Unsupervised Multilingual Grammar Induction

- Languages exhibit variations in patterns of ambiguity
- Variations as natural supervison

בראשית ברא אלהים את השמים ואת הארץ
في البكـاء خلـق اللّه السمووات وْالارض

Multilingual Cues

English: I saw the student from MIT

Multilingual Cues

English:

Multilingual Cues

English: I saw the student from MIT

Multilingual Cues

English:
 [ll saw] the student from MIT

Urdu:
 I MIT of student saw

Multilingual Cues

English:
 Urdu:
 $\left[\begin{array}{ll}I & \text { saw }\end{array}\right]$ the student from MIT
 I MIT of student saw

Multilingual Cues

English: $\quad I$ saw the student from MIT

Urdu:
 $\left[\begin{array}{ll}I & M I T\end{array}\right]$ of student saw ?

Multilingual Cues

English: I saw the student from MIT

Urdu: $\left[\begin{array}{ll}I & \text { MIT }\end{array}\right]$ of student saw X

Multilingual Cues

English:
 I saw the student[from MIT]

Urdu:
 I MIT of student saw

Multilingual Cues

?
English: I [saw the student[from MIT]]

Urdu: I MIT of student saw

Multilingual Cues

?

English: I saw [the student[from MIT]]

Urdu: $\quad I \quad$ MIT of student saw

Multilingual Cues

English: I saw the student[from MIT]

Urdu:
I [MIT of $\begin{gathered}\text { of } \\ \text { itudent saw }\end{gathered}$

Multilingual Cues

English: I saw the student[from MIT]

Urdu:

$I\left[\left[\begin{array}{ll}\text { MIT } & \text { of }] \text { student }] \text { saw }\end{array}\right.\right.$

Multilingual Cues

English: I saw [the student[from MIT]]
 Urdu:
 I [[MITT of $\quad \underset{\text { of }}{ }$ student $]$ saw

Multilingual Cues

\section*{English: I saw [the student[from MIT]]
 Urdu: $I\left[\right.$| $[$ MIT | of $]$ student $]$ saw |
| :---: | :---: |
| | |}

Main idea: learn from systematic variations in phrase order and expression

Key Technical Challenge

Represent shared cross-lingual syntactic structure

- Linguistically plausible
- Allow full range of syntactic divergence and translational freedom
- Computationally tractable
- Support probabilistic operations: argmax, marginalization, sampling

Prior Representations

Synchronous Grammars wu 1997; Meamed 2003; Chang 2005; Smith\&Smith 2004; Eisner 2005; Blunsom et al 2008]

- Employed for modeling phrase reordering in MT
- In basic form, isomorphic trees (up to sibling order)

Node Matching [BurketakKlien 208]

- Ignores tree structure
- Marginalization is \#P-complete

Our Proposal

Probabilistic adaptation of Unordered Tree Alignment [lang etal 1995]

- Node alignments must respect tree structures
- Yet any number of nodes may remain unaligned
- Can marginalize and sample all possible alignments in linear time with dynamic program

For trees T_{1} and T_{2}, an alignment A is obtained in the following way:

I. Insert empty nodes into T_{1} and T_{2} and swap sibling order, until they are isomorphic
2. Overlay the resulting trees $T_{1}{ }^{\prime}$ and T_{2} ' to obtain A

For trees T_{1} and T_{2}, an alignment A is obtained in the following way:

I. Insert empty nodes into T_{1} and T_{2} and swap sibling order, until they are isomorphic
2. Overlay the resulting trees T_{1} ' and T_{2} ' to obtain A

For trees T_{1} and T_{2}, an alignment A is obtained in the following way:

I. Insert empty nodes into T_{1} and T_{2} and swap sibling order, until they are isomorphic
2. Overlay the resulting trees T_{1} ' and T_{2} ' to obtain A

Urdu

Urdu

Urdu

A Generative Model

We observe:

A Generative Model

We observe:

DT	NN $\left(\begin{array}{ll}\text { (VB } & \text { NNP }\end{array}\right)$	
NN	NNP	VB
\cdots	\ldots	\cdots

A Generative Model

We observe:
$\left.\begin{array}{|cc|}\hline \text { DT } & \text { NN } \\ \text { (VB } & \text { NNP }\end{array}\right)$

A Generative Model

We observe:

A Generative Model

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

A Generative Model

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

A Generative Model

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

ω Probability of constituent pairs of aligned nodes

A Generative Model

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

ω Probability of constituent pairs of aligned nodes
ϕ^{+}Distribution on num. of word alignments between aligned nodes
ϕ^{-}Distribution on num. of word alignments between unaligned nodes

A Generative Model

We observe:

Hypothesize aligned trees that best explain:

- frequent POS sequence pairs
- lexical alignments

Parameters to learn

ω Probability of constituent pairs of aligned nodes
ϕ^{+}Distribution on num. of word alignments between aligned nodes
ϕ^{-}Distribution on num. of word alignments between unaligned nodes
(language-specific parameters for unaligned nodes [Klein\&Manning 2002])

Generative Story

Draw alignment tree template $\left(T_{1}, T_{2}, A\right)$ from uniform distribution:

Generative Story

For each aligned node pair, draw a constituent pair jointly from ω :

Generative Story

For each aligned node pair, draw a constituent pair jointly from ω :

NNP

NNP

Generative Story

For each aligned node pair, draw a constituent pair jointly from ω :

NNP

NNP

Generative Story

For each aligned node pair, draw a constituent pair jointly from ω :

NNP
$\begin{array}{ll} & \\ \text { NNP } \\ \text { VB } & \text { NNP }\end{array}$

NNP
NNP
NNP

Generative Story

For each aligned node pair, draw a constituent pair jointly from ω :

NNP
NNP \quad VB
VB

NNP
 NNP
 NNP

NNP

	NNP		
	NNP	IN	VB
NNP	NNP	IN	VB

Generative Story

For each unaligned node, draw a constituent from language-specific parameters:

NNP

NNP

Generative Story

For each unaligned node, draw a constituent from language-specific parameters:

NNP
NNP
NNP
NNP

NNP

	NNP		
	NNP	IN	VB
NNP	NNP	IN	VB
	NNP	IN	

Generative Story

Draw word alignments between aligned and unaligned nodes according to ϕ^{+}and ϕ^{-}:

NNP
$\begin{array}{ccl} & & \text { NNP } \\ & \text { VB } & \text { NNP } \\ \text { NNP } & \text { VB } & \text { NNP }\end{array}$

NNP

NNP			
NNP	IN	VB	
NNP	INP	IN	VB
	NNP	IN	

Generative Story

Draw word alignments between aligned and unaligned nodes according to ϕ^{+}and ϕ^{-}:

NNP
$\begin{array}{lll} & & \text { NNP } \\ & \text { VB } & \text { NNP } \\ \text { NNP } & \text { VB } & \text { NNP }\end{array}$

NNP

NNP			
NNP			
NNP	IN	VB	
NNP	IN	VB	
	NNP	IN	

Inference: Gibbs Sampling

- Sample each aligned tree pair conditioned on others:

$$
P\left(\left(T_{1}, T_{2}, A\right)_{i} \mid\left(\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}, \mathbf{A}\right)_{-i}\right)
$$

- Marginalize over all parameter values using standard closed forms
(accumulated counts + hyperparameters)

Sampling Aligned Trees

Sampling Aligned Trees

- Hard to sample aligned tree pair: $\left(T_{1}, T_{2}, A\right)$

Sampling Aligned Trees

- Hard to sample aligned tree pair: $\left(T_{1}, T_{2}, A\right)$
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_{1}^{*}, T_{2}^{*}

Sampling Aligned Trees

- Hard to sample aligned tree pair: $\left(T_{1}, T_{2}, A\right)$
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_{1}^{*}, T_{2}^{*}
- Accept with probability:

$$
\min \left\{1, \frac{P\left(T_{1}^{*}, T_{2}^{*}\right) Q\left(T_{1}, T_{2}\right)}{P\left(T_{1}, T_{2}\right) Q\left(T_{1}^{*}, T_{2}^{*}\right)}\right\} \text { (Metropolis-Hastings) }
$$

Sampling Aligned Trees

- Hard to sample aligned tree pair: $\left(T_{1}, T_{2}, A\right)$
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_{1}^{*}, T_{2}^{*}
- Accept with probability:

$$
\min \left\{1, \frac{P\left(T_{1}^{*}, T_{2}^{*}\right) Q\left(T_{1}, T_{2}\right)}{P\left(T_{1}, T_{2}\right) Q\left(T_{1}^{*}, T_{2}^{*}\right)}\right\} \text { (Metropolis-Hastings) }
$$

- Conditionally sample tree alignment: $A \mid T_{1}, T_{2}$

Sampling Aligned Trees

- Hard to sample aligned tree pair: $\left(T_{1}, T_{2}, A\right)$
- Use proposal distribution Q, which assumes no nodes are aligned, to separately sample T_{1}^{*}, T_{2}^{*}
- Accept with probability:

$$
\min \left\{1, \frac{P\left(T_{1}^{*}, T_{2}^{*}\right)}{P\left(T_{1}, T_{2}\right) Q\left(T_{1}, T_{2}\right)}\right\} \text { (Metropolis-Hastings) }
$$

- Conditionally sample tree alignment: $A \mid T_{1}, T_{2}$

Sampling each Tree: Inside-Outside

- Recursively sample split-points from the top down
- Calculate probability of each split-point by marginalizing over all possible subtrees ("inside" table of inside-outside)

computing $P\left(T_{1}, T_{2}\right)$

need to marginalize over all possible alignments A

computing $P\left(T_{1}, T_{2}\right) \Rightarrow$ need to marginalize over all possible alignments A

- For $n_{1} \in T_{1}, n_{2} \in T_{2}$ table D stores marginal probability of subtrees rooted at n_{1}, n_{2}
- Bottom-up dynamic program computes D in time $O\left(\left|T_{1}\right|\left|T_{2}\right|\right)$

computing $P\left(T_{1}, T_{2}\right) \Rightarrow \begin{aligned} & \text { need to marginalize ove } \\ & \text { possible alignments } A\end{aligned}$

- For $n_{1} \in T_{1}, n_{2} \in T_{2}$ table D stores marginal probability of subtrees rooted at n_{1}, n_{2}
- Bottom-up dynamic program computes D in time $O\left(\left|T_{1}\right|\left|T_{2}\right|\right)$

case I:

computing $P\left(T_{1}, T_{2}\right) \Rightarrow \begin{aligned} & \text { need to marginalize ov } \\ & \text { possible alignments } A\end{aligned}$

- For $n_{1} \in T_{1}, n_{2} \in T_{2}$ table D stores marginal probability of subtrees rooted at n_{1}, n_{2}
- Bottom-up dynamic program computes D in time $O\left(\left|T_{1}\right|\left|T_{2}\right|\right)$
case 2 :

computing $P\left(T_{1}, T_{2}\right) \Rightarrow \begin{aligned} & \text { possible alignments } A\end{aligned}$

- For $n_{1} \in T_{1}, n_{2} \in T_{2}$ table D stores marginal probability of subtrees rooted at n_{1}, n_{2}
- Bottom-up dynamic program computes D in time $O\left(\left|T_{1}\right|\left|T_{2}\right|\right)$

computing $P\left(T_{1}, T_{2}\right) \Rightarrow \begin{aligned} & \text { possible alignments } A\end{aligned}$

- For $n_{1} \in T_{1}, n_{2} \in T_{2}$ table D stores marginal probability of subtrees rooted at n_{1}, n_{2}
- Bottom-up dynamic program computes D in time $O\left(\left|T_{1}\right|\left|T_{2}\right|\right)$

similar for sampling $A \mid T_{1}, T_{2}$

Experiments

Input:
Output: Binary tree bracketings
Evaluate:
Bracket precision, recall, F-measure, on held-out monolingual test data.

Baseline:
(Bayesian) CCM [Klein \& Manning 2002]

Corpora

- Korean-English Treebank: 5,000 sentences
- Urdu translation of WSJ: 4,300 sentences - no Urdu gold brackets
- English-Chinese Treebank: 3,850 sentences

Evaluate on various maximum sentence lengths (5-30)

Max Sentence Length

Results

- Average improvement across all scenarios:
$\begin{array}{ll}\text { Precision: } & +10 \\ \text { Recall: } & +8\end{array}$
F-measure: +9
- Average reduction in error relative to binary tree oracle: 19\%

Analysis

Percentage of tree

 nodes aligned| CH-EN | |
| :--- | :--- |
| UR-EN | |
| KR-EN | |

Analysis

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Analysis

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Entropy of bracketed POS sequences

Analysis

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Entropy of bracketed POS sequences

Analysis

Percentage of tree nodes aligned

CH-EN	71.6%
UR-EN	68.8%
KR-EN	60.2%

Entropy of bracketed POS sequences

MONO	Bl	GOLD
6.7	6.0	5.8

The FCC effort Collapsed

The FCC effort Collapsed

Monolingual X

The FCC effort Collapsed

Monolingual X

Bilingual (EN-UR) $\sqrt{ }$

The FCC effort Collapsed

Monolingual X
Bilingual (EN-UR) \boldsymbol{V}

$\operatorname{Pr}_{\text {mono }}($ NNP NN $)<\operatorname{Pr}_{b i}(N N P N N)$

The FCC effort Collapsed

Monolingual X
Bilingual (EN-UR) $\sqrt{ }$

$\operatorname{Pr}_{\text {mono }}$ (NNP NN) $<\operatorname{Pr}_{b i}$ (NNP NN)
English: NNP NN
Urdu: NNP OF NN

Conclusions

Key idea: Use bilingual cues to learn better unsupervised monolingual models of grammar

- Adapt Tree Alignment to probabilistic setting:
- Discover partial shared structure
- Allow language-specific divergence
- Computationally tractable
- Achieve improved performance on five corpora, across all sentence lengths

Thank you!

Analysis

Entropy of constituent tag sequences

Percentage of a tree node		MONO	BI	GOLD
	CH en	6.6	5.6	5.3
CH-EN	ENch	6.9	5.9	5.5
UR-EN	KREN	6.2	6.2	6.9
KR-EN	ENKR	6.8	5.9	5.6
	ENUR	6.8	6.2	5.9
	avg	6.7	6.0	5.8

Analysis

Entropy of constituent tag sequences

Percentage of a tree node			MONO	BI	GOLD
		CH	6.6	5.6	5.3
CH-EN	71.	ENch	6.9	5.9	5.5
UR-EN	68.	KREN	6.2	6.2	6.9
KR-EN 60.		ENKR	6.8	5.9	5.6
		ENUR	6.8	6.2	5.9
		avg	6.7	6.0	5.8

Morphology: acl 2008

POS tagging: emnlp 2008 naacl 2009

Syntax:
acl 2009 (this talk)

בראשׁית ברא אלהים את השׁמים עאת הארץ
 في

