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Abstract

In this paper, we consider the problem of un-
supervised morphological analysis from a new
angle. Past work has endeavored to design un-
supervised learning methods which explicitly
or implicitly encode inductive biases appropri-
ate to the task at hand. We propose instead
to treat morphological analysis as a structured
prediction problem, where languages with la-
beled data serve as training examples for un-
labeled languages, without the assumption of
parallel data. We define a universal morpho-
logical feature space in which every language
and its morphological analysis reside. We de-
velop a novel structured nearest neighbor pre-
diction method which seeks to find the mor-
phological analysis for each unlabeled lan-
guage which lies as close as possible in the
feature space to a training language. We ap-
ply our model to eight inflecting languages,
and induce nominal morphology with substan-
tially higher accuracy than a traditional, MDL-
based approach. Our analysis indicates that
accuracy continues to improve substantially as
the number of training languages increases.

1 Introduction

Over the past several decades, researchers in the nat-
ural language processing community have focused
most of their efforts on developing text processing
tools and techniques for English (Bender, 2009),
a morphologically simple language. Recently, in-
creasing attention has been paid to the wide variety
of other languages of the world. Most of these lan-
guages still pose severe difficulties, due to (i) their

lack of annotated textual data, and (ii) the fact that
they exhibit linguistic structure not found in English,
and are thus not immediately susceptible to many
traditional NLP techniques.

Consider the example of nominal part-of-speech
analysis. The Penn Treebank defines only four En-
glish noun tags (Marcus et al., 1994), and as a re-
sult, it is easy to treat the words bearing these tags
as completely distinct word classes, with no inter-
nal morphological structure. In contrast, a compara-
ble tagset for Hungarian includes 154 distinct noun
tags (Erjavec, 2004), reflecting Hungarian’s rich in-
flectional morphology. When dealing with such lan-
guages, treating words as atoms leads to severe data
sparsity problems.

Because annotated resources do not exist for most
morphologically rich languages, prior research has
focused on unsupervised methods, with a focus on
developing appropriate inductive biases. However,
inductive biases and declarative knowledge are no-
toriously difficult to encode in well-founded models.
Even putting aside this practical matter, a universally
correct inductive bias, if there is one, is unlikely to
be be discovered by a priori reasoning alone.

In this paper, we argue that languages for which
we have gold-standard morphological analyses can
be used as effective guides for languages lacking
such resources. In other words, instead of treating
each language’s morphological analysis as a de novo
induction problem to be solved with a purely hand-
coded bias, we instead learn from our labeled lan-
guages what linguistically plausible morphological
analyses looks like, and guide our analysis in this
direction.



More formally, we recast morphological induc-
tion as a new kind of supervised structured predic-
tion problem, where each annotated language serves
as a single training example. Each language’s noun
lexicon serves as a single input x, and the analysis
of the nouns into stems and suffixes serves as a com-
plex structured label y.

Our first step is to define a universal morpholog-
ical feature space, into which each language and its
morphological analysis can be mapped. We opt for
a simple and intuitive mapping, which measures the
sizes of the stem and suffix lexicons, the entropy of
these lexicons, and the fraction of word forms which
appear without any inflection.

Because languages tend to cluster into well de-
fined morphological groups, we cast our learn-
ing and prediction problem in the nearest neighbor
framework (Cover and Hart, 1967). In contrast to
its typical use in classification problems, where one
can simply pick the label of the nearest training ex-
ample, we are here faced with a structured predic-
tion problem, where locations in feature space de-
pend jointly on the input-label pair (x, y). Finding a
nearest neighbor thus consists of searching over the
space of morphological analyses, until a point in fea-
ture space is reached which lies closest to one of the
labeled languages. See Figure 1 for an illustration.

To provide a measure of empirical validation, we
applied our approach to eight languages with inflec-
tional nominal morphology, ranging in complexity
from very simple (English) to very complex (Hun-
garian). In all but one case, our approach yields
substantial improvements over a comparable mono-
lingual baseline (Goldsmith, 2005), which uses the
minimum description length principle (MDL) as its
inductive bias. On average, our method increases
accuracy by 11.8 percentage points, corresponding
to a 42% decrease in error relative to a supervised
upper bound. Further analysis indicates that accu-
racy improves as the number of training languages
increases.

2 Related Work

In this section, we briefly review prior work on un-
supervised morphological induction, as well as mul-
tilingual analysis in NLP.

Unsupervised Morphological Induction: Unsu-
pervised morphology remains an active area of re-
search (Schone and Jurafsky, 2001; Goldsmith,
2005; Adler and Elhadad, 2006; Creutz and La-
gus, 2005; Dasgupta and Ng, 2007; Creutz and La-
gus, 2007; Poon et al., 2009). Many existing algo-
rithms derive morpheme lexicons by identifying re-
curring patterns in words. The goal is to optimize the
compactness of the data representation by finding a
small lexicon of highly frequent strings, resulting in
a minimum description length (MDL) lexicon and
corpus (Goldsmith, 2001; Goldsmith, 2005). Later
work cast this idea in a probabilistic framework in
which the the MDL solution is equivalent to a MAP
estimate in a suitable Bayesian model (Creutz and
Lagus, 2005). In all these approaches, a locally op-
timal segmentation is identified using a task-specific
greedy search.

Multilingual Analysis: An influential line of prior
multilingual work starts with the observation that
rich linguistic resources exist for some languages
but not others. The idea then is to project linguis-
tic information from one language onto others via
parallel data. Yarowsky and his collaborators first
developed this idea and applied it to the problems of
part-of-speech tagging, noun-phrase bracketing, and
morphology induction (Yarowsky and Wicentowski,
2000; Yarowsky et al., 2000; Yarowsky and Ngai,
2001), and other researchers have applied the idea
to syntactic and semantic analysis (Hwa et al., 2005;
Padó and Lapata, 2006) In these cases, the existence
of a bilingual parallel text along with highly accurate
predictions for one of the languages was assumed.

Another line of work assumes the existence of
bilingual parallel texts without the use of any super-
vision (Dagan et al., 1991; Resnik and Yarowsky,
1997). This idea has been developed and applied to
a wide variety tasks, including morphological anal-
ysis (Snyder and Barzilay, 2008b; Snyder and Barzi-
lay, 2008a), part-of-speech induction (Snyder et al.,
2008; Snyder et al., 2009b; Naseem et al., 2009),
and grammar induction (Snyder et al., 2009a; Blun-
som et al., 2009; Burkett et al., 2010). An even
more recent line of work does away with the as-
sumption of parallel texts and performs joint unsu-
pervised induction for various languages through the
use of coupled priors in the context of grammar in-



duction (Cohen and Smith, 2009; Berg-Kirkpatrick
and Klein, 2010).

In contrast to these previous approaches, the
method proposed in this paper does not assume the
existence of any parallel text, but does assume that
labeled data exists for a wide variety of languages, to
be used as training examples for our test language.

3 Structured Nearest Neighbor

We reformulate morphological induction as a super-
vised learning task, where each annotated language
serves as a single training example for our language-
independent model. Each such example consists
of an input-label pair (x, y), both of which contain
complex internal structure: The input x ∈ X con-
sists of a vocabulary list of all words observed in a
particular monolingual corpus, and the label y ∈ Y
consists of the correct morphological analysis of all
the vocabulary items in x.1 Because our goal is
to generalize across languages, we define a feature
function which maps each (x, y) pair to a universal
feature space: f : X × Y → Rd.

For each unlabeled input language x, our goal is
to predict a complete morphological analysis y ∈ Y
which maximizes a scoring function on the fea-
ture space, score : Rd → R. This scoring func-
tion is trained using the n labeled-language exam-
ples: (x, y)1, . . . , (x, y)n, and the resulting predic-
tion rule for unlabeled input x is given by:

y∗ = argmax
y∈Y

score
(
f(x, y)

)

Languages can be typologically categorized by
the type and richness of their morphology. On the
assumption that for each test language, at least one
typologically similar language will be present in the
training set, we employ a nearest neighbor scoring
function. In the standard nearest neighbor classifi-
cation setting, one simply predicts the label of the
closest training example in the input space.2 In our
structured prediction setting, the mapping to the uni-
versal feature space depends crucially on the struc-
ture of the proposed label y, not simply the input

1Technically, the label space of each input, Y , should be
thought of as a function of the input x. We suppress this depen-
dence for notational clarity.

2More generally the majority label of the k-nearest neigh-
bors.

x. We thus generalize nearest-neighbor prediction
to the structured scenario and propose the following
prediction rule:

y∗ = argmin
y∈Y

min
`
‖ f(x, y)− f(x`, y`) ‖, (1)

where the index ` ranges over the training languages.
In words, we predict the morphological analysis y
for our test language which places it as close as pos-
sible in the universal feature space to one of the
training languages `.

Morphological Analysis: In this paper we focus
on nominal inflectional suffix morphology. Consider
the word utiskom in Serbian, meaning impression
with the instrumental case marking. A correct analy-
sis of this word would divide it into a stem (utisak =
impression), a suffix (-om = instrumental case), and
a phonological deletion rule on the stem’s penulti-
mate vowel (..ak#→ ..k#).

More generally, as we define it, a morphological
analysis of a word type w consists of (i) a stem t, (ii),
a suffix f , and (iii) a deletion rule d. Either or both
of the suffix and deletion rule can be NULL. We al-
low three types of deletion rules on stems: deletion
of final vowels (..V# → ..#), deletion of penulti-
mate vowels (..V C# → ..C#), and removals and
additions of final accent marks (e.g. ..ã# → ..a#).
We require that stems be at least three characters
long and that suffixes be no more than four. And,
of course, we require that after (1) applying deletion
rule d to stem t, and (2) adding suffix f to the result,
we obtain word w.

Universal Feature Space: We employ a fairly
simple and minimal set of features, all of which
could plausibly generalize across a wide range of
languages. Consider the set of stems T , suffixes F ,
and deletion rules D, induced by the morphological
analyses y of the words x. Our first three features
simply count the sizes of these three sets.

These counting features consider only the raw
number of unique morphemes (and phonological
rules) being used, but not their individual frequency
or distribution. Our next set of features considers
the empirical entropy of these occurrences as dis-
tributed across the lexicon of words x by analysis y.
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Figure 1: Structured Nearest Neighbor Search: The inference procedure for unlabeled test language x, when trained
with three labeled languages, (x1, y1), (x2, y2), (x3, y3). Our search procedure iteratively attempts to find labels for x
which are as close as possible in feature space to each of the training languages. After convergence, the label which is
closest in distance to a training language is predicted, in this case being the label near training language (x3, y3).

For example, if the (x, y) pair consists of the ana-
lyzed words {kiss, kiss-es, hug}, then the empirical
distributions over stems, suffixes, and deletion rules
would be:

• P (t = kiss) = 2/3

• P (t = hug) = 1/3

• P (f = NULL) = 2/3

• P (f = −es) = 1/3

• P (d = NULL) = 1

The three entropy features are defined as the shan-
non entropies of these stem, suffix, and deletion rule
probabilities: H(t), H(f), H(d).3

Finally, we consider two simple percentage fea-
tures: the percentage of words in x which according
to y are left unsegmented (i.e. have the null suf-
fix, 2/3 in the example above), and the percentage of
segmented words which employ a deletion rule (0 in
the example above). Thus, in total, our model em-
ploys 8 universal morphological features. All fea-
tures are scaled to the unit interval and are assumed
to have equal weight.

3Note that here and throughout the paper, we operate over
word types, ignoring their corpus frequencies.

3.1 Search Algorithm
The main algorithmic challenge for our model lies in
efficiently computing the best morphological analy-
sis y for each language-specific word set x, accord-
ing to Equation 1. Exhaustive search through the
set of all possible morphological analyses is impos-
sible, as the number of such analyses grows expo-
nentially in the size of the vocabulary. Instead, we
develop a greedy search algorithm in the following
fashion (the search procedure is visually depicted in
Figure 1).

At each time-step t, we maintain a set of frontier
analyses

{
y(t,`)

}
`
, where ` ranges over the training

languages. The goal is to iteratively modify each of
these frontier analyses y(t,`) → y(t+1,`) so that the
location of the training language in universal feature
space — f

(
x, y(t+1,`)

)
— is as close as possible to

the location of the training language `: f
(
x`, y`).

After iterating this procedure to convergence, we
are left with a set of analyses

{
y(`)

}
`
, each of which

approximates the analyses which yield minimal dis-
tances to a particular training language:

y(`) ≈ argmin
y∈Y

‖ f(x, y)− f(x`, y`) ‖ .

We finally select from amongst these analyses and



make our prediction:

`∗ = argmin
`
‖ f(x, y(`))− f(x`, y`) ‖

y∗ = y(`
∗)

The main outline of our search algorithm is based
on the MDL-based greedy search heuristic devel-
oped and studied by (Goldsmith, 2005). At a high
level, this search procedure alternates between indi-
vidual analyses of words (keeping the set of stems
and suffixes fixed), aggregate discoveries of new
stems (keeping the suffixes fixed), and aggregate dis-
coveries of new suffixes (keeping stems fixed). As
input, we consider the test words x in our new lan-
guage, and we run the search in parallel for each
training language (x`, y`). For each such test-train
language pair, the search consists of the following
stages:

Stage 0: Initialization
We initially analyze each word w ∈ x according

to peaks in successor frequency.4 If w’s n-character
prefix w:n has successor frequency > 1 and the sur-
rounding prefixes, w:n−1 and w:n+1 both have suc-
cessor frequency = 1, then we analyze w as a stem-
suffix pair: (w:n, wn+1:).5 Otherwise, we initialize
w as an unsuffixed stem. As this procedure tends to
produce an overly large set of suffixes F , we further
prune F down to the number of suffixes found in
the training language, retaining those which appear
with the largest number of stems. This initialization
stage is carried out once, and afterwards the follow-
ing three stages are repeated until convergence.

Stage 1: Reanalyze each word
In this stage, we reanalyze each word (in random

order). We use the set of stems T and suffixes F
obtained from the previous stage, and don’t permit
the addition of any new items to these lists. In-
stead, we focus on obtaining better analyses of each
word, while also building up a set of phonological
deletion rules D. For each word w ∈ x, we con-
sider all possible segmentations of w into a stem-

4The successor frequency of a string prefix s is defined as
the number of unique characters that occur immediately after s
in the vocabulary.

5With the restriction that at this stage we only allow suffixes
up to length 5, and stems of at least length 3.

suffix pair (t, f), for which f ∈ F , and where ei-
ther t ∈ T or some t′ ∈ T such that t is obtained
from t′ using a deletion rule d (e.g. by deleting a
final or penultimate vowel). For each such possi-
ble analysis y′, we compute the resulting location
in feature space f(x, y′), and select the analysis that
brings us closest to our target training language:
y = argminy′ ‖ f(x, y′)− f(x`, y`) ‖ .

Stage 2: Find New Stems
In this stage, we keep our set of suffixes F and

deletion rules D from the previous stage fixed, and
attempt to find new stems to add to T through an ag-
gregate analysis of unsegmented words. For every
string s, we consider the set of words which are cur-
rently unsegmented, and can be analyzed as a stem-
suffix pair (s, f) for some existing suffix f ∈ F ,
and some deletion rule d ∈ D. We then consider
the joint segmentation of these words into a new
stem s, and their respective suffixes. As before, we
choose the segmentation if it brings us closer in fea-
ture space to our target training language.

Stage 3: Find New Suffixes
This stage is exactly analogous to the previous

stage, except we now fix the set of stems T and seek
to find new suffixes.

3.2 A Monolingual Supervised Model

In order to provide a plausible upper bound on per-
formance, we also formulate a supervised monolin-
gual morphological model, using the structured per-
ceptron framework (Collins, 2002). Here we as-
sume that we are given some training sequence of in-
puts and morphological analyses (all within one lan-
guage): (x1, y1), (x2, y2), . . . , (xn, yn). We define
each input xi to be a noun w, along with a morpho-
logical tag z, which specifies the gender, case, and
number of the noun. The goal is to predict the cor-
rect segmentation of w into stem, suffix, and phono-
logical deletion rule: yi = (t, f, d).6

To do so, we define a feature function over input-
label pairs, (x, y), with the following binary feature
templates: (1) According to label yi, the stem is t

6While the assumption of the correct morphological tag as
input is somewhat unrealistic, this model still gives us a strong
upper bound on how well we can expect our unsupervised
model to perform.



Type Counts Entropy Percentage
# words # stems # suffs # dels stem entropy suff entropy del entropy unseg deleted

BG 4833 3112 21 8 11.4 2.7 0.9 .45 .29
CS 5836 3366 28 12 11.5 3.2 1.6 .38 .53
EN 4178 3453 3 1 11.7 1.0 0.1 .73 .06
ET 6371 3742 141 5 11.5 5.0 0.2 .31 .04
HU 8051 3746 231 7 11.3 5.8 0.5 .23 .11
RO 5578 3297 23 8 11.5 2.9 1.4 .48 .51
SL 6111 3172 32 6 11.3 3.2 1.5 .33 .56
SR 5849 3178 28 5 11.4 2.9 1.4 .33 .53

Table 1: Corpus statistics for the eight languages. The first four columns give the number of unique word, stem, suffix,
and phonological deletion rule types. The next three columns give, respectively, the entropies of the distributions
of stems, suffixes (including NULL), and deletion rules (including NULL) over word types. The final two columns
give, respectively, the percentage of word types occurring with the NULL suffix, and the number of non-NULL suffix
words which use a phonological deletion rule. Note that the final eight columns define the universal feature space used
by our model. BG = Bulgarian, CS = Czech, EN = English, ET = Estonian, HU = Hungarian, RO = Romanian, SL =
Slovene, SR = Serbian

(one feature for each possible stem). (2) Accord-
ing to label yi, the suffix and deletion rule are (f, d)
(one feature for every possible pair of deletion rules
and suffixes). (3) According to label yi and morpho-
logical tag z, the suffix, deletion rule, and gender
are respectively (f, d,G). (4) According to label yi
and morphological tag z, the suffix, deletion rule,
and case are (f, d, C). (5) According to label yi and
morphological tag z, the suffix, deletion rule, and
number are (f, d,N).

We train a set of linear weights on our fea-
tures using the averaged structured perceptron algo-
rithm (Collins, 2002).

4 Experiments

In this section we turn to experimental findings to
provide empirical support for our proposed frame-
work.

Corpus: To test our cross-lingual model, we ap-
ply it to a morphologically analyzed corpus of eight
languages (Erjavec, 2004). The corpus includes a
roughly 100,000 word English text, Orwell’s novel
“Nineteen Eighty Four,” and its translation into
seven languages: Bulgarian, Czech, Estonian, Hun-
garian, Romanian, Slovene, and Serbian. All the
words in the corpus are tagged with morphologi-
cal stems and a detailed morpho-syntactic analysis.
Although the texts are parallel, we note that par-
allelism is nowhere assumed nor exploited by our

model. See Table 1 for a summary of relevant cor-
pus statistics. As indicated in the table, the raw num-
ber of nominal word types varies quite a bit across
the languages, almost doubling from 4,178 (English)
to 8,051 (Hungarian). In contrast, the number of
stems appearing within these words is relatively sta-
ble across languages, ranging from a minimum of
3,112 (Bulgarian) to a maximum of 3,746 (Hungar-
ian), an increase of just 20%.

In contrast, the number of suffixes across the lan-
guages varies quite a bit. Hungarian and Esto-
nian, both Uralic languages with very complex nom-
inal morphology, use 231 and 141 nominal suffixes,
respectively. Besides English, the remaining lan-
guages employ between 21 and 32 suffixes, and En-
glish is the outlier in the other direction, with just
three nominal inflectional suffixes.

Baselines and Results: As our unsupervised
monolingual baseline, we use the Linguistica pro-
gram (Goldsmith, 2001; Goldsmith, 2005). We ap-
ply Linguistica’s default settings, and run the “suffix
prediction” option. Our model’s search procedure
closely mirrors the one used by Linguistica, with
the crucial difference that instead of attempting to
greedily minimize description length, our algorithm
instead tries to find the analysis as close as possi-
ble in the universal feature space to that of another
language.

To apply our model, we treat each of the eight



Linguistica
Our Model

SupervisedNearest Neighbor Self (oracle) Avg.
Accuracy Distance Accuracy Distance Accuracy Distance

BG 68.7 84.0 (RO) 0.13 88.7 0.03 68.6 3.90 94.7
CS 60.4 82.8 (BG) 0.40 84.5 0.03 66.3 4.05 93.5
EN 81.1 75.8 (BG) 1.29 89.3 0.10 58.3 4.30 93.4
ET 51.2 66.6 (HU) 0.35 80.9 0.03 52.8 4.57 86.5
HU 64.5 69.3 (ET) 0.81 66.5 1.10 68.0 4.94 94.9
RO 65.6 71.0 (CS) 0.11 71.2 0.15 62.3 3.95 89.1
SL 61.1 82.8 (SR) 0.07 85.5 0.04 61.7 3.69 95.4
SR 64.2 79.1 (SL) 0.06 82.2 0.04 63.0 3.71 94.8
avg. 64.6 76.4 0.40 81.1 0.19 62.6 4.14 92.8

Table 2: Prediction accuracy over word types for the Linguistica baseline, our cross-lingual model, and the monolin-
gual supervised perceptron model. For our model, we provide both prediction accuracy and resulting distance to the
training language in three different scenarios: (i) Nearest Neighbor: The training languages include all seven other
languages in our data set, and the predictions with minimal distance to a training language are chosen (the nearest
neighbor is indicated in parentheses). (ii) Self (oracle): Each language is trained to minimize the distance to its own
gold-standard analysis. (iii) Average: The feature values of all seven training languages are averaged together to
create a single objective.

languages in turn as the test language, with the other
seven serving as training examples. For each test
language, we iterate the search procedure for each
training language (performed in parallel), until con-
vergence. The number of required iterations varies
from 6 to 36 (depending on the test-training lan-
guage pair), and each iteration takes no more than 30
seconds of run-time on a 2.4GHz Intel Xeon E5620
processor. We also consider two variants of our
method. In the first (Self (oracle)), we train each
test language to minimize the distance to its own
gold standard feature values. In the second variant
(Avg.), we average the feature values of all seven
training languages into a single objective. As a plau-
sible upper bound on performance, we implemented
the structured perceptron described in Section 3.2.
For each language, we train the perceptron on a ran-
domly selected set of 80% of the nouns, and test on
the remaining 20%.

The prediction accuracy for all models is calcu-
lated as the fraction of word types with correctly
predicted suffixes. See Table 2 for the results. For
all languages other than English (which is a mor-
phological loner in our group of languages), our
model improves over the baseline by a substantial
margin, yielding an average increase of 11.8 abso-
lute percentage points, and a reduction in error rela-

tive to the supervised upper bound of 42%. Some of
the most striking improvements are seen on Serbian
and Slovene. These languages are closely related
to one another, and indeed our model discovers that
they are each others’ nearest neighbors. By guiding
their morphological analyses towards one another,
our model achieves a 21 percentage point increase
in the case of Slovene and a 15 percentage point in-
crease in the case of Slovene.

Perhaps unsurprisingly, when each language’s
gold standard feature values are used as its own
target (Self (oracle) in Table 2), performance in-
creases even further, to an average of 81.1%. By the
same token, the resulting distance in universal fea-
ture space between training and test analyses is cut
in half under this variant, when compared to the non-
oracular nearest neighbor method. The remaining
errors may be due to limitations of the search proce-
dure (i.e. getting caught in local minima), or to the
coarseness of the feature space (i.e. incorrect analy-
ses might map to the same feature values as the cor-
rect analysis). Finally, we note that minimizing the
distance to the average feature values of the seven
training languages (Avg. in Table 2) yields subpar
performance and very large distances between be-
tween predicted analyses and target feature values
(4.14 compared to 0.40 for nearest neighbor). This
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Figure 2: Locations in Feature Space of Linguistica predictions (green squares), gold standard analyses (red tri-
angles), and our model’s nearest neighbor predictions (blue circles). The original 8-dimensional feature space was
reduced to two dimensions using Multidimensional Scaling.

result may indicate that the average feature point be-
tween training languages is simply unattainable as
an analysis of a real lexicon of nouns.

Visualizing Locations in Feature Space: Besides
assessing our method quantitatively, we can also vi-
sualize the the eight languages in universal feature
space according to (i) their gold standard analyses,
(ii) the predictions of our model and (iii) the pre-
dictions of Linguistica. To do so, we reduce the 8-
dimensional features space down to two dimensions
while preserving the distances between the predicted
and gold standard feature vectors, using Multidi-
mensional Scaling (MDS). The results of this anal-
ysis are shown in Figure 2. With the exception of
English, our model’s analyses lie closer in feature
space to their gold standard counterparts than those
of the baseline. It is interesting to note that Serbian
and Slovene, which are very similar languages, have
essentially swapped places under our model’s anal-
ysis, as have Estonian and Hungarian (both highly
inflected Uralic languages). English has (unfortu-
nately) been pulled towards Bulgarian, the second
least inflecting language in our set.

Learning Curves: We also measured the perfor-
mance of our method as a function of the number
of languages in the training set. For each target lan-
guage, we consider all possible training sets of sizes
ranging from 1 to 7 and select the predictions which
bring our test language closest in distance to one of
the languages in the set. We then average the result-
ing accuracy over all training sets of each size. Fig-
ure 3 shows the resulting learning curves averaged
over all test languages (left), as well as broken down
by test language (right). The overall trend is clear:
as additional languages are added to the training set,
test performance improves. In fact, with only one
training language, our method performs worse (on
average) than the Linguistica baseline. However,
with two or more training languages available, our
method achieves superior results.

Accuracy vs. Distance: We can gain some in-
sight into these learning curves if we consider the
relationship between accuracy (of the test language
analysis) and distance to the training language (of
the same predicted analysis). The more training lan-
guages available, the greater the chance that we can
guide our test language into very close proximity to
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Figure 3: Learning curves for our model as the number of training languages increases. The figure on the left shows
the average accuracy of all eight languages for increasingly larger training sets (results are averaged over all training
sets of size 1,2,3,...). The dotted line indicates the average performance of the baseline. The figure on the right shows
similar learning curves, broken down individually for each test language (see Figure 1 for language abbreviations).

one of them. It thus stands to reason that a strong
(negative) correlation between distance and accu-
racy would lead to increased accuracy with larger
training sets. In order to assess this correlation, we
considered all 56 test-train language pairs and col-
lected the resulting accuracy and distance for each
pair. We separately scaled accuracy and distance to
the unit interval for each test language (as some test
languages are inherently more difficult than others).
The resulting plot, shown in Figure 4, shows the ex-
pected correlation: When our test language can be
guided very closely to the training language, the re-
sulting predictions are likely to be good. If not, the
predictions are likely to be bad.

5 Conclusions and Future Work

The approach presented in this paper recasts mor-
phological induction as a structured prediction task.
We assume the presence of morphologically labeled
languages as training examples which guide the in-
duction process for unlabeled test languages. We
developed a novel structured nearest neighbor ap-
proach for this task, in which all languages and their
morphological analyses lie in a universal feature
space. The task of the learner is to search through
the space of morphological analyses for the test lan-
guage and return the result which lies closest to one
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Figure 4: Accuracy vs. Distance: For all 56 possi-
ble test-train language pairs, we computed test accuracy
along with resulting distance in universal feature space
to the training language. Distance and accuracy are sep-
arately normalized to the unit interval for each test lan-
guage, and all resulting points are plotted together. A
line is fit to the points using least-squares regression.



of the training languages. Our empirical findings
validate this approach: On a set of eight different
languages, our method yields substantial accuracy
gains over a traditional MDL-based approach in the
task of nominal morphological induction.

One possible shortcoming of our approach is that
it assumes a uniform weighting of the cross-lingual
feature space. In fact, some features may be far more
relevant than others in guiding our test language to
an accurate analysis. In future work, we plan to in-
tegrate distance metric learning into our approach,
allowing some features to be weighted more heavily
than others. Besides potential gains in prediction ac-
curacy, this approach may shed light on deeper rela-
tionships between languages than are otherwise ap-
parent.
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