Page |1

Information Retrieval Database with WordNet Word Sense

Disambiguation
Caden Howell

Information Retrieval CSC 575 Dr. Joe Phillips

March 18, 2009

Using the System

The system is accessible on the World Wide Web at
http://www.cadenhowell.com/ppp/public/wnindex/sendquery.html| (Wall Street Journal corpus) and

http://www.cadenhowell.com/ppp/public/wnindex/wikiqguery.html (Partial Wikipedia Featured Articles

corpus)

The user enters the query using a simple text box. Every query is treated as an OR query. That s, all of
the terms are treated as if they were joined by Boolean OR.

hurricane ke

Run three queries

Enter a word. The query will be run against 3 indexes.

The corpus used 15 a collection of 1171 articles from the September 13, 2008 Wall Street Journal

The following screen shows the result of running the query against three indexes.

Results for query "hurricane ike"

Porter Stemmed Index
hurrican ik

T{Idf Document
0.02935 Hurricanelle. txt
0.02151 WorldWide txt
0.02020 DowGains =t
001629 Crude Ol txt
0.01223 Panera. tzt
000834 LargeStockF ocus.
0.00122 Climate Change tt
0.00065 BackToSchool txt

Most Coron WordNet Sense Index
hurricane#n#] Dwaght D Eisenhowerd#n#]
T{Idf Document

0.02880 Hurricanelle. st

0.02091 WorldWide txt

0.01947 DowGains

0.01592 Crude Ol tet

0.01189 Panera. tzt

0.00811 LargeStockFocus.

0.00122 Climate Change tat

0.00057 AcanstThehdachme. =t

0.00065 BackToSchool tt

Lesk WordNet Sense Index
hurncane#n#] Dwaght D Eizenhowerdni#l
TIdf Document

002880 Hurmncanellce txt
0020971 WorldWide txt
001547 DowGains. tt

0.01592 CrudeOil txt

0.0113% Panera. tzt

0.00811 LarseStockFocus .t
0.00122 Clinate Change. it
0.00087 AganstThedachne

0.00065 BackToSchool et

C Howell

3/18/2009 11:58 PM CSC 575

Page |2

The first index is a simple implementation of an information retrieval system using the Porter Stemming
algorithm and Tfldf for document ranking. The second index is built assuming that the most commonly
used WordNet sense of the term is intended by the query terms and index terms. The final index
determines the word senses of the query terms using the Lesk algorithm, which uses the words in the
neighborhood of a word to determine the appropriate word sense for the word.

All results found are returned. The results are not limited to a predetermined number of highly ranked
documents.

System Architecture

The inverted index at the base of the system is emulated by a MySQL database. There are four main
tables in the database: Document, Term, TermDocument, and Triallndex. Triallndex contains one row
for each index in the database. Each corpus has an index for each indexing algorithm that was used. For
example, the Wall Street Journal article corpus has three entries in the Triallndex database, for the
control algorithm group, the WordNet sense 1 algorithm group, and the WordNet Lesk algorithm group.
The Document table contains one row for each document in a corpus. Document rows can be shared by
multiple indices. The Term table contains one row for each term in an index. The term is stored in its
stemmed form. The TermDocument table records the relationship between each document and the
terms in that document. Note that “TermCount” stores the term frequency in a document, but the
length of the document vector is stored in the DocLength table. This is because the length of a
document vector can vary for different indices.

DocLength Document
PK |[DoclID
DoclD PK |ID
PK |IndexID | —
IndexiD —Pp : TermDocument
DocL th FilePath
" ID°° eng TermCount PK,FK2 | TermID
PK,FK1 | DocID
FK3 IndexID
Term < TermCount
PK |ID
TermText
FK1 |IndexID P Trialindex
PK [ID
Description

Figure 1 Structure of the MySQL Database

C Howell 3/18/2009 11:58 PM CSC 575

Page |3

Rather than a linked list of postings, the terms and IDs of the documents where they appear are stored
in tables in the database. To get a list of postings for a term, the term’s row in the Term table must be
joined with the term-document relationship rows in the TermDocument table.

In order to query the index, the user enters a query into a web form and submits the query to the web
server. The query is entered as plain text, and will be treated as if the terms are joined by Boolean OR'’s.
A Perl script and related libraries then query the database and return the results to the user. These
steps will be addressed in more detail in the section “Querying Data.”

% Debian Linux Web Server
. . t\
- T mMysoU
Perl CGI MySQL Client
Apache Web (mod_perl) Libraries
Server \ 'g\}
J
- \\/ . My SOL
N
User with A~ /
\
web browser Documents ~—
on disk
. MySQL Server
(hyperlinked to .
result web page) WordNet Database with Inverted Index

Figure 2 Query application architecture

Building the Information Retrieval System
There were several stages in building the information retrieval system. First, corpus data was selected
and harvested. Next, the data was converted to plain text. The data was then indexed and queried.

Harvesting Data

Three corpuses were selected for this project. Only the smallest corpus is completely indexed at this
time. The three corpuses are:

1. The collection of over 2000 Wikipedia Featured articles. <
http://en.wikipedia.org/wiki/Featured Article> These are Wikipedia articles that are recognized
to have good quality. | felt that they had a good breadth of subject matter coverage as well.

A collection of 111 stories from the Wall Street Journal on September 13, 2008.

3. The HTML version of our textbook. < http://nlp.stanford.edu/IR-

book/html/htmledition/irbook.html >

C Howell 3/18/2009 11:58 PM CSC 575

Page |4

The collection of Wall Street Journal stories was small enough that | downloaded the individual articles
manually from a database in the DePaul library. The other two collections were downloaded with a Perl
script. This script used the LWP library, which acts like a web browser to pull information from the web
so that it can be consumed by the Perl script.

. Strip redundant
Create list of Fetch each Convert HTML hepaders and
HTML documents document from the documents to text :
. - footers (i.e.
from a table of web with Perl documents with L
- . navigation) from
contents web page script Perl script
documents.

Figure 3 Corpus harvesting procedure

After collecting the articles, the HTML documents had to be converted to text. The simplest and most
straightforward way to do this was to run the documents through the lynx web browser and save the
text-formatted results. One of the scripts used is in Figure 3, below. The last part of the script trims
away the last bit of the article, which was boilerplate text used in all Wikipedia articles.

#1/usr/bin/perl

@files = <fetched/*>;
foreach $file (@fFiles) {
$file =~ /fetched\/(.*)$/;
$shortfile = $1;
print "lynx -force_html -dump $file > ascii/$shortfile.ascii\n";
“lynx -force_html -dump $file > ascii/$shortfile.ascii;
open(INFILE, "<ascii/$shortfile.ascii');
open(OUTFILE, ">ascii/$shortfile_trim™);
while(<INFILE>) {
if ($_ =~ /Views/) { last; }
print OUTFILE $;

¥
close(INFILE);
close(OUTFILE);

+

Figure 4 Script to convert from HTML to text

Indexing Data

Before | was able to use WordNet as a tool for guessing at word senses and conflating words with
synonymous meanings, | had to install the Wordnet database and tools on the indexing server. The
indexing system required:

e Debian Linux (Etch)
e Wordnet 3.0 [3]

e MySQL 5.0 Server
o Perl

e Perl libraries:

C Howell 3/18/2009 11:58 PM CSC 575

Page |5

Log::Dispatch

DBI::MySQL

WordNet::QueryData [4]

WordNet::Tools [5]

WordNet::SenseRelate::AllWords [6]

CustomSearch::Stemmer (essentially the Porter stemming code provided in class)

O O O 0O 0o

Once these were installed, most of the work was initiated and controlled through several Perl scripts
and custom modules | created:

e CustomSearch::Customlog, to log and debug

e CustomSearch::Indexer, which contains the indexing subroutines

e gotime.pl, which adds documents to the database and depends on CustomSearch::CustomLog
and CustomSearch::Indexer

e addtime.pl, which adds additional term indices for existing documents to the database and
depends on CustomSearch::CustomLog and CustomSearch::Indexer

The steps followed in the indexing algorithm are illustrated below in Figure 5. First the documents were
normalized and stopwords were removed. Then, the terms in each document were stemmed using the
Porter algorithm. The control index terms were then saved to the database. The WordNet stemmed
documents went through an additional step, where the senses of the words were determined, and
synonyms were converged to a single synonym “stem” which represented all words in that synset.

The final steps in the indexing which depended on a fully loaded corpus were done by running SQL
scripts after the documents loaded. This is how the IDF was added to the Term entries and the
document vector length was added to the Document entries.

C Howell 3/18/2009 11:58 PM CSC 575

A A
Read document All documents are
from file Indexed
¢ A
Remove Get document
stopwords
count
. A
Normalize
document (make
lowercase, remove Add IDF to for
punctuation) each Term
A
Run Porter
stemming
YES algorithm

v

Find WordNet
sense stems of
document

Create term/
frequency hash of

v

Create term/

stems frequency hash of
WordNet senses
y v
Save term- Save term-
document document

frequencies to

posting list for

control index in
MySQL database

frequencies to

posting list for
WordNet index in
MySQL database

Page |6

Are there more
documents?

Figure 5 Steps in creating the indices

C Howell 3/18/2009 11:58 PM CSC 575

Page |7

Before choosing the word sense disambiguation algorithm to be used in the indices, | ran a simple
benchmark of several disambiguation algorithms using the Perl Benchmark module. Descriptions of
each algorithm can be found in the CPAN documentation for the WordNet-Similarity Module.[7] Lesk
was not the best performer, but | did notice that Lesk consistently disambiguated more words than the
other algorithms. Other algorithms would return a majority of “word sense not determined” results,
and Lesk at least gave a best guess.

Table 1 Results of diambiguation benchmark

s/iter hso vector_pairs vector lesk wup [Ich Hlin res jcn path random
hso 351 - -86% -97% -98% -99% -99% -99% -99% -99% -99% -100%
vector_pairs 48.0 630% - -80% -82% -92% -93% -93% -94% -94% -96% -98%
vector 9.52 3587% 405% - -8% -60% -64% -66% -68% -70% -81% -92%
lesk 8.75 3907% 449% 9% -- -56% -61% -63% -66% -67% -79% -92%
wup 3.83 9049% 1153% 148% 128% -- =11% -16% -21% -26% -53% -81%
Ich 3.43 10144% 1303% 178% 156% 12% -— 6% -12% -17% -48% -79%
lin 3.21 10830% 1397% 196% 173% 19% % -— -6% -11% -44% =77%
res 3.02 11537% 1493% 216% 190% 27% 14% 6% -- -5% -40% -76%
jen 2.85 12211% 1586% 234% 207% 35% 20% 13% 6% -— =37% -74%
path 1.79 19446% 2576% 430% 388% 114% 91% 79% 68% 59% - -59%
random 0.735 47635% 6436% 1195% 1091% 422% 366% 337% 310% 288% 144% -
s/iter lesk fixed lesk random lesk sense 1
lesk fixed 7.65 - -2% -92% -94%
lesk 7.48 2% -— -91% -94%
random 0.645 1086% 1060% - -25%
lesk sense 1 0.486 1474% 1439% 33% -

Indexing the porter-stemmed documents took only a few seconds per document. However, | soon
found that indexing using the Lesk similarity algorithm took about 30 minutes per document. With the
Wikipedia Featured Article corpus, this would take 1000 hours. At this point, | decided to institute a
simple sort of parallel processing, by installing all the necessary software on one additional Debian
machine and two additional Windows machines running vmware and Debian virtual machines. The
resulting architecture is illustrated in Figure 6 below. Even with the additional processing, | was only
able to complete 800 documents by the assignment deadline.

In addition to the Lesk index, | decided to create the WordNet index using “sensel”. The “sensel”
algortihm not use the senses of neighboring words to determine word sense at all. Instead, it always
returns the most popular sense of a word, which is stored in the WordNet database.

In order to improve performance for synonym searches, | used WordNet to look up the synset of every
word, and replace that word with the first word appearing alphabetically in the synset. As aresult, a
word like “win” might be replaced with a less popular but word or phrase like “bring_home_the_bacon”
which would appear earlier in the dictionary. The idea was that synonyms would always converge to the
same word, which was stored in the index.

C Howell 3/18/2009 11:58 PM CSC 575

F 4 Windows XP Professional

Page | 8

Debian Linux Index Server

JAN

=
AhySOL
MySQL Client
Libraries

\

MySQL Seryer

=)

wWith Inverted Index

=

Perl
Indexing ocuments A-G
Scripts
</ y
A

WordNet Database

@ vmware VMWare Virtual Machine
(% Debian Linux Index Worker
A E\k
AMySOL
MySQL Client
Libraries
WordNet Database j
v
v Perl
Documents H-K Indexing
Scripts

f{_f Windows XP Professional

@ vmware VMWare Virtual Machine
% Debian Linux Index Worker
.

MHEE}
MySQL Client
Libraries

t
=

Perl
Indexing
Scripts

WordNet Database

=

Documents T-Z

Figure 6 Architecture of indexing procedure

Querying Data

WordNet Database

<

Documents J-S

% Debian Linux Ind\xWorker

My 53}

MySQL Client
Libraries

f

=)

Perl
Indexing
Scripts

After the data was indexed, | exported the MySQL tables from my computer at home and moved them
to a third-party production site which has a publicly accessible web server. | installed WordNet and the

same Perl libraries on this server as were needed on the indexing server. In addition, | wrote a new
module called CustomSearch::Query which contained the routines to run and sort the queries.

The steps in processing the query data are similar to those in processing the document data to be saved

into the index. These steps are illustrated in Figure 7 below.

C Howell

3/18/2009 11:58 PM CSC 575

Page |9

After the documents relevant to a query are retrieved, they are ranked and sorted according to a
normalized Tfldf score.

After reviewing the initial search results, | noticed that the Lesk algorithm did not work to disambiguate
most word senses when it only had 1 or 2 words to work with as context. In these cases, | allowed the
algorithm to use the ‘sensel’ word sense of words that with unknown senses. | considered as an
alternative retrieving documents which matched all word senses for these unknown words, but | was
afraid that this would destroy the system’s precision.

Based on what we learned in class, | realized that the best solution would probably be to use relevance
feedback, and ask the user what sense of the word they intended to look up. The system would have an
additional step then of looking up the query terms in WordNet, returning the list of senses of any
ambiguous terms to the user, and using the senses of the words selected by the user. This would be an
intuitive next step for this project.

C Howell 3/18/2009 11:58 PM CSC 575

C Howell

Get query from
user

4

Normalize query
(make lowercase,
remove
punctuation)

Run Porter
stemming
algorithm

Search on stem in
control index

Add to ranked
control index
results list

Afe there mo
terms in the
query?

NO

v

Sort and display
results

sense stems of

Find WordNet

document

Search on stem in

WordNet index |[€]
A
Add to ranked
WordNet results
S YES

list

Afe there mo
terms in the
query?

NO

v

Sort and display

results

3/18/2009 11:58 PM CSC 575

Page | 10

Page |11

Figure 7 Steps in querying the index

Suggestions for improvement and next steps
As stated in the previous section, a major weakness in this design is that the queries were too short to
reliably determine the senses of the words in the queries.

In addition, the query performance of the system is quite slow, due in part to the large volume of
communication between the MySQL database and the Perl scripts. A logical next step would be to
refactor some parts of the design so that there was less interaction between the database and script. |
believe that more of the document scoring could be moved to the database server, but it would require
some trial and error with SQL to find suitably fast queries.

| was reluctant to attempt to tweak the Lesk algorithm, but | would be interested in making the parallel
processing method | attempted more reliable and smart. Basically, | partitioned the problem by dividing
the document corpus among the indexing workers. There was no communication between the workers
except that they all wrote to the MySQL server. This made it inconvenient to monitor the system and
restart the servers.

Because these corpuses are not standardized, with a set of agreed-upon queries and expert relevance
rankings, it is difficult to rank the quality of the results. | would like try this system with a known corpus
so that | can judge the effectiveness of the WordNet indices with some objectivity.

Conclusion

| was not, as | had hoped, amazed at how easy it was to use WordNet to make powerful improvements
to queries. WordNet is a powerful database that represents a great investment of time and effort, but it
cannot read the user’s mind and choose among results to deliver those that the user wants. Frequently,
the ranked results for the control index and WordNet index were similar or identical. That is not to say
that WordNet could not be used to make an information retrieval system more effective. However, it
comes at the price of effort and, as | found, speed.

[1] An Adapted Lesk Algorithm for Word Sense Disambiguation Using WordNet, Satanjeev Banerjee and
Ted Pedersen, Lecture Notes In Computer Science; Vol. 2276, Pages: 136 - 145, 2002.

[2] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze. Introduction to Information
Retrieval. New York: Cambridge University Press, 2008. http://nlp.stanford.edu/IR-
book/html/htmledition/irbook.html

[3] http://wordnet.princeton.edu/obtain

[4] http://search.cpan.org/~jrennie/WordNet-QueryData/

C Howell 3/18/2009 11:58 PM CSC 575

Page |12

[5] http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/Tools.pm

[6] http://search.cpan.org/~tpederse/WordNet-SenseRelate-AllWords-
0.16/lib/WordNet/SenseRelate/AllWords.pm

[7] Pedersen, Ted. “ Wordnet-Similarity.” http://search.cpan.org/dist/WordNet-Similarity/

C Howell 3/18/2009 11:58 PM CSC 575

