 6750 102834 41.0 - 41.9 39.1 30.7 31.7 56.2 48.4
 6736 118426 43.2 36.4 - 34.4 32.9 42.5 44.6 40.9
 6477 94900 35.7 42.4 42.9 - 33.8 29.2 44.8 39.7
 6767 98428 32.2 32.0 39.6 32.6 - 26.9 34.6 30.3
 6519 118330 35.5 27.5 42.5 23.4 22.4 - 30.8 32.1
 6688 116908 39.3 49.4 45.2 36.4 29.1 31.2 - 51.2
 6676 112131 41.4 44.4 43.2 33.6 26.6 33.9 53.4 -

Table 2.2: Percentage of the words in the row language that have alignments when
paired with the column language. See table 2.3 for language name abbreviations.

on the order in which they appear from left to right; this step eliminates on average

3.62% of the edges. Table 2.2 shows the number of aligned words for each language

pair after removing crossing edges. More detailed statistics about the total number

of alignments are provided in appendix B.

Latent Variable Model

As in the previous setting, we run ++ on all 28 pairings of the 8 languages,

taking the intersection of alignments in each direction. Since we want each latent

superlingual variable to span as many languages as possible, we aggregate pairwise

lexical alignments into larger sets of densely aligned words and assign a single la-

tent superlingual variable to each such set. Specifically, for each word token, we

consider the set of the word itself and all word tokens to which it is aligned. If

pairwise alignments occur between two-thirds of all token pairs in this set, then it

is considered densely connected and is admitted as an alignment set. Otherwise,

increasingly smaller subsets are considered until one that is densely connected is

found. This procedure is repeated for all word tokens in the corpus that have at

least one alignment. Finally, the alignment sets are pruned by removing those which

are subsets of larger alignment sets. Each of the remaining sets is considered the

site of a latent superlingual variable.

This process can be illustrated by an example. The sentence “I know you, the
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Figure 2-2: An example of a multilingual alignment configuration. Nodes corre-
spond to words tokens, and are labeled by their language. Edges indicate pairwise
alignments produced by ++. Boxes indicate alignment sets, though the set C1
is subsumed by C2 and eventually discarded, as described in the text.

eyes seemed to say, I see through you,” appears in the original English version of

the corpus. The English word token seemed is aligned to word tokens in Serbian

(činilo), Estonian (näis), and Slovenian (zdelo). The Estonian and Slovenian to-

kens are aligned to each other. Finally, the Serbian token is aligned to a Hungarian

word token (mintha), which is itself not aligned to any other tokens. This config-

uration is shown in Figure 2-2, with the nodes labeled by the two-letter language

abbreviations.

We now construct alignment sets for these words.

• For the Hungarian word, there is only one other aligned word, in Serbian, so

the alignment set consists only of this pair (C1 in the figure).

• The Serbian word has aligned partners in both Hungarian and English; overall
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this set has two pairwise alignments out of a possible three, as the English and

Hungarian words are not aligned. Still, since 2/3 of the possible alignments

are present, an alignment set (C2) is formed. C1 is subsumed by C2, so it is
eliminated.

• The English word is aligned to tokens in Serbian, Estonian, and Slovenian;

four of six possible links are present, so an alignment set (C3) is formed.
Note that if the Estonian and Slovenian words were not aligned to each other

then we would have only three of six links, so the set would not be densely

connected by our definition; we would then remove a member of the alignment

set.

• The Estonian token is aligned to words in Slovenian and English; all three

pairwise alignments are present, so an alignment set (C4) is formed. An
identical alignment set is formed by starting with the Slovenian word, but

only one superlingual tag is created.

Thus, for these five word tokens, a total of three overlapping alignment sets

are created. Over the entire corpus, this process results in 284,581 alignment sets,

covering 76% of all word tokens. Of these tokens, 61% occur in exactly one alignment

set, 29% occur in exactly two alignment sets, and the remaining 10% occur in

three or more alignment sets. Of all alignment sets, 32% include words in just two

languages, 26% include words in exactly three languages, and the remaining 42%

include words in four or more languages. The sets remain fixed during sampling

and are treated by the model as observed data.

2.10.3 Tagset

The Multext-East corpus is manually annotated with detailed morphosyntactic in-

formation. In our experiments, we focus on the main syntactic category encoded

as the first letter of the provided labels. The annotation distinguishes between

14 parts-of-speech, of which 11 are common for all languages in our experiments.

Appendix A lists the tag repository for each of the eight languages.
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Number Tags per token when lexicon contains ... Trigram
of Tokens all words count > 5 count > 10 top 100 words Entropy

 101175 1.39 4.61 5.48 7.33 1.63
 102834 1.35 5.27 6.37 8.24 1.64
 118426 1.49 3.11 3.81 6.21 1.51
 94900 1.36 4.91 5.82 7.34 1.61
 98428 1.29 5.42 6.41 7.85 1.62
 118330 1.55 4.49 5.53 8.54 1.73
 116908 1.33 4.59 5.49 7.23 1.64
 112131 1.38 4.76 5.73 7.61 1.73

Table 2.3: Corpus size and tag/token ratio for each language in the set. The
last column shows the trigram entropy for each language based on the annotations
provided with the corpus. = Bulgarian, = Czech, = English, = Estonian,
 = Hungarian,  = Romanian,  = Slovene,  = Serbian.

In our first experiment, we assume that a complete tag lexicon is available, so

that the set of possible parts-of-speech for each word is known in advance. We use

the tag dictionaries provided in the Multext-East corpus. The average number of

possible tags per token is 1.39. We also experimented with incomplete tag dictionar-

ies, where entries are only available for words appearing more than five or ten times

in the corpus. For other words, the entire tagset of 14 tags is considered. In these

two scenarios, the average per-token tag ambiguity is 4.65 and 5.58, respectively.

Finally we also considered the case when lexicon entries are available for only the

100 most frequent words. In this case the average tags per token ambiguity is 7.54.

Table 2.3 shows the specific tag/token ratio for each language for all scenarios.

In the Multext-East corpus, punctuation marks are not annotated with part-

of-speech tags. We expand the tag repository by defining a separate tag for all

punctuation marks. This allows the model to make use of any transition or coupling

patterns involving punctuation marks. However, we do not consider punctuation

tokens when computing model accuracy.

2.10.4 Monolingual Comparisons

As our monolingual baseline we use the unsupervised Bayesian hidden Markov

model (HMM) of Goldwater and Griffiths [43]. This model, which they call BHMM1,
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modifies the standard HMM by adding priors and by performing Bayesian inference.

Its performance is on par with state-of-the-art unsupervised models. The Bayesian

HMM is a particularly informative baseline because our model reduces to this base-

line when there are no alignments in the data. This implies that any performance

gain over the baseline can only be attributed to the multilingual aspect of our model.

We used our own implementation after verifying that its performance on the Penn

Treebank corpus was identical to that reported by Goldwater and Griffiths.

To provide an additional point of comparison, we use a supervised hidden

Markov model trained using the annotated corpus. We apply the standard maximum-

likelihood estimation and perform inference using Viterbi decoding with pseudo-

count smoothing for unknown words [95]. In appendix C we also report supervised

results using the Stanford Tagger [117], version 1.67. Although the results are

slightly lower than our own supervised HMM implementation, we note that this

system is not directly comparable to our set-up, as it does not allow the use of a

tag dictionary to constrain part-of-speech selections.

2.10.5 Test Set Inference

We use the same procedure to apply all the models (the monolingual model, the

bilingual merged node model, and the latent variable model) to test data. After

training, trigram transition and word emission probabilities are computed, using

the counts of tags assigned in the final training iteration. Similarly, the final sam-

pled values of the hyperparameters are selected as smoothing parameters. We then

apply Viterbi decoding to identify the highest probability tag sequences for each

monolingual test set. We report results for multilingual and monolingual exper-

iments averaged over five runs and for bilingual experiments averaged over three

runs. The average standard-deviation of accuracy over multiple runs is less than

0.25 except when the lexicon is limited to the 100 most frequent words. In that case

the standard deviation is 1.11 for monolingual model, 0.85 for merged node model

7http://nlp.stanford.edu/software/tagger.shtml

78

http://nlp.stanford.edu/software/tagger.shtml


and 1.40 for latent variable model.

2.11 Results

In this section, we first report the performance for the two models on the full and

reduced lexicon cases. Next, we report results for a semi-supervised experiment,

where a subset of the languages have annotated text at training time. Finally, we

investigate the sensitivity of both models to hyperparameter values and provide run

time statistics for the latent variable model for increasing numbers of languages.

2.11.1 Full Lexicon Experiments

Our experiments show that both the merged node and latent variable models sub-

stantially improve tagging accuracy. Since the merged node model is restricted to

pairs of languages, we provide average results over all possible pairings. In addi-

tion, we also consider two methods for combining predictions from multiple bilingual

pairings: one using a voting scheme and the other employing an oracle to select the

best pairings (see below for additional details).

As shown in Line 4 of table 2.4, the merged node model achieves, on average,

93.2% accuracy, a two percentage point improvement over the monolingual base-

line.8 The latent variable model — trained once on all eight languages — achieves

95% accuracy, nearly two percentage points higher than the bilingual merged node

model. These two results correspond to error reductions of 23% and 43% respec-

tively, and reduce the gap between unsupervised and supervised performance by

over 30% and 60%.

As mentioned above, we also employ a voting scheme to combine information

from multiple languages using the merged node model. Under this scheme, we

8The accuracy of the monolingual English tagger is relatively high compared to the 87% reported
by [43] on the WSJ corpus. We attribute this discrepancy to the differences in tag inventory used in
our data-set. For example, when Particles and Prepositions are merged in the WSJ corpus (as they
happen to be in our tag inventory and corpus), the performance of Goldwater’s model on WSJ is
similar to what we report here.
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Avg        
1. Random 83.3 82.5 86.9 80.7 84.0 85.7 78.2 84.5 83.5
2. Monolingual 91.2 88.7 93.9 95.8 92.7 95.3 91.1 87.4 84.5
3. MN: average 93.2 91.3 96.9 95.9 93.3 96.7 91.9 89.3 90.2
4. LV 95.0 92.6 98.2 95.0 94.6 96.7 95.1 95.8 92.3
5. Supervised 97.3 96.8 98.6 97.2 97.0 97.8 97.7 97.0 96.6
6. MN: voting 93.0 91.6 97.4 96.1 94.3 96.8 91.6 87.9 88.2
7. MN: best pair 95.4 94.7 97.8 96.1 94.2 96.9 94.1 94.8 94.5

Table 2.4: Tagging accuracy with complete tag dictionaries. The first column re-
ports average results across all languages (see table 2.3 for language name abbrevi-
ations). The latent variable model is trained using all eight languages, whereas the
merged node models are trained on language pairs. In the latter case, results are
given by averaging over all pairings (line 3), by having all bilingual models vote on
each tag prediction (line 6), and by having an oracle select the best pairing for each
target language (line 7). All differences between LV, MN:
voting, and Monolingual (lines 2, 4, and 6) are statistically significant at p < 0.05
according to a sign test. See table 2.3 for language name abbreviations.

train bilingual merged node models for each language pair. Then, when making

tag predictions for a particular language — e.g., Romanian — we consider the

preferences of each bilingual model trained with Romanian and a second language.

The tag preferred by a plurality of models is selected. The results for this method

are shown in line 6 of table 2.4, and do not differ significantly from the average

bilingual performance. Thus, this simple method of combining information from

multiple language does not measure up to the joint multilingual model performance.

We use the sign test to assess whether there are statistically significant differences

in the accuracy of the tag predictions made by the monolingual baseline (line 2 of

table 2.4), the latent variable model (line 4), and the voting-based merged node

model (line 6). All differences in these rows are found to be statistically significant at

p < 0.05. Note that we cannot use the sign test to compare the average performance

of the bilingual model (line 3), since this result is an aggregate over accuracies for

every language pair.
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2.11.2 Reduced Lexicon Experiments

In realistic application scenarios, we may not have a tag dictionary with coverage

across the entire lexicon. We consider three reduced lexicons: removing all words

with counts of five or less; removing all words with counts of ten or less; and keeping

only the top 100 most frequent words. Words that are removed from the lexicon can

take any tag, increasing the overall difficulty of the task. These results are shown

in table 2.5 and graphically summarized in Figure 2-3. In all cases, the monolingual

model is less robust to reduction in lexicon coverage than the multilingual models.

In the case of the 100 word lexicon, the latent variable model achieves accuracy of

57.9%, compared to 53.8% for the monolingual baseline. The merged node model,

on the other hand, achieves a slightly higher average performance of 59.5%. In

the two other scenarios, the latent variable model trained on all eight languages

outperforms the bilingual merged node model, even when an oracle selects the best

bilingual pairing for each target language. For example, using the lexicon with

words that appear greater than five times, the monolingual baseline achieves 74.7%

accuracy, the merged node model using the best possible pairings achieves 81.7%

accuracy, and the full latent variable model achieves an accuracy of 82.8%.

Next we consider the performance of the bilingual merged node model when the

lexicon is reduced for only one of the two languages. This condition may occur when

dealing with two languages with asymmetric resources, in terms of unannotated

text. As shown in table 2.6, the merged models on average scores 5.7 points higher

than the monolingual model when both tag dictionaries are reduced, but 14.3 points

higher when the partner language has a full tag dictionary. This suggests that

the bilingual models effectively transfer the additional lexical information available

for the resource-rich language to the resource-poor language, yielding substantial

performance improvements.

Perhaps the most surprising result is that the resource-rich language gains as

much on average from pairing with the resource-poor partner language as it would

have gained from pairing with a language with a full lexicon. In both cases, an
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Figure 2-3: Summary of model performance in full and reduced lexicon conditions.
Improvement over the random baseline is indicated for the monolingual baseline, the
merged node model (average performance over all possible bilingual pairings), and
the latent variable model (trained on all eight languages). “Counts > x” indicates
that only words with counts greater than x were kept in the lexicon; “Top 100”
keeps only the 100 most common words.

average accuracy of 93.2% is achieved, compared to the 91.1% monolingual baseline.

2.11.3 Indirect Supervision

Although the main focus of this thesis is unsupervised learning, we also provide

some results indicating that multilingual learning can be applied to scenarios with

varying amounts of annotated data. These scenarios are in fact quite realistic, as

previously trained and highly accurate taggers will usually be available for at least

some of the languages in a parallel corpus. We apply our latent variable model

to these scenarios by simply treating the tags of annotated data (in any subset

of languages) as fixed and observed throughout the sampling procedure. From a

strictly probabilistic perspective this is the correct approach. However, we note

that, in practice, heuristics and objective functions which place greater emphasis

on the supervised portion of the data may yield better results. We do not explore

that possibility here.

Table 2.7 gives results for two scenarios of indirect supervision: where only one
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Avg        
C
ou
nt
s
>
5 Random 63.6 62.9 62 71.8 61.6 61.3 62.8 64.8 61.8

Monolingual 74.8 73.5 72.2 87.3 72.5 73.5 77.1 75.7 66.3
MN: average 80.1 80.2 79.0 90.4 76.5 77.3 82.7 78.7 75.9
LV 82.8 81.3 83.0 88.1 80.6 80.8 86.1 83.6 78.8
MN: voting 80.4 80.4 78.5 90.7 76.4 76.8 84.0 79.7 76.4
MN: best pair 81.7 82.7 79.7 90.7 77.5 78 84.4 80.9 79.4

C
ou
nt
s
>
10

Random 57.9 57.5 54.7 68.3 56 55.1 57.2 59.2 55.5
Monolingual 70.9 71.9 66.7 84.4 68.3 69.0 73.0 70.4 63.7
MN: average 77.2 77.8 75.3 88.8 72.9 73.8 80.5 76.1 72.4
LV 79.7 78.8† 79.4 86.1 77.9 76.4 83.1 80.0 75.9
MN: voting 77.5 78.4† 75.3 89.2 73.1 73.3 81.7 76.1 73.1
MN: best pair 79.0 80.2 76.7 89.4 74.9 75.2 82.1 77.6 76.1

To
p
10
0

Random 37.3 36.7 32.1 48.9 36.6 36.4 33.7 39.8 33.8
Monolingual 53.8 60.9‡ 44.1 69.0 54.8∗ 56.8 51.4 49.4 44.0
MN: average 59.6 60.1 52.5 73.5 59.5 59.4 61.4 56.6 53.4
LV 57.9 65.5 49.3 71.6 54.3∗ 51.0 57.5 53.9 60.4
MN: voting 62.4 61.5‡ 55.4 74.8 62.2 60.9 64.3 62.3 57.5
MN: best pair 63.6 64.7 55.3 77.4 61.5 60.2 69.3 63.1 56.9

Table 2.5: Tagging accuracy in reduced lexicon conditions. “Counts > x” indicates
that only words with counts greater than x were kept in the lexicon; “Top 100”
keeps only the 100 most common words. The latent variable model is trained using
all eight languages, whereas the merged node models are trained on language pairs.
In the latter case, results are given by averaging over all pairings, by having all
bilingual models vote on each tag prediction, and by having an oracle select the
best pairing for each target language. Other than the three pairs of results marked
with †, ‡, and ∗, all differences between “monolingual”, “LV”, and
“MN: voting” are statistically significant at p < 0.05 according to a sign
test. See table 2.3 for language name abbreviations.

of the eight languages has annotated data, and where all but one of the languages

has annotated data. In both cases, the unsupervised languages are provided with

a 100 word lexicon, and all eight languages are trained together. When only one

of the eight languages is supervised, the results vary depending on the choice of

supervised language. When one of Bulgarian, Hungarian, or Romanian is super-

vised, no improvement is seen, on average, for the other seven languages. However,

when Slovene is supervised, the improvement seen for the other languages is fairly

substantial, with average accuracy rising to 64.8%, from 57.9% for the unsupervised

latent variable model and 53.8% for the monolingual baseline. Perhaps unsurpris-
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Monolingual Bilingual (Merged Node)
Reduced Full Both Reduced Unreduced Both

reduced language language full
 60.9 88.7 60.1 71.3 91.6 91.3
 44.1 93.9 52.5 66.7 97.1 96.9
 69.0 95.8 73.5 82.4 95.8 95.9
 54.8 92.7 59.5 65.6 93.3 93.3
 56.8 95.3 59.4 63.0 96.7 96.7
 51.4 91.1 61.4 69.3 91.5 91.9
 49.4 87.4 56.6 63.3 89.1 89.3
 44.0 84.5 53.4 63.6 90.3 90.2
Avg. 53.8 91.2 59.5 68.1 93.2 93.2

Table 2.6: Various scenarios for reducing the tag dictionary to the 100 most frequent
terms. See table 2.3 for language name abbreviations.

ingly, the results are more impressive when all but one of the languages is supervised.

In this case, the average accuracy of the lone unsupervised language rises to 74.4%.

Taken together, these results indicate that any mixture of supervised resources may

be added to the mix in a very simple and straightforward way, often yielding sub-

stantial improvements for the other languages.

2.11.4 Hyperparameter Sensitivity and Runtime Statistics

Both models employ hyperparameters for the emission and transition distribution

priors (θ0 and ϕ0 respectively) and the merged node model employs an additional

hyperparameter for the coupling distribution prior (ω0). These hyperparameters are

all updated throughout the inference procedure. The latent variable model uses two

additional hyperparameters that remained fixed: the concentration parameter of the

Dirichlet process (α) and the parameter of the base distribution for superlingual

tags (ψ0). For the experiments described above we used the initialization values

listed in Section 2.9.1. Here we investigate the sensitivity of the models to different

initializations of θ0, ϕ0, and ω0, and to different fixed values of α and ψ0. Tables 2.8

and 2.9 show the results obtained for the merged node and latent variable models,

respectively, using a full lexicon. We observe that across a wide range of values,

both models yield very similar results. In addition, we note that the final sampled
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supervised language(s)...
        All others None

ac
cu

ra
cy

fo
r.

..
 69.1 68.0 65.9 60.4 67.1 73.9 69.6 76.2 65.5
 50.8 52.2 50.2 51.2 51.0 56.6 53.1 76.6 49.3
 62.6 70.5 68.1 61.8 61.9 80.6 69.5 82.8 71.6
 57.2 58.0 57.7 56.1 56.4 59.8 57.1 72.5 54.3
 50.3 50.0 53.1 51.4 51.1 49.8 50.0 62.3 51.0
 62.8 61.6 61.3 57.8 58.5 62.9 59.2 74.9 57.5
 55.0 56.8 55.6 53.2 54.4 54.7 56.2 77.7 53.9
 64.9 65.9 64.1 63.5 61.6 63.4 69.9 72.5 60.4
Avg 57.7 61.7 58.9 58.6 57.7 57.9 64.8 59.2 74.4 57.9

Table 2.7: Performance of the latent variable model when some of the eight lan-
guages have supervised annotations and the others have only the most frequent 100
words lexicon. The first eight columns report results when only one of the eight
languages is supervised. The penultimate column reports results when all but one of
the languages are supervised. The final column reports results when no supervision
is available (repeated from table 2.5 for convenience). See table 2.3 for language
name abbreviations..

hyperparameter values for transition and emission distributions always fall below

one, indicating that sparse priors are preferred.

As mentioned in Section 2.7 one of the key theoretical benefits of the latent

variable approach is that the size of the model and its parameter space scale linearly

with the number of languages. Here we provide empirical confirmation by running

the latent variable model on all possible subsets of the eight languages, recording

the time elapsed for each run9. Figure 2-4 shows the average running time as the

number of languages is increased (averaged over all subsets of each size). We see

that the model running time indeed scales linearly as languages are added, and

that the per-language running time increases very slowly: when all eight languages

are included, the time taken is roughly double that for eight monolingual models

run serially. Both of our models scale well with tagset size and the number of

examples. The time dependence on the former is cubic, as we use trigram models

and employ Viterbi decoding to find optimal sequences at test-time. During the

training time, however, the time scales linearly with the tagset size for the latent

9All experiments were single-threaded and run using an Intel Xeon 3.0 GHz processor
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MN: hyperparameter initializations
ϕ0 1.0 0.1 0.01 1.0 1.0 1.0 1.0
θ0 1.0 1.0 1.0 0.1 0.01 1.0 1.0
ω0 1.0 1.0 1.0 1.0 1.0 0.1 0.01
 91.3 91.3 91.3 91.3 91.2 91.1 91.3
 96.9 97.0 97.0 96.9 96.8 96.5 97.1
 95.9 95.9 95.9 95.9 95.9 95.9 95.9
 93.3 93.4 93.3 93.4 93.2 93.4 93.2
 96.7 96.7 96.7 96.7 96.7 96.7 96.8
 91.9 91.8 91.8 91.9 91.8 91.8 91.8
 89.3 89.3 89.3 89.3 89.4 89.3 89.3
 90.2 90.2 90.2 90.2 90.2 90.2 90.2
Avg 93.2 93.2 93.2 93.2 93.2 93.1 93.2

Table 2.8: Results for different initializations of the hyperparameters of the merged
node model. ϕ0, θ0 and ω0 are the hyperparameters for the transition, emission and
coupling multinomials respectively. The results for each language are averaged over
all possible pairings with the other languages. See table 2.3 for language name
abbreviations.

variable model and quadratically for the merged node model. This is due to the use

of Gibbs sampling that isolates the individual sampling decision on tags (for the

latent variable model) and tag-pairs (for the merged node model). The dependence

on the number of training examples is also linear for the same reason.

2.12 Analysis

In this section we provide further analysis of: (i) factors that influence the effective-

ness of language pairings in bilingual models, (ii) the incremental value of adding

more languages in the latent variable model, (iii) the gains of multilingual modeling,

(iv) the superlingual tags and their corresponding cross-lingual patterns as learned

by the latent variable model, and (v) whether multilingual data is more helpful than

additional monolingual data.
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Figure 2-4: Average running time for 1000 iterations of the latent variable model.
Results are averaged over all possible language subsets of each size. The top line
shows the average running time for the entire subset, and the bottom line shows
the running time divided by the number of languages.
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LV: hyperparameter initializations & settings
α 1.0 0.1 10 100 1.0 1.0 1.0 1.0 1.0 1.0
ψ0 1.0 1.0 1.0 1.0 0.1 0.01 1.0 1.0 1.0 1.0
ϕ0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.01 1.0 1.0
θ0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.01
 92.6 92.6 92.6 92.6 92.6 92.7 92.6 92.6 92.6 92.6
 98.2 98.1 98.2 98.2 98.1 98.1 98.2 98.1 98.2 98.1
 95.0 95.0 94.9 94.8 95.1 95.2 95.0 94.9 94.9 95.0
 94.6 95.0 95.0 94.9 94.2 94.8 95.0 94.9 94.9 94.5
 96.7 96.7 96.7 96.7 96.7 96.6 96.7 96.7 96.7 96.7
 95.1 95.0 95.1 95.1 95.2 95.1 95.0 94.9 95.1 95.0
 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8
 92.3 92.3 92.3 92.3 92.4 92.4 92.3 92.3 92.3 92.3
Avg 95.0 95.1 95.1 95.0 95.0 95.1 95.1 95.0 95.1 95.0

Table 2.9: Results for different initializations and settings of hyperparameters of
the latent variable model. ϕ0 and θ0 are the hyperparameters for the transition
and emission multinomials respectively and are updated throughout inference. α
and ψ0 are the concentration parameter and base distribution parameter, respec-
tively, for the Dirichlet process, and remain fixed. See table 2.3 for language name
abbreviations.

2.12.1 Predicting Effective Language Pairings

We first analyze the cross-lingual variation in performance for different bilingual

language pairings. As shown in table 2.10, the performance of the merged node

model for each target language varies substantially across pairings. In addition,

the identity of the optimally helpful language pairing also depends heavily on the

target language in question. For instance, Slovene, achieves a large improvement

when paired with Serbian (+7.4), a closely related Slavic language, but only a

minor improvement when coupled with English (+1.8). On the other hand, for

Bulgarian, the best performance is achieved when coupling with English (+6) rather

than with closely related Slavic languages (+2.4 and +0). Thus, optimal pairings

do not correspond simply to language relatedness. We note that when applying

multilingual learning to morphological segmentation the best results were obtained

for related languages, but only after incorporating declarative knowledge about their

lower-level phonological relations using a prior which encourages phonologically
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close aligned morphemes [108]. Here too, a more complex model which models

lower-level morphological relatedness (such as case) may yield better outcomes for

closely related languages.

As an upper bound on the merged node model performance, line 7 of table 2.10

shows the results when selecting (with the help of an oracle) the best partner for each

language. The average accuracy using this oracle is 95.4%, substantially higher than

the average bilingual pairing accuracy of 93.2%, and even somewhat higher than

the latent variable model performance of 95%. This gap in performance motivates

a closer examination of the relationship between languages that constitute effective

pairings.

MN M

coupled with...
Avg        

ac
cu

ra
cy

fo
r.

..

 91.3 90.2 94.7 92.3 90.6 91.2 91.1 88.7†
 96.9 95.3 97.5 97.8 96.3 96.4 97.4 97.4
 95.9 96.1 95.9† 95.8† 95.8† 95.8† 96.1 96.0
 93.3 93.0 94.0 92.9† 92.2† 93.0 94.2 93.9
 96.7 96.8 96.6 96.8 96.9 96.8 96.5 96.7
 91.9 94.1 90.6† 92.0 91.3 90.3† 91.3 93.9
 89.3 88.5 88.1 89.2 89.8 87.5† 87.5† 94.8
 90.2 88.5 88.2 94.5 94.2 89.5 85.0 91.4

Table 2.10: Merged node model accuracy for all language pairs. Each row cor-
responds to the performance of one language, each column indicates the language
with which the performance was achieved. The best result for each language is indi-
cated in bold. All results other than those marked with a † are significantly higher
than the monolingual baseline at p < 0.05 according to a sign test. See table 2.3 for
language name abbreviations.

Cross-lingual Entropy

In a previous publication [111] we proposed using cross-lingual entropy as a post-hoc

explanation for variation in coupling performance. This measure calculates the en-

tropy of a tagging decision in one language given the identity of an aligned tag in the

other language. While cross-lingual entropy seemed to correlate well with relative
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performance for the four languages considered in that publication, we find that it

does not correlate as strongly for all eight languages considered here. We computed

the Pearson correlation coefficient [83] between the relative bilingual performance

and cross-lingual entropy. For each target language, we rank the remaining seven

languages based on two measures: how well the paired language contributes to

improved performance of the target, and the cross-lingual entropy of the target

language given the coupled language. We compute the Pearson correlation coeffi-

cient between these two rankings to assess their degree of overlap. See table D.1

in appendix D for a complete list of results. On average, the coefficient was 0.29,

indicating a weak positive correlation between relative bilingual performance and

cross-lingual entropy.

Alignment Density

We note that even if cross-lingual entropy had exhibited higher correlation with

performance, it would be of little practical utility in an unsupervised scenario since

its estimation requires a tagged corpus. Next we consider the density of pairwise

lexical alignments between language pairs as a predictive measure of their coupled

performance. Since alignments constitute the multilingual anchors of our models,

as a practical matter greater alignment density should yield greater opportunities

for cross-lingual transfer. From the linguistic viewpoint, this measure may also indi-

rectly capture the correspondence between two languages. Moreover, this measure

has the benefit of being computable from an untagged corpus, using automatically

obtained ++ alignments. As before, for each target language, we rank the other

languages by relative bilingual performance, as well as by the percentage of words

in the target language to which they provide alignments. Here we find an aver-

age Pearson coefficient of 0.42, indicating mild positive correlation. In fact, if we

use alignment density as a criterion for selecting optimal pairing decisions for each

target language, we obtain an average accuracy of 94.67% — higher than average

bilingual performance, but still somewhat below the performance of the multilingual

model.
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Model Choice

The choice of model may also contribute to the patterns of variability we observe

across language pairs. To test this hypothesis, we ran our latent variable model

on all pairs of languages. The results of this experiment are shown in table 2.11.

As in the case of the merged node model, the performance of each target language

depends heavily on the choice of partner. However, the exact patterns of variability

differ in this case from those observed for the merged node model. To measure

this variability, we compare the pairing preferences for each language under each of

the two models. More specifically, for each target language we rank the remaining

seven languages by their contribution under each of our two models, and compute

the Pearson coefficient between these two rankings. As seen in the last column of

table D.1 in the appendix, we find a coefficient of 0.49 between the two rankings,

indicating positive, though far from perfect, correlation.

LV M

coupled with...
Avg        

ac
cu

ra
cy

fo
r.

..

 91.9 92.2 91.9 91.6 91.6 92.1 92.3 91.8
 97.2 97.5 97.5 97.6 97.4 97.4 96.5 96.8
 95.7 95.7† 95.7† 95.7† 95.6† 95.7† 95.7† 95.8†

 93.9 94.8 94.3 93.4 92.3† 93.9 94.5 94.1
 96.8 97.0 96.8 96.7 96.7 96.8 96.6 96.8
 93.2 94.6 92.1 92.4 92.3 92.1 94.4 94.7
 90.5 88.6 87.7 92.4 95.2 87.5† 87.6† 94.6
 91.6 94.7 88.5 94.5 94.5 89.7 88.0 91.1

Table 2.11: Accuracy of latent variable model when run on language pairs. Each
row corresponds to the performance of one language, each column indicates the lan-
guage with which the performance was achieved. The best result for each language
is indicated in bold. All results other than those marked with a † are significantly
higher than the monolingual baseline at p < 0.05 according to a sign test. See
table 2.3 for language name abbreviations.
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Utility of each Language as a Bilingual Partner

We also analyze the overall helpfulness of each language. As before, for each target

language, we rank the remaining seven languages by the degree to which they con-

tribute to increased target language performance when paired in a bilingual model.

We can then ask whether the helpfulness rankings provided by each of the eight lan-

guages are correlated with one another — in other words, whether languages tend to

be universally helpful (or unhelpful) or whether helpfulness depends heavily on the

identity of the target language. We consider all pairs of target languages, and com-

pute the Pearson rank correlation between their rankings of the six supplementary

languages that they have in common (excluding the two target languages them-

selves). When we average these pair-wise rank correlations we obtain a coefficient

of 0.20 for the merged node model and 0.21 for the latent variable model. These

low correlations indicate that language helpfulness depends crucially on the target

language in question. Nevertheless, we can still compute the average helpfulness of

each language (across all target languages) to obtain something like a “universal”

helpfulness ranking. See table E.1 in the appendix for this ranking. We can then ask

whether this ranking correlates with language properties which might be predictive

of general helpfulness. We compare the universal helpfulness rankings10 to language

rankings induced by tag-per-token ambiguity (the average number of tags allowed

by the dictionary per token in the corpus) as well as trigram entropy (the entropy

of the tag distribution given the previous two tags). In both cases we assign the

highest rank to the language with lowest value, as we expect lower entropy and am-

biguity to correlate with greater helpfulness. Contrary to expectations, the ranking

induced by tag-per-token ambiguity actually correlates negatively with both univer-

sal helpfulness rankings by very small amounts (-0.28 for the merged node model

and -0.23 for the latent variable model). For both models, Hungarian, which has

the lowest tag-per-token ambiguity of all eight languages, had the worst universal

10We note that the universal helpfulness rankings obtained from each of the two multilingual
models match each other only roughly: their correlation coefficient with one another is 0.50. In
addition, “universal” in this context refers only to the eight languages under consideration and the
rankings could very well change in a wider multilingual context.
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helpfulness ranking. The correlations with trigram entropy were only a little more

predictable. In the case of the latent variable model, there was no correlation at

all between trigram entropy and universal helpfulness (-0.01). In the case of the

merged node model, however, there was moderate positive correlation (0.43).

2.12.2 Adding Languages in the Latent Variable Model

While bilingual performance depends heavily on the choice of language pair, the

latent variable model can easily incorporate all available languages, obviating the

need for any choice. To test performance as the number of languages increases,

we ran the latent variable model with all possible subsets of the eight languages in

the full lexicon as well as all three reduced lexicon scenarios. Figures 2-5, 2-6, 2-7,

and 2-8 plot the average accuracy as the number of available languages varies for

all four lexicon scenarios (in decreasing order of the lexicon size). For comparison,

the monolingual and average bilingual baseline results are given. In all scenarios,

our latent variable model steadily gains in accuracy as the number of available

languages increases, and in most scenarios sees an appreciable uptick when going

from seven to eight languages. In the full lexicon case, the gap between supervised

and unsupervised performance is cut by nearly two thirds under the unsupervised

latent variable model with all eight languages.

Interestingly, as the lexicon is reduced in size, the performance of the bilingual

merged node model gains relative to the latent variable model on pairs. In the

full lexicon case, the latent variable model is clearly superior, whereas in the two

moderately reduced lexicon cases, the performance on pairs is more or less the same

for the two models. In the case of the drastically reduced lexicon (100 words), the

merged node model is the clear winner. Thus, it seems that of the two models, the

performance gains of the latent variable model are more sensitive to the size of the

lexicon.

The same four figures (2-5, 2-6, 2-7, and 2-8) also show the multilingual perfor-

mance broken down by language. All languages except for English tend to increase

in accuracy as additional languages are added to the mix. Indeed, in the two cases
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of moderately reduced lexicons (Figures 2-6 and 2-7) all languages except for En-

glish show steady large gains which actually increase in size when going from seven

to the full set of eight languages. In the full lexicon case (Figure 2-5), Estonian, Ro-

manian, and Slovene display steady increases until the very end. Hungarian peaks

at two languages, Bulgarian at three languages, and Czech and Serbian at seven

languages. In the more drastic reduced lexicon case (Figure 2-8), the performance

across languages is less consistent and the gains when languages are added are less

stable. All languages report gains when going from one to two languages, but only

half of them increase steadily up to eight languages. Two languages seem to trend

downward after two or three languages, and the other two show mixed behavior.

In the full lexicon case (Figure 2-5), English is the only language which fails to

improve. In the other scenarios, English gains initially but these gains are partially

eroded when more languages are added. It is possible that English is an outlier since

it has significantly lower tag transition entropy than any of the other languages (see

table 2.3). Thus it may be that internal tag transitions are simply more informative

for English than any information that can be gleaned from multilingual context.

2.12.3 Analysis of Multilingual Gains

In this section we seek to better understand the source of improvements for the latent

variable model. Intuitively, we would expect the greatest benefits to accrue to test-

set words which are frequently aligned in the parallel training corpus, since they have

the direct influence of superlingual tags. Ideally we would see improvements for less

frequently aligned words as well, through the indirect propagation of multilingual

information.

First we examine the distribution of alignments by part-of-speech tag. For each

part-of-speech, table B.3 (in appendix B) shows the percentage of occurrences with

a direct edge from a superlingual tag. Determiners and articles, which exist for only

two of the languages studied, are aligned about 50% of the time. In contrast, verbs

are aligned about 73% of the time, while nouns are aligned over 85% of the time.

Thus we see that alignments are unevenly distributed across parts-of-speech.
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Figure 2-5: The performance of the latent variable model as the number of languages
varies (averaged over all subsets of the eight languages for each size). : Average
performance across all languages. Scores for monolingual and bilingual merged
node models are given for comparison. : The Performance for each individual
language as the number of available languages varies.
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Figure 2-6: The performance of the latent variable model for the reduced lexicon
scenario (Counts > 5), as the number of languages varies (averaged over all sub-
sets of the eight languages for each size). : Average performance across all
languages. Scores for monolingual and bilingual merged node models are given for
comparison. : The Performance for each individual language as the number
of available languages varies.
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Figure 2-7: The performance of the latent variable model for the reduced lexicon
scenario (Counts > 10), as the number of languages varies (averaged over all sub-
sets of the eight languages for each size). : Average performance across all
languages. Scores for monolingual and bilingual merged node models are given for
comparison. : The Performance for each individual language as the number
of available languages varies.
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Figure 2-8: The performance of the latent variable model for the reduced lexicon
scenario (100 words), as the number of languages varies (averaged over all subsets of
the eight languages for each size). : Average performance across all languages.
Scores for monolingual and bilingual merged node models are given for comparison.
: The Performance for each individual language as the number of available
languages varies.
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Next we analyze the performance of the latent variable model (when trained

on all 8 languages) for words with varying degrees of alignment density. For each

word in the training corpus, we count the frequency for which it occurs with a

superlingual tag. We then order the test-set words in increasing order of these

frequencies and calculate the performance of the model (as well as the baseline)

on each initial subset of words. Figure 2-9 shows the results. As can be seen, the

relative multilingual performance tends to be greatest for frequently aligned words.

For words which align fewer than 30% of the time, there is virtually no difference

in performance. Thereafter, multilingual performance systematically diverges from

the baseline.

Finally, we break down the relative performance of the latent variable model for

both in-vocabulary and out-of-vocabulary words. Recall that in all testing scenarios,

we provide our models with a seed dictionary which lists the possible parts-of-speech

for some subset of words. Thus, we can partition the test-set into two portions: those

words for which an entry in the tag lexicon is available, and those words for which an

entry is unavailable. Table 2.12 breaks down the performance of the latent variable

model (when trained on all 8 languages) on in-vocabulary and out-of-vocabulary

words. In nearly all cases, multilingual performance is superior to monolingual

performance. However, the greatest relative gains are seen for out-of-vocabulary

words.

2.12.4 Superlingual Tag Values

In this section we analyze the superlingual tags and their corresponding part-of-

speech distributions, as learned by the latent variable model. Recall that each

superlingual tag intuitively represents a discovered multilingual context and that it

is through these tags that multilingual information is propagated. More formally,

each superlingual tag provides a complete distribution over parts-of-speech for each

language, allowing the encoding of both primary and secondary preferences sepa-

rately for each language. These preferences then interact with the language-specific

context (i.e. the surrounding parts-of-speech and the corresponding word). We
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Figure 2-9: The average performance of the latent variable model and baseline for
words with different alignment frequencies. The words are ordered by increasing
frequency of alignment, and performance is measured on each initial subset of words.
The horizontal axis gives the maximum alignment frequency of each subset and the
vertical axis gives test-set tag accuracy for that subset. E.g. at point 50 along the
horizontal axis we only consider words which align 50% or less of the time. The
final right-hand point gives the performance on all words.
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All        
C

ou
nt

s
>

5 : in 90.21 89.57 91.25 93.90 88.13 94.40 87.87 92.12 84.01
: in 92.91 89.98 96.83 92.29 92.54 94.31 93.95 94.89 89.25
: out 23.08 26.07 21.25 31.03 21.20 22.79 25.85 20.70 19.55
: out 46.01 50.29 44.14 51.85 39.54 46.61 50.27 44.82 42.40

C
ou

nt
s
>

10 : in 91.43 89.66 91.41 94.66 89.39 95.53 87.90 92.63 89.99
: in 92.84 89.89 97.04 92.37 92.56 94.25 93.83 94.78 88.91
: out 26.41 30.39 25.18 34.48 23.51 25.59 29.97 22.19 22.82
: out 48.91 52.60 48.48 54.56 45.71 44.90 52.95 46.83 47.24

10
0

W
or

ds : in 89.30 87.53 87.80 95.57 91.74 96.04 90.48 92.82 70.56
: in 92.84 86.84 97.07 93.37 94.47 95.74 95.13 95.71 85.74
: out 26.28 37.15 19.25 35.13 28.31 30.17 20.69 18.24 23.81
: out 31.41 49.48 24.55 24.45 27.58 24.15 30.66 22.41 46.94

Table 2.12: In-vocabulary vs out-of-vocabulary performance for the latent variable
model in the three reduced lexicon scenarios. The monolingual baseline performance
is given for comparison. See table 2.3 for language name abbreviations.

place a Dirichlet process prior on the superlingual tags, so the number of sampled

values is dictated by the complexity of the data. In fact, as shown in table 2.13,

the number of sampled superlingual tags steadily increases with the number of lan-

guages. As multilingual contexts becomes more complex and diverse, additional

superlingual tags are needed.

Number languages 2 3 4 5 6 7 8
Number superlingual tag values 11.07 12.57 13.87 15.07 15.79 16.13 16.50

Table 2.13: Average number of sampled superlingual tag values as the number of
languages increases.

Next we analyze the part-of-speech tag distributions associated with superlin-

gual tag values. Most superlingual tag values correspond to low entropy tag dis-

tributions, with a single dominant part-of-speech tag across all languages. See, for

example, the distributions associated with superlingual tag value 6 in table 2.14,

all of which favor nouns by large margins. Similar sets of distributions occur fa-

voring verbs, adjectives, and the other primary part-of-speech categories. In fact,
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among the seventeen sampled superlingual tag values, nine belong to this type, and

they cover 80% of actual superlingual tag instances. The remaining superlingual

tags correspond to more complex cross-lingual patterns. The associated tag distri-

butions in those cases favor different part-of-speech tags in various languages and

tend to have higher entropy, with the probability mass spread more evenly over

two or three tags. One such example is the set of distributions associated with the

superlingual tag value 14 in table 2.14, which seems to be a mixed noun/verb class.

In six out of eight languages the most favored tag is verb, while a strong secondary

choice in these cases is noun. However, for Estonian and Hungarian, this preference

is reversed, with nouns being given higher probability. This superlingual tag may

have captured the phenomenon of “light verbs,” whereby verbs in one language cor-

respond to a combination of a noun and verb in another language. For example the

English verb whisper/V, when translated into Urdu, becomes the collocation whis-

per/N do/V. In these cases, verbs and nouns will often be aligned to one another,

requiring a more complex superlingual tag. The analysis of these examples shows

that the superlingual tags effectively learns both simple and complex cross-lingual

patterns







6

 P (N) = 0.91, P (A) = 0.04, ...







14

 P (V ) = 0.66, P (N) = 0.21, ...
 P (N) = 0.92, P (A) = 0.03, ...  P (V ) = 0.60, P (N) = 0.22, ...
 P (N) = 0.97, P (V ) = 0.00, ...  P (V ) = 0.55, P (N) = 0.25, ...
 P (N) = 0.91, P (V ) = 0.03, ...  P (N) = 0.52, P (V ) = 0.29, ...
 P (N) = 0.85, P (A) = 0.06, ...  P (N) = 0.44, P (V ) = 0.34, ...
 P (N) = 0.90, P (A) = 0.04, ...  P (V ) = 0.45, P (N) = 0.33, ...
 P (N) = 0.94, P (A) = 0.03, ...  P (V ) = 0.55, P (N) = 0.24, ...
 P (N) = 0.92, P (A) = 0.03, ...  P (V ) = 0.49, P (N) = 0.26, ...

Table 2.14: Part-of-speech tag distributions associated with two superlingual latent
tag values. Probabilities of only the two most probable tags for each language are
shown. See table 2.3 for language name abbreviations.

2.12.5 Performance with Reduced Data

One potential objection to the claims made in this brief section is that the improved

results may be due merely to the addition of more data, so that the multilingual
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aspect of the model may be irrelevant. We test this idea by evaluating the monolin-

gual, merged node, and latent variable systems on training sets in which the number

of examples is reduced by half. The multilingual models in this setting have access

to exactly half as much data as the monolingual model in the original experiment.

As shown in table 2.15, both the monolingual baseline and our models are quite

insensitive to this drop in data. In fact, both of our models, when trained on half

of the corpus, still outperform the monolingual model trained on the entire corpus.

This indicates that the performance gains demonstrated by multilingual learning

cannot be explained merely by the addition of more data.

Avg        
M: full data 91.2 88.7 93.9 95.8 92.7 95.3 91.1 87.4 84.5
M: half data 91.0 88.8 93.8 95.7 92.6 95.3 90.2 87.5 84.5
MN: (avg.) full data 93.2 91.3 96.9 95.9 93.3 96.7 91.9 89.3 90.2
MN: (avg.) half data 93.0 91.1 96.6 95.7 92.7 96.7 92.0 88.9 89.9
LV: full data 95.0 92.6 98.2 95.0 94.6 96.7 95.1 95.8 92.3
LV: half data 94.7 92.6 97.8 94.7 93.9 96.7 94.4 95.4 92.2

Table 2.15: Tagging accuracy on reduced training dataset, with complete tag dic-
tionaries; results on the full training dataset are repeated here for comparison. The
first column reports average results across all languages. See table 2.3 for language
name abbreviations.
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2.13 Conclusions

The key hypothesis of multilingual learning is that by combining cues from multiple

languages, the structure of each becomes more apparent. We considered two ways

of applying this intuition to the problem of unsupervised part-of-speech tagging:

a model that directly merges tag structures for a pair of languages into a single

sequence and a second model which instead incorporates multilingual context using

latent variables.

Our results demonstrate that by incorporating multilingual evidence we can

achieve impressive performance gains across a range of scenarios. When a full lexi-

con is available, our two models cut the gap between unsupervised and supervised

performance by nearly one third (merged node model, averaged over all pairs) and

two thirds (latent variable model, using all eight languages). For all but one lan-

guage, we observe performance gains as additional languages are added. The sole

exception is English, which only gains from additional languages in reduced lexicon

settings.

In most scenarios, the latent variable model achieves better performance than

the merged node model, and has the additional advantage of scaling gracefully with

the number of languages. These observations suggest that the non-parametric latent

variable structure provides a more flexible paradigm for incorporating multilingual

cues. However, the benefit of the latent variable model relative to the merged node

model (even when running both models on pairs of languages) seems to decrease

with the size of the lexicon. Thus, in practical scenarios where only a small lexicon

or no lexicon is available, the merged node model may represent a better choice.

Our experiments have shown that performance can vary greatly depending on

the choice of additional languages. It is difficult to predict a priori which languages

constitute good combinations. In particular, language relatedness itself cannot be

used as a consistent predictor as sometimes closely related languages constitute ben-

eficial couplings and sometimes unrelated languages are more helpful. We identify a

number of features which correlate with bilingual performance, though we observe
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that these features interact in complex ways. Fortunately, our latent variable model

allows us to bypass this question by simply using all available languages.

Limitations and Future Work

In both of our models lexical alignments play a crucial role, as they determine the

topology of the model for each sentence. In fact, we observed a positive correlation

between alignment density and bilingual performance, indicating the importance of

high quality alignments. In our experiments, we considered the alignment structure

an observed variable, produced by standard MT tools which operate over pairs of

languages. An interesting alternative would be to incorporate alignment structure

into the model itself, to find alignments best tuned for tagging accuracy based on

the evidence of multiple languages rather than pairs.

Another limitation of the two models is that they only consider one-to-one lexical

alignments. When pairing isolating and synthetic languages11 it should be beneficial

to align short analytical phrases consisting of multiple words to single morpheme-

rich words in the other language. To do so would involve flexibly aligning and

chunking the parallel sentences throughout the learning process.

Finally, we consider two technical limitations of the latent variable model. The

first is that we employ only a single distribution over superlingual tags (drawn from a

Dirichlet process). However, not all superlingual tags have edges into all languages.

In fact, the majority of superlingual tags in our corpus point to no more than half of

all eight languages. It is likely that the alignments over each subset of the languages

will carry with them a unique distribution over parts-of-speech. In other words,

the very fact that an alignment only occurs between two particular languages, for

example, might provide some useful information for part-of-speech selection. In

future work, we can address this concern by positing a separate distribution over

superlingual tags for each unique subset of languages.

11Isolating languages are those with a morpheme to word ratio close to one, and synthetic lan-
guages are those which allow multiple morphemes to be easily combined into single words. English
is an example of an isolating language, whereas Hungarian is a synthetic language.
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The second limitation is that our model locally normalizes all probability distri-

butions. In its current form, the probability of tag yi (with an edge from superlingual

tag s) is given by the renormalized product:

P (yi | yi−1, s) =
P (yi | yi−1) · P (yi | s)

Z
,

where the first factor is the language-specific transition distribution and the sec-

ond factor is the distribution over parts-of-speech given by superlingual tag s. As

discussed earlier in the chapter, this factorization allows our model to trade-off

monolingual cues against multilingual cues. Either distribution can rule out par-

ticular tag assignments by assigning them very low probability. However, because

each of these two distributions is locally normalized, the model is unable to express

its confidence in one over the other. A more general formulation would replace these

two distributions with unnormalized scores:

P (yi | yi−1, s) =
score(yi | yi−1) · score(yi | s)

Z

The total magnitude of transition and superlingual scores could thus vary indepen-

dently, allowing the model to express its confidence in each source of information.

An even more radical generalization of our model would be to eschew local nor-

malization in its entirety, instead using a globally normalized Markov Random

Field. The main challenge in this setting is computational. Applying inference

to undirected models with many complex latent variables is still an open research

problem [82].

A more general direction for future work is to incorporate even more sources of

multilingual information, such as additional languages and declarative knowledge

of their typological properties [26]. In this chapter we showed that performance

improves as the number of languages increases. We were limited by our corpus to

eight languages, but we envision future work on massively parallel corpora involving

dozens of languages as well as learning from languages with non-parallel data.
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Chapter 3

Unsupervised Multilingual

Grammar Induction

In the previous chapter we considered the task of part-of-speech tagging. In that

task, the structure of latent variables was determined by the word-aligned sentences,

and was thus considered fixed and observed. In contrast, this chapter considers a

more complex task, where latent structure itself must be predicted. In particular,

we consider the task of constituency bracketing. The goal is to predict the nested

bracketing of each sentence which reflects its underlying syntax. Thus, for the

sentence John climbed the tree, our goal would be to produce the bracketing:

[John [climbed [the tree]]]

which reflects the underlying syntactic structure:

S

NP

John

VP

climbed NP

the tree
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In the unsupervised scenario, hand-annotated training data is not available. In-

stead, we must rely on the patterns of the words themselves as an implicit guide

to deeper structure. This has proven to be quite difficult in the monolingual set-

ting [20, 64].

3.1 Chapter Overview

Section 3.2 gives a broad introduction to the chapter. We argue that a multilingual

approach will lead to more accurate parse predictions. The key challenge is to

capture cross-lingual regularities while still allowing significant divergence between

parallel trees. We briefly describe our approach and summarize our experimental

findings. Section 3.3 compares our approach to previous unsupervised grammar

induction work. Section 3.4 describes our modeling approach in great detail, and

section 3.5 describes our inference algorithm. Section 3.6 describes our experiments

on three bilingual corpora and reports our results. Section 3.7 completes the chapter

with some concluding remarks.

3.2 Introduction

In this chapter, we explore the application of multilingual learning to unsupervised

grammar induction. Our goal is to improve parsing performance on monolingual test

data by using unsupervised bilingual cues at training time. Following previous work

on monolingual grammar induction [20, 64], we focus on unlabeled constituency

brackets.

The key premise of our approach is that ambiguous syntactic structures in one

language may correspond to less uncertain structures in the other language. For

instance, the English sentence:

I saw the student from MIT

exhibits the classical problem of prepositional phrase attachment ambiguity [25].
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The prepositional phrase from MIT may form a constituent with the adjacent noun

phrase, yielding the parse:

I [saw [the student [from MIT ]]],

meaning that the student herself is from MIT. In theory, though, the prepositional

phrase may also directly modify the entire verb phrase:

I [saw [the student] [from MIT ]],

meaning that the act of seeing the student was undertaken from MIT. The Urdu

translation of this sentence, which can be glossed literally as:

I [[MIT of student] saw],

displays no such ambiguity. An explicit genitive phrase MIT of student is used,

forming an unambiguous noun phrase. Knowing the word-level correspondences

between these sentences should therefore help us resolve the English prepositional

phrase attachment ambiguity in favor of the noun phrase attachment. In addition,

systematic differences in word order can also be informative. Without much knowl-

edge of Urdu grammar, one might have mistakenly placed the first two words I MIT

into a single bracket on their own. However, after observing that the corresponding

words in the English sentence appear respectively in the first and last positions, we

can safely rule out this possibility.

One of the general aims of unsupervised multilingual learning is to exploit cross-

lingual patterns discovered in data, while still allowing a wide range of language-

specific idiosyncrasies. Especially at the syntactic level, languages differ greatly in

their expression of similar meanings. Thus, one of the key challenges here is one of

representation: How can we simultaneously parse two parallel sentences, represent

what is common between them, while still allowing their syntactic structures to

diverge in significant ways?
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To answer this question, we have adapted a computational formalism known as

unordered tree alignment [60] to our probabilistic setting. Under this formalism,

any two trees can be embedded in an alignment tree. This alignment tree allows

arbitrary parts of the two trees to diverge in structure, permitting language-specific

grammatical structure to be preserved. A computational advantage of this formal-

ism is that it allows us compute the marginal probability of tree pairs and to sample

alignments in polynomial time, using a dynamic program.

We formulate a generative Bayesian model which seeks to explain the observed

parallel data through a combination of bilingual and monolingual parameters. Our

model views each pair of sentences as having been generated as follows: First an

alignment tree is drawn. Each node in this alignment tree contains either a soli-

tary monolingual constituent or a pair of coupled bilingual constituents. For each

solitary monolingual constituent, a sequence of part-of-speech tags is drawn from

a language-specific distribution. For each pair of coupled bilingual constituents,

a pair of part-of-speech sequences are drawn jointly from a cross-lingual distribu-

tion. Word-level alignments are then drawn based on the tree alignment. Finally,

parallel sentences are assembled from these generated part-of-speech sequences and

word-level alignments.

To perform inference under this model, we use a Metropolis-Hastings within-

Gibbs sampler. We sample pairs of trees and then compute marginalized probabil-

ities over all possible alignments using dynamic programming.

We test the effectiveness of our bilingual grammar induction model on three

corpora of parallel text: English-Korean, English-Urdu and English-Chinese. The

model is trained using bilingual data with automatically induced word-level align-

ments, but is tested on purely monolingual data for each language. In all cases,

our model outperforms a state-of-the-art baseline: the Constituent Context Model

(CCM) [64], sometimes by substantial margins. On average, over all the testing

scenarios that we studied, our model achieves an absolute increase in F-measure of

8.8 points, and a 19% reduction in error relative to a theoretical upper bound.
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3.3 Related Work

The unsupervised grammar induction task has been studied extensively, mostly in a

monolingual setting [20, 113, 64, 102]. While Probabilistic Context-free Grammars

(PCFG) perform poorly on this task, the CCM [64] has achieved large gains in

performance and remains the state-of-the-art probabilistic model for unsupervised

constituency parsing. We therefore use the CCM as our basic model of monolingual

syntax.

While there has been some previous work on bilingual context-free grammar

parsing, it has mainly focused on improving machine translation systems rather than

monolingual parsing accuracy. Research in this direction was pioneered by [122],

who developed Inversion Transduction Grammars to capture cross-lingual gram-

mar variations such as phrase reorderings. More general formalisms (such as Syn-

chronous Grammars) for the same purpose were later developed [123, 22, 78, 32,

129, 11]. We know of only one study which evaluates these bilingual grammar for-

malisms on the task of grammar induction itself [104]. Both our model and even

the monolingual CCM baseline yield far higher performance on the same Korean-

English corpus. In our model, we seek to learn syntactic correspondences between

the languages while using word-level alignments as a guide to finding constituent-

level alignments. The tree alignment formalism we employ is more flexible than

Inversion Transduction Grammars (as well as Synchronous Grammars) in that it

allows a node in any part of either tree to remain unaligned. This results in the

possibility of nodes aligning across different heights of the two trees (see figure 3-1).

Our approach is closer in spirit to the unsupervised bilingual parsing model

developed by Kuhn [70], which aims to improve monolingual performance. As-

suming that trees induced over parallel sentences have to exhibit certain structural

regularities, Kuhn manually specifies a set of rules for determining when parsing

decisions in the two languages are inconsistent with ++ word-level alignments.

By incorporating these constraints into the EM algorithm he was able to improve

performance over a monolingual unsupervised PCFG. Still, the performance falls
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short of state-of-the-art monolingual models such as the CCM.

More recently, there has been a body of work attempting to improve supervised

parsing performance by exploiting syntactically annotated parallel data. One strand

of this work has been pursued in the projection framework, which assumes that

syntactic annotation is available only in a source language [58, 124]. Syntactic trees

from the source language are transferred onto a target language via the aligned

parallel corpus. The projected annotations are used to train a parser for the target

language. As in our approach, these methods explore bilingual correspondences

between syntactic structures. However, such correspondences are encoded manually

or trained from annotated corpora, whereas we induce them automatically using

only raw parallel text.

An alternative supervision scenario considers the case where syntactic annota-

tions are available for both languages. Burkett and Klein [17] develop an algorithm

for simultaneously training English and Chinese parsers on a bilingual tree bank.

Their method proceeds by first training standard supervised parsers for each lan-

guage. They then define a log-linear reranking model which considers the highest

probability parses for each language, and ranks them according to their agreement

with one another. The reranking model treats tree-to-tree node alignments as a hid-

den variable. No structure over the node-alignments is assumed except that they

are one-to-one. As a result, summing over all possible alignments is #P-complete,

and they must resort to approximations. In contrast, our tree alignment formalism

permits the marginalization and sampling of tree alignments in polynomial time. In

subsequent work, Burkett et al. [18] consider the scenario where supervised parsers

exist for both languages but are improved by the addition of unannotated bilingual

parallel text. Most recently, Burkett et al. [16] develop a model for joint bilingual

parsing and word alignment. These methods simultaneously learns to parse each

language and to induce the connection between derived parses. The evaluation of

these algorithms have demonstrated the value of cross-lingual constraints: parsers

trained on bilingual annotated data yield improvement over monolingual counter-

parts. In contrast to this line of work, we assume no annotated texts in either
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(i) (ii) (iii)

Figure 3-1: A pair of trees (i) and two possible alignment trees. In (ii), no empty
spaces are inserted, but the order of one of the original tree’s siblings has been
reversed. In (iii), only two pairs of nodes have been aligned (indicated by arrows)
and many empty spaces inserted.

language.

Finally, we note three recent papers on multilingual dependency parsing. The

first of these ties the parameters of multilingual parsers through a shared logistic

normal prior [23]. While the primary performance gains occur when tying related

parameters within a language, some additional benefit is observed through bilingual

tying, even in the absence of a parallel corpus. The second paper, which appeared

after the initial publication of this work, considers the tying of parameters across a

broad set of languages [6]. Interestingly, the best results were found when the prior

over parameters mirrored the phylogenetic relationship of the languages. Finally,

in a very recent publication Naseem et al. [84] use hand-specified universal rules of

syntax which are probabilistically refined separately for each language. Although

no explicit multilingual modeling is performed, they report the best unsupervised

results for six different languages.

3.4 Model

We propose an unsupervised Bayesian model for learning bilingual syntactic struc-

ture using parallel corpora. Our key premise is that difficult-to-learn syntactic

structures of one language may correspond to simpler or less uncertain structures

in the other language. We treat the part-of-speech tag sequences of parallel sen-

tences, as well as their word-level alignments, as observed data. We obtain these
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word-level alignments automatically using ++ [90].

Our model seeks to explain this observed data through a generative process

whereby two aligned parse trees are produced jointly. Though they are aligned,

arbitrary parts of the two trees are permitted to diverge, accommodating language-

specific grammatical structure. In effect, our model loosely binds the two trees:

node-to-node alignments need only be used where repeated bilingual patterns can

be discovered in the data.

3.4.1 Tree Alignments

We achieve this loose binding of trees by adapting unordered tree alignment [60]

to a probabilistic setting. Under this formalism, any two trees T1 and T2 can be

aligned through the following steps:

1. Insert empty nodes (labeled with λ) into T1
2. Insert empty nodes (labeled with λ) into T2
3. Reorder sibling nodes in T1
4. Reorder sibling nodes in T2
5. Repeat steps 1-4 until the resulting trees T ′

1 and T ′
2 are identical in structure

6. Overlay T ′
1 and T ′

2 to obtain an alignment tree A

The alignment tree A embeds the original two trees within it. Each node consists

of a pair

(x, y),

where x and y are corresponding nodes in T ′
1 and T ′

2, respectively. If x and y are

both original nodes from T1 and T2, then we say that these nodes are aligned. If

however, x ∈ T1 and y = λ, then we say that x remains unaligned. Similarly, if

x = λ and y ∈ T2 then we say that y remains unaligned.

Intuitively, an alignment A can allow arbitrary parts of each tree to remain

unaligned to the other tree. However, alignments must respect the basic hierarchical

structure of each tree. For example, assume that the pair of nodes (x1, y1) are
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aligned, and a second pair of nodes (x2, y2) are aligned as well. If x1 is an ancestor

of x2 in the original tree T1, then y1 must be an ancestor of y2 in tree T2 as well.

The flexibility of the tree alignment formalism can be demonstrated by two

extreme cases: (1) an alignment between two trees may actually align none of their

individual nodes, instead inserting an empty space λ for each of the original two

trees’ nodes; (2) if the original trees are already structurally identical up to sibling

order, the alignment may match their nodes exactly, without inserting any empty

spaces. See Figure 3-1 for an example.

Tree alignment can be viewed as a somewhat more restrictive variant of the

well known tree edit-distance formalism [114]. In fact, each alignment corresponds

to an edit-sequence in which all insertions precede all deletions [60]. However,

this restriction yields computational benefits. Computing the optimal edit-distance

between unordered trees is NP-hard [130]. In contrast, trees T1 and T2 with bounded

degree can be optimally aligned (i.e. aligned with as few empty node insertions as

possible) in time O(|T1|·|T2|) using a dynamic program. As we will see in section 3.5,

our inference procedure relies heavily on similar dynamic programs.

3.4.2 CCM Overview

As our basic model of syntactic structure, we adopt the Constituent-Context Model

(CCM) of Klein and Manning [64]. In this section, we summarize that model in

order to provide the necessary background for our bilingual model.

The CCM is a generative model of the part-of-speech sequences of observed

sentences, ignoring the words themselves. For example, the sentence John climbed

the tree would be considered the following observation:

   ,

where  denotes a personal noun,  denotes a past-tense verb,  denotes a

definite determiner, and  denotes a common noun.
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Trees, Constituents, and Distituents

According to the CCM, the above sequence was probabilistically generated by an

underlying binary tree structure, in this case:

T = [__₁ [__₂ [__₃ __₄]]]

The CCM assumes a prior uniform distribution over all such tree-structures (up to

some very large size). Next, we consider every span of leaves in this tree, making a

crucial distinction between constituents and distituents. A constituent is a span of

leaves which are exactly dominated by a single node in the tree. In a slight abuse

of notation, we will write (i, j) ∈ T if a node x ∈ T exactly dominates the leaves i

through j. Thus, beside the leaf nodes themselves (which are constituents, but are

ignored here for ease of exposition), tree T contains three constituents:

__₁ __₂ __₃ __₄ __₂ __₃ __₄ __₃ __₄

Every other leaf-span in the tree is a distituent. Thus tree T contains three dis-

tituents:

__₁ __₂ __₁ __₂ __₃ __₂ __₃

Yields

For every constituent, we draw a constituent-yield: a sequence of parts-of-speech to

label the corresponding leaf nodes. Thus for tree T we draw three constituent-yields:

y(1, 4) =     y(2, 4) =    y(3, 4) =  

Likewise, for every distituent, we draw a distituent-yield. Thus for tree T we draw

three distituent-yields:

y(1, 2) =   y(1, 3) =    y(2, 3) =  
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Constituent yields are drawn from a multinomial distribution πC over all part-of-

speech sequences (up to some large fixed length), and distituent yields are drawn

from a corresponding distribution πD. The notation y(i, j) denotes the yield span-

ning leaves i through j (inclusive).

Contexts

Next, constituent and distituent contexts are drawn. The context of a leaf-span

is the pair of parts-of-speech labeling the leaves to the immediate left and right

of the span (substituting a special symbol  when the span includes the left-most

or right-most leaves of the tree). Thus for tree T we generate the following three

constituent-contexts:

c(1, 4) = (, ) c(2, 4) = (, ) c(3, 4) = (, )

Likewise, we generate the following three distituent-contexts:

c(1, 2) = (, ) c(1, 3) = (, ) c(2, 3) = (, )

The constituent-contexts are drawn from a multinomial distribution ϕC over all part-

of-speech pairs, and distituent-contexts are drawn from a corresponding distribution

ϕD. The notation c(i, j) denotes the context for leaf span i through j (inclusive).

Over-generation

Note that the CCM over-generates each observed part-of-speech sequence. In the

example above, we independently generated each of the following values:
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y(1, 4) =     // Constituent yields

y(2, 4) = __   

y(3, 4) = __ __  

y(1, 2) =   __ __ // Distituent yields

y(1, 3) =    __

y(2, 3) = __   __

c(1, 4) =  __ __ __ __  // Constituent contexts

c(2, 4) =  __ __ __ 

c(3, 4) = __  __ __ 

c(1, 2) =  __ __  __ // Distituent contexts

c(1, 3) =  __ __ __ 

c(2, 3) =  __ __ 

These variables are all consistent with one another, and taken together, provide a

complete labeling of tree T :

[ [ [ ]]],

which corresponds to the correct parse of our original sentence:

[John [climbed [the tree]]].

According to the CCM, the probability of the generated variables is simply a product

of independent multinomials:

P (T )
∏

(i,j)∈T

πC
[
y(i, j)

]
ϕC

[
c(i, j)

] ∏
(i,j) ̸∈T

πD
[
y(i, j)

]
ϕD

[
c(i, j)

]
Under this model, it is obvious that non-zero probability will also be assigned to

sets of variables which do not yield a consistent part-of-speech sequence. Thus,

as a generative model of sentences / part-of-speech sequences, CCM is deficient.

Alternatively, we can view CCM as assigning zero probability to inconsistent sets

of generated variables by fiat. On this view, probabilities over consistent sets of

variables must then be renormalized by some global constant.
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Despite this deficiency, the unsupervised performance of the CCM on English

Wall Street Journal text is far higher than that of an unsupervised Probabilistic

Context-free Grammar (PCFG) [64]. In fact, the CCM is still among the best-

performing unsupervised probabilistic constituency parsers reported in the litera-

ture. As such, we use it as the basis of our bilingual model, which we describe in

the next section.

3.4.3 Extension to Bilingual Setting

In the bilingual setting we assume that our corpus consists of translated sentence-

pairs, along with word-level alignments. For example, we might observe the English

sentence discussed in the previous section, but this time with an Urdu counterpart

(glossed into English for convenience): 1

As was the case for the CCM, we disregard the words, and treat the sentence as a

pair of partially aligned part-of-speech sequences:

As in the monolingual case, our goal is to model these sequences as arising from

latent tree structures, T1 for the English sentence, and T2 for the Urdu sentence.

We assume that, just as the words of the two sentences are aligned, so too are the

underlying trees. In fact, we assume that the word-level alignments are themselves

a probabilistic byproduct of the tree alignment. See section 3.4.1 above for an

overview of the tree alignment formalism which we use.

1In the Urdu sentence tree on is a postpositional phrase and is the object of the verb climbed.
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Figure 3-2: Tree pair T1, T2 with tree alignment A.

Aligned Trees

Formally, we assume an underlying triple (T1, T2,A), where A is the alignment tree

between T1 and T2. Recall that every node in A consists of a pair (x, y), where x

is either a node in T1 or the empty symbol λ, and likewise y is either a node in T2
or λ. Intuitively, two nodes x ∈ T1 and y ∈ T2 should be aligned if and only if the

respective sentence fragments which they dominate convey more or less the same

information. In our example, the underlying aligned trees would be those shown

in figure 3.4.3. Note that while five node-pairs are aligned, four nodes remain

unaligned: (1) the Urdu postpositional phrase tree on, (2) the English definite

noun phrase the tree, (3) the English word the, and (4) the Urdu word on. As in

the monolingual case, we assume a uniform prior distribution over trees and their

alignment.

Bilingual Yields

We now generate yields and contexts for each constituent and distituent in the two

trees. We use separate distributions for each language, with one crucial exception:
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For aligned node-pairs (x, y) ∈ A, we draw a bilingual yield-pair from a single joint

distribution ω. For example, for the verb phrase node-pair (x3, y3) in our running

example (figure 3.4.3), we would jointly draw:

(  ,   ) ∼ ω

In all other cases we use language-specific distributions. For example, to generate

yields for the two unaligned constituents x7 ∈ T1 (the tree in English) and y7 ∈ T2
(tree on in Urdu), we draw:

  ∼ πC
1

  ∼ πC
2

And likewise to generate the respective contexts, we draw:

(, ) ∼ ϕC
1

(, ) ∼ ϕC
2

All distituent yields and all contexts are drawn according to the appropriate language-

specific distributions.

Word Alignments

Finally, the observed word alignments are generated. Our model views these word

alignments as a consequence of the latent tree alignments. In particular, for each

aligned node-pair (x, y) ∈ A, we first generate its Giza score. The Giza score

measures the degree to which the words dominated by nodes x and y are aligned to

one another, rather than to words under other nodes.

More precisely, let m be the number of aligned words (w1, w2) such that w1 is

dominated by x ∈ T1 and w2 is dominated by y ∈ T2. In our running example,

m = 2 for aligned node-pair (x3, y3) since two words are aligned across those nodes.

Let n be the number of aligned word-pairs (w1, w2) such that either (a) w1 is
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dominated by x but w2 is not dominated by y, or (b) w2 is dominated by y but w1

is not dominated by x. In our running example, n = 0 for all aligned node-pairs.

Finally, we define the Giza score for node-pair (x, y) to simply be (m−n). Higher

Giza scores for aligned nodes indicate that the word alignments are relatively more

consistent with the node alignment.

For an unaligned node (x, λ) ∈ A, let n be the number of words dominated by

x which are aligned to any other word. We then define the Giza score of (x, λ) to

be 0− n. Intuitively, words dominated by unaligned nodes should be very sparsely

aligned. Thus, ideally the Giza score of unaligned nodes should be zero, or some

negative number of low magnitude.

According to our model, the Giza score s(x,y) for each pair of aligned nodes

(x, y) ∈ A is drawn according to:

s(x,y) ∼ Gz,

whereGz is a discrete distribution over a subset of the integers {−K, . . . ,−1, 0, 1, . . . , K}.

The Giza score s(x,λ) for unaligned node (x, λ) is drawn according to:

s(x,λ) ∼ Gz′,

where Gz′ is discrete distribution over {−K, . . . ,−1, 0}.2

Finally, word alignments consistent with the Giza scores are drawn from a uni-

form distribution.

In the next two sections, we describe our model more programmatically by listing

the parameters and the generative process.

3.4.4 Parameters

In this section we list and describe the parameters of our model, all of which are

multinomial distributions:

2By definition, the giza score for unaligned nodes cannot be greater than zero.
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πC
1 – Distribution over constituent-yields of language 1.

πD
1 – Distribution over distituent-yields of language 1.

ϕC
1 – Distribution over constituent-contexts of language 1.

ϕD
1 – Distribution over distituent-contexts of language 1.

πC
2 – Distribution over constituent-yields of language 2.

πD
2 – Distribution over distituent-yields of language 2.

ϕC
2 – Distribution over constituent-contexts of language 2.

ϕD
2 – Distribution over distituent-contexts of language 2.

ω – Distribution over bilingual pairs of constituent yields.

Gz – Distribution over Giza scores: {−K, . . . ,−1, 0, 1, . . . , K}.

Gz′ – Distribution over Giza scores: {−K, . . . ,−1, 0}.

Briefly, constituents are spans of leaves in a tree which are fully and exactly dom-

inated by a node, whereas distituents are spans which no single node fully and

exactly dominates. Yields are labelings of a span of leaves with part-of-speech tags.

Contexts are labelings of the pair of leaves to the immediate left and right of a span

with part-of-speech tags. Fuller descriptions with a running example are given in

the previous section.

The first two sets of distributions correspond exactly to the parameters of the

CCM. Parameter ω can be thought of as a “coupling parameter” which measures

the compatibility of aligned bilingual yield-pairs. The final parameter measures the

compatibility of tree alignments with the observed lexical ++ alignments. Intu-

itively, aligned nodes should have a high density of word-level alignments between

them, and unaligned nodes should have few lexical alignments. See the end of the

previous section for a formal definition of Giza score.

3.4.5 Generative Process

Now we describe the stochastic process whereby the observed parallel sentences and

their lexical alignments are generated, according to our model.
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We formulate our model in the hierarchical Bayesian framework where the pa-

rameters are themselves viewed as random variables. Thus, as the first step in the

generative process, all the multinomial parameters listed in the previous section are

drawn from their conjugate priors (Dirichlet distributions of appropriate dimen-

sion). Once the parameters are drawn, each pair of word-aligned parallel sentences

is generated.

Aligned Tree-pair Generation

The first step in sentence generation is to draw a pair of aligned tree structures. We

define the prior distribution over these structures to be uniform over all consistent

triples (T1, T2,A), where consistency requires

1. that T1 and T2 each be bounded in size (by some very large fixed value),

2. that A be an alignment tree for T1 and T2 (defined in section 3.4.1),

3. and that A contain no doubly-empty nodes (λ, λ).

Sentence-pair Generation

Given the aligned tree pair (T1, T2,A), the sentence generation proceeds as follows:

1. For each unaligned node (x, λ) ∈ A, with x ∈ T1 dominating span (i, j), draw:

y1(i, j) ∼ πC
1 // constituent-yield for x ∈ T1

c1(i, j) ∼ ϕC
1 // constituent-context for x ∈ T1

s(x,λ) ∼ Gz′ // Giza score for (x, λ)

2. For each unaligned node (λ, y) ∈ A, with y ∈ T2 dominating span (k, l), draw:

y2(k, l) ∼ πC
2 // constituent-yield for y ∈ T2

c2(k, l) ∼ ϕC
2 // constituent-context for y ∈ T2

s(λ,y) ∼ Gz′ // Giza score for (λ, y)
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3. For each aligned node (x, y) ∈ A, with x ∈ T1 dominating span (i, j) and

y ∈ T2 dominating span (k, l), draw:

y1(i, j), y2(k, l) ∼ ω // constituent-yields for x ∈ T1 and y ∈ T2

c1(i, j) ∼ ϕC
1 // constituent-context for x ∈ T1

c2(k, l) ∼ ϕC
2 // constituent-context for y ∈ T2

s(x,y) ∼ Gz // Giza score for (x, y)

4. For each leaf-span (i, j) ̸∈ T1 (i.e. not dominated by a node), draw:

y1(i, j) ∼ πD
1 // distituent-yield for T1

c1(i, j) ∼ ϕD
1 // distituent-context for T1

5. For each leaf-span (k, l) ̸∈ T2 (i.e. not dominated by a node), draw:

y2(k, l) ∼ πD
2 // distituent-yield for T2

c2(k, l) ∼ ϕD
2 // distituent-context for T2

6. Assemble sentences pair from the yields and contexts

7. Draw lexical alignments consistent with the Giza scores, according to a uni-

form distribution.

In the next section we turn to the problem of inference under this model when

only the part-of-speech tag sequences of parallel sentences and their word alignments

are observed.

3.5 Inference

The goal of our inference procedure is to obtain CCM parameters for each language

that can be applied to monolingual test data. Ideally, we would choose parameters

that have the highest marginal probability, conditioned on the observed bilingual

123



part-of-speech sequences s1, s2 and word alignments a:

π̂, ϕ̂ = argmax
π,ϕ

∫
P (π, ϕ, ω,Gz,Gz′T1,T2,A | s1, s2,a) dω dGz dGz′ dT1 dT2 dA,

(3.1)

where π̂ = (πC
1 , π

D
1 , π

C
2 , π

D
2 ) is the set of yield parameters, ϕ̂ = (ϕC

1 , ϕ
D
1 , ϕ

C
2 , ϕ

D
2 ) is the

set of context parameters, and T1,T2,A are the sets of trees and their alignments

over the observed sentences.

While the structure of our model permits us to decompose the joint probability,

it is not possible to analytically marginalize all of the hidden variables. We resort

to standard Monte Carlo approximation, in which an integral is approximated by

a finite sum. In particular, we sample posterior values of the hidden aligned trees:

T1,T2,A, and replace their integral in equation 3.1 with a sum over the samples.

As the number of samples goes to infinity, the approximation converges to the true

value of the integral [80].

Since simultaneously sampling latent trees for all sentence-pairs is not feasible,

we use Gibbs sampling to draw individual variables one at a time [40]. Gibbs

sampling begins by randomly initializing unobserved random variables; at each it-

eration, each random variable ui is then sampled from the conditional distribution

P (ui|u−i), where u−i refers to all variables uj ̸=i. By repeatedly sampling individual

hidden variables according to their conditional distributions, we obtain a Markov

chain whose stationary distribution is the desired joint distribution over the vari-

ables P (u) [42]. When possible, we avoid explicitly sampling variables which are

not of direct interest, but rather integrate over them. This technique is known as

collapsed sampling; it is guaranteed never to increase sampling variance, and will

often reduce it [74].

In particular, for each sentence pair (s1, s2) with word alignment a, we sample an

aligned tree-pair (T1, T2,A). To do so, we perform a Metropolis-within-Gibbs sam-

pling step: The trees (T1, T2) are first sampled from a simpler proposal distribution

and then are accepted or rejected on the basis of their true marginal probability.

Only afterwards is the alignment A between them sampled.
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Algorithm 3: Gibbs sampler for bilingual grammar induction.

Input: Bilingual corpus consisting of part-of-speech sequence-pairs (s1, s2)
with corresponding lexical alignments a

Output: 1000 samples of aligned tree-pairs (T1, T2,A) for each sentence pair.
Initialize aligned tree-pairs (T1, T2,A);
for r ← 1 to 1000 do

for word-aligned sentence pair (s1, s2, a) do
Sample tree-pair (T1, T2)∗ from proposal distribution Q // Section 3.5.1
Sample Bernoulli b according to acceptance ratio // Section 3.5.2
if b = 1 then

(T1, T2)
(r) ← (T1, T2)

∗

else
(T1, T2)

(r) ← (T1, T2)
(r−1)

Sample tree alignment A(r) for (T1, T2)(r) // Section 3.5.3

Throughout sampling, we marginalize out the the parameters (π, ϕ, ω,Gz,Gz′),

using standard closed-form integrals. Algorithm 3 gives an overview of our sampling

algorithm. In the remainder of the section we describe the individual sampling steps.

3.5.1 Sampling Trees

For the ith word-aligned sentence pair (s1, s2, a) we wish to sample an aligned tree-

pair (T1, T2,A) from:

P (T1, T2,A | s1, s2, a, (s1, s2, a, T1, T2,A)−i),

where the notation x−i refers to all instances of x besides xi. Since an exponential

number of aligned tree-pairs are possible for each instance, our sampling algorithm

needs to factor into a series of smaller moves. We know of no simple factorization

for aligned tree pairs. We therefore develop a Metropolis-Hastings sampler [54]

which allows us to first sample the trees themselves, and only afterwards sample

the alignment between them.

In general, Metropolis-Hastings is used when sampling from a posterior P (ui|u−i)
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is difficult. Instead of directly sampling a new u
(r)
i at round r, one instead samples

a new value u∗i from a simpler proposal distribution Q(u∗i | u′i, u−i), where u′i denotes

the previously sampled value for ui (shorthand for u(r−1)
i ). In its simplest form, the

proposal distribution is often a Gaussian with mean set to u′i. After the proposed

value u∗i is drawn, an acceptance ratio is computed:

α =
P (u∗i | u−i) Q(u

′
i | u∗i , u−i)

P (u′i | u−i) Q(u∗i | u′i, u−i)

A random value b is then drawn from a Bernoulli with parameter min(α, 1). If b = 1,

we accept the proposed value: u(r)i ← u∗i . Otherwise, we retain our previous sample:

u
(r)
i ← u′i. The Markov chain induced by this sampler will eventually converge

to the true posterior P (ui | u−i) [54]. However, using a “random walk” proposal

distribution can often lead to very slow mixing of the Markov chain.

If the proposal distribution Q does not depend on the previous value u′i, then

we say that this is an independent Metropolis-Hastings sampler. If Q is a good (if

biased) approximation to the posterior, then we can avoid the slow mixing behavior

of the random walk.

We develop an independent Metropolis-Hastings sampler with a proposal distri-

bution that treats each language as fully independent of the other:

Q(T1, T2 | s1, s2, (s1, s2, T1, T2)−i) =

Q1(T1 | s1, (s1, T1)−i) ·Q2(T2 | s2, (s2, T2)−i)

Each distribution Qℓ is what the posterior for tree Tℓ would have been if (i) the tree

alignments A only contained unaligned nodes, and (ii) word alignments a were all

empty. In other words, our proposal distribution mimics the monolingual CCM and

ignores any explicit cross-lingual information.3

To sample from this proposal distribution we build on a well-known tree sampling

algorithm for PCFGs [44, 62]. Our algorithm proceeds in two steps. First, we

3Cross-lingual information still exercises implicit influence on Q by way of the sampled values for
other trees (T1)−i and (T2)−i.
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compute the marginal probability of each span in the sentence, using a dynamic

program which sums over all possible subtrees that dominate the given span. The

resulting table is similar to the “inside” table of the inside-outside algorithm for

PCFGs [71]. Using this table, we proceed to sample the tree in top-down fashion

by recursively sampling individual split points in the sentence.

More formally, consider a sentence s = w1, . . . , wn. As before, we use abbrevia-

tions to denote the yield and context of each span:

y(i, j) = wi, . . . , wj

c(i, j) = (wi−1, wj+1)

Recall that we can write the monolingual CCM probability P (s, T ) as a product of

constituent and distituent parameters:

P (T )
∏

(i,j)∈T

πC
[
y(i, j)

]
ϕC

[
c(i, j)

] ∏
(i,j) ̸∈T

πD
[
y(i, j)

]
ϕD

[
c(i, j)

]
(3.2)

Following Klein [63] (Appendix A.1), we rewrite this probability so that it factors

over constituent spans (i.e. nodes of T ):

K(s)
∏

(i,j)∈T

β(i, j), (3.3)

where β(i, j) is a fraction of constituent parameters over distituent parameters for

span (i, j):

β(i, j) =
πC

[
y(i, j)

]
ϕC

[
c(i, j)

]
πD

[
y(i, j)

]
ϕD

[
c(i, j)

] , (3.4)

and K(s) is a sentence-specific constant (distituent parameters over all spans and

the constant tree probability):

K(s) = P (T )
∏

0<i≤j≤n

πD
[
y(i, j)

]
ϕD

[
c(i, j)

]
(3.5)

We then define the inside score of span (i, j) to be its unnormalized CCM
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Algorithm 4: split(i, j) recursively samples a binary tree over span (i, j)

if i = j then return
{
(i, j)

}
for k ← i to j − 1 do

pk ← I(i, k) I(k + 1, j)

z ←
∑

i≤k<j pk

sample k ∼ discrete
[
pi/z, . . . , pj−1/z

]
return

{
(i, k), (k + 1, j)

}
∪ split(i, k) ∪ split(k + 1, j)

marginal probability:

I(i, j) =
∑
T ′

∏
(a,b)∈T ′

β(a, b),

where the sum is over all binary tree structures T ′ with (j− i) leaves. These values

can be computed recursively in O(n3) time by summing over all split-points of each

span:

I(i, j) ← β(i, j)
∑
i≤k<j

I(i, k) I(k + 1, j)

Once the table I(i, j) has been computed, we can sample a tree T by making

top-down split decisions over the sentence. Algorithm 4 defines the recursive func-

tion split. To sample a complete binary tree for sentence s = w1, . . . , wn we call

split(1, n).

To see that this function samples T according to P (T |s), we cast each tree

as a unique series of split decisions T = d1, d2, . . . , dm. For each decision dr, we

deterministically select a span (i, j) from a set of available spans Sr.4 We then

choose some split-point dr = k ∈ {i, . . . , j − 1} and update the available spans:

Sr+1 ← Sr −{(i, j)} ∪ {(i, k), (k+1, j)}. S1 is initialized with the full sentence span

(1, n), and the tree is complete when the set Sr contains only singleton spans (i, i).

4For example, by lexicographically ordering Sr and choosing the minimal element.
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We can now rewrite the tree probability in terms of split decisions:

P (T, s) ∝ P (T |s) = P (d1, . . . , dm | s) =
m∏
r=1

P (dr | d1, . . . , dr−1, s)

Assume that dr is a decision to split span (i, j) into (i, k) and (k + 1, j). Then we

can marginalize over all possible completions of the decision process:

P (dr | d1, . . . , dr−1, s) =
∑

dr+1,...,dm

P (dr, . . . , dm | d1, . . . , dr−1, s)

∝
∑

T ′ over (i, k)

∏
(a,b)∈T ′

β(a, b)
∑

T ′′ over (k + 1, j)

∏
(a,b)∈T ′′

β(a, b)

= I(i, k) I(k + 1, j)

To conclude the section, we note that definition 3.4 depends on the multinomial

parameter values π and ϕ. As mentioned earlier, we avoid explicitly sampling these

parameters, instead marginalizing them out. Since we use (conjugate) Dirichlet

priors, we can employ the standard closed-forms for the posteriors. For example,

we can write the posterior of a constituent-yield c as:

P (c | . . .) = N(c) + α0∑
c′ N(c′) + α0

,

where the ellipsis “. . .” denotes the other sampled constituent-yields, N(c) denotes

the number of times c appears among them, and α0 is the symmetric Dirichlet

hyperparameter. Intuitively, we can think of the hyperparameter α0 as a smoothing

pseudo-count for infrequently observed constituent yields. See section 3.6.2 for the

hyperparameter values used in our experiments.

3.5.2 Computing Acceptance Ratios

After a new tree pair has been sampled from our proposal distribution Q, we need

to compute an acceptance ratio. This ratio compares the true posterior and the
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proposal probabilities of the new pair (T ∗
1 , T

∗
2 )i and the previously sampled (T ′

1, T
′
2)i:5

α =
P (T ∗

1 , T
∗
2 | s1, s2, a) Q(T ′

1, T
′
2 | s1, s2)

P (T ′
1, T

′
2 | s1, s2, a) Q(T ∗

1 , T
∗
2 | s1, s2)

Recall that our proposal distribution Q decomposes into separate monolingual

CCM probabilities for each tree (equation 3.5.1). Thus, we can easily compute

Q(T1, T2|s1, s2) as a product of multinomial posteriors (with the parameters marginal-

ized out). However, to compute the true model posterior for trees (T1, T2), we must

marginalize over all possible tree alignments:

∑
A

P (T1, T2,A | s1, s2, a)

Fortunately, for any given pair of trees T1 and T2 this marginalization can be

computed using a dynamic program in time O(|T1||T2|). Here we provide a very brief

sketch. For every pair of nodes x ∈ T1, y ∈ T2, a table stores the marginal probability

of the subtrees rooted at x and y, respectively. A dynamic program builds this

table from the bottom up: For each node pair x, y, we sum the probabilities of all

local alignment configurations, each multiplied by the appropriate marginals already

computed in the table for lower-level node pairs. This algorithm is an adaptation

of the dynamic program presented in [60] for finding minimum cost alignment trees

(Fig. 5 of that publication).

3.5.3 Sampling Tree Alignments

Once a pair of trees (T1, T2) has been sampled, we can proceed to sample an align-

ment tree A|T1, T2.6 We sample individual alignment decisions from the top down,

at each step using the alignment marginals for the remaining subtrees (already com-

puted using the dynamic program sketched in the previous section). Once the triple

5The conditional dependence on the other sampled aligned trees (T1, T2,A)−i has been suppressed
for notational convenience.

6Sampling the alignment tree is important, as it provides us with counts of aligned constituents
for the coupling parameter.
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(T1, T2,A) has been sampled, we move on to the next parallel sentence.

3.6 Experiments

We test our model on three corpora of bilingual parallel sentences: English-Korean,

English-Urdu, and English-Chinese. Though the model is trained using parallel

data, during testing it has access only to monolingual data. This set-up ensures

that we are testing our model’s ability to learn better parameters at training time,

rather than its ability to exploit parallel data at test time. Following [64], we restrict

our model to binary trees, though we note that the alignment trees do not follow

this restriction.

3.6.1 Data and Baseline

The Penn Korean Treebank [52] consists of 5,083 Korean sentences translated into

English for the purposes of language training in a military setting. Both the Korean

and English sentences are annotated with syntactic trees. We use the first 4,000

sentences for training and the last 1,083 sentences for testing. We note that in the

Korean data, a separate tag is given for each morpheme. We simply concatenate

all the morpheme tags given for each word and treat the concatenation as a single

tag. This procedure results in 199 different tags. The English-Urdu parallel corpus7

consists of 4,325 sentences from the first three sections of the Penn Treebank and

their Urdu translations annotated at the part-of-speech level. The Urdu side of this

corpus does not provide tree annotations so here we can test parse accuracy only on

English. We use the remaining sections of the Penn Treebank for English testing.

The English-Chinese treebank [10] consists of 3,850 Chinese newswire sentences

translated into English. Both the English and Chinese sentences are annotated

with parse trees. We use the first 4/5 for training and the final 1/5 for testing.

During preprocessing of the corpora we remove all punctuation marks and spe-

7http://www.crulp.org
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cial symbols, following the setup in previous grammar induction work [64]. To

obtain lexical alignments between the parallel sentences we employ ++ [90].

We use intersection alignments, which are one-to-one alignments produced by tak-

ing the intersection of one-to-many alignments in each direction. These one-to-one

intersection alignments tend to have higher precision.

We initialize the trees by making uniform split decisions recursively from the

top down for sentences in both languages. Then for each pair of parallel sentences

we randomly sample an initial alignment tree for the two sampled trees.

We implement a Bayesian version of the CCM as a baseline. This model uses

the same inference procedure as our bilingual model (Gibbs sampling). In fact, our

model reduces to this Bayesian CCM when it is assumed that no nodes between

the two parallel trees are ever aligned and when word-level alignments are ignored.

We also reimplemented the original EM version of CCM and found virtually no

difference in performance when using EM or Gibbs sampling. In both cases our

implementation achieves F-measure in the range of 69-70% on WSJ10, broadly in

line with the performance reported by [64].

3.6.2 Hyperparameters

Klein [63] reports using smoothing pseudo-counts of 2 for constituent yields and

contexts and 8 for distituent yields and contexts. In our Bayesian model, these

similar smoothing counts occur as the parameters of the Dirichlet priors. For Korean

we found that the baseline performed well using these values. However, on our

English and Chinese data, we found that somewhat higher smoothing values worked

best, so we utilized values of 20 and 80 for constituent and distituent smoothing

counts, respectively.

Our model additionally requires hyperparameter values for:

• ω – The coupling distribution for aligned constituent yields

• Gz – The distribution over giza scores for aligned nodes

• Gz′ – The distributions over giza scores for unaligned nodes
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For ω we used a symmetric Dirichlet prior with parameter 1. Recall that both Gz

and Gz′ are distributions over Giza scores, which respectively range over of the sets

{−K, . . . ,−1, 0, 1, . . . , K} and {−K, . . . ,−1, 0}. In our experiments, we set K = 3.

In order to create a strong inductive bias towards high Giza scores, we used non-

symmetric Dirichlet priors for these distributions. In the case of Gz (giza score for

aligned nodes), we set the hyperparameters to 1,000 for negative values and zero,

and 1,000,000 for positive values. In the case of Gz′, we set the hyperparameters to

1,000 for negative scores and 1,000,000 for zero itself. This very strong prior bias

encodes our intuition that syntactic alignments which respect lexical alignments

should be preferred. Our method is not sensitive to these exact values and any

reasonably strong bias gave similar results.

In all our experiments, we consider the hyperparameters to be fixed and observed

values.

3.6.3 Results

As mentioned previously, we test our model only on monolingual data, where the

parallel sentences are not provided to the model. To predict the bracketings of these

monolingual test sentences, we take the counts accumulated in the final round of

sampling over the training data and perform a maximum likelihood estimate of the

monolingual CCM parameters. These parameters are then used to produce the

highest probability bracketing of the test set.

To evaluate both our model as well as the baseline, we use (unlabeled) bracket

precision, recall, and F-measure [64]. More formally, we consider both the gold-

standard tree and the predicted tree to be sets of constituent spans. Thus, for the

sentence John climbed the tree, the gold-standard tree for the correct bracketing:

[John [climbed [the tree]]]

would be T ∗ = {(1, 4), (2, 4), (3, 4)}. The tree for the incorrect bracketing:

[[John climbed] the tree]
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Max Sent. Monolingual Bilingual Upper
Length Bound

Test Train Precision Recall F1 Precision Recall F1 F1

EN
w
ith
K
R 10

10 52.74 39.53 45.19 57.76 43.30 49.50 85.6
20 41.87 31.38 35.87 61.66 46.22 52.83 85.6
30 33.43 25.06 28.65 64.41 48.28 55.19 85.6

20 20 35.12 25.12 29.29 56.96 40.74 47.50 83.3
30 26.26 18.78 21.90 60.07 42.96 50.09 83.3

30 30 23.95 16.81 19.76 58.01 40.73 47.86 82.4

K
R
w
ith
EN 10

10 71.07 62.55 66.54 75.63 66.56 70.81 93.6
20 71.35 62.79 66.80 77.61 68.30 72.66 93.6
30 71.37 62.81 66.82 77.87 68.53 72.91 93.6

20 20 64.28 54.73 59.12 70.44 59.98 64.79 91.9
30 64.29 54.75 59.14 70.81 60.30 65.13 91.9

30 30 63.63 54.17 58.52 70.11 59.70 64.49 91.9

EN
w
ith
C
H 10

10 50.09 34.18 40.63 37.46 25.56 30.39 81.0
20 58.86 40.17 47.75 50.24 34.29 40.76 81.0
30 64.81 44.22 52.57 68.24 46.57 55.36 81.0

20 20 41.90 30.52 35.31 38.64 28.15 32.57 84.3
30 52.83 38.49 44.53 58.50 42.62 49.31 84.3

30 30 46.35 33.67 39.00 51.40 37.33 43.25 84.1

C
H
w
ith
EN 10

10 39.87 27.71 32.69 40.62 28.23 33.31 81.9
20 43.44 30.19 35.62 47.54 33.03 38.98 81.9
30 43.63 30.32 35.77 54.09 37.59 44.36 81.9

20 20 29.80 23.46 26.25 36.93 29.07 32.53 88.0
30 30.05 23.65 26.47 43.99 34.63 38.75 88.0

30 30 24.46 19.41 21.64 39.61 31.43 35.05 88.4

EN
w
ith
U
R 10

10 57.98 45.68 51.10 73.43 57.85 64.71 88.1
20 70.57 55.60 62.20 80.24 63.22 70.72 88.1
30 75.39 59.40 66.45 79.04 62.28 69.67 88.1

20 20 57.78 43.86 49.87 67.26 51.06 58.05 86.3
30 63.12 47.91 54.47 64.45 48.92 55.62 86.3

30 30 57.36 43.02 49.17 57.97 43.48 49.69 85.7

Table 3.1: Unlabeled precision, recall and F-measure for the monolingual baseline
and the bilingual model on several test sets. We report results for different combi-
nations of maximum sentence length in both the training and test sets. The right
most column, in all cases, contains the maximum F-measure achievable using binary
trees. The best performance for each test-length is highlighted in bold.
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would be T = {(1, 4), (1, 2)}. Following previous work, we include the whole-

sentence brackets but ignore single-word brackets. Thus, in this example precision

would be 1/2 and recall would be 1/4.

Klein [64] notes that the CCM performance drops precipitously on long sen-

tences. In order to compare monolingual and bilingual results across different sen-

tence lengths, we consider various corpus subsets. In particular, for each corpus

we extract subsets with maximum sentence lengths of 10, 20, and 30 for both the

training and testing portions.

For each corpus, we then train and test both the CCM and our bilingual model

on each of the sub-corpora (i.e. sentences with maximum length 10, 20, and 30).

We also consider the scenario where each of the two models is trained on longer

sentences but only tested on shorter sentences. For example, we would train the

models on sentences up to length 30, but only test on sentences up to length 10 or

length 20. We average all results over 10 separate sampling runs.

We report the upper bound on F-measure obtainable by binary trees. To do

so, we binarize the gold-standard trees and compute the precision of the resulting

constituents (recall remains at 100%).

Table 3.1 gives the full results of our experiments. In all testing scenarios the

bilingual model outperforms its monolingual counterpart in terms of both precision

and recall. On average across all scenarios, the bilingual model gains 10.2 per-

centage points in precision, 7.7 in recall, and 8.8 in F-measure. The gap between

monolingual performance and the binary tree upper bound is reduced by over 19%.

The extent of the gain varies across pairings. For instance, the smallest improve-

ment is observed for English when trained with Urdu. The Korean-English pairing

results in substantial improvements for Korean and quite large improvements for

English, for which the absolute gain reaches 28 points in F-measure. In the case

of Chinese and English, the gains for English are fairly minimal whereas those for

Chinese are quite substantial. This asymmetry should not be surprising, as Chinese

on its own seems to be quite a bit more difficult to parse than English.

We investigate the impact of sentence length for both the training and testing
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Figure 3-3: The F-measure of the CCM baseline (dotted line) and bilingual model
(solid line) plotted on the y-axis, as the maximum sentence length in the test set is
increased (x-axis). Results are averaged over all training scenarios given in Table 3.1.

sets. For our model, adding sentences of greater length to the training set always

leads to increases in parse accuracy for short sentences. For the baseline, however,

adding this additional training data significantly degrades performance in the case

of English paired with Korean.

Figure 3-3 summarizes the performance of our model for different sentence

lengths on several of the test-sets. As shown in the figure, the largest improve-

ments over the baseline tend to occur at longer sentence lengths.

3.7 Conclusions

In this chapter we presented a probabilistic model for bilingual grammar induction.

The key challenge we confronted was in finding ways to represent cross-lingual

regularities in syntactic patterns while still allowing significant language-specific

divergence.

We addressed this challenge by adapting a computational formalism known as

unordered tree alignment [60] to a Bayesian probabilistic setting. Under this formal-

ism, any two trees can be embedded in an alignment tree. The alignment tree allows

arbitrary parts of the two trees to diverge in structure, permitting language-specific

grammatical structure to be preserved.

We found the computational properties of this formalism to be a major ad-

vantage. Tree alignments must remain monotonic in the hierarchical structure of
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the aligned trees. As a result, we could use dynamic programming to efficiently

marginalize over alignments as well as sample them, both in polynomial time in the

size of the trees.

We built our probabilistic model on the basis of the Constituent-Context Model

of Klein and Manning [64]. Although this model gives state-of-the-art results for

English grammar induction, it is formulated as a deficient model which overgen-

erates the observed data. Unfortunately, our bilingual formulation inherits this

deficiency.

Experimentally, we saw significant improvements over the monolingual baseline

across three language pairings and a large range of experimental settings. Although

this is encouraging, performance still remains very low in most instances. On the

bright side, there remains much room for improvement on this most difficult of

tasks.
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Chapter 4

Lost Language Decipherment

In the previous two chapters, we examined the classical NLP tasks of part-of-speech

tagging and grammar induction. We showed that multilingual analysis leads to sig-

nificant performance gains over monolingual models. However, in both cases we

assumed the existence of multilingual parallel texts. For most tasks and languages,

this is indeed a realistic assumption. In contrast, this chapter examines a problem

for which parallel text is typically not available: lost language decipherment. In-

stead of using parallel text to induce cross-lingual regularities, we instead look for

language-wide structural similarities between the lost language and a living relative.

We make several assumptions in our approach to this task. Crucially, we as-

sume that a known related language has already been identified (or hypothesized).

Another assumption is that the writing systems of both languages are more or less

alphabetic in nature.1 Because the languages are related, we can expect a stable

mapping between their letters to exist, due to the presence of cognates. Cognates are

pairs of words which descend from a common word in a shared ancestral language.

Our definition of the computational decipherment task closely follows the setup

typically faced by human decipherers [100]. Our input consists of texts in a lost

language and a corpus of non-parallel data in the known related language. The

1To be more precise, the two writing systems dealt with here are of the abjad type, as vowels are
not fully represented. For syllabic and logographic systems, modifications to our approach may be
required.
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decipherment itself involves two related sub-tasks:

1. finding the mapping between alphabets of the known and lost languages, and

2. translating words in the lost language into corresponding cognates of the

known language.

4.1 Chapter Overview

Section 4.2 gives a broad introduction to the chapter. We list some of the intuitions

that have guided human decipherers. We argue that language-wide similarities

between the known and lost language can be automatically discovered by encoding

these intuitions in a probabilistic model. We give a summary of the model and of

our experimental results. Section 4.3 describes previous work related to language

decipherment. Section 4.4 gives some background information on the discovery and

decipherment of the Ugaritic language. Section 4.5 considers some assumptions

made in our formulation of the task. Section 4.6 fully describes our model, and

section 4.7 details our inference algorithm. Section 4.8 gives our experiments and

results, and section 4.10 closes the chapter with some discussion and directions for

future work.

4.2 Introduction

Dozens of lost languages have been deciphered by humans in the last two centuries.

In each case, the decipherment has been considered a major intellectual break-

through, often the culmination of decades of scholarly efforts. Computers have

played no role in the decipherment any of these languages. Andrew Robinson, a

noted author on writing systems and lost languages, represents the skeptical schol-

arly view that computers do not possess the “logic and intuition” required to unravel

the mysteries of ancient scripts.2 In this chapter, we demonstrate that at least some

2“Successful archaeological decipherment has turned out to require a synthesis of logic and intuition
…that computers do not (and presumably cannot) possess.” [100]
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of this logic and intuition can be successfully modeled, allowing computational tools

to be used in the decipherment process.

While there is no single formula that human decipherers have employed, manual

efforts have focused on several guiding principles. A common starting point is to

compare letter and word frequencies between the lost and known languages. In the

presence of cognates the correct mapping between the languages will reveal similari-

ties in frequency, both at the character and lexical level. In addition, morphological

analysis plays a crucial role here, as highly frequent morpheme correspondences can

be particularly revealing. In fact, these three strands of analysis (character fre-

quency, morphology, and lexical frequency) are intertwined throughout the human

decipherment process. Partial knowledge of each drives discovery in the others.

We capture these intuitions in a generative Bayesian model. This model assumes

that words in the lost language are composed of morphemes which were generated

with latent counterparts in the known language. We model bilingual morpheme

pairs as arising through a series of Dirichlet processes. This allows us to assign

probabilities based both on character-level correspondences (using a character-edit

base distribution) as well as higher-level morpheme correspondences. In addition,

our model carries out an implicit morphological analysis of the lost language, utiliz-

ing the known morphological structure of the related language. This model struc-

ture allows us to capture the interplay between the character- and morpheme-level

correspondences that humans have used in the manual decipherment process.

In addition, we introduce a novel technique for imposing structural sparsity con-

straints on character-level mappings. We assume that an accurate alphabetic map-

ping between related languages will be sparse in the following way: each letter will

map to a very limited subset of letters in the other language. We capture this intu-

ition by adapting the so-called “spike-and-slab” prior to the Dirichlet-multinomial

setting. For each pair of characters in the two languages, we posit an indicator

variable which controls the prior likelihood of those characters substituting for one

another. We define a joint prior over these indicator variables which encourages

sparse settings.
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We applied our model to a corpus of Ugaritic, an ancient Semitic language dis-

covered in 1928. Ugaritic was manually deciphered in 1932, using knowledge of

Hebrew, a related language. We compare our method against the only existing

decipherment baseline, an HMM-based character substitution cipher [65, 66]. The

baseline correctly maps the majority of letters — 23 out of 30 — to their correct

Hebrew counterparts, but only correctly translates 29% of all cognates. In compari-

son, our method yields correct mappings for 28 of 30 letters, and correctly translates

63% of all cognates into their Hebrew counterparts.

4.3 Related Work

Our work on decipherment has connections to several lines of work in statistical

NLP. First, our work relates to research on automatic cognate identification. Early

work on this task assumed the existence of bilingual dictionaries and a complete ta-

ble of sound correspondences [75, 46]. The goal was to predict whether a given pair

of words, which are known to be a translation pair, had descended from a common

ancestral word. Kondrak [69] extended this line of work by removing the assump-

tion that cognates must have identical meanings. He instead measures semantic

similarity using glosses from a dictionary. Bergsma and Kondrak [7] consider an

extension beyond language pairs to include evidence from multiple languages. They

employ an integer linear programming framework to globally constrain cognate de-

cisions by a large set of languages. More recently, Hall and Klein [51] presented

a Bayesian model for cognate induction from unaligned word lists. They model

the latent phylogenetic structure of the languages in order to induce more accurate

cognate predictions. They assume that the languages in question share a single

writing system, and that all the words given have at least one cognate.

In contrast to this line of work, we do not assume access to any sort of dictionary

for our lost language, nor do we know the phonetic values of the symbols. In fact,

we deal with two entirely distinct writing systems and actual archeological texts

rather than artificial word lists.
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A second related line of work is lexicon induction from non-parallel corpora.

While this research has similar goals, it typically builds on information or resources

unavailable for ancient texts, such as comparable corpora, a seed lexicon, and cog-

nate information [37, 96, 68, 48]. Moreover, distributional methods that rely on

co-occurrence analysis operate over large corpora, which are typically unavailable

for a lost language.

Two recent papers complementary to ours work are Penn and Choma [93] and

Bouchard-Cote et al. [12]. In the first paper, Penn and Choma propose a quan-

titative method for the automatic classification of writing systems. In fact, this

chapter assumes throughout that the basic nature of the lost-language writing sys-

tem is known (i.e. that it is more or less alphabetic in nature – technically an

abjad). The results presented by Penn and Choma support the plausibility of this

assumption. In the second paper, Bouchard-Cote et al present a probabilistic model

of diachronic phonology. As input, they assume a list of cognates across several Ro-

mance languages, and predict latent ancestral forms. In essence, this work assumes

as input what our model produces as output. Thus, after automatically deducing

cognates between Ugaritic and Hebrew, we could theoretically use the model of

Bouchard-Cote et al to induce the latent ancestral forms in Proto-Semitic which led

to these cognates.

Finally, Knight and Yamada [65] and Knight et al. [66] describe a computational

HMM-based method for deciphering an unknown script that represents a known

spoken language. This method “makes the text speak” by gleaning character-to-

sound mappings from non-parallel character and sound sequences. It does not

relate words in different languages, thus it cannot encode deciphering constraints

similar to the ones considered in this paper. More importantly, this method had

not been applied to archaeological data. While lost languages are gaining increasing

interest in the NLP community [67], there have been no successful attempts of their

automatic decipherment.
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4.4 Background on Ugaritic

In this section we give some background information on the Ugaritic language. We

first describe the story of its decipherment, and then briefly list some of its linguistic

properties.

4.4.1 Manual Decipherment of Ugaritic

The Ugaritic tablets (dating from the 14th through 12 centuries BCE) were first

discovered in Syria in 1928 [105, 120]. At the time of their discovery, the cuneiform

writing on the tablets was of an unknown type. Charles Virolleaud, who led the ini-

tial decipherment effort, recognized that the script was likely alphabetic, since the

inscribed words consisted of only thirty distinct symbols. The location of the tablets

discovery further suggested that Ugaritic was likely to have been a Semitic language

from the Western branch, with properties similar to Hebrew and Aramaic. This

realization was crucial for deciphering the Ugaritic script. In fact, German cryptog-

rapher and Semitic scholar Hans Bauer decoded the first two Ugaritic letters—mem

and lambda—by mapping them to Hebrew letters with similar occurrence patterns

in prefixes and suffixes. Bootstrapping from this finding, Bauer found words in the

tablets that were likely to serve as cognates to Hebrew words—e.g., the Ugaritic

word for king matches its Hebrew equivalent. Through this process a few more

letters were decoded, but the Ugaritic texts were still unreadable. What made the

final decipherment possible was a sheer stroke of luck—Bauer guessed that a word

inscribed on an ax discovered in the Ras Shamra excavations was the Ugaritic word

for ax. Bauer’s guess was correct, though he selected the wrong phonetic sequence.

Edouard Dhorme, another cryptographer and Semitic scholar, later corrected the

reading, expanding a set of translated words. Discoveries of additional tablets al-

lowed Bauer, Dhorme and Virolleaud to revise their hypothesis, completing the

initial decipherment. Since these initial decipherment results, scholars have spent

decades mapping the individual words of the Ugaritic vocabulary to cognates in

other Semitic languages. The translation of the Ugaritic tablets remains a lively
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and controversial field of study.

4.4.2 Linguistic Features of Ugaritic

Ugaritic shares many features with other ancient Semitic languages, following the

same word order, gender, number, and case structure [55]. It is a morphologically

rich language, with triliteral roots and many prefixes and suffixes.

At the same time, it exhibits a number of features that distinguish it from

Hebrew. Ugaritic has a bigger phonemic inventory than Hebrew, yielding a bigger

alphabet – 30 letters vs. 23 in Hebrew. Another distinguishing feature of Ugaritic

is that vowels are only indicated for diphthongs or when following the glottal stop

(through the use of three distinct glottal stop characters) while in Hebrew many

long vowels are written using homorganic consonants. Ugaritic also does not have

articles, while Hebrew nouns and adjectives take definite articles which are realized

as prefixes. These differences result in significant divergence between Hebrew and

Ugaritic cognates, thereby complicating the decipherment process.

4.5 Problem Formulation

We are given a corpus in a lost language and a non-parallel corpus in a related

language from the same language family. Our primary goal is to translate words in

the unknown language by mapping them to cognates in the known language. As

part of this process, we induce a lower-level mapping between the letters of the two

alphabets, capturing the regular phonetic correspondences found in cognates.

We make several assumptions about the writing system of the lost language.

First, we assume that the writing system is alphabetic in nature. In general, this

assumption can be easily validated by counting the number of symbols found in the

written record. Next, we assume that the corpus has been transcribed into electronic

format, where the graphemes present in the physical text have been unambiguously

identified. Finally, we assume that words are explicitly separated in the text, either

by white space or a special symbol.
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We also make a mild assumption about the morphology of the lost language.

We posit that each word consists of a stem, prefix, and suffix, where the latter two

may be omitted. This assumption captures a wide range of human languages and a

variety of morphological systems. While the correct morphological analysis of words

in the lost language must be learned, we assume that the inventory and frequencies

of prefixes and suffixes in the known language are given.

In summary, the observed input to the model consists of two elements: (i) a

list of unanalyzed word types derived from a corpus in the lost language, and (ii)

a morphologically analyzed lexicon in a known related language derived from a

separate corpus, in our case non-parallel.

4.6 Model

In this section we describe our model for lost language decipherment. This model

is designed to encode various intuitions that humans have used in lost language

decipherment. We first describe some of these intuitions.

4.6.1 Intuitions

Our goal is to incorporate the logic and intuition used by human decipherers in

an unsupervised statistical model. To make these intuitions concrete, consider the

following toy example, consisting of a lost language much like English, but written

using numerals:

• 15234 (asked)

• 1525 (asks)

• 4352 (desk)

Analyzing the undeciphered corpus, we might first notice a pair of endings, -34, and

-5, which both occur after the initial sequence 152- (and may likewise occur at the

end of a variety of words in the corpus). If we know this lost language to be closely
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related to English, we can surmise that these two endings correspond to the English

verbal suffixes -ed and -s. Using this knowledge, we can hypothesize the following

character correspondences: (3 = e), (4 = d), (5 = s). We now know that (4352

= des2) and we can use our knowledge of the English lexicon to hypothesize that

this word is desk, thereby learning the correspondence (2 = k). Finally, we can use

similar reasoning to reveal that the initial character sequence 152- corresponds to

the English verb ask.

As this example illustrates, human decipherment efforts proceed by discovering

both character-level and morpheme-level correspondences. This interplay implicitly

relies on a morphological analysis of words in the lost language, while utilizing

knowledge of the known language’s lexicon and morphology.

One final intuition our model captures is the sparsity of the alphabetic corre-

spondence between related languages. We know from comparative linguistics that

the correct mapping will preserve regular phonetic relationships between the two

languages (as exemplified by cognates). As a result, each character in one language

will map to a small number of characters in the other language (typically one, but

sometimes two or three). By incorporating this structural sparsity intuition, we can

allow the model to focus on on a smaller set of linguistically valid hypotheses.

Below we give an overview of our model, which is designed to capture these

linguistic intuitions.

4.6.2 Model Structure

We start with the assumption that some number of observed word-forms in the lost

language are cognate to words in the known language. Our model posits that these

lost language words are composed of a sequence of morphemes (prefix, stem, suffix)

each of which was probabilistically generated jointly with a latent counterpart in

the known language.

Our goal is to find the morphemic boundaries and known language counter-

parts that lead to consistent correspondences both at the character and morpheme

level. The technical challenge is that each level of correspondence (character and
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morpheme) can completely describe the observed data. A probabilistic mechanism

based simply on one leaves no room for the other to play a role. We resolve this ten-

sion by employing a hierarchical non-parametric Bayesian model: the distributions

over bilingual morpheme pairs assign probability based on recurrent patterns at the

morpheme level. These distributions are themselves drawn from a prior probabilistic

process which favors distributions with consistent character-level correspondences.

We now give a top-down formal description of the model. See figure 4-1 for

an accompanying graphical overview. There are four basic layers in the generative

process:

1. Structural sparsity: draw a set of indicator variables λ⃗, each corresponding

to a character substitution (u, h).

2. String-edit distribution: draw a base distribution G0 parameterized by

weights on character-level edit operations.

3. Morpheme-pair distributions: draw a set of distributions on bilingual

morpheme pairs Gstm, Gpre
1 , Gsuf

1 , . . . from the Dirichlet process DP(G0, α0).

4. Word generation: draw cognate-pairs in the lost and known language, as

well as words in the lost language with no cognates.

We now go through each step in more detail.

Structural Sparsity

The first step of the generative process provides a control on the structural sparsity

of character-substitution probabilities. By “structural sparsity” in this context, we

refer to the desire that each character in the lost and known languages map to a

very limited number of characters in the other language.

For each pair of characters (u, h) (where u and h range over characters in the

lost and known languages, respectively) we posit a 0-1 indicator variable λ(u,h).

Intuitively, we would like λ(u,h) = 1 to indicate that u and h are reflexes of one

another. That is, that the phonemes these two characters represent descend from a
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Figure 4-1: Plate diagram of the decipherment model. Observed variables
are shaded in grey; full lines indicate probabilistic dependencies; dotted lines indi-
cate deterministic dependencies; boxes indicate repeated variables, with the value
in the bottom-right of each box indicating the number of repetitions. The struc-
tural sparsity indicator variables λ⃗ determine the values of the base distribution
hyperparameters v⃗. The base distribution G0 defines probabilities over string-pairs
based on character-level edit operations. The stem-pair distribution Gstm is drawn
from the Dirichlet process DP(G0, α0) and is characterized by an infinite sequence
of string-pairs (ϕk) and an accompanying sequence of weights (πk). For each of M
parts-of-speech, distributions over bilingual prefix-pairs and suffix pairs, Gpre and
Gsuf are likewise drawn. For each of N Ugaritic word-forms, an indicator variable
ci is drawn. If ci = 0, the Ugaritic word wi is drawn from an Ugaritic character-level
language model. Otherwise, bilingual Ugaritic-Hebrew morpheme pairs are drawn,
which deterministically yield the Ugaritic word wi.
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common phoneme in an ancestor language and that therefore u and h are likely to

substitute for one another in cognate-pairs. Thus
{
(u, h) | λ(u,h) = 1

}
represents the

set of historically valid alphabetic mappings. We next define a joint prior over these

variables λ⃗ which encourages sparse character mappings. With m lost-language

characters and n known-language characters, we can view the set of possible values

for λ⃗ as the set of all binary m× n matrices. Thus, the prior P (λ⃗) should define a

distribution over such matrices which encourages both row and column sparsity:

∀u :
∑
h

λ(u,h) ≈ 1, ∀h :
∑
u

λ(u,h) ≈ 1.

Defining a normalized probability distribution over binary matrices that achieves

this effect is difficult. Instead, we define our prior indirectly through a real-valued

positive function g:

P (λ⃗) =
g(λ⃗)

Z
(4.1)

The value Z is a normalization term which depends only on the matrix dimensions

m and n (i.e. the number of letters in the two alphabets):3

Z =
∑
λ⃗

g(λ⃗)

We define g in terms of two vector-valued feature functions f(λ⃗) and f ′(λ⃗) along

with a weight vector w⃗:

g(λ⃗) = exp
(
f(λ⃗) · w⃗ + f ′(λ⃗) · w⃗

)
(4.2)

Intuitively, f and f ′ count the number of sparsity violations for the lost and known

languages, respectively, and w⃗ penalizes these violations. More precisely, we count

the number of known-language characters to which each lost-language letter umaps:

3Since computing Z is intractable, we develop an inference algorithm below (section 4.7.4) which
only requires computation of the unnormalized function g(λ⃗).
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c(u) =
∑

h λ(u,h).4 We then define a vector of features which count how many lost-

language characters u map to exactly i known-language characters beyond some

allowed budget bi:

f(λ⃗)i = max
(
0,

∣∣{u : c(u) = i}
∣∣− bi) (4.3)

In similar fashion we define f ′, merely swapping the roles of u and h and defining

corresponding budget values b′i. Finally, we set:

w⃗ = (w0 = −∞, w1 = 0, w2 = −50, w>2 = −∞)

b⃗ = (bi = 0,∀i)

b⃗′ = (b′0 = 0, b′1 = 0, b′2 = 7, b′3 = 1, b′>3 = 0)

The asymmetry in our definition of b⃗ and b⃗′ results from our observation that the

Ugaritic script contains seven characters more than Hebrew. Thus, we allow up to

seven Hebrew letters to map to two Ugaritic letters without penalty, and we allow

one Hebrew letter to map to three Ugaritic letters without penalty. In the reverse

direction, no such allowances are made. Every Ugaritic letter which maps to more

than one Hebrew letter is immediately penalized.

String-edit Distribution

The next step in the generative process is to draw our base measure G0, which

defines a distribution over all string pairs (u,h) (where u is composed of lost-

language characters and h is composed of known-language characters). Distribution

G0 assigns probabilities based on character-level edit operations. These operations

consist of substitutions (u, h), insertions (ϵ, h), deletions (u, ϵ), and a stop symbol

(ϵ, ϵ).

Under G0, each edit operation e is assigned a weight 0 ≤ ρe ≤ 1. We partition

4The functional dependence of c(u) on λ⃗ is suppressed for notational clarity.

151



edit operations into three categories,

SUB =
{
(u, h) : ∀u∀h

}
∪
{
(ϵ, ϵ)

}
INS =

{
(ϵ, h) : ∀h

}
DEL =

{
(u, ϵ) : ∀u

}
,

and we require the weights corresponding to each set to sum to one:

∑
e∈SUB

ρe = 1,
∑

e∈INS

ρe = 1,
∑

e∈DEL

ρe = 1

In addition, G0 provides a fixed distribution q over the number of insertions and

deletions occurring in any single edit-sequence. Probabilities over edit-sequences

are then defined according to G0 by:

q (nI , nD)

n
[nI+nD]
S

·
∏
i

ρei , (4.4)

where nI , nD, nS are the number of insertions, deletions, and substitutions in the

edit-sequence, and the notation x[n] represents the rising factorial: x(x+ 1) · · · (x+

n− 1).

This function can be shown to be a probability mass function over all possible

edit-sequences through the following generative process:

1. Draw substitutions according to {ρe : e ∈ SUB} until the end symbol (ϵ, ϵ) is

drawn.

2. Draw the number of insertions and deletions nI , nD according to q.

3. Draw nI insertions according to {ρe : e ∈ INS} and nD deletions according

to {ρe : e ∈ DEL}.

4. Place the insertions and deletions among the substitutions with uniform prob-

ability (i.e. with probability 1

n
[nI+nD ]

S

)
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The traditional probabilistic string-edit formulation (e.g. [98]) places all types

of edit-operations under a single multinomial distribution. While this results in a

simpler distribution over edit-sequences (i.e. simply
∏

i ρi), it has certain drawbacks

which our formulation overcomes. In particular, we believe that it is important to

provide an explicit distribution over the number of insertions and deletions and to

prevent insertion and deletions from competing with substitutions for probability

mass.

Note that each edit-sequence yields a string pair through projection and ϵ-

removal:

y1(e⃗) , (e1)1 · · · (ek)1 = u

y2(e⃗) , (e1)2 · · · (ek)2 = h

y(e⃗) ,
(
y1(e⃗), y2(e⃗)

)
= (u,h)

(4.5)

If so desired, we can define an explicit distribution on string-pairs (u,h) by summing

over all possible edit-sequences which yield (u,h):

P (u,h) =
∑

e⃗ : y(e⃗)=(u,h)

P (e⃗)

However, in the remainder of this thesis we will simply define G0 as a distribution

over edit-sequences e⃗.

In setting the value of q (the distribution over the number of insertions and

deletions), we observe that the average Ugaritic word is over two letters longer than

the average Hebrew word. Thus, occurrences of Hebrew character insertions are a

priori likely, and Ugaritic character deletions are very unlikely. In our experiments,

we simply set q to disallow Ugaritic deletions, and to allow up to one Hebrew

insertion per morpheme (with probability 0.5).

As G0 consists of three multinomial distributions (over SUB, INS, and DEL),

we draw the three corresponding sets of weights from conjugate-prior Dirichlet dis-
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Figure 4-2: “Spike-and-slab” effect on character-edit probabilities ρ⃗. Assume
three edit operations with indicator variables λ⃗ = (0, 1, 1) and resulting hyper-
parameters v⃗ = (1, 5, 5). Then the marginal priors are ρe1 ∼ Beta(1, 5 + 5) and
ρe2 , ρe3 ∼ Beta(5, 1 + 5).

tributions.

{
ρe : e ∈ INS

}
∼ Dirichlet(1) (4.6){

ρe : e ∈ DEL
}

∼ Dirichlet(1) (4.7){
ρe : e ∈ SUB

}
∼ Dirichlet(v⃗) (4.8)

For insertions and deletions we simply set all the Dirichlet hyperparameters to 1.

In the case of substitutions, we employ the previously sampled sparsity indicator

variables to deterministically set the hyperparameter vector v⃗. In particular, each

hyperparameter value ve corresponds to a character edit-operation e and is set

according to the indicator variable λe:

ve =

1 if λe = 0,

K if λe = 1.

(4.9)
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where K is some constant value > 1 (set to 50 in our experiments). The resulting ef-

fect is that when λe = 0, the marginal prior density of the corresponding edit weight

ρe spikes at 0. When λe = 1, the corresponding marginal prior density remains rel-

atively flat and unconstrained. Figure 4-2 illustrates this effect graphically.

For similar applications of “spike and slab” priors, see [59] in the regression

scenario and [119] in the context of topic models.

Morpheme-pair Distributions

Next we draw a series of distributions which directly assign probability to morpheme

pairs (or more precisely to edit sequences which yield morpheme pairs). The previ-

ously drawn base measure G0, along with a fixed concentration parameter α0, define

a Dirichlet process [2]: DP(G0, α0), which provides a probability distribution over

all possible morpheme-pair distributions. Distributions drawn from this Dirichlet

process assign large probability mass to a small number of morpheme pairs, while

remaining sensitive to the character-level substitution probabilities of the base dis-

tribution.

Our model distinguishes between three types of morphemes: prefixes, stems,

and suffixes. Since each part-of-speech in a language carries with it unique prefix

and suffix frequencies, we generate distinct prefix and suffix distributions for each

of M parts-of-speech, and a single distribution over all stem-pairs:

Gstm ∼ DP(G0, α0)

∀j ∈ 1 . . .M : Gpre
j ∼ DP(G0, α0)

∀j ∈ 1 . . .M : Gsuf
j ∼ DP(G0, α0)

While we avoid dealing directly with these distributions in our inference procedure,

they can be viewed as arising from a stick-breaking process [103]:

1. Draw an infinite sequence of i.i.d. edit-sequences from the base distribution:

ϕ1, ϕ2, . . . ∼ G0
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2. Draw an infinite sequence of i.i.d. weights:

π′
1, π

′
2, . . . ∼ Beta(1, α0)

3. Normalize the weights:

πk = π′
k ·

∑
i<k (1− π′

i)

4. Define a probability density function over edit-sequences using the dirac delta

function5:

p(e⃗) =
∞∑
k=1

πk · δϕk=e⃗ (4.10)

Word Generation

Once the morpheme-pair distributions have been drawn, actual words may now be

generated. To generate word ui of the N word-forms observed in the lost-language

texts, we first draw a cognate indicator variable ci. This variable determines whether

ui is to be generated along with a known-language cognate, or alone as a non-

cognate. We model ci as a simple Bernoulli random variable, with fixed parameter

P (ci = 1). As discussed below in section 4.9.3, this cognate prior may be varied

to induce different prediction thresholds. In our main experiments, we simply set

P (ci = 1) = 0.5. If ci = 1, then a cognate word pair (ui,hi) is generated according

5δb = (1 if b, 0 if ¬b)
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to our model as follows:

e⃗stm ∼ Gstm // draw stem edit-sequence

posi ← j = pos(e⃗stm) // determine part-of-speech j (see below)

e⃗pre ∼ Gpre
j // draw prefix edit-sequence

e⃗suf ∼ Gsuf
j // draw suffix edit-sequence(

upre,hpre
)
← y(e⃗pre) // yield morpheme pairs (equation 4.5)(

ustm,hstm
)
← y(e⃗stm)(

usuf ,hsuf
)
← y(e⃗suf )

ui ← upre ustm usuf // concatenate morphemes

hi ← hpre hstm hsuf

Besides observing the resulting lost-language word ui, we also assume the existence

of a known-language lexicon H. This lexicon provides us with knowledge of all pos-

sible stems, prefixes, and suffixes, for each part-of-speech j in the known language:

Hstm
j ,Hpre

j ,Hsuf
j . We treat this knowledge as a hard constraint on the set of possible

values for the latent cognate word hi. In particular, we treat as an observation that

for some part-of-speech j:

hpre ∈ Hpre
j ∧ hstm ∈ Hstm

j ∧ hsuf ∈ Hsuf
j .

Probabilistically, we view the part-of-speech assignment j as being determined

by the generated stem edit-sequence: 6

pos(e⃗stm) , j such that y2(e⃗stm) ∈ Gstm
j

6If more than one part-of-speech meet this criterion, then we assume a uniform distribution over
all such values.
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The prefix and suffix morpheme-pairs are then drawn from the appropriate dis-

tributions Gpre
j and Gsuf

j . In this way, the prefix and suffix both probabilistically

depend on the stem (by way of its part-of-speech). We will see in section 4.7.1 what

role all these observations play in our inference algorithm.

If ci = 0, then ui was generated without a known-language cognate. We assume

that the lone lost-language word was generated according to a unigram character-

level language model

P (ui|ci = 0) = P (#) ·
∏
j

P (ui[j]) , (4.11)

where # is a special end-word character and ui[j] denotes the jth character in word

ui. We note that this differs somewhat from the model presented in our previous

publication [109], where a uniform distribution was assumed over letters of the lost

language for the purpose of noncognate generation. See section 4.9.3 below for a

more detailed discussion of this issue.

In summary, this model structure captures both character and lexical level cor-

respondences, while utilizing morphological and part-of-speech knowledge of the

known language. An additional feature of this multi-layered model structure is that

each distribution over morpheme pairs is derived from the single character-level

base distribution G0. As a result, any character-level mappings learned from one

type of morphological correspondence will be propagated to all other morpheme

distributions. Finally, the character-level mappings discovered by the model are

encouraged to obey linguistically motivated structural sparsity constraints. In the

next section we describe our inference procedure at length.

4.7 Inference

For each word-form ui in our undeciphered language we wish to first predict a

cognate indicator variable ci and, if ci = 1, then the corresponding morphemes in

158



Algorithm 5: Gibbs sampler for lost language decipherment.
Input: Lost-language word forms u1, . . . ,uN and known-language lexicon H
Output: 1000 samples of latent variables
Initialize latent variables;
for r ← 1 to 1000 do

for i← 1 to N do
Sample word analysis

[
e⃗pre, e⃗stm, e⃗suf

](r)
i

// Section 4.7.1

Sample cognate indicator c(r)i // Section 4.7.2
Resample Chinese restaurant tables; // Section 4.7.3
foreach lost-language character u do
Sample sparsity indicators

{
λ(u,h) : ∀h

}(r)

// Section 4.7.4

foreach known-language character h do
Sample sparsity indicators

{
λ(u,h) : ∀u

}(r)

// Section 4.7.4

the known language
(
hpre hstm hsuf

)
i
. Ideally we would predict each word analysis

with highest posterior marginal probability under our model given the observed

undeciphered corpus u1, . . . ,uN and known-language lexicon H. In order to do so,

we need to integrate out all other latent variables in our model:

• Structural sparsity indicator variables λ⃗

• String-edit base distribution G0

• Morpheme-pair distributions Gstm, Gpre
1 , Gsuf

1 , . . .

• Morphological segmentations

• Latent cognates of all other words uk ̸=i

As these integrals are intractable to compute exactly, we resort to the standard

Monte Carlo approximation. We collect samples of the variables over which we

wish to marginalize but for which we cannot compute closed-form integrals. We then

approximate the marginal probabilities for each undeciphered word ui by summing

over all the samples, and predicting the analysis with highest posterior probability.
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In our sampling algorithm, we avoid sampling the base distribution G0 and

the morpheme-pair distributions (Gstm etc.), instead marginalizing them out using

analytical closed forms. We explicitly sample the sparsity indicator variables λ⃗,

the cognate indicator variables ci, and latent word analyses (segmentations and

cognate counterparts). To sample these variables tractably, we use Gibbs sampling

to sample each latent variable conditioned on our current sample of the others.

Although the samples are no longer independent, they form a Markov chain whose

stationary distribution is the true joint distribution defined by the model [40].

See algorithm 5 for a high-level overview of our Gibbs sampler. In the following

sections we provide details for each sampling step.

4.7.1 Sampling Word Analyses

For each lost-language word ui with corresponding cognate indicator ci = 1, we sam-

ple a segmentation upre ustm usuf with corresponding cognate morphemes hpre hstm hsuf .

More precisely, we sample three edit-sequences e⃗pre, e⃗stm, e⃗suf which yield:

y(e⃗pre) =
(
upre,hpre

)
y(e⃗stm) =

(
ustm,hstm

)
y(e⃗suf ) =

(
usuf ,hsuf

)
,

with the hard constraint that the resulting analysis must be consistent (i) with the

observed lost-language word-form ui:

ui = upre ustm usuf ,

and (ii) with the observed known-language lexicon H:

hpre ∈ Hpre
j ∧ hstm ∈ Hstm

j ∧ hsuf ∈ Hsuf
j (for some part-of-speech j).
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We break this task down into two steps, (i) first sampling a segmentation and

part-of-speech, and (ii) then sampling the actual edit-sequences (yielding the cor-

responding cognate morphemes).

Sampling Segmentations and Parts-of-speech

We sample a segmentation and part-of-speech by simply enumerating all possi-

bilities, calculating their posterior probabilities, and sampling from the resulting

discrete distribution.

We now show how to calculate the posterior for a each segmentation ui =

upre ustm,usuf and part-of-speech j:7

P (upre,ustm,usuf ,posi = j | ui,H)

=
∑

e⃗pre,e⃗stm,e⃗suf

P (e⃗pre, e⃗stm, e⃗suf ,upre,ustm,usuf , j | ui,H)

∝
∑

e⃗pre,e⃗stm,e⃗suf

P (e⃗pre, e⃗stm, e⃗suf ,upre,ustm,usuf , j) P (H | e⃗pre, e⃗stm, e⃗suf , j)

=
∑

e⃗pre,e⃗stm,e⃗suf∈C1×C2×C3

P (e⃗pre, e⃗suf | j) P (e⃗stm) P (H)

∝
∑

e⃗pre∈C1

P (e⃗pre | j)
∑

e⃗stm∈C2

P (e⃗stm)
∑

e⃗suf∈C3

P (e⃗suf | j)

(4.12)

where C1, C2, C3 are the sets of all edit-sequences (i) yielding the respective mor-

phemes upre,ustm,usuf and (ii) consistent with the known-language lexicon for part-

7For notational clarity, we leave the conditioning on the other sampled variables implicit through-
out this section.
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of-speech j. More precisely:

C1 =
{
e⃗ | y1(e⃗) = upre ∧ y2(e⃗) ∈ Hpre

j

}
C2 =

{
e⃗ | y1(e⃗) = ustm ∧ y2(e⃗) ∈ Hstm

j

}
C3 =

{
e⃗ | y1(e⃗) = usuf ∧ y2(e⃗) ∈ Hsuf

j

}

Computing Edit-sequence Probabilities

We defer for now the question of how to efficiently sum over these sets, and in-

stead start by deriving the individual probability terms in equation 4.12. Let us

consider the posterior probability of a stem edit-sequence e⃗. We first note that were

we to Gibbs-sample the parameters of the stem morpheme-pair distribution Gstm,

P (e⃗) would be directly given by equation 4.10. Instead, we marginalize out these

parameters using the standard Chinese Restaurant Process closed form [34]:

P (e⃗) =
Nstm(e⃗) + α0 · F (e⃗)

Ncog + α0

, (4.13)

where Nstm(e⃗) gives the number of other cognated words for which e⃗ appears as the

stem:
∣∣{k ̸= i | (e⃗stm)k = e⃗ ∧ ck = 1}

∣∣, and Ncog gives the total number of other cog-

nated words:
∣∣{k ̸= i | ck = 1}

∣∣.8 The function F (e⃗) gives the probability assigned
to e⃗ by the string-edit base distribution. If the multinomial parameters of the base

distribution were Gibbs-sampled, then F would be given by equation 4.4. Instead,

we employ the standard marginalized posterior distribution for multinomials with

Dirichlet hyperparameters to obtain:

F (e⃗) =
q(nI , nD)

n
[nI+nD]
S

·
∏
e∈e⃗

f(e), (4.14)

8Both according to the most recently sampled latent values for words uk ̸=i.
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with:

f(e) =


N(e)+1

NI+
∑
ins e′ 1

if e = (ϵ, h),

N(e)+1
ND+

∑
del e′ 1

if e = (u, ϵ),

N(e)+ve
NS+

∑
sub e′ ve′

if e = (u, h) or e = (ϵ, ϵ)

where N(e) denotes the number of times the edit-operation e has occurred in the

unique edit-sequences obtained from each morpheme-pair distribution (Gstm, Gpre
1 , . . .);

or more precisely, the number of times e appears among the sets:

Estm =
{
(e⃗stm)k ̸=i

}
Epre

j =
{
(e⃗pre)k ̸=i | posk = j

}
, ∀j ∈ 1 . . .M

Esuf
j =

{
(e⃗suf )k ̸=i | posk = j

}
, ∀j ∈ 1 . . .M.

And NI , ND, NS give the total number of respective insertions, deletions, and sub-

stitutions among those sets. We emphasize that these sets only distinguish between

unique edit-sequences (e.g. the edit-sequence (e⃗stm)m = (e⃗stm)n for m ̸= n would

only occur once in Estm). Only a single instance of each edit-sequence type is drawn

from the base distribution itself – the first person at each Chinese restaurant table,

as it were. Finally, for an explanation of the first factor in equation 4.14 we refer

the reader back to equation 4.4.

Similar reasoning applies in deriving the probability terms for prefix and suffix

edit-sequences, with the exception that counts are now restricted to a individual

parts-of-speech (since we have different Gpre
j and Gsuf

j for each part-of-speech j).

E.g. for prefixes:

P (e⃗ | j) = Npre,j(e⃗) + α0 · F (e⃗)
Ncog,j + α0

where Npre,j(e⃗) gives the number of other cognated words with part-of-speech j for

which sequence e⃗ appears as the prefix:
∣∣{k ̸= i | (e⃗pre)k = e⃗ ∧ ck = 1 ∧ posk = j}

∣∣,
and Ncog gives the total number of other cognated words with part-of-speech j:∣∣{k ̸= i | ck = 1 ∧ posk = j}

∣∣. Note that all edit-sequence posteriors depend on
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the function F (e⃗) since all morpheme-pair distributions derive from the same base

measure G0.
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Figure 4-3: WFSA A(abb). States correspond to following sets of edits:
{(a, x), (a, y), (b, x), (b, y), (ϵ, x), (ϵ, y), (ϵ, ϵ)}. The top two rows correspond to sub-
stitution states for which no insertion has yet occurred. The middle two rows
correspond to insertion states. The bottom two rows correspond to substitution
states for which an insertion has already occurred.

Summing Probabilities with Finite-state Machines

The individual probability terms in equation 4.12 can thus be computed by simply

caching counts from each word’s sampled analysis. However, to compute segmen-

tation probabilities we still need to efficiently sum these terms over the sets C1, C2,

and C3. For example, plugging equation 4.13 into the middle sum of equation 4.12

yields the following computation (after removing the constant denominator):

∑
e⃗∈C2

Nstm(e⃗) + α0

∑
e⃗∈C2

F (e⃗) (4.15)

Recall that set C2 contains all edit-sequences e⃗ yielding a particular lost-language

morpheme ustm along with any hstm ∈ Hstm
j . The left-hand sum is easy to compute,

as we can ignore any edit-sequence absent in our current sample. (We simply

enumerate the edit-sequences which have already been observed for identical stems:
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{
(e⃗stm)k ̸=i | ustm

k = ustm
i

}
, and count how many times each appears.)

The right-hand sum is more difficult. Its computation requires summing over

all edit-sequences in C2, even those never seen before. A brute force computation

would require: (i) the enumeration of all possible edit-sequences which yield ustm

(exponential in the length of ustm), and (ii) the removal of any such edit-sequence

which yields a value hstm ̸∈ Hstm
j .

Fortunately, the function F (e⃗) (defined in equation 4.14) nearly factors over the

individual edits e ∈ e⃗. This fact will allow us to compactly represent the set C2

as a weighted finite-state acceptor (WFSA). We start by constructing a WFSA

A(u) which accepts any string h which can be jointly generated with u through

a sequence of edits e⃗. In other words, the language of A(u) is the set of strings{
h | ∃e⃗ : y(e⃗) = (u,h)

}
. Each state s of A(u) will correspond to a single

edit-operation e and incoming arcs will be weighted by the appropriate factors of

equation 4.14:

• If e = (ϵ, h), incoming arcs accept the symbol h and are weighted by f(e).

• If e = (u, ϵ), incoming arcs accept the symbol ϵ and are weighted by f(e).

• If e = (u, h), incoming arcs accept the symbol h and are weighted by f(e).

• If e = (ϵ, ϵ), s is an end-state, incoming arcs accept ϵ, and are weighted by

f(e) · q(nI ,nD)

n
[nI+nD ]

S

.

The final case requires some clarification, as the values nI , nD, and nS count the

total number of insertions, deletions, and substitutions throughout the entire edit-

sequence. This is the only item in equation 4.14 which doesn’t factor over individual

edits. As a result, the states in the WFSA need to keep track of the number of

previously performed insertions and deletions. Since our distribution q(nI , nD) only

allows a single insertion (and no deletions) per morpheme, we can simply double

our set of substitution states to track whether the allowed insertion has occurred

yet or not and provide a unique end-state for each possibility. See figure 4-3 for an

example.
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Thus, every path of arcs a⃗ through A(u) corresponds to an edit-sequence e⃗,

with path arc-weights which satisfy:
∏

a∈a⃗w(a) = F (e⃗). However, A(u) is not yet

restrictive enough for our purposes. It accepts some strings h ̸∈ Hstm
j . Set C2, on

the other hand, is restricted to edit-sequences which yield actual known-language

morphemes hstm ∈ Hstm
j . To add this restriction, we construct a lexicon acceptor

Astm
j . This WFSA accepts all and only those strings in the lexicon Hstm

j (with all

arc weights set to 1).

We construct this lexicon WFSA by enumerating each morpheme h ∈ Hstm
j and

adding a separate path through Astm
j which sequentially accepts the letters of h.

Initially, Astm
j will be quite large due to many redundant states (e.g. the paths

accepting strings yyy and yyyx would be entirely disjoint). However, after its initial

construction, we apply the Hopcroft minimization algorithm [57] which yields an

equivalent, but optimally compact, WFSA (e.g. the paths accepting strings yyyy

and yyyx would now share an initial prefix).

Next, we intersect the optimized Astm
j with A(u) to produce a new WFSA

Astm
j (u). This operation essentially prunes our original A(u) and restricts its paths

to those which correspond to edit-sequences which yield a string in the lexicon

Hstm
j . (The original arc weights of A(u) remain unaffected.) Finally, we are ready

to compute the right-hand sum in equation 4.15 as the sum of path-weights:

∑
e⃗∈C2

F (e⃗) =
∑
a⃗

∏
a∈a⃗

w(a)

where each a⃗ is a unique sequence of arcs from the start-state of Astm
j (u) to an

end-state. Since this WFSA contains no cycles, its path-weight sum can easily be

computed with a dynamic program. To each state sk, we associate a value βk with

the following recursive definition:

βk =

1 if sk is an end state,∑
a : sk→sℓ

w(a) · βℓ otherwise.
(4.16)
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Intuitively, βk gives the total path-weight of paths starting at state sk and ending

at an end-state. Values can easily be computed by starting with the end-states

and stepping backwards along arcs. The resulting value β0, corresponding to the

start-state s0, gives the desired sum. This construction and computation can be

similarly carried out for the other two sums in equation 4.12.

Sampling Edit-sequences

Once we’ve sampled a segmentation ui = upre ustm,usuf and part-of-speech posi = j,

we turn to the next step: sampling the actual edit-sequences e⃗pre, e⃗stm, e⃗suf . We start

by examining their posterior probabilities:

P (e⃗pre, e⃗stm, e⃗suf | upre,ustm,usuf , j,H)

∝ P (upre,ustm,usuf ,H | e⃗pre, e⃗stm, e⃗suf , j) P (e⃗pre, e⃗stm, e⃗suf | j)

∝

P (e⃗pre|j)P (e⃗stm)P (e⃗suf |j) if e⃗pre, e⃗stm, e⃗suf ∈ C1 × C2 × C3,

0 otherwise.

The sets C1, C2, C3 are defined as in equation 4.12 to include all edit-sequences which

yield the fixed lost-language morphemes upre,ustm,usuf along with known-language

morphemes in the vocabulary H. Now, instead of summing over these sets, we

instead need to sample from them. We focus here on the sampling procedure for

e⃗stm, but similar reasoning applies to e⃗pre and e⃗suf .

The individual probability term P (e⃗) has already been derived in equation 4.13,

but we repeat it here for convenience:

P (e⃗) ∝ Nstm(e⃗) + α0 · F (e⃗)

We break our sampling procedure into two steps. First we decide whether to draw

our sample e⃗ according to the left-hand term (from an existing table in the “Chinese

restaurant”), or according to the right-hand term (the base distribution). To make
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this decision, we calculate p =
∑

e⃗∈C2
Nstm(e⃗) and Q = p + α0 ·

∑
e⃗∈C2

F (e⃗). To

calculate p, we need merely consider values which have already been observed for

identical stems:
{
(e⃗stm)k ̸=i | ustm

k = ustm
i

}
. To calculate Q, we sum all the path-

weight of WFSA Astm
j (ustm) using the dynamic program derived in the previous

section.

We then sample a Bernoulli random variable with parameter p/Q. If we draw a

heads, we proceed to sample from the already observed edit-sequences
{
(e⃗stm)k ̸=i |

ustm
k = ustm

i

}
in proportion to the number of times they have each been observed:

Nstm(e⃗). If the Bernoulli comes up tails, we proceed to sample from all edit-

sequences e⃗ ∈ C2 according to F (e⃗). In other words, we wish to draw e⃗ with

probability:

p(e⃗) =


F (e⃗)
Z

if e⃗ ∈ C2,

0 otherwise.
(4.17)

As before, we utilize our WFSA Astm
j (ustm). Recall that each unique path through

this WFSA corresponds to an edit-sequence e⃗ ∈ C2 with path-weight F (e⃗). As

before, we employ the values βk defined recursively in equation 4.16. This time,

we sample a path arc-by-arc from the start-state s0 until an end-state is reached.

When we are in state sk, we sample the next arc a : sk → sℓ according to:

P (a : sk → sℓ) ∝ w(a) · βℓ

This procedure results in a draw of e⃗ ∈ C2 with the desired probability. To see this,

we can rewrite p(e⃗) using the chain rule as
∏

i p(ei | e1, . . . , ei−1). We can further

rewrite each conditional probability by marginalizing over all possible edit-sequence

completions, and then plugging in the definitions of p(e⃗) (equation 4.17) and F (e⃗)
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(equation 4.14):

p(ei | e1, . . . , ei−1) =
∑

ei+1...em

p(ei, . . . , em | e1, . . . , ei−1)

∝
∑

ei+1...em : e1...em∈C2

[
q(nI , nD)

n
[nI+nD]
S

·
m∏
j=i

f(ej)

]

Switching to the equivalent arc-view in the WFSA, we get:

p(ai : sk → sℓ | a1, . . . , ai−1) ∝
∑

ai+1...am : a1...am∈Astm
j (ustm)

[
m∏
j=i

w(aj)

]

= w(ai) · βℓ,

giving us the proposed sampling formula.

4.7.2 Sampling Cognate Indicators

For each word ui, we sample a corresponding cognate indicator variable ci. Recall

that ci = 1 indicates that ui was generated along with a latent known-language

cognate hi (via edit-sequences e⃗pre, e⃗stm, e⃗suf). Value ci = 0 indicates that lost-

language word ui was generated alone according to a lost-language language model.

The posterior for ci is given by:

P (ci | ui,H) ∝ P (ui | ci,H) · P (ci)

Thus we wish to to simple a Bernoulli random variable in proportion to the two

values:

P (ui | ci = 0,H) · P (ci = 0)

P (ui | ci = 1,H) · P (ci = 1)
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In our model we treat P (ci = 1) as a fixed parameter (set to 0.5 in our experiments).

The value P (ui | ci = 0,H) = P (ui | ci = 0) is given by the lost-language character

language model of equation 4.11. The language model parameters are fixed using

the observed character frequencies in the lost-language corpus. Finally, we calculate

P (ui | ci = 1,H) by marginalizing over all segmentations and parts-of-speech of ui:

P (ui | ci = 1,H) =
∑

upre,ustm,usuf ,j

P (upre,ustm,usuf , j | ui,H)

The terms in this sum are identical to equation 4.12 and are calculated in the

same manner. The sum itself is calculated through explicit enumeration of all

segmentations upre,ustm,usuf = ui and parts-of-speech j ∈ 1 . . .M .

4.7.3 Resampling Chinese Restaurant Tables

Our sampling of individual word analyses can be viewed as inducing a three-part

clustering of words, based on prefix, stem, and suffix edit-sequences. Consider the

set of currently sampled stem edit-sequences: E =
{
e⃗ | ∃i : (e⃗stm)i = e⃗

}
. For each

such edit-sequence e⃗ ∈ E, we define its cluster as c(e⃗) =
{
i | (e⃗stm)i = e⃗

}
. Thus c[E]

(the image of set E under function c) defines a partition over instances based on

their sampled stem edit-sequences. In the Chinese restaurant metaphor, c[E] gives

us the set of sampled tables.

In the standard Gibbs sampling scenario, it can be difficult for these clusters

to mix properly. To see this, consider a stem edit-sequence e⃗ and its cluster of

instances c(e⃗). Single instances i ∈ c(e⃗) may shift in and out of the cluster either

due to sampling a different edit-sequence e⃗′ for ustm
i or due to segmenting ui in a

new way. However, changing the edit-sequence of the entire cluster would require

individually sampling a new value separately for each instance i ∈ c(e⃗). In essence,

this would require the temporary fragmentation of the cluster and its eventual

rebuilding. So even if some other value e⃗′ is a much more likely candidate for c(e⃗),

reaching it may involve passing through a very low probability sample path.

In order to avoid this problem, we introduce an additional procedure in which we
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explicitly resample each cluster’s edit-sequence from the base distribution, condi-

tioned on the clustering itself. Thus, for each cluster c ∈ c[E] with a stem morpheme

ustm and part-of-speech j, we resample according to:

P (e⃗stm|ustm,H) ∝

F (e⃗) if for y(e⃗) = (u,h) : u = ustm ∧ h ∈ Hstm
j ,

0 otherwise,

where F (e⃗) is the marginalized posterior base distribution previously given in equa-

tion 4.14.9 As in section 4.7.1, we sample a path through the WFSA Astm
j (ustm)

using the techniques discussed after equation 4.17. Once a new edit-sequence e⃗′ has

been sampled, it is assigned to all the instances in cluster c. Similar operations are

performed for the clusters induced by prefix and suffix assignments.

4.7.4 Sampling Sparsity Indicators

Recall from section 4.6.2 that for each pair of characters (u, h) in the lost and

known languages, we posit a sparsity indicator variable λ(u,h). Intuitively, λ(u,h) = 1

indicates that u and h represent historically related phonemes which often substitute

for one another in cognate pairs. Formally, λ(u,h) determines the value of v(u,h), the

Dirichlet hyperparameter corresponding to base distribution probability ρ(u,h) (see

equation 4.9 and figure 4-2 for the resulting effect on ρ(u,h)). We start by deriving the

posterior probability for a given joint setting of λ⃗. We indicate the other sampled

variables (including all word analyses and cognate indicators) with an ellipsis “...”:

P (λ⃗ | . . .) ∝ P (λ⃗) · P (. . . | λ⃗)

∝ g(λ⃗) ·
∏
sub e v

[N(e)]
e(∑

sub e ve

)[NS ]

9With the caveat that the cached counts now exclude all instances in the cluster under
consideration.
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The first factor g(λ⃗) is the unnormalized structural sparsity prior given in equa-

tion 4.1. The second factor is the predictive probability of the base-distribution

(with Dirichlet prior hyperparameters ve) when the multinomial parameters (ρe)

have been marginalized out. As before in equation 4.14, N(e) denotes the number

of times edit-operation e has occurred in the unique edit-sequences obtained from

each morpheme-pair distribution (Gstm, Gpre
1 , . . .); or more precisely, the number of

times e appears among the sets:

Estm =
{
(e⃗stm)k ̸=i

}
Epre

j =
{
(e⃗pre)k ̸=i | posk = j

}
, ∀j ∈ 1 . . .M

Esuf
j =

{
(e⃗suf )k ̸=i | posk = j

}
, ∀j ∈ 1 . . .M

and NS give the total number of substitutions among those sets. The notation x[n]

represents the rising factorial: x(x+ 1) · · · (x+ n− 1).

In order to speed mixing of our sampler, we jointly sample blocks of sparsity

indicator variables. In particular, for each lost-language letter u, we jointly sample

all variables involving u:
{
λ(u,h) | ∀h

}
(in the binary matrix view, a row of λ⃗), and

for each known-language letter h, we jointly sample:
{
λ(u,h) | ∀u

}
(a column). To

do so, we enumerate all possible values λ⃗, λ⃗′, λ⃗′′, . . . (keeping fixed the values for

λe’s not being sampled), compute their posteriors, and sample from the resulting

discrete distribution. Note that we can avoid enumerating settings of λ⃗ which are

assigned probability zero by the structural sparsity prior (e.g. where
∑

h λ(u,h) > 3).

As a result, we very rarely need consider more than
(
30
2

)
= 435 possible values, and

often many fewer suffice.

4.7.5 Prediction

The output of our sampler (algorithm 5) is a set of latent variable values sampled

from the posterior distribution of our model. In this section we describe how we

make our final model predictions on the basis of these samples. As a reminder,

sampled variables include:
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• Word analyses for each instance i:

{[
e⃗pre, e⃗stm, e⃗suf ,upre,ustm,usuf ,hpre,hstm,hsuf ,pos

](r)
i

}1000

r=1

• Cognate indicator variables for each instance i:

{
c
(r)
i

}1000

r=1

• Sparsity indicator variables:

{{
λ(u,h) | ∀(u, h)

}(r)
}1000

r=1

We use the following procedure to induce our model’s final predictions:

1. Predict the set of sparsity indicator variables
{
λ(u,h) | ∀(u, h)

}(∗) which occurs

most frequently among sampled values.

2. Collect sets of unique edit-sequences over all sampling rounds:

Estm =
{
e⃗ | ∃(i, r) : (e⃗stm)(r)i = e⃗

}
Epre

j =
{
e⃗ | ∃(i, r) : (e⃗pre)(r)i = e⃗ ∧ posi = j

}
, ∀j ∈ 1 . . .M

Esuf
j =

{
e⃗ | ∃(i, r) : (e⃗suf )(r)i = e⃗ ∧ posi = j

}
, ∀j ∈ 1 . . .M

3. Define a base distribution F ∗(e⃗) as in equation 4.14 except with counts now

based on the preceding collection of sets (i.e. over all sampling rounds).

4. For each instance i:

(a) Predict cognate indicator value c(∗) which occurs most frequently among

sampled values for instance i.

(b) Predict segmentation
[
upre,ustm,usuf

](∗) which occurs most frequently
among sampled values for instance i.
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(c) Define constraint sets based on the predicted segmentation and the known-

language lexicon:

Cpre
j =

{
e⃗ | y1(e⃗) = [upre](∗) ∧ y2(e⃗) ∈ Hpre

j

}
, ∀j ∈ 1 . . .M

Cstm
j =

{
e⃗ | y1(e⃗) = [ustm](∗) ∧ y2(e⃗) ∈ Hstm

j

}
, ∀j ∈ 1 . . .M

Csuf
j =

{
e⃗ | y1(e⃗) = [usuf ](∗) ∧ y2(e⃗) ∈ Hsuf

j

}
, ∀j ∈ 1 . . .M

(d) Predict edit-sequences [⃗epre, e⃗stm, e⃗suf ](∗) =

argmax
e⃗pre,e⃗stm,e⃗suf

F ∗(e⃗pre) · F ∗(e⃗stm) · F ∗(e⃗suf )

s.t. for some j:

e⃗pre, e⃗stm, e⃗suf ∈ Cpre
j × Cstm

j × Csuf
j

(4.18)

(e) Predict cognate:

[
hpre hstm hsuf

](∗)
= y2

(
[e⃗pre]

(∗)) y2([e⃗stm](∗)) y2([e⃗suf ](∗))

We compute the constrained maximum in equation 4.18 using the same finite-state

machines used during sampling. Recall that we construct Astm
j (u) to be a WFSA

for which every path a⃗ corresponds to an edit-sequence e⃗ with y1(e⃗) = u and y2(e⃗) ∈

Hstm
j . We now weight the arcs so that

∏
a∈a⃗w(a) = F ∗(e⃗). Thus computing the

constrained maximum for sets Cpre
j , Cstm

j , Csuf
j requires constructing corresponding

finite-state acceptors A1, A2, A3 and computing:

max
a⃗∈A1

∏
a∈e⃗

w(a) · max
a⃗∈A2

∏
a∈e⃗

w(a) · max
a⃗∈A3

∏
a∈e⃗

w(a)

To find the maximum weight path through each WFSA, we use the same dynamic

program given in equation 4.16, merely replacing the summation with a maximum:
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βk =

1 if sk is an end state,

maxa : sk→sℓ w(a) · βℓ otherwise.
(4.19)

Intuitively, βk gives the maximum path-weight of paths starting at state sk and

ending at an end-state. Values can again be computed by starting with the end-

states and progressing backwards along arcs. The resulting value β0, corresponding

to the start-state s0, gives the desired maximum. To retrieve the actual maximizing

path, backpointers are stored during each step of the dynamic program.

4.7.6 Implementation Details

This section describes implementation details that are necessary to reproduce our

experiments.

Computational Details

Most steps in our sampling algorithm simply require us to compute counts over our

currently drawn sample of variables. Instead of recomputing these values on the

fly, we keep a persistent cache of counts which is incrementally updated after each

sampling step. Thus, most sampling steps simply require a constant-time lookup in

a hashtable and a quick computation of probabilities.

When sampling lost-language word segmentations, we do explicitly enumerate all

possible segmentations and parts-of-speech. However, we use an extremely coarse

notion of part-of-speech (only 4, see 4.8.1 for details) and we cap the length of

prefixes and suffixes to three characters (in line with what we observe for the known-

language prefix and suffix length). Thus, even for very long words, we need only

consider 43 = 64 possibilities.

Many steps during sampling require the construction of weighted finite-state

automata and the computation of dynamic programs over these automata. Each

WFSA is of polynomial-size in the length of the corresponding lost-language mor-

pheme u. The required dynamic programs are all linear-time in the size of the
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corresponding WFSA. The construction of each WFSA, however, can be expen-

sive, as it requires intersecting a lost-language morpheme WFSA A(u) with a much

larger WFSA representing the known-language lexicon. In order to avoid unneces-

sary computation, we cache the resulting WFSA and store it for future use (simply

reweighting the arcs as necessary).

For example, the first time we compute probabilities for lost-language prefix upre

with part-of-speech j, we intersect A(upre) with Apre
j . We use the resulting WFSA

and store it in our cache. The next time we encounter prefix upre with part-of-speech

j, we retrieve the WFSA and reweight its arcs according to our current cache of

counts.

Initialization and Pruning

We initialize our latent variables with results from the HMM baseline (see 4.9). In

particular, the baseline provides us with letter substitution probabilities P (h|u).

First, we prune our search space by ruling out all substitutions (u, h) which are

given probability < 0.05. We then initialize insertion probabilities P (u) based on

the frequencies of known-language letters. As another pruning step, we rule out

insertions of all but the two most frequent letters. The result is a string-edit dis-

tribution S(e⃗). We then use this distribution to initialize our word analyses. In

particular, for each word ui, we consider all segmentations and parts-of-speech, and

for each compute the constrained maximum given in equation 4.18 (replacing F ∗(e⃗)

with our initializing distribution S(e⃗)). We initialize ui with the resulting values.

As a final pruning step, the character substitutions for each letter u are restricted

to a single letter h, if after the initialization round (u, h) is found to occur more

than five times more than any (u, h′).

We initialize all cognate indicator variables ci to 1, and we initialize the spar-

sity indicator variables λ(u,h) to be the character-mapping predictions made by the

baseline (in particular, Baseline 1 in section 4.9).
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Hyperparameter Values

Finally, we list all the values used for fixed hyperparameters:

• b⃗ = (bi = 0,∀i) // Structural sparsity parameters (equation 4.2)

• b⃗′ = (b′0 = 0, b′1 = 0, b′2 = 7, b′3 = 1, b′>3 = 0)

• w⃗ = (w0 = −∞, w1 = 0, w2 = −50, w>2 = −∞)

• K = 50 // Spike-and-slab parameter (equation 4.9)

• q(NI , ND) =


0.5 if NI , ND = (0, 0)

0.5 if NI , ND = (1, 0)

0 otherwise

// Base distribution (equation 4.4)

• α0 = 1000 // Concentration parameter (section 4.6.2)

• P (ci = 1) = 0.5 // Cognate prior (section 4.6.2)

4.8 Experiments

In this section we describe experiments applying our model to the ancient Ugaritic

language (see section 4.4 for background) with biblical Hebrew as the observed

known language. In section 4.8.1 we describe the Ugaritic corpus and gold-standard

annotations; in section 4.9 we describe our evaluation tasks and baseline, and in the

remaining sections we describe our various experiments and results.

4.8.1 Corpus and Annotations

Our undeciphered corpus consists of an electronic transcription of the Ugaritic

tablets [28]. This corpus contains 7,386 unique word-forms. As our known language

corpus, we use the Hebrew Bible, which is both geographically and temporally close

to Ugaritic. To extract a Hebrew morphological lexicon we assume the existence

of manual morphological and part-of-speech annotations [45]. We divide Hebrew
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Number of Hebrew Cognates
0 1 2 3 4 5 6

Number of Ugaritic Word-forms 5172 1677 359 160 14 1 3

Table 4.1: Number of Ugaritic word-forms with various numbers of identified He-
brew cognates.

stems into four main part-of-speech categories each with a distinct affix profile:

Noun, Verb, Pronoun, and Particle. For each part-of-speech category, we automat-

ically determine the set of allowable affixes using the annotated Bible corpus.

To evaluate the output of our model, we annotated the words in the Ugaritic

lexicon with the corresponding Hebrew cognates found in the standard reference

dictionary [30]. In addition, manual morphological segmentation was carried out

with the guidance of a standard Ugaritic grammar [101]. Although Ugaritic is an

inflectional rather than agglutinative language, in its written form (which lacks

vowels) words can easily be segmented (e.g. wyplṭn becomes wy-plṭ-n). Note that

our analysis allows only a single prefix or suffix string, and as a result multiple

prefixes or suffixes are combined into a single string.

Overall, we identified Hebrew cognates for 2,214 word forms, covering almost

one-third of the Ugaritic vocabulary. We are confident that a majority of Ugaritic

words with known Hebrew cognates were thus identified. The remaining Ugaritic

words include many personal and geographic names, words with cognates in other

Semitic languages, and words whose etymology is uncertain.

Since our annotation was performed at the vocabulary-level rather than the

text-level, we faced the problem of word ambiguity. A single Ugaritic word-form

can often be identified with several potential Hebrew cognates, depending on actual

context. For example, the Ugaritic word-form bth could be identified with at least

four Hebrew cognates: bth (her daughter), btw (his daughter), byth (her house),

or bytw (his house). In such cases, we annotated the Ugaritic word form with all

Hebrew cognate possibilities. Table 4.1 gives the number of Ugaritic word-forms

with various numbers of identified Hebrew cognates.
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NUgaritic word of length k

wi

...

Latent Hebrew characters

start

Figure 4-4: Plate diagram of the baseline HMM model (shown here as a
first-order rather than second-order HMM for simplicity). Each of N observed
Ugaritic word-forms wi is determined by its observed character sequence. Each
such character is generated by a latent Hebrew letter. Hebrew character transition
distributions are estimated directly from transition counts in the Hebrew Bible.
Emission distributions and the latent Hebrew characters are estimated using EM.

4.9 Results

In the following section we evaluate our model on three separate decipherment tasks:

(i) Learning alphabetic mappings, (ii) Cognate decipherment, and (iii) Cognate

identification.

As a baseline for these tasks, we use the HMM-based method of [66] for learning

letter substitution ciphers. In its original setting, this model was used to automati-

cally map the written form of a language to its spoken form, under the assumption

that each written character was emitted from a hidden phonemic state. In our

adaptation, we assume instead that each Ugaritic character was generated by a

hidden Hebrew letter, and that each hidden Hebrew letter was generated by the

previous two Hebrew letters (a second-order character-level HMM). See figure 4-4

for a graphical depiction of this baseline. Hebrew character trigram transition prob-

abilities are estimated using counts from the Hebrew Bible, and Hebrew to Ugaritic

character emission probabilities are learned by applying EM to the Ugaritic vocabu-
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lary (see [66] for details). Finally, the highest probability sequence of latent Hebrew

letters is predicted for each Ugaritic word-form, using the Viterbi algorithm.

4.9.1 Alphabetic Mapping

The first essential step towards successful decipherment is recovering the mapping

between the symbols of the lost language and the alphabet of a known language.

Although the exact phonetic values of letters in ancient scripts can never be known

with complete certainty, it is possible to recover the historical relationships between

phonemes (and thus alphabets) of related languages using the comparative method

[19]. As a gold standard for our comparison, we use the well-established historical

relationship between the sounds of the Ugaritic and Hebrew alphabets [55]. In

particular, we wish to automatically recover pairs of reflexes in two languages –

that is, pairs of letters whose corresponding phonemes descend from a common

phoneme in an ancestral language (in this case Proto-Semitic).

This mapping is not one-to-one but is generally quite sparse. Of the 30 Ugaritic

symbols, 27 map almost exclusively to a single Hebrew letter, and the remaining

three map to two Hebrew letters. The Hebrew alphabet contains 23 letters, of

which three map to three Ugaritic letters, four map to two Ugaritic letters, and the

remainder map to a single Ugaritic letter. See table F.2 in appendix F for the gold

standard alphabetic mapping used in evaluation.

We recover our model’s predicted alphabetic mappings by simply examining

the predicted values of the binary indicator variables λu,h for each Ugaritic-Hebrew

letter pair (u, h). Due to our structural sparsity prior P (λ⃗), the predicted mappings

are quite sparse: all Ugaritic letters maps to a single Hebrew letter, 17 Hebrew

letters map to a single Ugaritic letter, five Hebrew letters map to two Ugaritic

letters, and one Hebrew letter maps to three Ugaritic letters. See table F.3 for the

predicted alphabetic mappings.

To recover alphabetic mappings from the HMM substitution cipher baseline, we

consider several possibilities.
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Baseline 1: For each Hebrew letter h, we can simply choose the single Ugaritic

letter u with highest emission probability: u = argmaxu′ P (u′|h). Table F.5 gives

the predictions under this baseline. Notice that this procedure results in many

Ugaritic letters that are not mapped to any Hebrew letter at all.

Baseline 2: For each Ugaritic letter u, we can simply choose the single Hebrew

letter h such that: h = argmaxh′ P (h′|u) ∝ P (u|h′)P (h′). Table F.4 gives the pre-

dictions under this baseline. This procedure guarantees that all Ugaritic letters are

mapped to a single Hebrew letter. However, three Hebrew letters remain unmapped.

Baseline 3: This procedure simply combines the procedures of Baselines 1 and 2.

A mapping between (u, h) is predicted if (u, h) are mapped under either (or both)

of the first two baselines. This procedure results in a many-to-many mapping where

every letter in each alphabet is guaranteed to map to at least one letter in the other.

Table F.6 gives the predictions under this baseline.

To evaluate these predicted mappings, we consider several metrics. Our first,

somewhat crude, measure is to simply count the number of Ugaritic letters that

are correctly mapped to at least one of their Hebrew reflexes. Under this metric

our model recovers correct mappings for 28 of 30 Ugaritic letters (yielding 93.3%

accuracy), while the best baseline predictions (Baselines 2 and 3) yield correct

mappings for 23 of 30 Ugaritic letters (76.7% accuracy).

Note that this first evaluation metric ignores the fact that the gold-standard

mappings are many-to-many (though quite sparse). We can evaluate performance

with greater sensitivity by instead treating each mapped character pair (u, h) as

a positive prediction in a binary classification problem. Under this scenario, the

gold-standard contains 33 positive examples out of 690 possible letter pairings.

Results under both this and the first metric are given in table 4.2. Our model

yields performance superior to the baselines on all measures, achieving F1-measure

of .89, compared to .73 for the best baseline variant.
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   -
Baseline 1 .57 .74 .52 .61
Baseline 2 .77 .77 .70 .73
Baseline 3 .77 .69 .73 .71
Our Model .93 .93 .85 .89

Table 4.2: Evaluation of alphabetic mappings predicted by HMM baseline
variations and our model. Column one () simply counts the number of
Ugaritic letters that are correctly mapped to at least one of their Hebrew reflexes.
Columns 2-4 treats each possible character pair as an example in a binary classifi-
cation problem.

4.9.2 Cognate Decipherment

One of the primary goals of lost language decipherment is to accurately translate

and understand ancient texts. An important step in this process is the recovery of

cognate pairs between the lost language and a known related language. Cognate are

words in sister languages that descend from a common word in a shared ancestral

language. As such, cognates are often accurate translations of one another, or at

least share common semantic features. As detailed in section 4.8.1, we manually

identified gold-standard Hebrew cognates for about one-third of the Ugaritic word-

forms. When multiple gold-standard cognates exist for an Ugaritic word-form (see

table 4.1) we evaluate predictions using the Hebrew cognate which yields the best

performance.

Cognate predictions for our model are produced by examining the predicted

values of the latent Hebrew morphemes associated with each Ugaritic word-form.

Even for words where we predict a cognate indicator variable ci = 0 (indicating that

the word does not have a Hebrew cognate), we still predict the most likely latent

Hebrew word h∗
i by conditioning on ci = 1. For the HMM baseline, we simply predict

the most likely latent sequence of Hebrew characters for each Ugaritic word-form

using the Viterbi algorithm.

We evaluate these cognate predictions using several measures. The simplest

measure simply counts how many predicted Hebrew cognates exactly match one of

the gold-standard cognates. As seen in table 4.3 ( →  → ), our
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 
 -  -

       
Baseline .288 .460 1.261 .878 n/a n/a
Our Model .630 .697 .501 .400 .763 .838 .337 .239
Prev Version .604 .683 .552 .450 .740 .813 .369 .270
Only Sub .599 .683 .529 .414 .745 .828 .323 .216
Only Mapped .567 .648 .555 .436 .731 .799 .366 .276
No Cogs .447 .560 .802 .660 .677 .760 .448 .341
No Spike .471 .577 .722 .587 .710 .787 .400 .302
No Morph .363 .554 1.175 .779 n/a n/a
Know Cogs .710 .787 .422 .314 .834 .892 .231 .152

Table 4.3: Evaluation of cognate decipherments for the HMM baseline as
well as our model. Two evaluation measures are used: 0-1 accuracy (higher is
better) and Levenshtein edit-distance (lower is better). The unit of prediction can
be either complete words or each of their three morphemic parts (prefix, stem, and
suffix). Evaluation is carried out both at the word-form () level, ignoring word
frequency, as well as at the token-level, taking frequency into account. The first two
rows show results for the baseline and our full model. The final seven rows show
results for variants of our model (see section 4.9.4 for details).

model achieves 63% accuracy on this measure, while the baseline achieves accuracy

of 28.8%.

To gain a finer sense of how close our predictions are to the true Hebrew cognates,

we also measure the Levenshtein edit-distance [72] between predicted and gold-

standard cognates. This distance metric gives the minimal number of character

edit-operations (substitutions, insertions, and deletions) needed to make an input

string identical to a reference string. As seen in table 4.3 ( → -

→ ), our model’s predictions are on average .5 edit-operations away from a

gold-standard cognate, whereas the baseline predictions require, on average, 1.26

edit-operations to match a true cognate.

Since our model also predicts prefix-stem-suffix morpheme boundaries, we can

evaluate its decipherment performance on a per-morpheme basis as well. This

metric can be both stricter and more lenient than per-word accuracy. For example,

if b-bt-w were predicted in place of the correct b-byt-w, two out of three morpheme

predictions would be judged as correct, whereas the per-word measure would judge
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this prediction as fully incorrect. On the other hand, we also now require that the

morphemic segmentation boundaries be correct. For example, a prediction of bbytw

(no prefix or suffix) would be judged as correctly predicting none of the morphemes

of the correct b-byt-w, whereas the per-word evaluation would count this as a fully

correct prediction.

As table 4.3 shows, per-morpheme performance (both in terms of simple accu-

racy and edit-distance) is consistently better than per-word performance. In fact,

our model correctly deciphers over 3/4 of the morphemes on all Ugaritic word-forms

with Hebrew cognates ( → - → ). This metric is not

available for the baseline, as it does not predict morpheme boundaries.

Besides carrying out these evaluations at the word-form-level ( in table 4.3),

we also investigated whether predictions were are more or less accurate for frequent

words by evaluating at the token-level as well () in table 4.3). As shown,

performance improves across the board at the token-level, indicating that more

frequent words are easier to decipher than their infrequent counterparts.

4.9.3 Cognate Identification

The previous section evaluated our model’s ability to decipher Ugaritic words which

are, in fact, cognate to one or more Hebrew words. In this section we consider the

problem of identifying which Ugaritic words have such cognates.

As before, we use our annotated Ugaritic corpus as a gold-standard (see sec-

tion 4.8.1 and in particular table 4.1). About one-third of Ugaritic word-forms were

identified as having known Hebrew cognates. We note that this is a conservative

gold-standard. Our knowledge of ancient Hebrew comes almost exclusively via the

texts of the Hebrew Bible (about 300,000 tokens) and there are certainly many an-

cient Hebrew words which have been lost to history. In addition, it is possible that

some Hebrew cognates were missed during the the annotation process (though we

are confident that the great majority were included).

We evaluate our model’s ability to identify cognates using the predicted values

of the indicator variables ci. Note also that for Ugaritic word-form ui: P (ci|ui) ∝
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P (ui|ci) · P (ci). Since P (ci) (the cognate prior) is a fixed Bernoulli parameter of

our model, we can vary its value to achieve different cognate prediction thresholds,

allowing a trade-off between precision and recall.

As before, we compare our performance against the HMM substitution cipher

baseline. To produce baseline cognate identification predictions, we calculate the

probability (using the learned emission and transition parameters) of each Ugaritic

word ui given the latent Hebrew letter sequence predicted by the HMM. This prob-

ability can be regarded as measuring the likelihood that the given Ugaritic word-

form ui was generated by a latent Hebrew cognate: P (ui|ci = 1).10 The probability

that ui was generated as a lone Ugaritic word, P (ui|ci = 0), is simply given by

( 1
31
)length(ui)+1 (assuming a uniform distribution over the 30 Ugaritic letters and a

special end symbol). Finally, as in our model, we assume a fixed cognate prior P (ci)

and predict that ui has a Hebrew cognate if:

P (ui|ci = 1)

P (ui|ci = 0)
>
P (ci = 0)

P (ci = 1)

As for our model, when the prior P (ci = 1) is set higher, we will detect more true

cognates, but the number of false positives increases as well.

Finally, we compare our model’s performance to that of our previously published

version [109]. The primary difference between the model presented in this thesis

and the previously published version is how we model the generation of non-cognate

Ugaritic words: P (ui|ci = 0). In the previous publication we used a simple uniform

distribution Ugaritic language model:

P (ui|ci = 0) =

(
1

31

)length(ui)+1

(4.20)

Since our cognate generation sub-model P (ui|ci = 1) (detailed in section 4.6.2) leads

to an exponential distribution over the length of Ugaritic words with latent Hebrew

cognates, it is important that P (ui|ci = 0) display the same exponential decay on

10Or more precisely, this quantity should be regarded as a Viterbi approximation to P (ui|ci = 1)
as it only accounts for the highest probability latent Hebrew letter sequence.
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word length. Otherwise, the dominating factor in predicting ci would be the length

of ui rather than the intrinsic plausibility of its joint generation with a Hebrew

counterpart.

While definition 4.20 helps us avoid a length bias, it ignores the frequency of the

Ugaritic characters in word ui. In contrast, the posterior of the cognate generation

sub-model P (ui|ci = 1) is quite sensitive to the observed frequencies of the charac-

ters composing ui, generally assigning far lower probability to Ugaritic words with

infrequent characters.11 As a result, the previous version of our model displayed an

unfortunate bias towards predicting that Ugaritic words with infrequent characters

had no Hebrew cognates. To correct this bias, the model described in this thesis

defines the distribution over non-cognate Ugaritic words using a unigram (rather

than uniform) Ugaritic language model:

P (ui|ci = 0) = P (END) ·
∏

0<j≤length(ui)

P (ui[j]) (4.21)

This definition allows a trade-off between P (ui|ci = 0) and P (ui|ci = 1) which

focuses on the inherent posterior plausibility of ui having been generated along

with a Hebrew word hi (i.e. in terms of consistent of character substitutions and

morpheme matchings) rather than the length or character frequency of ui.

As cognate identification is a binary classification problem, we evaluate perfor-

mance by plotting Receiver Operator Characteristic (ROC) and Precision-Recall

curves. An ROC curve shows the achievable trade-offs between the False Positive

Rate, defined as the fraction of all positive predictions which are actually negative

FPR =
FP

TP + FP
,

and the True Positive Rate, defined as the fraction of all positive instances which

11This effect stems from the string-edit base distribution, which can be thought of as a character-
level language model over bilingual character pairs.

186



are correctly predicted as positive:

TPR =
TP

TP + FN
.

A Precision-Recall curve shows the achievable trade-offs between Precision, defined

as the fraction of all positive predictions which are in fact positive

Precision =
TP

TP + FP
,

and Recall, which is identical to the True Positive Rate.

Figure 4-5 shows the ROC curve for our model, the ACL 2010 version of our

model, and the HMM baseline. All three models achieve better than random per-

formance for all possible operating points. The ROC curve of our previous model

dominates the the curve of the HMM baseline, and likewise our current model

dominates the performance of our previous model.

Figure 4-6 shows the Precision-Recall curve for the same three models. All

three models show fluctuations in Precision when Recall is set very low. This may

be due to the fact that the number of positive predictions in this setting is very

small so the addition of a single false positive or true positive can have a great

effect on Precision. For values of Recall above 0.1, the trend we observed in the

ROC setting reemerges: Our previous model dominates the HMM baseline, and our

current model dominates our previous model.

To gain some further insight we can graph F1-Measure as a function of Recall.

F1-Measure is defined as the harmonic mean of Precision and Recall and is often

used as a unified measure of binary classification performance:

F1 = 2 · Precision ·Recall
Precision+Recall

Figure 4-7 shows the various achievable F1 scores for the three models under con-

sideration. The respective maximum achievable F1 scores are .473, .522, and .563

for the HMM baseline, our previous model, and our current model.
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Figure 4-5: Cognate identification ROC curves for the model presented in
this thesis (Our Model), the version of our model presented at ACL 2010 (using a
uniform character model for non-cognate probabilities), and the HMM baseline.
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Figure 4-6: Cognate identification Precision-Recall curves for the model pre-
sented in this thesis (Our Model), the version of our model presented at ACL 2010
(using a uniform character model for non-cognate probabilities), and the HMM
baseline.
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Figure 4-7: Cognate identification F1 curves for the model presented in this
thesis (Our Model), the version of our model presented at ACL 2010 (using a uni-
form character model for non-cognate probabilities), and the HMM baseline.
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4.9.4 Comparison to Model Variants

In this section we describe experiments comparing the performance of our full model

to different variants. We focus on the performance of these variants on the task of

cognate decipherment (section 4.9.2 above). Below we list each model variant and

discuss its performance. Results are shown in the final rows of table 4.3.

Previous Version: This is the variant of our model originally published [109].

The key difference is that this older version models non-cognate word generation,

P (ui|ci = 0), using a uniform distribution over Ugaritic letters. The model pre-

sented in this thesis, however, uses a unigram character distribution, taking into

account letter frequency. As discussed in section 4.9.3, this leads to more accurate

predictions of the cognate indicators ci. In fact, as table 4.3 shows (“Prev Version”),

this difference also leads to better performance on the task of cognate decipherment.

While the previous version achieved 60.4% accuracy ( →  → ),

the current model yields 63% accuracy.

Only Substitutions: In this variant of our model, the only string-edit operation

allowed is character substitution. All insertions and deletions are given zero prob-

ability. This allows a more precise comparison to the HMM baseline, which also

only allows a one-to-one mapping between characters.

The results of this variant are reported in table 4.3 (Only Sub). Perhaps

surprisingly, strictly requiring one-to-one character substitutions has little effect

on performance. Word type prediction accuracy falls from 63% (when insertions

are permitted) down to to 59.5%. Even smaller differences are seen across the

other performance metrics. This small difference is partially due to the fact that

substitutions are by far the dominant edit operation. Of equal importance, though,

is the fact that our full model simply doesn’t model insertions very effectively. As

we discuss below, our model’s biggest source of error involves missing a character

insertion for a very common suffix.
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Only Mapped: Recall that our model predicts alphabetic mappings via the struc-

tural sparsity indicator variables {λ(u,h)}. These variables lead to higher prior proba-

bility being assigned to substitution (u, h) when the corresponding λ(u,h) = 1. When

predicting latent cognates, however, other substitutions do sometimes still occur,

even when the corresponding λ(u,h) = 0.

In this model variant, we assess the impact of allowing these substitutions. We

run our sampling algorithm as usual, but at prediction time (section 4.7.5), we only

allow substitution (u, h) to occur if λ(u,h) = 1. As table 4.3 shows (Only Mapped),

this restriction leads to lower performance on all our evaluation metrics. This result

indicates that although our model is effective at predicting alphabetic mappings,

it still benefits from allowing “unauthorized” substitutions to occur occasionally.

In fact, an analysis shows that the most common of these substitutions is for the

letter pair (š, š) (i.e. Hebrew שׁ substituting for Ugaritic 𐎌), which is actually a

false-negative letter mapping prediction.

In the next three experiments, we explore the relative contribution of various

components of our model. In each case, we remove one model component and report

the resulting performance.

No Cognate Indicators: In this experiment, we test the performance of our

model when all lost-language words are assumed to have cognates. In other words,

the model is not allowed to “explain away” difficult word-forms by setting the

corresponding cognate indicator to 0. This is achieved experimentally by simply

setting the cognate prior P (ci = 1) to 1. As table 4.3 indicates (No Cogs), this leads

to a serious degradation of performance across all measures. Thus, it seems crucial

to allow the model to ignore word-forms which don’t allow consistent mappings,

even though the cognate identifications themselves are imperfect.

No Spike-and-slab: We test the performance of our model when the structural

sparsity prior (section 4.6.2) is removed. Recall that the purpose of this prior was

to ensure that predicted alphabetic mappings obey the following intuition: that

192



each letter map to a very limited number of letters in the other language. In this

experiment we test the importance of this intuition. In particular, the value of K

in equation 4.9 is set to 1 in this experiment. The result is that the structural spar-

sity indicator variables λ⃗ are essentially ignored. As table 4.3 shows (No Spike),

performance in the absence of these variables degrades quite seriously. This finding

confirms that incorporating the intuition of alphabetic-mapping sparsity is quite

crucial for achieving high performance.

No Morphology: We test the performance of our model when no morphological

segmentation is performed. Instead of segmenting Ugaritic words and matching the

resulting morphemes to latent Hebrew morphemes, we instead match entire Ugaritic

word-forms to entire Hebrew word-forms. This is achieved experimentally by setting

the Hebrew prefix and suffix lexicons to the empty set, and setting the stem lexicon

to the set of entire Hebrew words. As table 4.3 indicates (No Morph), this variant

achieves only 36% accuracy on word types, far below that of all the other variants.

This finding confirms that, just as for humans, morphological awareness is one of

the key ingredients of success for computational decipherment.

Knowing Hebrew Cognates: Finally, we test the performance of our model

when the Hebrew vocabulary is restricted to those morphemes which actually occur

as cognates with Ugaritic words. The identity of these morphemes would not be

known in a realistic decipherment scenario. Nevertheless, one could imagine a sep-

arate model which first predicts which Hebrew morphemes and words are likely to

have Ugaritic cognates. This model could exploit the general tendencies of languages

to preserve certain words and could also examine the cross-linguistic evidence given

by cognates among known Semitic languages (Aramaic, Arabic, Akkadian, etc).

The experiment presented here is intended to show our model’s performance in the

most ideal of situations, where the set of cognate morphemes is known exactly. The

results given in table 4.3 (Know Cogs) indicate, perhaps unsurprisingly, that our

model yields significantly improved performance in this scenario. Accuracy on word
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types reaches 71%.

4.9.5 Combining Model Variants

To further tease out the contributions of each component of our model, we con-

sider various combinations of the above variants. First we consider a model very

similar to the HMM baseline: All Ugaritic words are assumed to be cognates, no

spike-and-slab prior is used, and only character substitutions are allowed (i.e. Only

Substitutions + No cognate Indicators + No Spike-and-slab). The chief

difference between this variant and the HMM baseline itself is that the latter at-

tempts to match Ugaritic and Hebrew and the character trigram level, whereas our

model matches the languages at the morphemic level. The results for this model

are given in table 4.4 (Combo 1). The cognate decipherment accuracy at the

word-type level drops to 35%, from 63% for the full model. However, we note that

performance is still above that of the HMM baseline (29%). This result indicates

that matching the lost and known languages at the morphemic level can indeed be

more powerful than character-level matching alone.

Next, we drop the use of morphology as well (i.e. Only Substitutions + No

Cognate Indicators + No Spike-and-slab + No Morphology). Now our

model simply tries to find entire Hebrew words which match entire Ugaritic words,

with a consistent character-level mapping. The results here are drastically worse.

As table 4.4 indicates (Combo 2), the word-type decipherment accuracy for this

model is only 21%, far below that of the baseline. This finding confirms once again

the importance of morphological-level analysis for decipherment. Finally, Combo

3 and Combo 4 mirror the first two combinations, except that character insertions

are now allowed. In both cases, allowing such insertions leads to about 2 percentage

points of improved accuracy.
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 
 -  -

       
Combo 1 .345 .491 .976 .744 .620 .737 .480 .333
Combo 2 .210 .270 1.61 1.20 .418 .595 1.01 .632
Combo 3 .361 .483 .984 .785 .635 .727 .468 .348
Combo 4 .230 .283 1.55 1.20 .414 .592 1.04 .657
Baseline .288 .460 1.261 .878 n/a n/a
Our Model .630 .697 .501 .400 .763 .838 .337 .239

Table 4.4: Combinations of the variants given in table 4.3. Combo 1 only allows
substitutions, assumes all words have cognates, and does not employ the structural
sparsity prior (Only Substitutions + No Cognate Indicators + No Spike-
and-slab). Combo 2, in addition, removes morphological analysis from the model
(Only Substitutions + No Cognate Indicators + No Spike-and-slab + No
Morphology). Combo 3 allows all string edits, but assumes that all words have
cognates, and does not use the structural sparsity prior (No Cognate Indicators
+ No Spike-and-slab). Combo 4, in addition, removes morphological analysis
(No Cognate Indicators + No Spike-and-slab + No Morphology). The
baseline and full model performance are repeated here for easy comparison.

4.9.6 Related Language Discovery

One of the key assumptions we have made throughout this chapter is that the lost

language is related to a known language, and that the known language has been

identified. In the case of Ugaritic at least, human decipherers immediately surmised

that Ugaritic was likely to be a Semitic language, due to the dating and geographical

location of the discovered clay tablets. However, in many other cases, the identity

of a known, related language is far from certain. The Linear B script, for example,

was discovered to encode an early form of Greek only after 50 years of decipherment

efforts. The currently undeciphered Indus Valley symbol system remains even more

mysterious. Although some scholars believe that it represents an early Dravidian

language, others have argued that it is not likely to encode any spoken language.

For future statistical decipherment efforts we clearly need to move beyond the

assumption that a known, related language has been clearly identified. This line of

thought is largely beyond the scope of this thesis. However, we did run one final

experiment to test whether our model can at least distinguish between a related
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Average entropy of...
Pu(h) Ph(u) Pu(h)&Ph(u)

Ugaritic-Hebrew 0.43 0.56 0.48
Ugaritic-English 1.63 1.51 1.58

Table 4.5: Cross-character entropy when the known language is Hebrew versus
English. Column one gives the average entropy of known-language letters for all
Ugaritic letters. Column two gives the average entropy of Ugaritic letters for all
known-language letters. Column three averages the entropies over letters from both
alphabets.

and an unrelated known language.

In particular, we have applied our model to the decipherment of Ugaritic using

English as the known language. In fact, of course, no known cognate pairs ex-

ist between Ugaritic (a Semitic language) and English (a Germanic language with

significant Romance influence). The question we pose is the following: Can we

automatically distinguish between our system output when using an actual related

language (Hebrew) and our system output when using a non-related language (En-

glish).

To make our English lexicon as comparable as possible to the Hebrew lexicon,

we base it on an English translation of the Hebrew Bible [94]. We use the Stanford

Tagger [117], version 1.612 to part-of-speech tag the English corpus. We map the

predicted parts-of-speech to five inflectional categories: adjective, adverb, noun,

verb, and particle (non-inflectional). We use the Porter2 stemming algorithm13 to

induce an inventory of stems and suffixes for each of these categories.

We tested two criteria for automatically distinguishing between Hebrew and

English output. In both cases, we consider predictions for all Ugaritic word-forms

(not just those that actually have Hebrew cognates).

Cross-character Entropy

For both English and Hebrew the predicted indicator variables {λ(u,h)} will them-

selves be sparse (simply due to the structural sparsity prior). However, as noted

12http://nlp.stanford.edu/software/tagger.shtml
13http://snowball.tartarus.org/algorithms/english/stemmer.html
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in section 4.9.4, even when λ(u,h) = 0, the corresponding substitution (u, h) will

sometimes be used in cognate predictions. We hypothesize that if a large number

of cognates truly exist between the lost and known languages, then character sub-

stitutions will display much greater regularity than would otherwise be possible. In

other words, the actual substitutions used in cognate predictions will be far more

sparse if the languages are truly related.

We measure this sparsity by computing the cross-character entropy of the pre-

dicted cognates. For each lost-language character u, we compute an empirical dis-

tribution over known-language characters h:

Pu(h) =
N(u, h)∑
h′ N(u, h′)

,

where N(u, h) denotes the number of times the substitution (u, h) appears in the fi-

nal cognate decipherment predictions. Likewise, for each known-language character

h we compute:

Ph(u) =
N(u, h)∑
u′ N(u′, h)

We then compute the Shannon entropy (log base 2) for each distribution. As ta-

ble 4.5 shows, the average cross-character entropy is indeed over three times higher

when English is used as the known language, clearly distinguishing it from Hebrew,

an actual related language.

Decipherment Count

Another method for distinguishing between related and unrelated languages uses

the predicted alphabetic mapping {λ(u,h)}. At prediction time we can force our

model to only use character substitutions with λ(u,h) = 1 (as in the “Only Mapped”

experiment in section 4.9.4). One consequence of this constraint will be that we

simply won’t be able to find candidate cognates for some number of lost-language

words. However, if the languages are truly related and our alphabetic mapping is

mostly correct, then we should still be able to find candidate cognates for a good

portion of the lost language vocabulary.
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We thus hypothesize that, under this constraint, we will find a much larger

number of impossible-to-map words when an unrelated language is used. Our ex-

periments bear out this hypothesis in the cases of English and Hebrew. When using

Hebrew, we are still able to find candidate mappings for over 67% of all Ugaritic

words (4,797 / 7,386). However, when using English as the known language, we

can only propose cognates for 7% of Ugaritic words (551 / 7,386). As before, this

difference would allow us to easily distinguish a related language (Hebrew) from an

unrelated language (English) even before the decipherment predictions themselves

have even been viewed by a human, let alone authenticated.

4.9.7 Error Analysis

In this section we analyze some of the errors made by our model in the task of

cognate decipherment. We separately examine prefix errors, stem errors, and suffix

errors. Table 4.6 gives the top errors in each category (see appendix F for a mapping

from original graphemes to the characters in our transcription). We divide the errors

into three major categories.

Segmentation Errors: The most obvious category of errors consists of segmen-

tation mistakes. All but one of the top prefix errors falls into this category. For

example, the most common prefix error is predicting a prefix m- when in reality no

prefix occurs at all (for either the Ugaritic word or its Hebrew counterpart). Some-

times a prefix occurs but is not predicted. For example, the fourth most common

prefix error consists of predicting the empty prefix instead of the actual prefix b-.

In addition, segmentation errors explain some decipherment errors of stems as well.

For example, our model deciphers the Ugaritic word aṯt (woman) as ašm (guilt),

rather than correctly segmenting the feminine suffix and predicting the Hebrew

word aš-h.

Substitution Errors: Another category of errors consists of incorrect letter sub-

stitutions. For example, the Ugaritic letter š maps to both š and ś in Hebrew.
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However, our model only predicts the mapping (š,ś). In many instances, replacing

Ugaritic š with either š or ś results in valid Hebrew words (with entirely different

meanings). Six of the top stem prediction errors involve ambiguities of this sort.

For instance, the Ugaritic word šbʕ, meaning “seven” is incorrectly mapped to the
Hebrew word śbʕ, meaning “satisfied” rather than the correct Hebrew word for
seven, šbʕ. Even if our model were to correctly predict both character mappings
((š,š) and (š,ś)), it is not obvious if it would automatically pick out the correct

Hebrew word.

Insertion Errors: Finally, another category of errors consists of missing Hebrew

character insertions. As discussed in the previous section, our model does almost

equally well if we disallow insertions altogether. The most common error, by far,

is a suffix error involving a missing insertion. The Ugaritic masculine plural suffix,

-m, corresponds to the Hebrew masculine plural suffix -ym. However, -m is also a

suffix in Hebrew, indicating the third person masculine plural possessive. As before,

it is not obvious how such errors can be corrected. In the next and final section of

the chapter we discuss some possible directions for enriching the model to account

for these shortcomings.

4.10 Conclusion and Future Work

In this chapter we proposed a method for the automatic decipherment of lost lan-

guages. The key strength of our model lies in its ability to incorporate a range of

linguistic intuitions in a statistical framework.

First among these intuitions is that both character and lexical correspondences

across related languages should be consistent. In addition, morphological analysis

played a crucial role in our model, as the correspondences between highly frequent

prefixes and suffixes can be particularly revealing (and easy to find). Finally, we

developed a novel prior that encodes a crucial intuition: that the mapping between

alphabets should be structurally sparse. Each character in the lost language should
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map to a very limited number of characters in the related language, and vice versa.

We applied our decipherment model to a corpus of Ugaritic, an ancient Semitic

language discovered in 1928 and manually deciphered four years later, using knowl-

edge of Hebrew, a related language. As input to our model, we use the corpus of

Ugaritic texts along with a Hebrew lexicon extracted from the Hebrew Bible.

Our main experiments show that by modeling the interplay between morphol-

ogy, character correspondences, and lexical correspondences, our model was able to

predict a largely correct decipherment of Ugaritic. 28 of 30 letters were correctly

mapped to their Hebrew counterparts, and over 63% of words with Hebrew cog-

nates were correctly deciphered. Further experiments indicated that several factors

were crucial to this success. In the absence of morphological modeling and the prior

constraint on character fertility, prediction accuracy degrades significantly.

Finally, we examined the issue of related language identification. For many

currently undeciphered lost languages, the key challenge lies in finding a related

living language (if one exists). While our model is not designed to find related

languages, our experiments show that it can at least distinguish between related

and unrelated pairs.

We hope to address several issues in future work. One deficiency of our model

is that it fails to take into account the known frequency of Hebrew words and mor-

phemes. The existence of a word or morpheme in the Hebrew lexicon is simply

treated as a hard constraint. If the word exists, it may be matched to an Ugaritic

counterpart, and otherwise it may not. What we see, in fact, is that the most com-

mon error of our model can be attributed to this feature: Our model incorrectly

deciphers the Ugaritic masculine plural suffix (-m) as the Hebrew third person plu-

ral possessive suffix (-m), rather than the correct and much more common plural

suffix (-ym). One way to achieve this frequency matching would be to simultane-

ously model the vocabularies of Ugaritic and Hebrew. Our current model treats

the Hebrew lexicon as a wholly observed conditioning variable. Instead, we could

assume that, just as Ugaritic words have latent Hebrew counterparts, so too do

Hebrew words have latent Ugaritic counterparts. In this way, frequently occurring

200



Hebrew morphemes will have to be accounted for by frequently occurring Ugaritic

morphemes.

Another direction for future work is to add contextual cues to our model. Cur-

rently, our model operates purely at the vocabulary level. As we saw in the previous

section, many of the errors our model makes are due to ambiguity. A single Ugaritic

word could be legitimately translated into several Hebrew counterparts based solely

on the historical character mappings. Scholars, of course, use the literary context

of words to help uncover their meanings. While the Hebrew words for “seven” and

“satisfied” both fit the characters of the Ugaritic word šbʕ, it is unlikely that both
words would fit the context in which this word appears.
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Prefix errors Stem errors Suffix errors
Ug. Predict Hb. Ug. Predict Hb. Ug. Predict Hb.
m- m- 68 šlm ślm šlm 12 -m -m -ym 190
y- y- 26 mit mat ma-h 8 -n -n -nw 43
a- a- 19 ʕn ʕwn ʕyn 8 -h 29

b- 18 šbʕ śbʕ šbʕ 8 -t -t 28
b- b- 14 aṯt ašm aš-h 7 -m -m 28

l- 13 ʕd ʕd bʕd 7 -y -y 21
w- w- wy- 11 ib ab awyb 7 -n -n 20

k- 10 špt śpt śp-h 6 -n -nw 16
y- 8 dd dd dwd 6 -h -h -th 11
t- 8 aḫt aḥt aḥ-wt 6 -k -k -tk 10

t- m- t- 7 šrš śry šrš 5 -k -k 10
n- n- 7 śś nwn śwś 5 -ym 9
wy- wy- w- 7 šm śm šm 5 -k -k -yk 7
h- h- 6 qn qn qn-h 5 -t 7
k- k- 6 šir śar šar 5 -w -w 6
i- a- 5 ḥrš ḥrś ḥrš 4 -m -m -wt 6

Table 4.6: Top cognate decipherment errors for prefixes, stems, and suffixes. For
each morpheme category, the first column gives the Ugaritic morpheme (as seg-
mented by our model), the second column gives the predicted Hebrew morpheme,
the third column gives the correct Hebrew morpheme, and the fourth column gives
the number of times this particular error was made.
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Chapter 5

Conclusions and Future Work

In this thesis, we introduced the framework of multilingual learning. The core idea

underlying this framework is that the systematic variations that we observe across

languages correspond to variations in ambiguity. In other words, what one language

leaves implicit, and thus ambiguous for computers (or even humans), another will

express directly through overt linguistic forms. In the framework of multilingual

learning, we treat these variations in ambiguity as a form of naturally occurring

supervision. By jointly modeling multiple languages, the idiosyncratic ambiguities

of each can be resolved through information explicit in the others.

We have applied this idea to several fundamental tasks of linguistic analysis, in-

cluding part-of-speech tagging [111, 112, 85] (chapter 2), grammar induction [112]

(chapter 3), and morphological analysis [108, 107] (not detailed in this thesis). In

all three cases, we assumed access to multilingual parallel text corpora at training

time, without any human annotations. We treated these corpora as a computa-

tional Rosetta stone, in which each language helps expose the latent structure of

the others. We tested our approach by extracting language-specific models and

then applying them to purely monolingual test data. In all cases, the models origi-

nally trained on multilingual data provided performance superior to monolingually

trained counterparts, sometimes by very large margins. These results validate our

core hypothesis.

One of the key challenges we faced throughout these tasks is that even for par-
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allel sentences, the latent structure used by each language can vary significantly.

Thus, one of our goals throughout this thesis was to discover shared cross-lingual

structure while still allowing significant language-specific idiosyncrasies. To achieve

this balancing act, we posited hierarchical Bayesian models which explain paral-

lel sentences through a combination of multilingual and language-specific latent

random variables.

Even so, the scope of the shared explanatory mechanism is often unknown: some

sets of languages exhibit a much larger degree of shared structure than other. For

example, parallel phrases in related language pairs like Hebrew and Arabic tend to

mirror each other in morphological structure much more than unrelated language

pairs (such as English and Hebrew). To account for this variability in shared struc-

ture, we employed non-parametric statistical methods which allow for a flexible

number of shared variables, as dictated by the languages and data at hand.

5.1 Discussion

The key conclusion we have reached throughout this thesis is that multilingual mod-

eling can yield significant gains in accuracy even without the presence of human

annotation. In the introduction to this thesis (chapter 1), we posed a series of ad-

ditional questions. We discuss each questions here in light of the results presented

throughout the thesis.

Question 1: Will multilingual learning provide more or less benefit when the lan-

guages in question are from the same family (e.g. Hebrew and Arabic, Italian and

French, German and Dutch)? One might argue either way. One the one hand,

related languages are likely to have a greater degree of shared latent structure. On

the other hand, if their patterns of ambiguity are almost identical then little benefit

would be gained.
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In chapter 2 we concluded that language relatedness by itself was neither pos-

itively nor negatively correlated with the success of multilingual learning. This

result is not altogether surprising. It is well known in linguistics that even when

languages descend from a common ancestor, they can quite quickly diverge in their

basic structure when exposed to different neighboring languages. In fact, we found

that common structural properties, regardless of language origin, correlated posi-

tively with multilingual success. For example, languages with higher word alignment

density, and lower cross-lingual entropy tended to help one another.

Our work on unsupervised morphology induction [108, 107], though not dis-

cussed extensively in this thesis, provides another clue. There we initially found

that Hebrew prediction accuracy was boosted by English, an unrelated but mor-

phologically simple language, more so than by the related languages of Arabic and

Aramaic. However, after encoding the phonetic relationship between these Semitic

languages as a prior in our model, we found that the related languages indeed

provided superior benefit. Indeed, for certain tasks, such as lost language deci-

pherment (discussed below), the only benefit will come through the assumption of

language-relatedness.

We can synthesize these findings in the following way: If historical language-

relatedness is not explicitly modeled (as in chapter 2), then more abstract structural

properties of the language pairing will prove decisive. However, the greatest bene-

fits of multilingual learning may only be seen when we explicitly model language-

relatedness as a background factor in our models.

Question 2: Can multilingual learning be made to scale-up beyond pairs of lan-

guages? It seems that the arguments in favor of multilingual learning would only

be strengthened as additional languages are modeled. Each language may provide

some unique disambiguation cues lacking in the others. As a practical matter, mas-

sively multilingual data-sets do exist (e.g. the Bible, which has been translated into
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over 1,000 languages) and an ideal multilingual learning technique would thus scale

gracefully in the number of languages.

Our results in chapter 2 provide some initial answers to this question. There

we formulated a part-of-speech tagging model that learns jointly from multilingual

parallel text in any number of languages. We tested our model on up to eight

languages and found that performance consistently improves as more languages are

added (even when going from seven to eight). When we assumed a full tagging

dictionary, jointly modeling eight languages cut the performance gap between su-

pervised and unsupervised learning by two-thirds. It seems likely that performance

would continue to improve with larger multilingual corpora.

Question 3: Can multilingual learning account for complex latent structure where

cross-lingual shared elements are minimal and difficult to discern? To do so effec-

tively and efficiently will require an unobtrusive representation of whatever shared

structure exists.

Chapter 3 dealt with the difficult problem of unsupervised grammar induction.

The greatest challenge in applying a multilingual framework to this task was in

developing the right representation. For a simpler task like part-of-speech tagging,

the sentence themselves (and their word alignments) determine the structure of

the latent variables. The main learning task there is simply labeling those vari-

ables. In contrast, for grammar induction our main objective is one of structure

induction itself. However, languages can use very different syntactic structures to

express the same meaning. To account for this variability, we developed a proba-

bilistic version of the tree alignment formalism [60]. This allowed us to represent

the commonalities, or at least the systematic regularities, between the languages’

trees. Experimentally, we showed that using this formalism on bilingual corpora
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yielded significant performance benefits over a state-of-the-art baseline. Grammar

induction remains a difficult task and more work remains to be done. Nevertheless,

these initial findings show that multilingual learning can indeed account for com-

plex latent structure when the right formalism is deployed.

Question 4: Can multilingual learning be effective without parallel data? Through-

out this section our arguments have depended on the existence of parallel data as

a computational Rosetta stone. However, if the languages in question come from

the same family, it may be possible to use language-wide structural correspondences

rather than the correspondences delivered by parallel text.

To answer this question, chapter 4 turned to an inherently multilingual task:

lost language decipherment. When a lost script or language is discovered we very

rarely have the luxury of parallel data. Our only hope of recovering the language

comes from cross-lingual structural analysis that links the lost writing system to a

known language. Such analysis can take humans decades to perform. Our results

on the Ugaritic language show that it is indeed possible to effectively capture shared

language structure in the absence of parallel texts.

The key to this result lies in designing a model with the appropriate inductive

biases. In particular, we know that the correct mapping between related languages

will conform to certain rules and intuitions. For example, the mapping between

alphabets should be structurally sparse (no letter should map to an inordinate

number of others), and regular morphemic and lexical patterns should obtain. We

designed a model that enforces these regularities. We believe that this kind of

modeling can be transferred to more traditional NLP tasks to allow multilingual

benefits even when parallel data is absent or scarce.
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5.2 Future Work: Multilingual Semantics

To conclude, we briefly turn to a major direction for future multilingual work.

Throughout this thesis, we have discussed the various layers of latent structure that

undergird natural language sentences. These range from the morphemes involved in

word production to the syntax trees which determines word order. However, we have

never discussed the meaning of sentences. In fact, the ability to extract meaning

from text is one of the paramount goals of natural language processing. Bringing this

goal to fruition has been difficult for several reasons. Perhaps most fundamentally,

it is not known conclusively whether consistent meaning representations underly

language production at all. Even assuming they do, it is unlikely that a study

of language alone will yield their structure without further gains from cognitive

psychology and neuroscience.

One step around this dilemma is to posit a difference between “deep” and “shal-

low” semantics. The latter, rather than claiming to represent cognitively significant

mental structures, instead seeks a representation of predicate-argument structure

which hews loosely to the form of the sentence. For example, consider the following

two sentences:

(1) I love fish.

(2) Fish are loved by me.

Although these sentences differ in emphasis (and would be used in very different

discourse contexts), it is reasonable to assume that they convey the same basic

information. In fact, a shallow semantic analysis of these sentences would likely

yield a single predicate-argument structure, which we might simply represent as:

loves(I, fish). The key benefit of shallow semantic analysis is precisely that it allows

us to capture the factual equivalence of sentences (1) and (2), despite their surface

dissimilarity.

As mentioned throughout this thesis, languages differ in their latent structure,

even when expressing the same meaning. This is likely to hold true for shallow
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I

love fish

I-love

the-fish

be

I approving

fish

Arabic English Urdu

Figure 5-1: Word-aligned dependency parses for a sentence in English, Arabic, and
Urdu.

semantics (and perhaps even for “deep” semantics). Nonetheless, the same sort of

multilingual triangulation that we’ve applied to other areas of linguistic structure

should succeed here as well. If the patterns of semantic ambiguity vary by language,

then joint multilingual modeling should help pinpoint the correct analyses.

To get a sense of what this might look like, we can consider a multilingual ex-

ample:

English: I love fish.

Arabic: I-love the-fish.

Urdu: I fish approving be.

To see the underlying shallow semantics of these sentences, we can display them as

word-aligned dependency trees, as in figure 5-1. What this analysis would hopefully

reveal is the set of cross-lingual semantic correspondences:

love(I,fish) = I-love(the-fish) = be(I,approve(fish))

Perhaps this example only serves to illustrate how language-specific this notion of

shallow semantics can be. Be that as it may, it is certain that we cannot progress to

any deeper level of understanding without considering the wide variety of languages

and all the manners in which they express thought.
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Appendix A

Tag Repository

       
Adjective x x x x x x x x
Conjunction x x x x x x x x
Determiner - - x - - x - -
Interjection x x x x x x x x
Numeral x x x x x x x x
Noun x x x x x x x x
Pronoun x x x x x x x x
Particle x x - - - x x x
Adverb x x x x x x x x
Adposition x x x x x x x x
Article - - - - x x - -
Verb x x x x x x x x
Residual x x x x x x x x
Abbreviation x x x x x x x x

Table A.1: Tag repository for each language
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Appendix B

Alignment Statistics

       
 42163 51098 33849 31673 42017 45969 46434
 42163 43067 40207 31537 32559 57789 49740
 51098 43067 40746 39012 50289 52869 48394
 33849 40207 40746 32056 27709 42499 37681
 31673 31537 39012 32056 26455 34072 29797
 42017 32559 50289 27709 26455 36442 38004
 45969 57789 52869 42499 34072 36442 59865
 46434 49740 48394 37681 29797 38004 59865

Table B.1: Number of alignments per language pair

        Avg.
 2.77 6.13 3.36 4.04 4.52 2.95 3.48 3.89
 2.77 3.67 1.92 2.73 3.61 2.59 2.64 2.85
 6.13 3.67 4.35 6.12 5.59 3.54 3.86 4.75
 3.36 1.92 4.35 2.88 3.88 2.44 2.21 3.01
 4.04 2.73 6.12 2.88 4.13 3.09 3.06 3.72
 4.52 3.61 5.59 3.88 4.13 3.78 3.92 4.20
 2.95 2.59 3.54 2.44 3.09 3.78 4.11 3.22
 3.48 2.64 3.86 2.21 3.06 3.92 4.11 3.33

Table B.2: Percentage of alignments removed per language pair
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All        
Adjective 80.52 84.39 85.14 86.09 77.55 67.04 70.72 88.56 87.05
Conjunction 84.51 84.93 84.44 95.09 88.61 73.41 78.49 88.18 83.82
Determiner 54.32 - - 56.82 - - 41.07 - -
Interjection 87.01 87.85 100.00 93.94 90.00 91.01 83.17 85.11 68.57
Numeral 82.56 79.31 86.78 93.66 74.51 72.97 85.94 91.50 80.27
Noun 85.39 88.01 88.63 91.31 80.43 77.90 78.31 91.84 87.52
Pronoun 61.86 69.53 61.61 73.73 57.75 39.55 52.29 68.93 65.13
Particle 69.71 66.71 84.39 - - - 68.79 71.92 73.03
Adverb 68.09 77.77 74.35 82.19 60.18 53.45 57.42 78.96 75.57
Adposition 62.48 66.58 65.17 65.54 35.10 33.88 46.62 74.77 72.58
Article 48.56 - - - - 50.81 43.68 - -
Verb 72.72 78.93 79.43 71.98 68.14 62.87 63.49 75.22 78.51
Residual 84.16 95.00 86.32 84.62 37.50 88.00 60.81 100.00 77.46
Abbreviation 87.46 66.67 90.00 - 90.74 88.61 69.23 90.00 91.18

Table B.3: For each part-of-speech, percentage of occurrences with an edge from
a superlingual tag (in the latent variable model). A dash (“-”) indicates that the
part-of-speech does not occur in the given language.
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Appendix C

Stanford Tagger Performance

Language Accuracy
 96.1
 97.2
 97.6
 97.1
 96.3
 97.6
 96.6
 95.5
Avg. 96.7

Table C.1: Performance of the (supervised) Stanford tagger for the full lexicon
scenario
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Appendix D

Rank Correlation
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Performance correlates for MergedNode model
Language Cross-lingual entropy Alignment density LatentVariable performance

 -0.29 0.09 -0.09
 0.39 0.34 0.24
 0.28 0.77 0.42
 0.46 0.56 0.56
 0.31 -0.02 0.29
 0.34 0.83 0.89
 0.59 0.66 0.95
 0.21 0.13 0.63
Avg. 0.29 0.42 0.49

Performance correlates for LatentVariable model
Language Cross-lingual entropy Alignment density MergedNode performance

 0.58 0.44 -0.09
 -0.40 -0.44 0.24
 0.67 0.41 0.42
 0.14 0.32 0.56
 -0.14 -0.72 0.29
 0.04 0.68 0.89
 0.57 0.54 0.95
 0.18 0.10 0.68
Avg. 0.21 0.17 0.49

Table D.1: Pearson correlation coefficients between bilingual performance on the
target language and various rankings of the supplementary language. For both
models and for each target language, we obtain a ranking over all supplementary
languages based on bilingual performance in the target language. These rankings
are then correlated with other characteristics of the bilingual pairing: cross-lingual
entropy (the entropy of tag distributions in the target language given aligned tags
in the supplementary language); alignment density (the percentage of words in
the target language aligned to words in the auxiliary language); and performance
in the alternative model (target language performance when paired with the same
supplementary language in the alternative model).
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Appendix E

Universal Helpfulness

MergedNode model LatentVariable model
 2.43  1.86
 2.57  3.00
 3.14  3.14
 3.43  3.71
 3.43  3.71
 4.71  3.71
 5.00  4.14
 5.71  6.00

Table E.1: Average helpfulness rank for each language under the two models
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Appendix F

Ugaritic-Hebrew letter mappings
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א a
ב b
ג g
ד d
ה h
ו w
ז z
ח ḥ
ט ṭ
י y
כ k
ל l
מ m
נ n
ס s
ע ʕ
פ p
צ ṣ
ק q
ר r
שׁ š
שׂ ś
ת t

𐎀 a
𐎁 b
𐎂 g
𐎃 ḫ
𐎄 d
𐎅 h
𐎆 w
𐎇 z
𐎈 ḥ
𐎉 ṭ
𐎊 y
𐎋 k
𐎌 š
𐎍 l
𐎎 m
𐎏 ḏ
𐎐 n
𐎑 ẓ
𐎒 s
𐎓 ʕ
𐎔 p
𐎕 ṣ
𐎖 q
𐎗 r
𐎘 ṯ
𐎙 ġ
𐎝 ś
𐎚 t
𐎛 i
𐎜 u

Table F.1: Hebrew letters (left) and Ugaritic letters (right) with phonetic transcrip-
tion.
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Hebrew
a b g d h w z ḥ ṭ y k l m n s ʕ p ṣ q r š ś t

U
ga
rit
ic

a X
b X
g X
ḫ X
d X X
h X
w X
z X
ḥ X
ṭ X
y X
k X
š X X
l X
m X
ḏ X
n X
ẓ X
s X
ʕ X
p X
ṣ X
q X
r X
ṯ X
ġ X X
ś X
t X
i X
u X

Table F.2: Gold Standard: Mappings between Ugaritic and Hebrew letters, re-
flecting the historical relationship between the corresponding phonemes.
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Hebrew
a b g d h w z ḥ ṭ y k l m n s ʕ p ṣ q r š ś t

U
ga
rit
ic

a X
b X
g X
ḫ X
d X *
h X
w X
z X* *
ḥ X
ṭ X
y X
k X
š * X
l X
m X
ḏ X
n X
ẓ X
s X
ʕ X
p X
ṣ X
q X
r X
ṯ X
ġ X *
ś X* *
t X
i X
u X

Table F.3: Model Predictions: Mappings between Ugaritic and Hebrew letters, as
predicted by the matrix of indicator variables {λ(u,h)} in our model. Entries where
predictions differ from the gold-standard mapping are indicated with an asterisk
(*).
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Hebrew
a b g d h w z ḥ ṭ y k l m n s ʕ p ṣ q r š ś t

U
ga
rit
ic

a *
b X
g X
ḫ *
d X *
h *
w *
z X
ḥ X
ṭ X
y X* *
k X
š * X
l X X*
m X* X
ḏ *
n X
ẓ *
s X
ʕ X* X
p X
ṣ X
q X
r X X*
ṯ *
ġ * *
ś *
t X* *
i *
u *

Table F.4: Baseline Predictions 1: Mappings between Ugaritic and Hebrew
letters, as predicted by the HMM baseline (where (u, h) is predicted iff u =
argmaxu′ P (u′|h)). Entries where predictions differ from the gold-standard map-
ping are indicated with an asterisk (*).
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Hebrew
a b g d h w z ḥ ṭ y k l m n s ʕ p ṣ q r š ś t

U
ga
rit
ic

a X
b X
g X
ḫ X
d X *
h * X*
w * X*
z X
ḥ X
ṭ X
y X* *
k X
š X *
l X
m X
ḏ X
n X
ẓ X* *
s X
ʕ X
p X
ṣ X
q X
r X
ṯ X
ġ * * X*
ś * X*
t X* *
i X
u X

Table F.5: Baseline Predictions 2: Mappings between Ugaritic and Hebrew
letters, as predicted by the HMM baseline (where (u, h) is predicted iff h =
argmaxh′ P (h′|u) ∝ P (u|h′)P (h′)). Entries where predictions differ from the gold-
standard mapping are indicated with an asterisk (*).
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Hebrew
a b g d h w z ḥ ṭ y k l m n s ʕ p ṣ q r š ś t

U
ga
rit
ic

a X
b X
g X
ḫ X
d X *
h * X*
w * X*
z X
ḥ X
ṭ X
y X* *
k X
š X X
l X X*
m X* X
ḏ X
n X
ẓ X* *
s X
ʕ X* X
p X
ṣ X
q X
r X X*
ṯ X
ġ * * X*
ś * X*
t X* *
i X
u X

Table F.6: Baseline Predictions 3: Mappings between Ugaritic and Hebrew
letters, as predicted by the HMM baseline (where (u, h) is predicted iff either
u = argmaxu′ P (u′|h) or h = argmaxh′ P (h′|u) ∝ P (u|h′)P (h′)). Entries where
predictions differ from the gold-standard mapping are indicated with an asterisk
(*).
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