Unsupervised Multilingual Learning for POS Tagging

Benjamin Snyder, Tahira Naseem Jacob Eisenstein and Regina Barzilay MIT

• Has focused on monolingual settings

- Has focused on monolingual settings
- Performance still lags supervised learning

- Has focused on monolingual settings
- Performance still lags supervised learning

<u>Question</u>: can we improve *monolingual* performance when *multilingual* parallel data is available at training time?

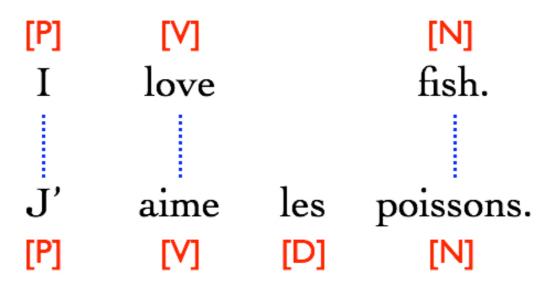
Multilingual Learning for POS Tagging

Input:

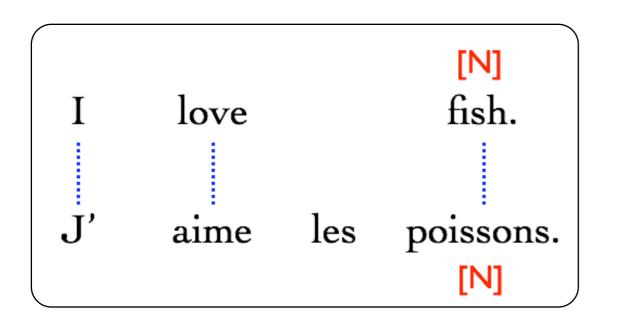
untagged bilingual parallel corpus

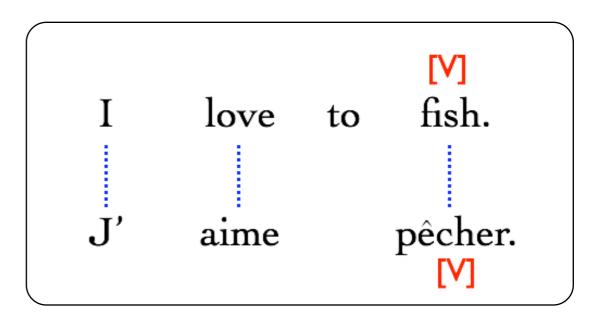
Goal:

Induce a POS tagger for each language (test on monolingual data)

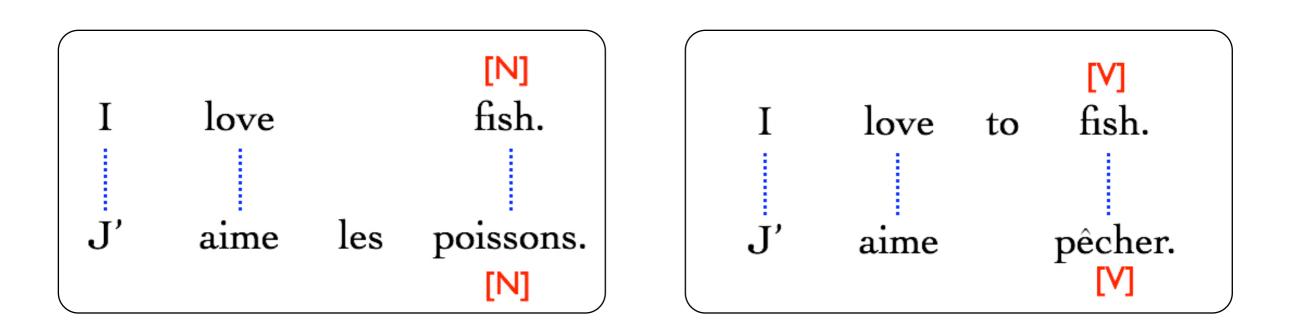


Motivation for Multilingual Learning



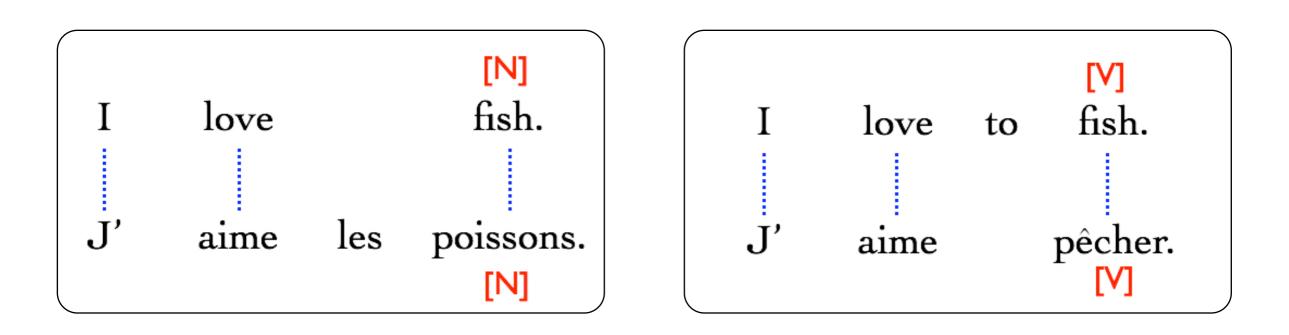


Motivation for Multilingual Learning



 Learn from differences in lexical ambiguity fish/poissons [N] vs. fish/pêcher [V]

Motivation for Multilingual Learning



- Learn from differences in lexical ambiguity fish/poissons [N] vs. fish/pêcher [V]
- Learn from differences in structural ambiguity

 (1) determiner "les" signals noun
 (2) "to" signals infinitival verb

Related Work

- Projection (Yarowsky & Ngai 2001, Feldman et al 2006)
 - Supervised data available in source language
 - Goal: transfer annotations to target language
- Synchronous grammars for MT (Wu & Wong 1998, Chiang 2005)

Bilingual Graphical Models

<u>Desiderata</u>:

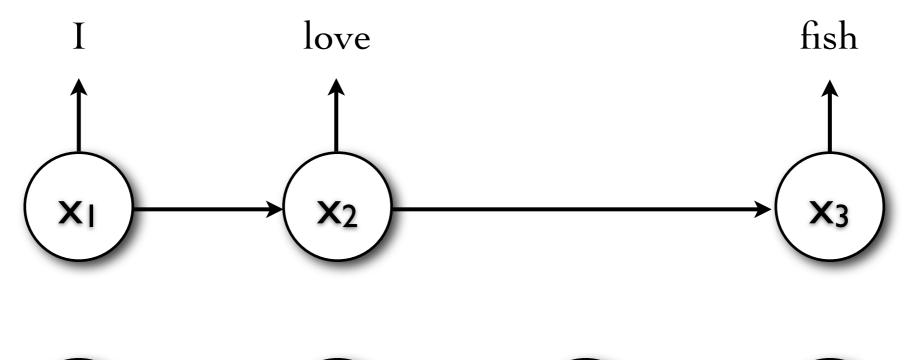
Symmetric model:

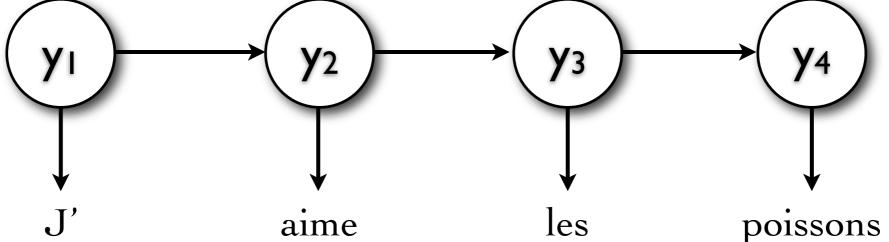
- No supervision on either side
- Information flows both ways

Minimalist approach:

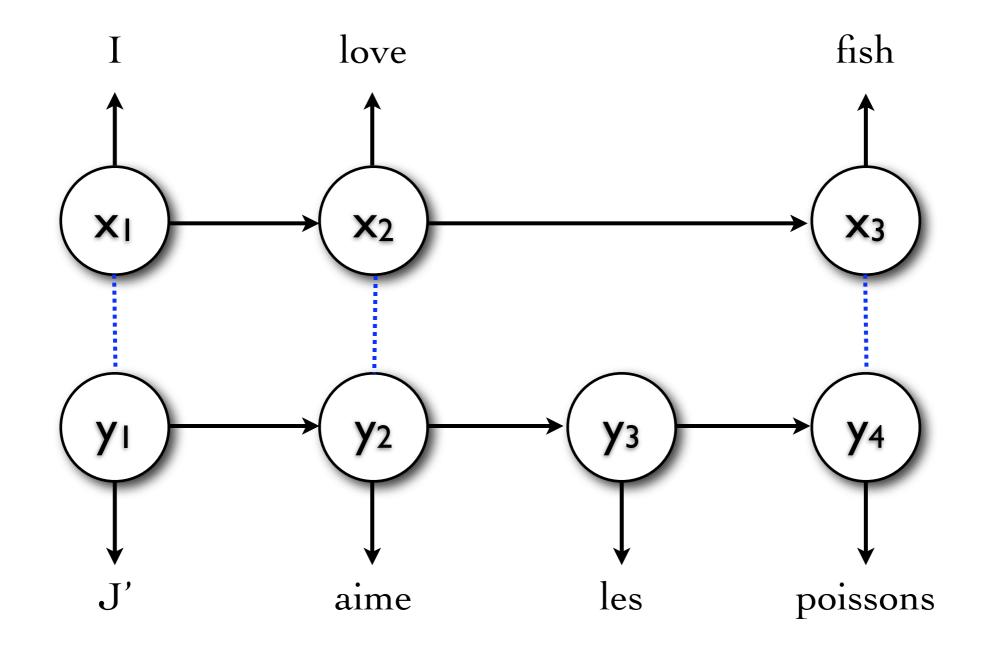
- Allow language specific idiosyncrasies different sentence lengths, tags, tagsets etc
- Avoid over-parameterization

(I) Two Monolingual HMM's

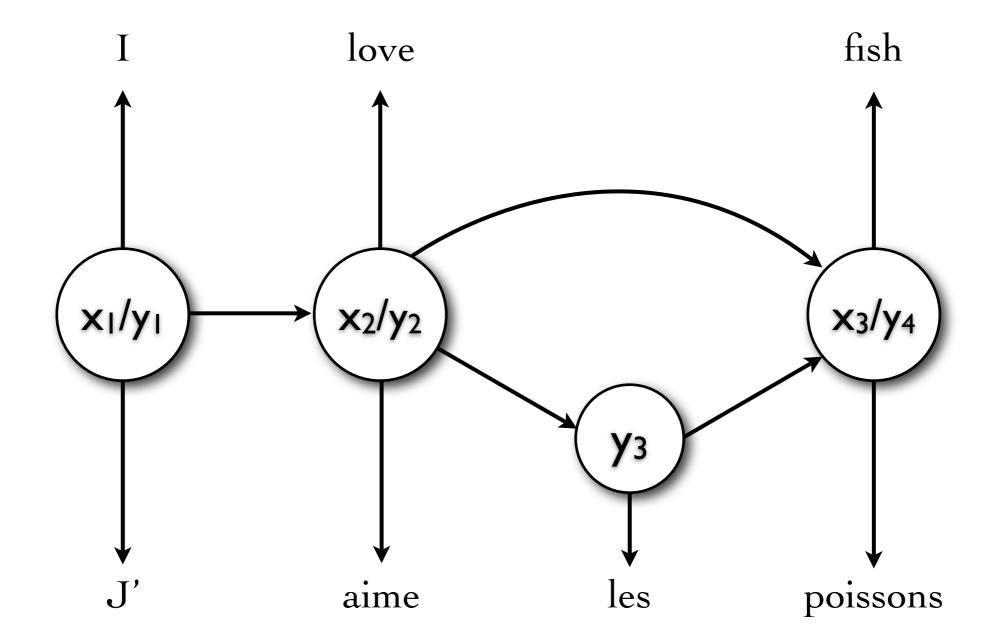




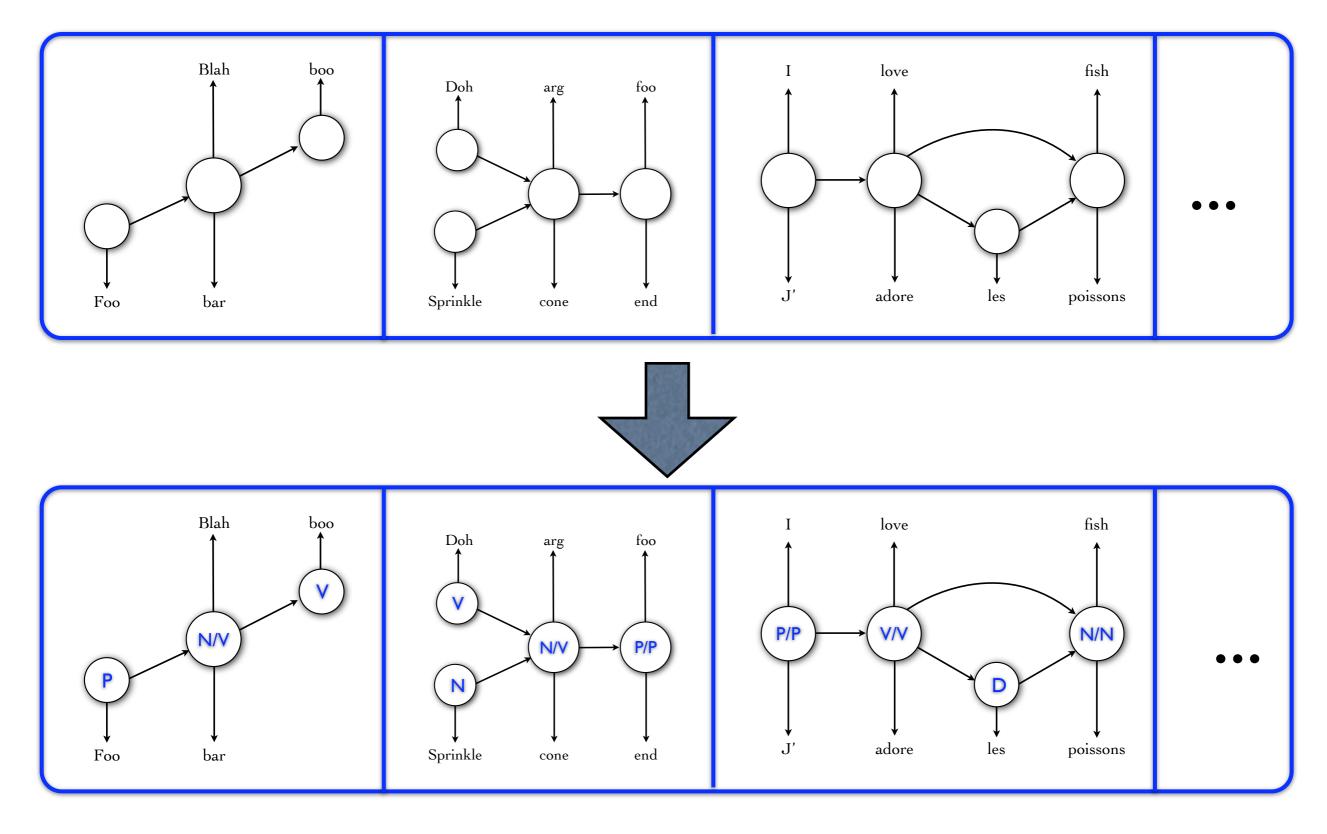
(2) Get Alignments (using GIZA++)

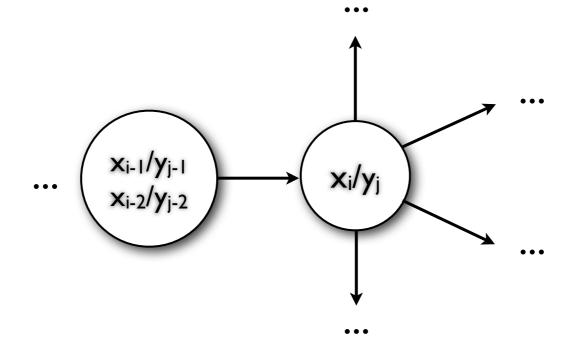


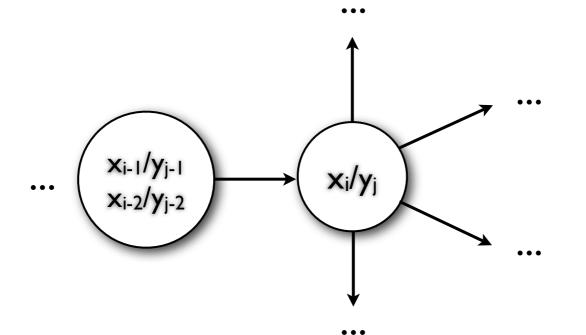
(3) Form Bilingual Model



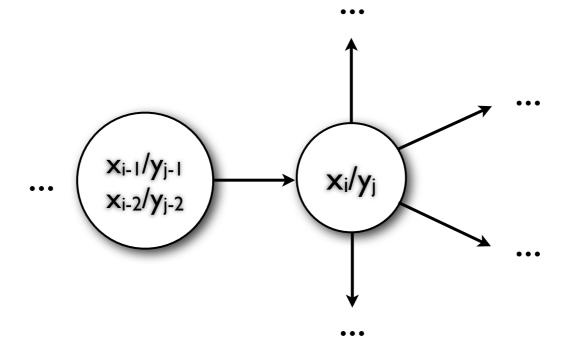
Learning Task







Naive parameterization: multinomial over merged tag pair, conditioned on both languages' previous tags.



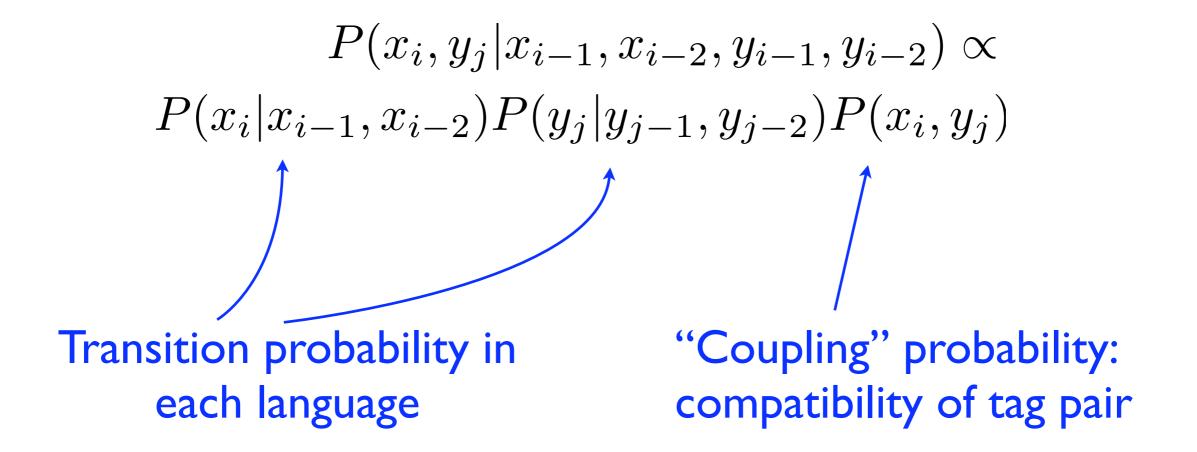
<u>Naive parameterization</u>: multinomial over merged tag pair, conditioned on both languages' previous tags.

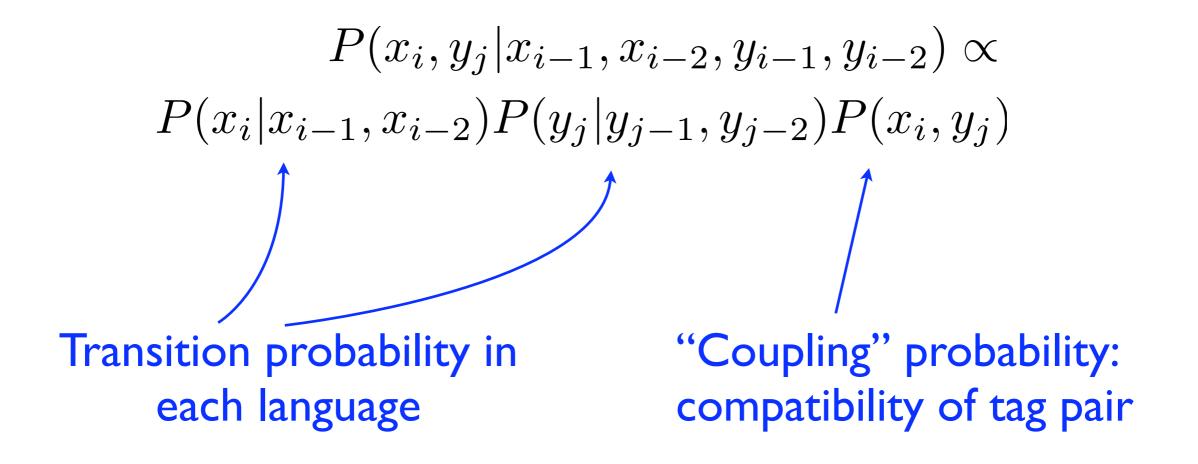
- No parameter sharing
- For trigram tagger with 13 tags:

28,561 unrelated multinomials (13⁴) each of dimension 169 (13²)

 $P(x_i, y_j | x_{i-1}, x_{i-2}, y_{i-1}, y_{i-2}) \propto P(x_i | x_{i-1}, x_{i-2}) P(y_j | y_{j-1}, y_{j-2}) P(x_i, y_j)$

 $P(x_{i}, y_{j} | x_{i-1}, x_{i-2}, y_{i-1}, y_{i-2}) \propto P(x_{i} | x_{i-1}, x_{i-2}) P(y_{j} | y_{j-1}, y_{j-2}) P(x_{i}, y_{j})$ $P(x_{i} | x_{i-1}, x_{i-2}) P(y_{j} | y_{j-1}, y_{j-2}) P(x_{i}, y_{j})$ Transition probability in each language





Essentially, a product of experts.

Bayesian Generative Story

Bayesian Generative Story

- For each language, draw:
 - Transition distributions over tag space (conditioned on previous two tags)
 - Emission distributions over lexicon (conditioned on tag)
- Draw coupling distribution over space of bilingual tag pairs

Bayesian Generative Story

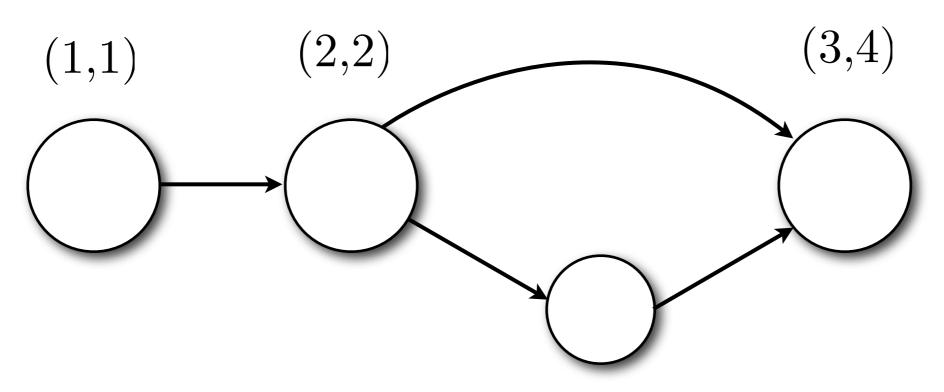
- For each language, draw:
 - Transition distributions over tag space (conditioned on previous two tags)
 - Emission distributions over lexicon (conditioned on tag)
- Draw coupling distribution over space of bilingual tag pairs

All drawn from Dirichlet priors of appropriate dimension.

For each bilingual parallel sentence:

For each bilingual parallel sentence:

I. Draw an *alignment*



Alignment must be I-I and contain no crossing edges

Treated as observed variable (based on GIZA++ alignments)

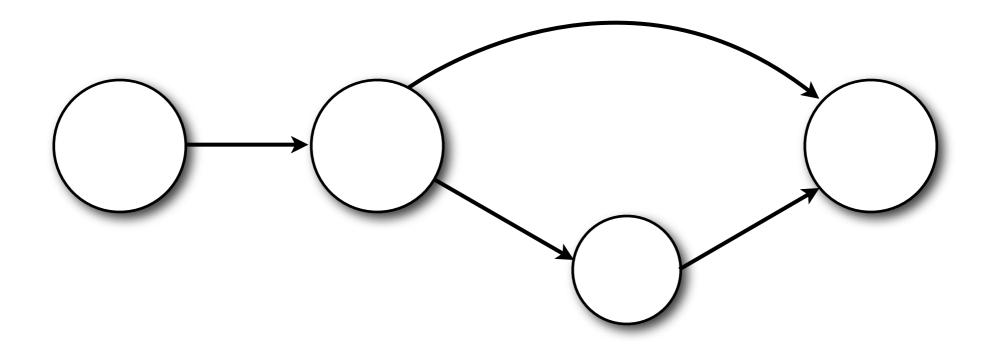
For each bilingual parallel sentence:

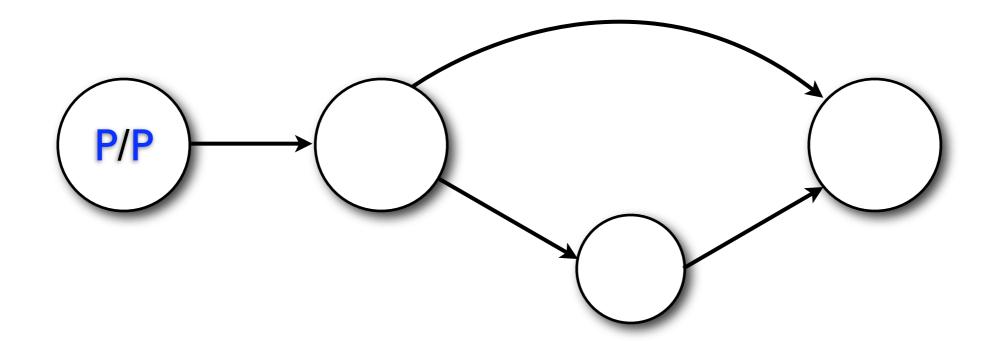
- I. Draw an *alignment*
- Draw parallel bilingual stream of tags in sequence from left to right
 - Unaligned tags drawn according to language-specific transition parameters

 $P(x_i | x_{i-1}, x_{i-2})$

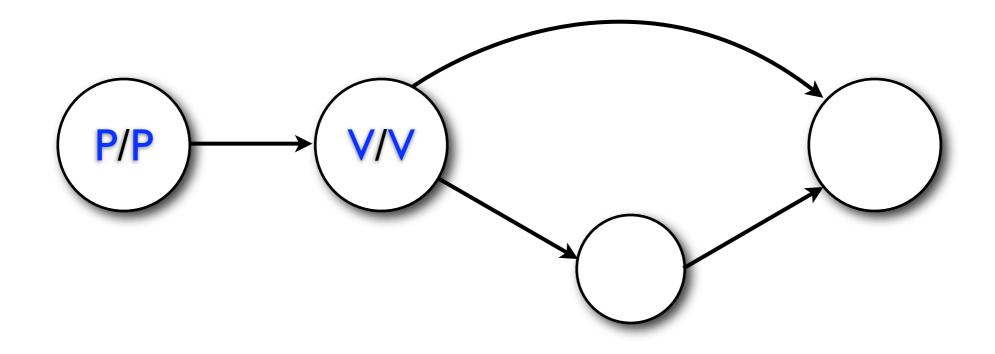
 Aligned tag-pairs drawn jointly according to transitions and bilingual coupling parameter

 $\propto P(x_i|x_{i-1}, x_{i-2})P(y_j|y_{j-1}, y_{j-2})P(x_i, y_j)$

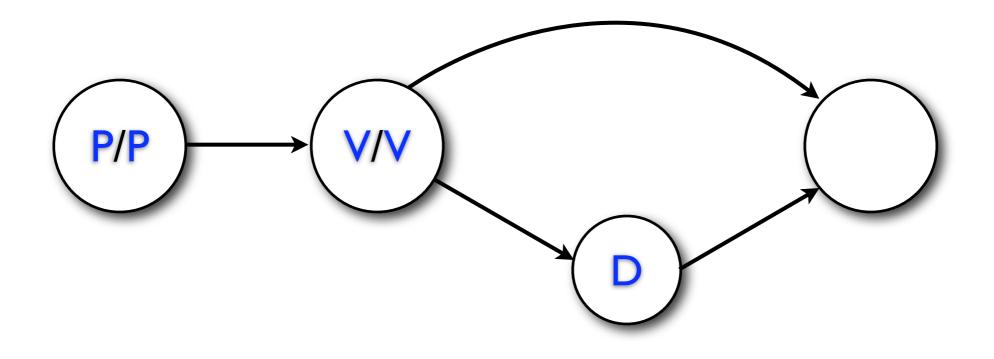




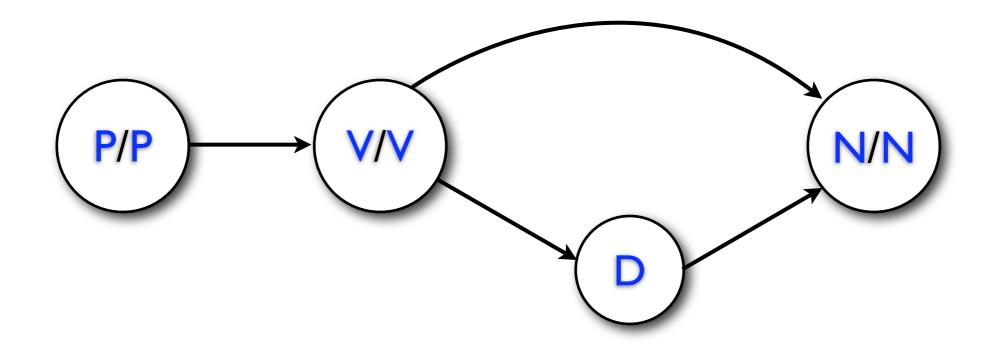
 $\propto trans_1(P|\#START) \cdot trans_2(P|\#START) \cdot coupling(P, P)$



 $\propto trans_1(\mathbf{V}|\mathbf{P}) \cdot trans_2(\mathbf{V}|\mathbf{V}) \cdot coupling(\mathbf{V},\mathbf{V})$



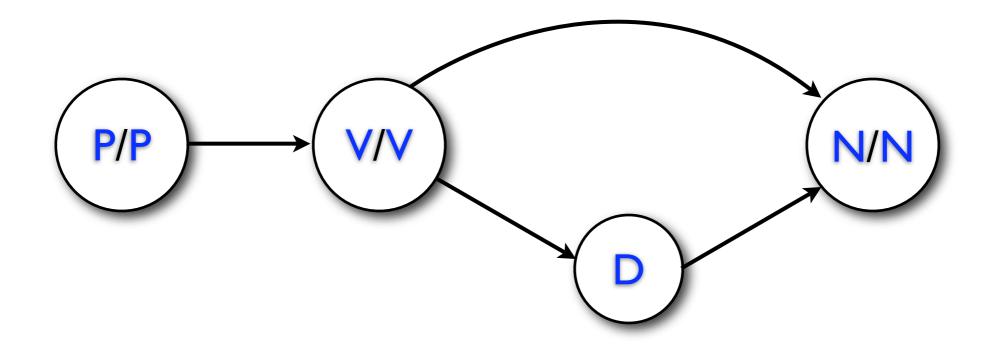
 $trans_2(\mathbf{D}|\mathbf{V})$

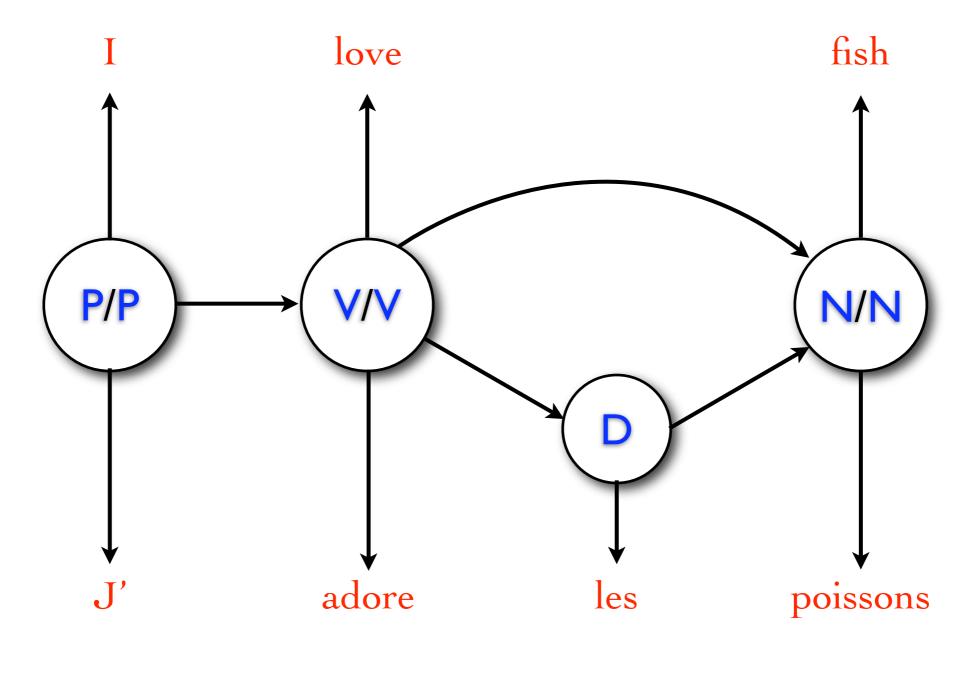


 $\propto trans_1(\mathbf{N}|\mathbf{V}) \cdot trans_2(\mathbf{N}|\mathbf{D}) \cdot coupling(\mathbf{N},\mathbf{N})$

For each bilingual parallel sentence:

- I. Draw an *alignment*
- Draw parallel bilingual stream of tags in sequence from left to right
- 3. Draw words according to language-specific emission parameters.





 $emit_1("\mathbf{I}"|\mathbf{P}) \cdot emit_2("\mathbf{J}"|\mathbf{P}) \cdot \dots$

• Treat words and GIZA++ alignments as observed variables: \mathcal{X}

- Treat words and GIZA++ alignments as observed variables: \mathcal{X}
- Treat emission, transition, and coupling parameters as *hidden variables*: **(**

- Treat words and GIZA++ alignments as observed variables: \mathcal{X}
- Treat emission, transition, and coupling parameters as *hidden variables*: *h*
- Predict POS tags *y* with highest posterior probability:

 $\mathop{\mathrm{argmax}}_{y} P(y|x) = \mathop{\mathrm{argmax}}_{y} \int_{\theta} P(y, x|\theta) P(\theta) \, d\theta$

Sampling

Iteratively sample each variable conditioned on current value of others (Gibbs):

- Sample aligned tag-pairs and unaligned tags
- Sample* transition distributions
- Sample* coupling distribution

Sampling

Iteratively sample each variable conditioned on current value of others (Gibbs):

- Sample aligned tag-pairs and unaligned tags
- Sample* transition distributions
- Sample* coupling distribution

*no closed form using counts, due to factored parameterization:

$$P(x_i, y_j | ...) = \frac{P(x_i | x_{i-1}, x_{i-2}) P(y_j | y_{j-1}, y_{j-2}) P(x_i, y_j)}{Z}$$

Sampling

Iteratively sample each variable conditioned on current value of others (Gibbs):

- Sample aligned tag-pairs and unaligned tags
- Sample* transition distributions
- Sample* coupling distribution

*no closed form using counts, due to factored parameterization:

$$P(x_i, y_j | ...) = \frac{P(x_i | x_{i-1}, x_{i-2}) P(y_j | y_{j-1}, y_{j-2}) P(x_i, y_j)}{Z}$$

So we intersperse Gibbs with a Metropolis-Hastings step

Metropolis-Hastings

- Define tractable proposal distribution: Q
- Sample a new value: $z^* \sim Q$ Accept with probability: $min\left\{1, \frac{P(z^*)Q(z)}{P(z)Q(z^*)}\right\}$

Metropolis-Hastings

- Define tractable proposal distribution: Q
- Sample a new value: $z^* \sim Q$ Accept with probability: $min\left\{1, \frac{P(z^*)Q(z)}{P(z)Q(z^*)}\right\}$

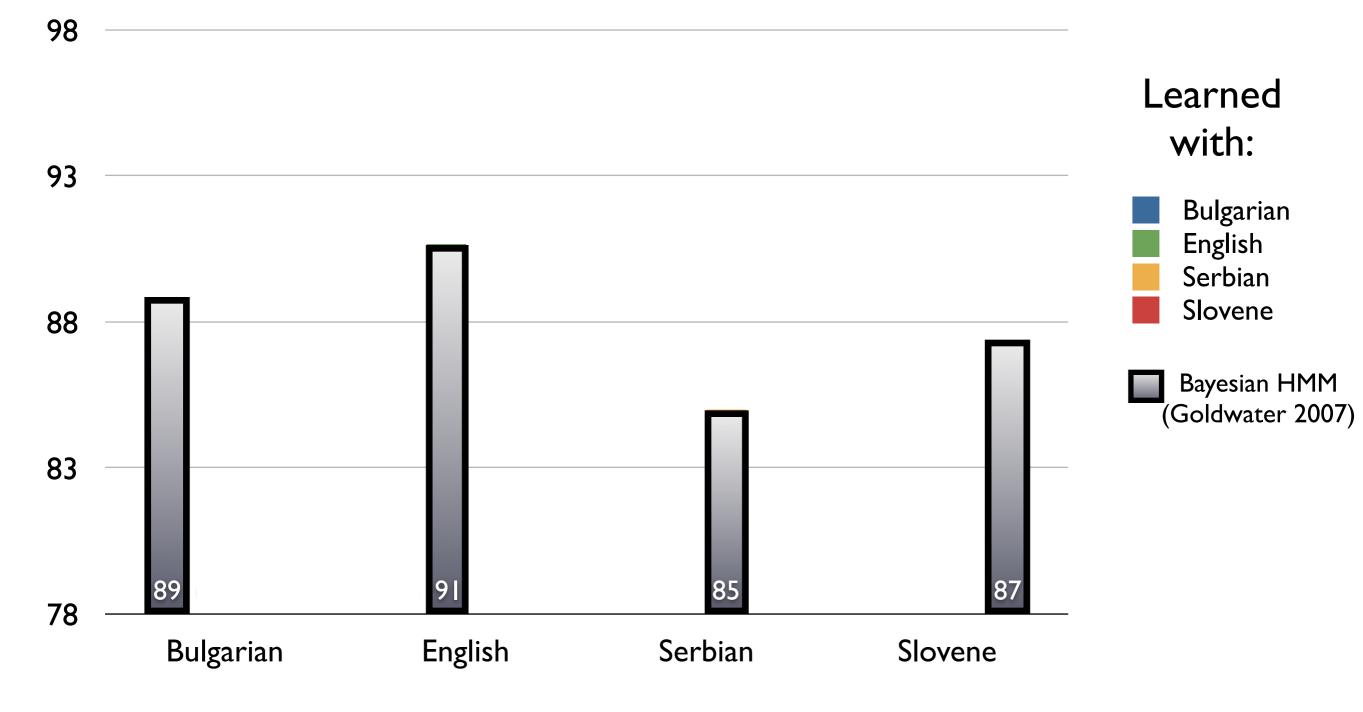
For the coupling distribution, we use proposal:

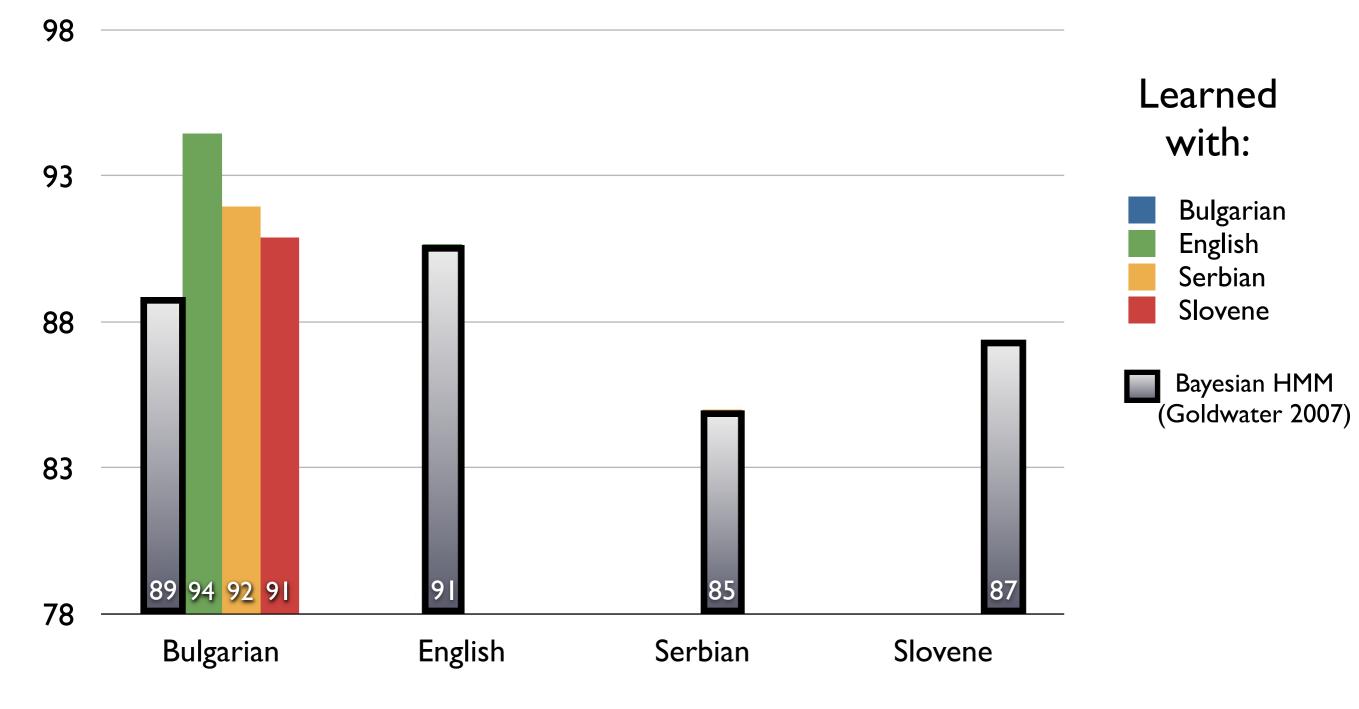
$$Q \equiv \text{Dir}(Count(N,N),Count(N,V),\ldots)$$

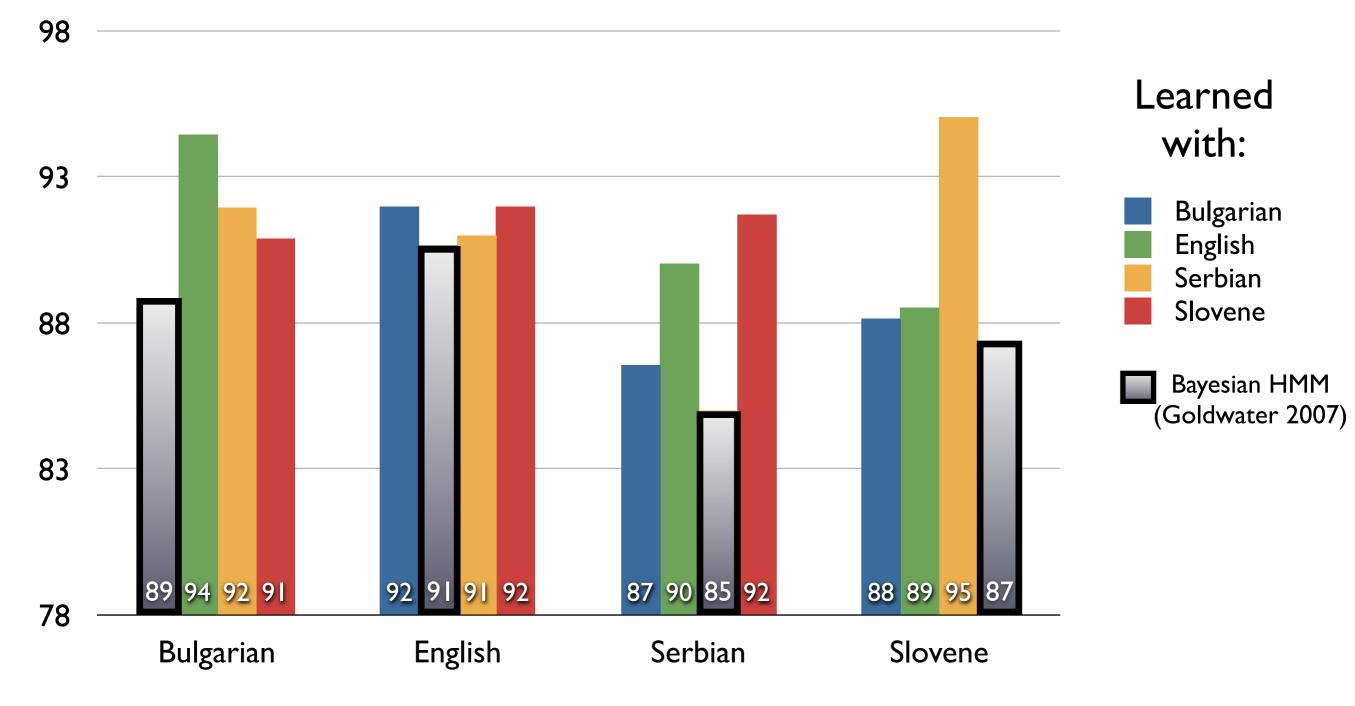
Counts of coupled parts-of-speech according to current sampled tags

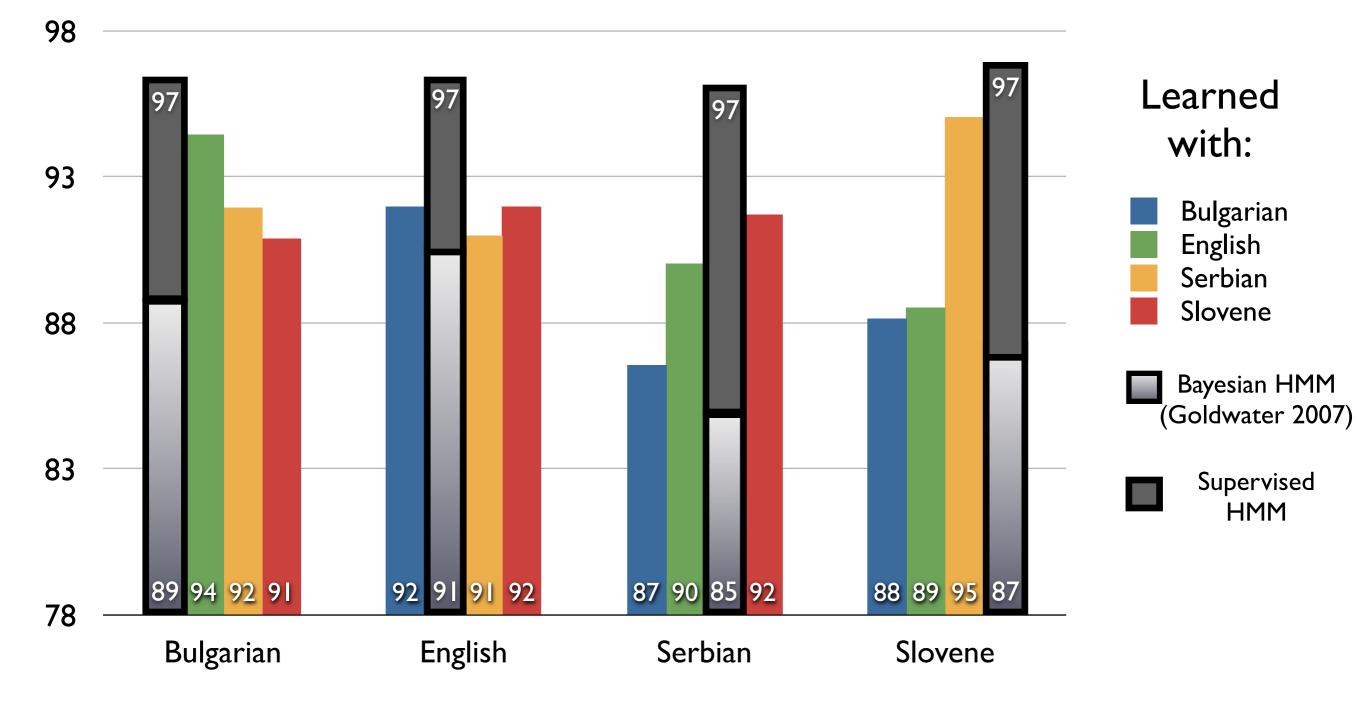
Evaluation Setup

- Evaluate on *monolingual* test-set
- Orwell's <u>Nineteen Eighty Four</u>
 - Languages: English, Bulgarian, Serbian, Slovene
 - 94,725 tokens (English)
 - I3 coarse POS tags (Multext East corpus)
- GIZA++ alignments
 - Intersection of each direction (I-I)
 - Removal of crossing edges (< 5%)</p>

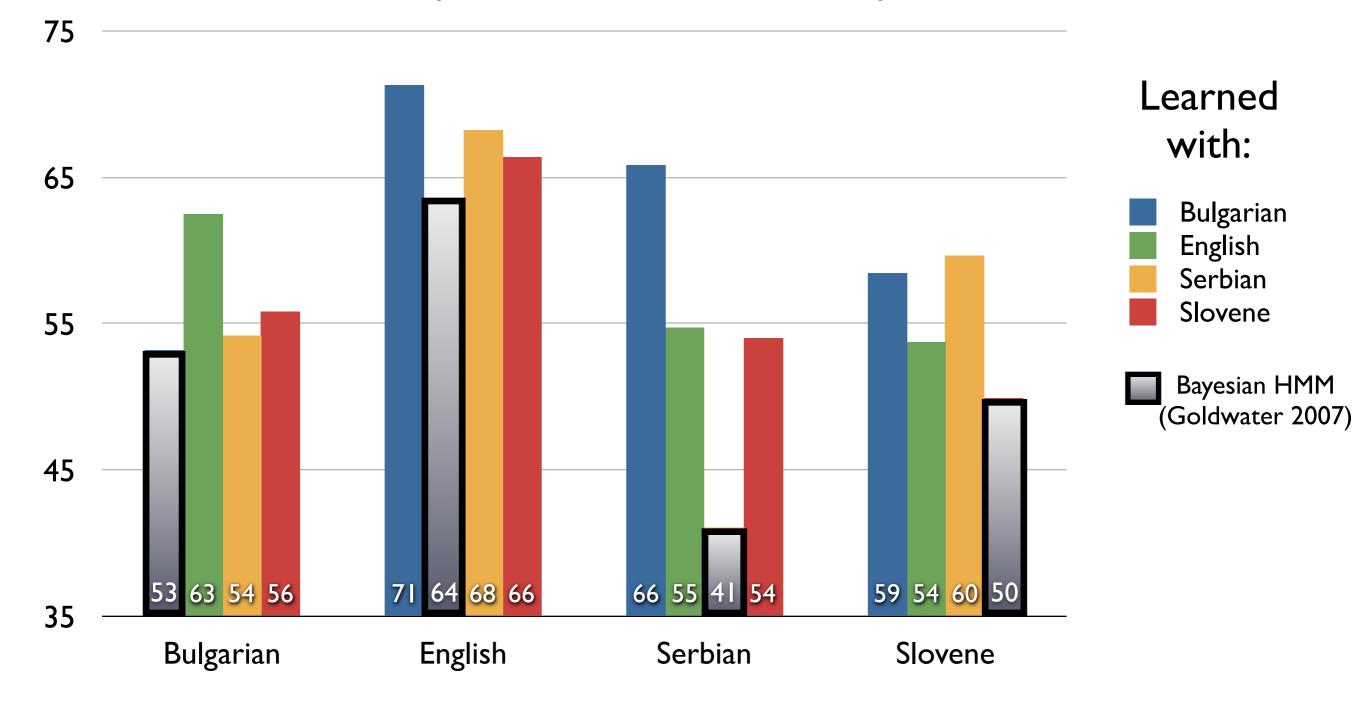








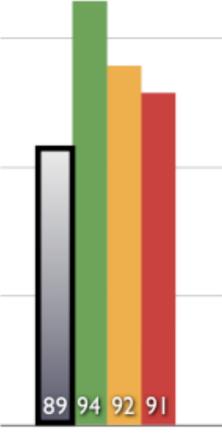
Accuracy (100 word lexicon)



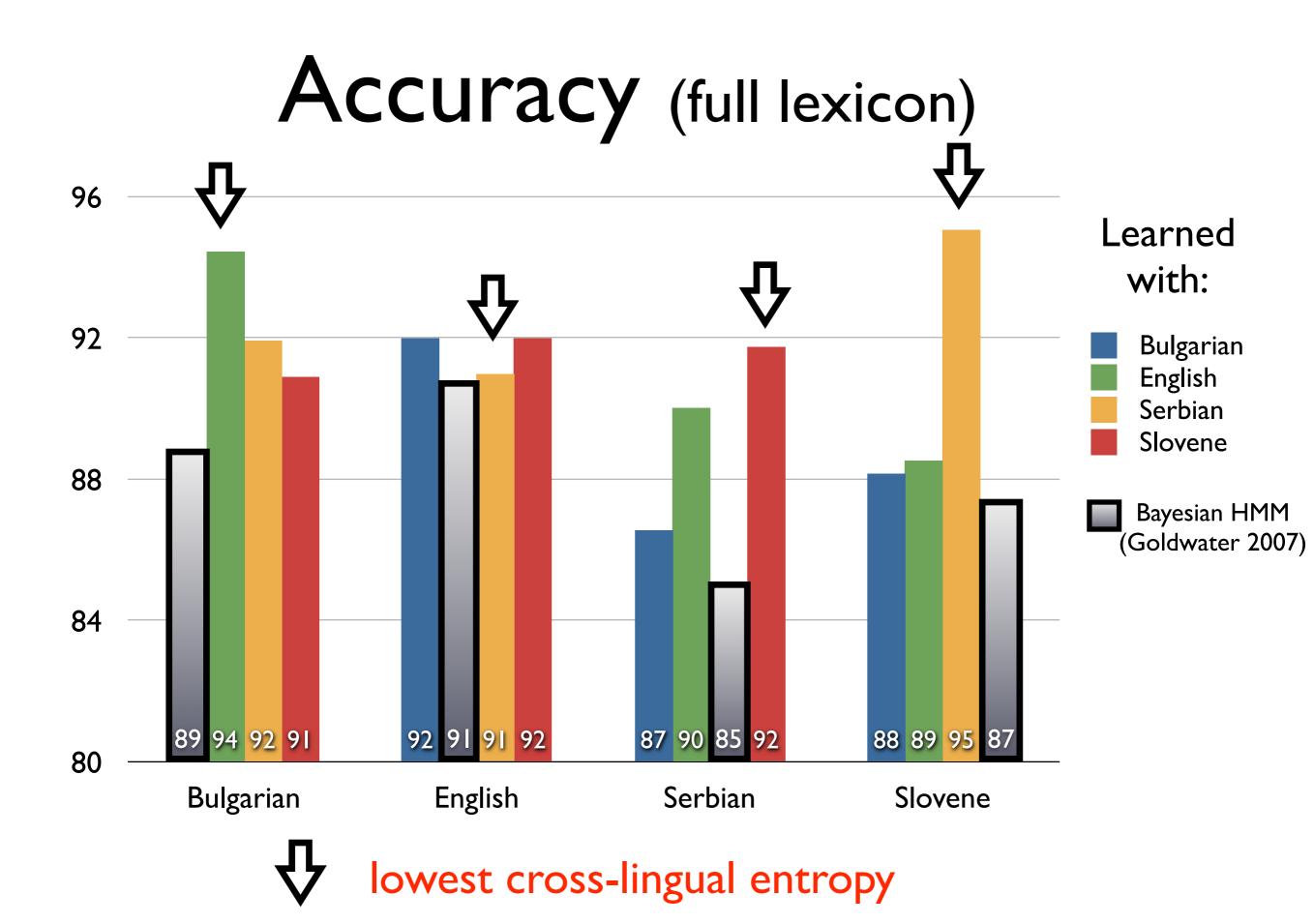
Cross-lingual Analysis

- Some language pairings much better than others (Serbian + Slovene, English + Bulgarian)
- Given gold tags, easy to predict relative performance gains using cross-lingual entropy:

$$H\left[P(x_i|y_j, (i,j) \in a)\right]$$



Bulgarian



How to predict optimal pairings in unsupervised manner?

• Family relatedness not accurate predictor

- Family relatedness not accurate predictor
- Typological relatedness..?

- Family relatedness not accurate predictor
- Typological relatedness..?
 - English & Bulgarian analytical, fixed word order

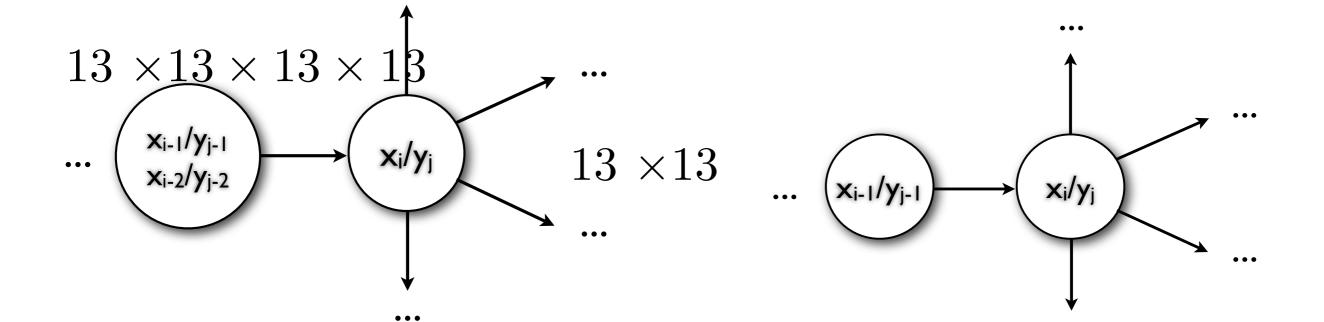
- Family relatedness not accurate predictor
- Typological relatedness..?
 - English & Bulgarian analytical, fixed word order
 - Serbian & Slovene inflectional, variable word order

Conclusions

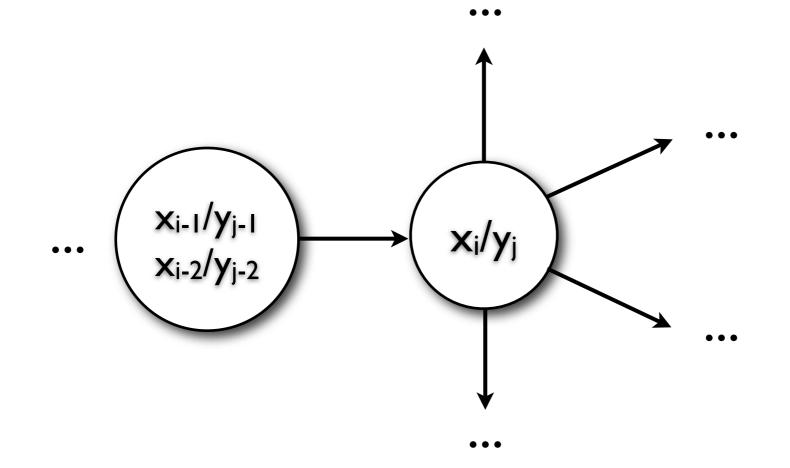
- Unsupervised multilingual learning effective for POS tagging.
- Beneficial for *all* pairings, drastic improvement for some.
- <u>Unsupervised/Supervised gap</u>:
 - Avg over all pairings: cut by 1/3.
 - Using best pairings: cut by 1/2.

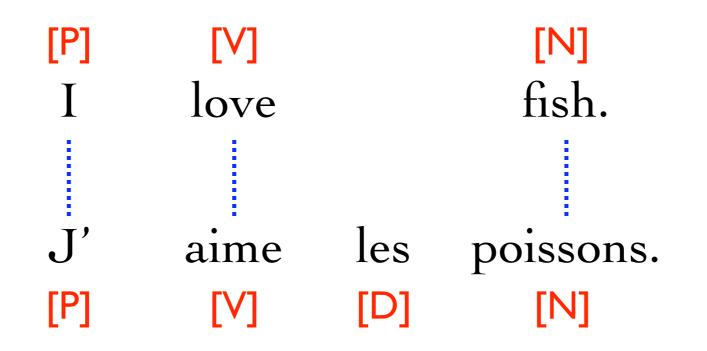
88 **91 93 97**

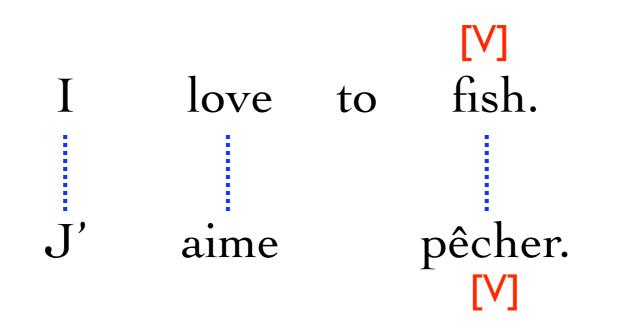
(full lexicon experiment)

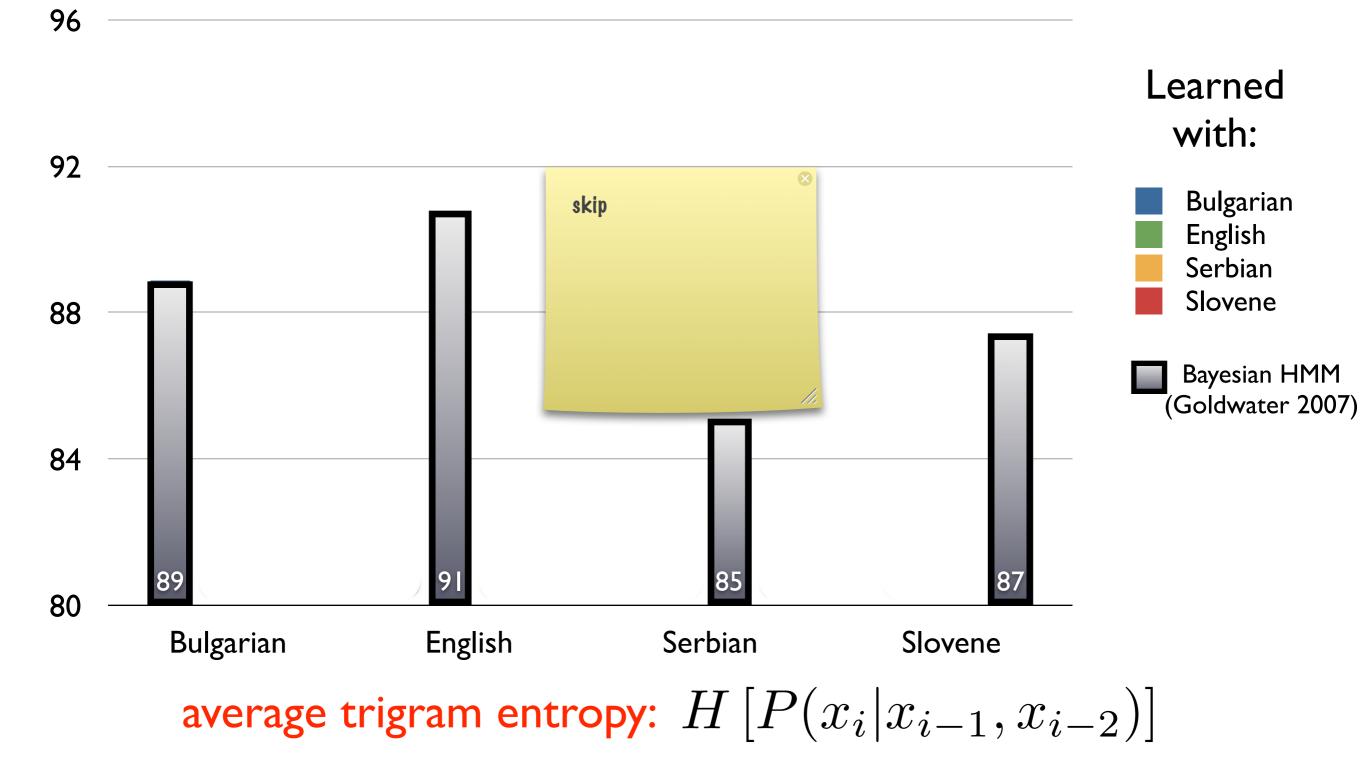


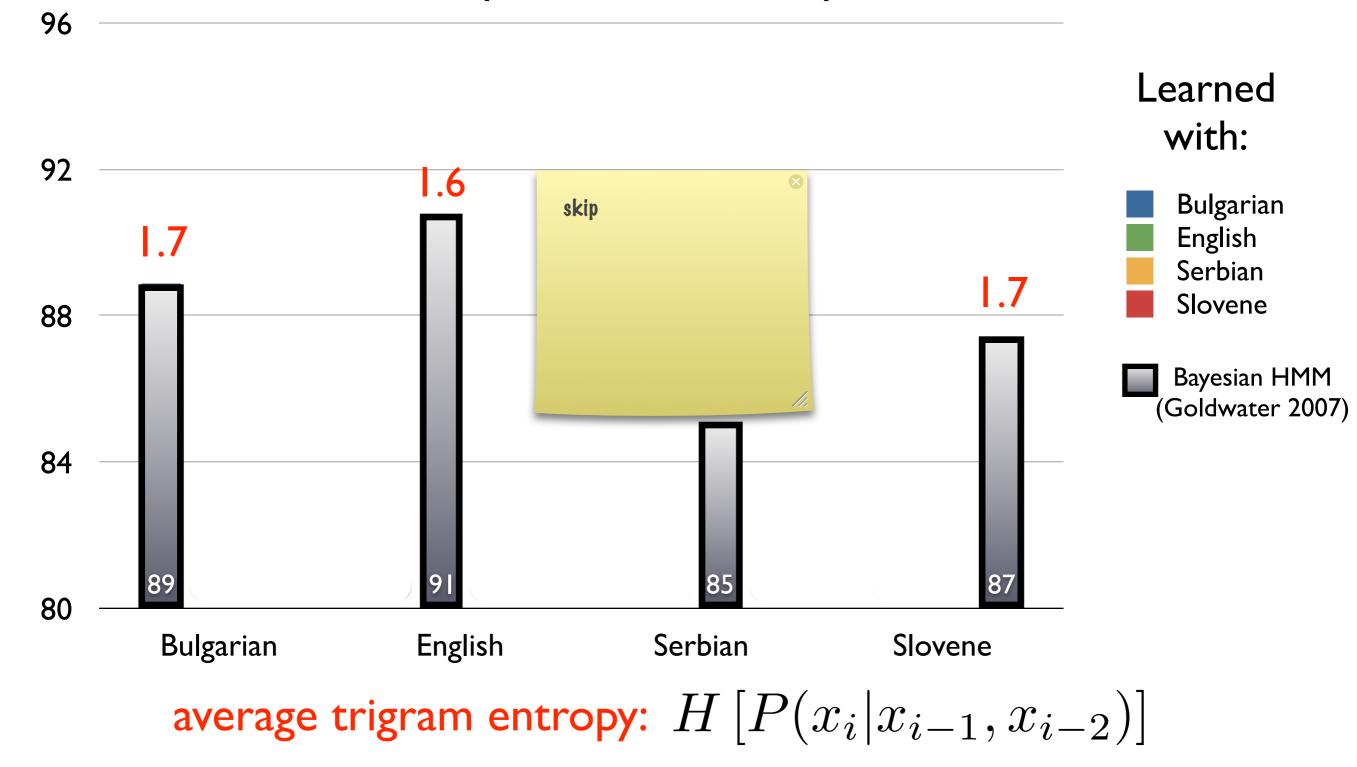
...











Tagset

- Gold Standard: Multext-East Corpus
- Tag repository: 13 categories
- Tags/Token Ratio in corpus

Language	Tag/Token
Serbian	1.41
Slovene	1.40
Bulgarian	1.34
English	2.58

