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Transactional memory  (TM)13 is a concurrency 
control paradigm that provides atomic and isolated 
execution for regions of code. TM is considered by 
many researchers to be one of the most promising 
solutions to address the problem of programming 
multicore processors. Its most appealing feature is 
that most programmers only need to reason locally 
about shared data accesses, mark the code region to 
be executed transactionally, and let the underlying 
system ensure the correct concurrent execution. This 
model promises to provide the scalability of fine-
grained locking while avoiding common pitfalls of 
lock composition such as deadlock. In this article, we 
explore the performance of a highly optimized STM 

and observe the overall performance of 
TM is much worse at low levels of paral-
lelism, which is likely to limit the adop-
tion of this programming paradigm.

Different implementations of 
transactional memory systems make 
tradeoffs that impact both performance 
and programmability. Larus and Ra-
jwar16 present an overview of design 
trade-offs for implementations of trans-
actional memory systems. We summa-
rize some of the design choices here:

Software-only (STM)˲˲ 7, 10, 12, 14, 18, 23, 25 is 
the focus here. While offering flexibility 
and no hardware cost, it leads to over-
head in excess of most users’ tolerance.

Hardware-only (HTM)˲˲ 2, 4, 9, 13, 19, 20, 35 
suffers from two major impediments: 
high implementation and verification 
costs lead to design risks too large to 
justify on a niche programming model; 
hardware capacity constraints lead to 
significant performance degradation 
when overflow occurs, and proposals for 
managing overflows (for example, sig-
natures5) incur false positives that add 
complexity to the programming model. 
Therefore, from an industrial perspec-
tive, HTM designs have to provide more 
benefits for the cost, on a more diverse 
set of workloads (with varying transac-
tional characteristics) for hardware de-
signers to consider implementation.a

Hybrid˲˲ 1, 6, 24, 28 is the most likely plat-
form for the eventual adoption of TM 
by a wide audience, although the exact 
mix of hardware and software support 
remains unclear. 

A special case of the hybrid systems 
are hardware-accelerated STMs. In this 
scenario, the transactional semantics 
are provided by the STM, and hardware 
primitives are only used to speed up 
critical performance bottlenecks in the 
STM. Such systems could offer an at-
tractive solution if the cost of hardware 
primitives is modest and may be further 
amortized by other uses in the system. 

Independent of these implementa-

a	 Reuse of hardware for other purposes can also 
justify its inclusion, as the case may be for 
Sun’s implementation of Scout Threading in 
the Rock processor.32
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state of the art STM runtime system and 
compiler framework, the freely avail-
able IBM STM.31 Here, we describe this 
experience, starting with a discussion of 
STM algorithms and design decisions. 
We then compare the performance of 
this STM with two other state of the art 
implementations (the Intel STM14 and 
the Sun TL2 STM7) as well as dissect the 
operations executed by the IBM STM 
and provide a detailed analysis of the 
performance hotspots of the STM. 

Software Transactional Memory
STM implements all the transactional 
semantics in software. That includes 
conflict detection, guaranteeing the 
consistency of transactional reads, pres-
ervation of atomicity and isolation (pre-
venting other threads from observing 
speculative writes before the transac-
tion succeeds), and conflict resolution 
(transaction arbitration). The pseudo-
code for the main operations executed 
by a typical STM is illustrated in Figure 
1. We show two STM algorithms, one 
that performs full validation and one 
that uses a global version number (the 
additional statements marked with the 
gv# comment).

The advantage of an STM for system 
programmers is that it offers flexibility 
in implementing different mechanisms 
and policies for these operations. For 

tion decisions, there are transactional 
semantics issues that break the ideal 
transactional programming model for 
which the community had hoped. TM 
introduces a variety of programming is-
sues that are not present in lock-based 
mutual exclusion. For example, seman-
tics are muddled by: 

Interaction with non-transactional ˲˲

codes, including access to shared data 
from outside of a transaction (tolerating 
weak atomicity) and the use of locks in-
side a transaction (breaking isolation to 
make locking operations visible outside 
transactions); 

Exceptions and serializability: how ˲˲

to handle exceptions and propagate 
consistent exception information from 
within a transactional context, and 
how to guarantee that transactional ex-
ecution respects a correct ordering of 
operations; 

Interaction with code that cannot ˲˲

be transactionalized, due to either com-
munication with other threads or a re-
quirement barring speculation; 

Livelock, or the system guarantee ˲˲

that all transactions make progress 
even in the presence of conflicts. 

In addition to the intrinsic semantic 
issues, there are also implementation-
specific optimizations motivated by 
high transactional overheads, such as 
programmer annotations for exclud-

ing private data. Furthermore, the non-
determinism introduced by aborting 
transactions complicates debugging—
transactional code may be executed and 
aborted on conflicts, which makes it dif-
ficult for the programmer to find deter-
ministic paths with repeatable behav-
ior. Both of these dilute the productivity 
argument for transactions, especially 
software-only TM implementations.

Given all these issues, we conclude 
that TM has not yet matured to the point 
where it presents a compelling value 
proposition that will trigger its wide-
spread adoption. While TM can be a 
useful tool in the parallel programmer’s 
portfolio, it is our view that it is not go-
ing to solve the parallel programming 
dilemma by itself. There is evidence 
that it helps with building certain con-
current data structures, such as hash ta-
bles and binary trees. In addition, there 
are anecdotal claims that it helps with 
workloads; however, despite several 
years of active research and publication 
in the area, we are disappointed to find 
no mentions in the research literature 
of large-scale applications that make 
use of TM. The STAMP30 and Lonestar17 
benchmark suites are promising starts, 
but have a long way to go to be represen-
tative of full applications.

We base these conclusions on our 
work over the past two years building a 

Figure 1: STM operations.

STM _ BEGIN()
read global version number /* gv# */

(a) Pseudo-code for STM begin

STM _ VALIDATE()
read global version number /* gv# */
if global version number changed /* gv# */
for each read set entry
if metadata changed return FALSE
return TRUE

(b) Pseudo-code for STM validate

STM _ READ(A)
if already written goto written path
read metadata of A
if metadata is locked goto conflict path
log A and its metadata in the read set
read value at A
if ! STM _ VALIDATE() goto conflict path
return val

(c) Pseudo-code for STM read barrier

STM _ END()
lock metadata for write set
if already locked goto conflict path
if ! STM _ VALIDATE() goto conflict path
/* Success guaranteed */
increment global version number /* gv# */
execute writes
update/unlock metadata for write set

(d) Pseudo-code for STM end
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end users, the advantage of an STM is 
that it offers an environment to trans-
actionalize (that is, porting to TM) their 
applications without incurring extra 
hardware cost or waiting for such hard-
ware to be developed.

Conversely, an STM entails nontriv-
ial drawbacks with respect to perfor-
mance and programming semantics:

Overheads:˲˲  In general, STM results 

in higher sequential overheads than tra-
ditional shared-memory programming 
or HTM. This is the result of the software 
expansion of loads and stores to shared 
mutable locations inside transactions 
to tens of additional instructions that 
constitute the STM implementation 
(for example, the STM_READ code in 
Figure 1c). Depending on the transac-
tional characteristics of a workload, 

these overheads can become a high 
hurdle for STM to achieve performance. 
The sequential overheads (that is, con-
flict-free overheads that are incurred re-
gardless of the actions of other concur-
rent threads) must be overcome by the 
concurrency-enabling characteristics of 
transactional memory.

Semantics:˲˲  In order to avoid incur-
ring high STM overheads, non-transac-
tional accesses (such as loads and stores 
occurring outside transactions) are typi-
cally not expanded. This has the effect 
of weakening—and hence complicat-
ing—the semantics of transactions, 
which may require the programmer 
to be more careful than when strong 
transactional semantics are supported. 
The following are some of the weakened 
guarantees that are usually associated 
with such STMs: 

Weak atomicity:˲˲  Typically the STM 
runtime libraries cannot detect conflicts 
between transactions and non-transac-
tional accesses. Thus, the semantics of 
atomicity are weakened to allow unde-
tected conflicts with non-transactional 
accesses (referred to as weak atomic-
ity3), or equivalently put the burden on 
the programmer to guarantee that no 
such conflicts can possibly take place. 

Privatization:˲˲  Some STM designs 
prohibit the seamless privatization of 
memory locations, that is, the transi-
tion from being accessed transaction-
ally to being accessed privately—or 
non-transactionally in general, by us-
ing locks. For some STM designs, once 
a location is accessed transactionally, 
it must continue to be accessed trans-
actionally. With some STM designs, the 
programmer can ease the transition by 
guaranteeing that the first access to the 
privatized location—such as after the 
location is no longer accessible by other 
threads—is transactional. 

Memory reclamation:˲˲  Some STM 
designs prohibit the seamless reclama-
tion of the memory locations accessed 
transactionally for arbitrary reuse, such 
as using malloc and free. With such 
STM designs, memory allocation and 
deallocation for locations accessed 
transactionally are handled differently 
from other locations. 

Legacy binaries:˲˲  STM needs to ob-
serve all memory activities of the trans-
actional regions to ensure atomicity and 
isolation. STMs that achieve this obser-
vation by code instrumentation gener-

Figure 2: . Scalability results for three STM runtimes on a quad-core 
Intel Xeon server: IBM, Intel STM v2, and Sun TL2.
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STM barely attains single thread perfor-
mance at 4 threads, while on vacation 
none of the STMs actually overcome the 
overhead of transactional memory even 
with 8 threads.

Compiler Instrumentation. The com-
piler is a necessary component of an 
STM-based programming environment 
that is to be adopted by mass program-
mers. Its basic role is to eliminate the 
need for programmers to manually in-
strument memory references to STM 
read- and write-barriers. While offering 
convenience, compiler instrumenta-
tion does add another layer of over-
heads to the STM system by introducing 
redundant barriers, often due to conser-
vativeness of compiler analysis, as also 
observed in Yoo.36

Figure 3 provides another baseline: 
the overhead of compiler instrumen-
tation. The performance is measured 
on a 16-way POWER5 running AIX 5.3. 
For the STMXLC curve, we use the un-
instrumented versions of the codes 
and annotate transactional regions and 
functions using the language exten-
sions provided by the compiler.31

ally cannot support transactions calling 
legacy codes that are not instrumented 
(for example, third-party libraries) with-
out seriously limiting concurrency, such 
as by serializing transactions. 

Evaluation
Here we use the following set of bench-
marks: 

b+tree˲˲  is an implementation of da-
tabase indexing operations on a b-tree 
data structure for which the data is 
stored only on the tree leaves. This im-
plementation uses coarse-grain trans-
actions for every tree operation. Each 
b+ tree operation starts from the tree 
root and descends down to the leaves. 
A leaf update may trigger a structural 
modification to rebalance the tree. A 
rebalancing operation often involves 
recursive ascent over the child-parent 
edges. In the worst case, the rebalanc-
ing operation modifies the entire tree. 
Our workload inserts 2,048 items in a 
b+tree of order 20. For this code we have 
only a transactional version that is not 
manually instrumented, therefore ex-
perimental results are presented only 
in configurations where we can use our 
compiler to provide instrumentation; 

delaunay ˲˲ implements the Delaunay 
Mesh Refinement algorithm described 
in Kulkarni et al.15 The code produces 
a guaranteed quality Delaunay mesh. 
This is a Delaunay triangulation with 
the additional constraint that no angle 
in the mesh be less than 30 degrees. 
The benchmark takes as input an un-
refined Delaunay triangulation and 
produces a new triangulation that sat-
isfies this constraint. In the TM imple-
mentation of the algorithm, multiple 
threads choose their elements from a 
work-queue and refine the cavities as 
separate transactions. 

genome˲˲ , kmeans, and vacation are 
part of the STAMP benchmark suite19 

version 0.9.4. For a detailed description 
of these benchmarks see STAMP.30 

Baseline Performance. In Figure 2 we 
present a performance comparison of 
three STMs: the IBM,31, 34 Intel,14 and 
Sun’s TL27 STMs. The runs are on a 
quad-core, two-way hyperthreaded Intel 
Xeon 2.3GHz box running Linux Fedora 
Core 6. In these runs, we used the manu-
ally instrumented versions of the codes 
that aggressively minimize the number 
of barriers for the IBM and TL2 STMs. 
Since we do not have access to low-level 
APIs for the Intel STM, the curves for the 
Intel STM are from codes instrumented 
by its compiler, which incur additional 
barrier overheads due to compiler in-
strumentation.36 The graphs are scal-
ability curves with respect to the serial, 
non-transactionalized version. There-
fore a value of 1 on the y-axis represents 
performance equal to the serial version. 
The performance of these STMs is most-
ly on par, with the IBM STM showing 
better scalability on delaunay and TL2 
obtaining better scalability on genome. 
However, the overall performance ob-
tained is very low: on kmeans the IBM 

Figure 3: Scalability results for manual and compiler instrumented benchmarks on AIX PowerPC with IBM XLCSTM compiler. 
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Figure 4: Single-threaded overhead of the STM algorithms.
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instrumentation and provides an accu-
rate breakdown of the STM overheads.

We study the performance of two 
STM algorithms: one that fully validates 
(“fv") the read set after each transac-
tional read and one that uses a global 
version number (“gv#") to avoid the full 
validation, while maintaining the cor-
rectness of the operations. The fv algo-
rithm provides more concurrency at a 
much higher price. The gv# is deemed 
as one of the best trade-offs for STM im-
plementations.

Figure 4 presents the single-thread-
ed overhead of these algorithms over 
sequential runs, illustrating again the 
substantial slowdowns that the algo-
rithms induce. Figure 5 breaks down 
these overheads into the various STM 
components. For both algorithms, the 
overhead of transactional reads domi-
nates due to the frequency of read op-
erations relative to all other operations. 
The effectiveness of the global version 
number in reducing overheads is shown 
in the lower read overhead of “gv#.”

Figure 6 gives a fine-grain breakdown 
of the overheads of the transactional 
read operation. As expected, the over-
head of validating the read set domi-
nates transactional read time in the “fv” 
configuration. For both algorithms, the 
isync operations (necessary for ordering 
the metadata read and data read as well 
as the data read and validation) form a 
substantial component. In applications 
that perform writes before reads in the 
same transaction (delaunay, kmeans), 
the time spent checking whether a loca-
tion has been written by prior writes in 
the same transaction forms a significant 
component of the total time. Interest-
ingly, reading the data itself is a negligi-
ble amount of the total time, indicating 
the hurdles that must be overcome for 
the performance of these algorithms to 
be compelling.

Figure 7 gives a similar breakdown 
of the transactional commit operation. 
As before, the “fv" configuration suf-
fers from having to validate the read set. 
Other dominant overheads for both con-
figurations are that of having to acquire 
the metadata for the write set (which in-
volves a sequence of load-linked/store-
conditional operations) and the sync 
operations that are necessary for order-
ing the metadata acquires, data writes, 
and metadata releases. Once again, the 
data writes themselves form a small 
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Figure 5: Percentage of time spent in different STM operations.

Figure 6: Percentage of time spent in STM read sub-operations.

100

90

80

70

60

50

40

30

20

10

0

b+tree
fv fv fv fv fvgv# gv# gv# gv# gv#

%
 o

f c
yc

le
s 

(n
or

m
. t

o 
fv

)

delaunay kmeans genome vacation

  return
  validate
  sync
  read data

  check read after write
  setup
  call
  other

  add metadata to read set 
  check if metadata is locked
  read metadata
  calculate metadata

Compiler over-instrumentation is 
more pronounced in traditional, un-
managed languages, such as C and C++, 
where a compiler instrumentation with-
out interprocedural analysis may end 
up instrumenting every memory refer-
ence in the transactional region (except 
for stack accesses). Indeed, our compil-
er instrumentation more than doubled 
the number of dynamic read barriers in 
delaunay, genome, and kmeans. Interpro-
cedural analysis can help improve the 
tightness of compiler instrumentation 
for some cases, but is generally limited 
by the accuracy of global analysis.

STM Operations Performance. Given 
this baseline, we now analyze in detail 
which operations in the STM cause the 
overhead. For this purpose, we use a 
cycle-accurate simulator of the Power-
PC architecture that provides hooks for 
instrumentation. The STM operations 
and suboperations are instrumented 
with these simulator hooks. The reason 
for this environment is that we want 
to capture the overheads at instruc-
tion level and eliminate any other non-
determinism introduced by real hard-
ware. The simulator eliminates all other 
bookkeeping operations introduced by 
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component of the total time.
Overhead Optimizations. There have 

been many proposals on reducing STM 
overheads through compiler or runtime 
techniques, most of which are comple-
mentary to STM hardware acceleration.

Redundant barrier elimination.˲˲  One 
technique is to eliminate barriers to 
thread-local objects through escape 
analysis. Such analysis is typically quite 
effective identifing thread-local access-
es that are close to the object allocation 
site. It can eliminate both read- and 
write-barriers, but is often more effec-
tive on write-barriers. For example, we 
observe that an intra-procedural escape 
analysis can eliminate 40–50% of write 
barriers in vacation, genome, and b+tree. 
However, its impact on performance is 
more limited: from negligible to 12%. 
To target redundant read-barriers, a 
whole-program analysis called Not-Ac-
cessed-In-Transaction analysis27 elimi-
nates some barriers to read-only objects 
in transactions;

Barrier strength reduction.˲˲  These op-
timizations do not eliminate barriers, 
but identify at runtime special locations 
that require only lightweight barrier 
processing, such as dynamic tracking of 
thread-local objects11, 27 and runtime fil-
tering of stack references and duplicate 
references;11

Code generation optimizations.˲˲  One 
common technique is to inline the fast 
path of barriers. It has the potential 
benefit of reducing function call over-
head, increasing ILP, and exposing re-
use of common sub-barrier operations. 
In our experiments, compiler inlining 
achieved less than 2% overall improve-
ment across our benchmark suite;

Commit sequence optimizations.˲˲  
Eliminating unnecessary global version 
number updates37 improves the overall 
performance of several micro-bench-
marks by up to 14%. 

Such optimizations have a positive 
impact on STM performance. However, 
the results presented here indicate how 
much further innovation is needed for 
the performance of STMs to become 
generally appealing to users.

Related Work
The first STM system was proposed by 
Shavit and Touitou26 and is based on 
object ownership. The protocol is static, 
which is a significant shortcoming that 
has been overcome by subsequently pro-

posed STM systems.7 Conflict detection 
is simplified significantly by the static 
nature because conflicts can be ruled 
out already when ownership records are 
acquired (at transaction start).

DSTM12 is the first dynamic STM 
system; the design follows a per-object 
runtime organization (locator object). 
Variables (objects) in the application 
heap refer to a locator object. Unlike 
in a design with ownership records (for 
example, Harris and Fraser10), the loca-
tor does not store a version number but 
refers to the most recently committed 
version of the object. A particularity of 
the DSTM design is that objects must be 
explicitly ‘opened’ (in read-only or read-
write mode) before transactional access; 
also DSTM allows for early release. The 
authors argue that both mechanisms fa-
cilitate the reduction of conflicts.

The design principles of the RSTM18 
system are similar to DSTM in that it as-
sociates transactional metadata with ob-
jects. Unlike DSTM however, the system 
does not require the dynamic allocation 
of transactional data but co-locates it 
with the non-transactional data. This 
scheme has two benefits: first, it facili-
tates spatial access locality and hence 
fosters execution performance and 
transaction throughput. Second, the dy-
namic memory management of trans-
actional data (usually done through a 
garbage collector) is not necessary and 

hence this scheme is amenable for use 
in environments where memory man-
agement is explicit.

Recent work explored algorithmic 
optimizations and/or alternative imple-
mentations of the basic STM algorithms 
described here. Riegel et al. propose the 
use of real-time clocks to enhance the 
STM scalability using a global version 
number.22 JudoSTM21 and RingSTM29 re-
duce the number of atomic operations 
that must be performed when commit-
ting a transaction at the cost of serial-
izing commit and/or incurring spurious 
aborts due to imprecise conflict detec-
tion. Several proposals have been made 
for STMs that operate via dynamic bina-
ry rewriting in order to allow the usage 
of STM on legacy binaries.8, 21, 33

Yoo et. al36 analyze the overhead in 
the execution of Intel’s STM.14, 23 They 
identify four major sources of overhead: 
over-instrumentation, false sharing, 
amortization costs, and privatization-
safety costs. False sharing, privatiza-
tion-safety, and over-instrumentation 
are implementation artifacts that can 
be eliminated by either using finer 
granularity bookkeeping, more refined 
analysis, or user annotations. Amortiza-
tion costs are inherent overheads in an 
STM that, as we demonstrated here, are 
not likely to be eliminated.

A large amount of research effort 
has been spent in analyzing the opera-

Figure 7: Percentage of time spent in STM end sub-operations.
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  setup
  call
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tions in TM systems. Recent software 
optimizations have managed to accel-
erate STM performance by 2%–15%. We 
believe such analysis is a good practice 
that should be extended to every piece 
of system software, especially open 
source. However, the gains are only a mi-
nor dent in the overheads we observed, 
indicating the challenge that lies before 
the community in making STM perfor-
mance compelling.

Conclusion
Based on our results, we believe that the 
road ahead for STM is quite challeng-
ing. Lowering the overheads of STM to 
a point where it is generally appealing 
is a difficult task and significantly bet-
ter results have to be demonstrated. If 
we could stress a single direction for 
further research, it is the elimination of 
dynamically unnecessary read and write 
barriers—possibly the single most pow-
erful lever toward further reduction of 
STM overheads. However, given the dif-
ficulty of similar problems explored by 
the research community such as alias 
analysis, escape analysis, and so on, this 
may be an uphill battle. And because 
the argument for TM hinges upon its 
simplicity and productivity benefits, we 
are deeply skeptical of any proposed so-
lutions to performance problems that 
require extra work by the programmer. 

We observed that the TM program-
ming model itself, whether implement-
ed in hardware or software, introduces 
complexities that limit the expected 
productivity gains, thus reducing the 
current incentive for migration to trans-
actional programming, and the justifi-
cation at present for anything more than 
a small amount of hardware support.
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