
40 communications of the acm | November 2008 | vol. 51 | no. 11

practice

Transactional memory (TM)13 is a concurrency
control paradigm that provides atomic and isolated
execution for regions of code. TM is considered by
many researchers to be one of the most promising
solutions to address the problem of programming
multicore processors. Its most appealing feature is
that most programmers only need to reason locally
about shared data accesses, mark the code region to
be executed transactionally, and let the underlying
system ensure the correct concurrent execution. This
model promises to provide the scalability of fine-
grained locking while avoiding common pitfalls of
lock composition such as deadlock. In this article, we
explore the performance of a highly optimized STM

and observe the overall performance of
TM is much worse at low levels of paral-
lelism, which is likely to limit the adop-
tion of this programming paradigm.

Different implementations of
transactional memory systems make
tradeoffs that impact both performance
and programmability. Larus and Ra-
jwar16 present an overview of design
trade-offs for implementations of trans-
actional memory systems. We summa-
rize some of the design choices here:

Software-only (STM)˲˲ 7, 10, 12, 14, 18, 23, 25 is
the focus here. While offering flexibility
and no hardware cost, it leads to over-
head in excess of most users’ tolerance.

Hardware-only (HTM)˲˲ 2, 4, 9, 13, 19, 20, 35
suffers from two major impediments:
high implementation and verification
costs lead to design risks too large to
justify on a niche programming model;
hardware capacity constraints lead to
significant performance degradation
when overflow occurs, and proposals for
managing overflows (for example, sig-
natures5) incur false positives that add
complexity to the programming model.
Therefore, from an industrial perspec-
tive, HTM designs have to provide more
benefits for the cost, on a more diverse
set of workloads (with varying transac-
tional characteristics) for hardware de-
signers to consider implementation.a

Hybrid˲˲ 1, 6, 24, 28 is the most likely plat-
form for the eventual adoption of TM
by a wide audience, although the exact
mix of hardware and software support
remains unclear.

A special case of the hybrid systems
are hardware-accelerated STMs. In this
scenario, the transactional semantics
are provided by the STM, and hardware
primitives are only used to speed up
critical performance bottlenecks in the
STM. Such systems could offer an at-
tractive solution if the cost of hardware
primitives is modest and may be further
amortized by other uses in the system.

Independent of these implementa-

a	 Reuse of hardware for other purposes can also
justify its inclusion, as the case may be for
Sun’s implementation of Scout Threading in
the Rock processor.32

doi:10.1145/1400214.1400228

The promise of STM may likely be undermined
by its overheads and workload applicabilities.

by Călin CAS̨caval, Colin Blundell, Maged Michael,
Harold W. Cain, Peng Wu, Stefanie Chiras,
and Siddhartha Chatterjee

Software
Transactional
Memory: Why
is it Only a
Research Toy?

practice

november 2008 | vol. 51 | no. 11 | communications of the acm 41

state of the art STM runtime system and
compiler framework, the freely avail-
able IBM STM.31 Here, we describe this
experience, starting with a discussion of
STM algorithms and design decisions.
We then compare the performance of
this STM with two other state of the art
implementations (the Intel STM14 and
the Sun TL2 STM7) as well as dissect the
operations executed by the IBM STM
and provide a detailed analysis of the
performance hotspots of the STM.

Software Transactional Memory
STM implements all the transactional
semantics in software. That includes
conflict detection, guaranteeing the
consistency of transactional reads, pres-
ervation of atomicity and isolation (pre-
venting other threads from observing
speculative writes before the transac-
tion succeeds), and conflict resolution
(transaction arbitration). The pseudo-
code for the main operations executed
by a typical STM is illustrated in Figure
1. We show two STM algorithms, one
that performs full validation and one
that uses a global version number (the
additional statements marked with the
gv# comment).

The advantage of an STM for system
programmers is that it offers flexibility
in implementing different mechanisms
and policies for these operations. For

tion decisions, there are transactional
semantics issues that break the ideal
transactional programming model for
which the community had hoped. TM
introduces a variety of programming is-
sues that are not present in lock-based
mutual exclusion. For example, seman-
tics are muddled by:

Interaction with non-transactional ˲˲

codes, including access to shared data
from outside of a transaction (tolerating
weak atomicity) and the use of locks in-
side a transaction (breaking isolation to
make locking operations visible outside
transactions);

Exceptions and serializability: how ˲˲

to handle exceptions and propagate
consistent exception information from
within a transactional context, and
how to guarantee that transactional ex-
ecution respects a correct ordering of
operations;

Interaction with code that cannot ˲˲

be transactionalized, due to either com-
munication with other threads or a re-
quirement barring speculation;

Livelock, or the system guarantee ˲˲

that all transactions make progress
even in the presence of conflicts.

In addition to the intrinsic semantic
issues, there are also implementation-
specific optimizations motivated by
high transactional overheads, such as
programmer annotations for exclud-

ing private data. Furthermore, the non-
determinism introduced by aborting
transactions complicates debugging—
transactional code may be executed and
aborted on conflicts, which makes it dif-
ficult for the programmer to find deter-
ministic paths with repeatable behav-
ior. Both of these dilute the productivity
argument for transactions, especially
software-only TM implementations.

Given all these issues, we conclude
that TM has not yet matured to the point
where it presents a compelling value
proposition that will trigger its wide-
spread adoption. While TM can be a
useful tool in the parallel programmer’s
portfolio, it is our view that it is not go-
ing to solve the parallel programming
dilemma by itself. There is evidence
that it helps with building certain con-
current data structures, such as hash ta-
bles and binary trees. In addition, there
are anecdotal claims that it helps with
workloads; however, despite several
years of active research and publication
in the area, we are disappointed to find
no mentions in the research literature
of large-scale applications that make
use of TM. The STAMP30 and Lonestar17
benchmark suites are promising starts,
but have a long way to go to be represen-
tative of full applications.

We base these conclusions on our
work over the past two years building a

Figure 1: STM operations.

STM _ BEGIN()
read global version number /* gv# */

(a) Pseudo-code for STM begin

STM _ VALIDATE()
read global version number /* gv# */
if global version number changed /* gv# */
for each read set entry
if metadata changed return FALSE
return TRUE

(b) Pseudo-code for STM validate

STM _ READ(A)
if already written goto written path
read metadata of A
if metadata is locked goto conflict path
log A and its metadata in the read set
read value at A
if ! STM _ VALIDATE() goto conflict path
return val

(c) Pseudo-code for STM read barrier

STM _ END()
lock metadata for write set
if already locked goto conflict path
if ! STM _ VALIDATE() goto conflict path
/* Success guaranteed */
increment global version number /* gv# */
execute writes
update/unlock metadata for write set

(d) Pseudo-code for STM end

42 communications of the acm | November 2008 | vol. 51 | no. 11

practice

end users, the advantage of an STM is
that it offers an environment to trans-
actionalize (that is, porting to TM) their
applications without incurring extra
hardware cost or waiting for such hard-
ware to be developed.

Conversely, an STM entails nontriv-
ial drawbacks with respect to perfor-
mance and programming semantics:

Overheads:˲˲ In general, STM results

in higher sequential overheads than tra-
ditional shared-memory programming
or HTM. This is the result of the software
expansion of loads and stores to shared
mutable locations inside transactions
to tens of additional instructions that
constitute the STM implementation
(for example, the STM_READ code in
Figure 1c). Depending on the transac-
tional characteristics of a workload,

these overheads can become a high
hurdle for STM to achieve performance.
The sequential overheads (that is, con-
flict-free overheads that are incurred re-
gardless of the actions of other concur-
rent threads) must be overcome by the
concurrency-enabling characteristics of
transactional memory.

Semantics:˲˲ In order to avoid incur-
ring high STM overheads, non-transac-
tional accesses (such as loads and stores
occurring outside transactions) are typi-
cally not expanded. This has the effect
of weakening—and hence complicat-
ing—the semantics of transactions,
which may require the programmer
to be more careful than when strong
transactional semantics are supported.
The following are some of the weakened
guarantees that are usually associated
with such STMs:

Weak atomicity:˲˲ Typically the STM
runtime libraries cannot detect conflicts
between transactions and non-transac-
tional accesses. Thus, the semantics of
atomicity are weakened to allow unde-
tected conflicts with non-transactional
accesses (referred to as weak atomic-
ity3), or equivalently put the burden on
the programmer to guarantee that no
such conflicts can possibly take place.

Privatization:˲˲ Some STM designs
prohibit the seamless privatization of
memory locations, that is, the transi-
tion from being accessed transaction-
ally to being accessed privately—or
non-transactionally in general, by us-
ing locks. For some STM designs, once
a location is accessed transactionally,
it must continue to be accessed trans-
actionally. With some STM designs, the
programmer can ease the transition by
guaranteeing that the first access to the
privatized location—such as after the
location is no longer accessible by other
threads—is transactional.

Memory reclamation:˲˲ Some STM
designs prohibit the seamless reclama-
tion of the memory locations accessed
transactionally for arbitrary reuse, such
as using malloc and free. With such
STM designs, memory allocation and
deallocation for locations accessed
transactionally are handled differently
from other locations.

Legacy binaries:˲˲ STM needs to ob-
serve all memory activities of the trans-
actional regions to ensure atomicity and
isolation. STMs that achieve this obser-
vation by code instrumentation gener-

Figure 2: . Scalability results for three STM runtimes on a quad-core
Intel Xeon server: IBM, Intel STM v2, and Sun TL2.

— Intel — IBM — Sun TL2delaunay

0

0 2

0.5

1

1.5

2

2.5

Threads

S
ca

la
b

il
it

y
n

or
m

a
li

ze
d

to
 s

eq
u

en
ti

a
l

4 8

kmeans

Threads

S
ca

la
b

il
it

y
n

or
m

a
li

ze
d

to
 s

eq
u

en
ti

a
l

0 2 4 8

0

0.5

1

1.5

2

2.5

vacation

S
ca

la
b

il
it

y
n

or
m

a
li

ze
d

to
 s

eq
u

en
ti

a
l

0

0 2

0.5

1

1.5

2

2.5

Threads

4 8

genome

0

0 2

0.5

1

1.5

2

2.5

Threads

S
ca

la
b

il
it

y
n

or
m

a
li

ze
d

to
 s

eq
u

en
ti

a
l

4 8

practice

november 2008 | vol. 51 | no. 11 | communications of the acm 43

STM barely attains single thread perfor-
mance at 4 threads, while on vacation
none of the STMs actually overcome the
overhead of transactional memory even
with 8 threads.

Compiler Instrumentation. The com-
piler is a necessary component of an
STM-based programming environment
that is to be adopted by mass program-
mers. Its basic role is to eliminate the
need for programmers to manually in-
strument memory references to STM
read- and write-barriers. While offering
convenience, compiler instrumenta-
tion does add another layer of over-
heads to the STM system by introducing
redundant barriers, often due to conser-
vativeness of compiler analysis, as also
observed in Yoo.36

Figure 3 provides another baseline:
the overhead of compiler instrumen-
tation. The performance is measured
on a 16-way POWER5 running AIX 5.3.
For the STMXLC curve, we use the un-
instrumented versions of the codes
and annotate transactional regions and
functions using the language exten-
sions provided by the compiler.31

ally cannot support transactions calling
legacy codes that are not instrumented
(for example, third-party libraries) with-
out seriously limiting concurrency, such
as by serializing transactions.

Evaluation
Here we use the following set of bench-
marks:

b+tree˲˲ is an implementation of da-
tabase indexing operations on a b-tree
data structure for which the data is
stored only on the tree leaves. This im-
plementation uses coarse-grain trans-
actions for every tree operation. Each
b+ tree operation starts from the tree
root and descends down to the leaves.
A leaf update may trigger a structural
modification to rebalance the tree. A
rebalancing operation often involves
recursive ascent over the child-parent
edges. In the worst case, the rebalanc-
ing operation modifies the entire tree.
Our workload inserts 2,048 items in a
b+tree of order 20. For this code we have
only a transactional version that is not
manually instrumented, therefore ex-
perimental results are presented only
in configurations where we can use our
compiler to provide instrumentation;

delaunay ˲˲ implements the Delaunay
Mesh Refinement algorithm described
in Kulkarni et al.15 The code produces
a guaranteed quality Delaunay mesh.
This is a Delaunay triangulation with
the additional constraint that no angle
in the mesh be less than 30 degrees.
The benchmark takes as input an un-
refined Delaunay triangulation and
produces a new triangulation that sat-
isfies this constraint. In the TM imple-
mentation of the algorithm, multiple
threads choose their elements from a
work-queue and refine the cavities as
separate transactions.

genome˲˲ , kmeans, and vacation are
part of the STAMP benchmark suite19

version 0.9.4. For a detailed description
of these benchmarks see STAMP.30

Baseline Performance. In Figure 2 we
present a performance comparison of
three STMs: the IBM,31, 34 Intel,14 and
Sun’s TL27 STMs. The runs are on a
quad-core, two-way hyperthreaded Intel
Xeon 2.3GHz box running Linux Fedora
Core 6. In these runs, we used the manu-
ally instrumented versions of the codes
that aggressively minimize the number
of barriers for the IBM and TL2 STMs.
Since we do not have access to low-level
APIs for the Intel STM, the curves for the
Intel STM are from codes instrumented
by its compiler, which incur additional
barrier overheads due to compiler in-
strumentation.36 The graphs are scal-
ability curves with respect to the serial,
non-transactionalized version. There-
fore a value of 1 on the y-axis represents
performance equal to the serial version.
The performance of these STMs is most-
ly on par, with the IBM STM showing
better scalability on delaunay and TL2
obtaining better scalability on genome.
However, the overall performance ob-
tained is very low: on kmeans the IBM

Figure 3: Scalability results for manual and compiler instrumented benchmarks on AIX PowerPC with IBM XLCSTM compiler.

— STM manual — STMXLC

1 3 42 6 75 8

Genome

0

0.2

0.4

0.6

0.8
1

of threads

S
p

ee
d

u
p

0

0.2

0.4

0.6

0.8
1

S
p

ee
d

u
p

1 3 42 6 75 8

Vacation

of threads

8

7

6

5

4

3

2

1

0

  fv   gv#

b+tree

ru
nt

im
e

(n
or

m
. t

o
se

qu
en

tia
l)

118.1 49.243.8

delaunay kmeans genome vacation

Figure 4: Single-threaded overhead of the STM algorithms.

44 communications of the acm | November 2008 | vol. 51 | no. 11

practice

instrumentation and provides an accu-
rate breakdown of the STM overheads.

We study the performance of two
STM algorithms: one that fully validates
(“fv") the read set after each transac-
tional read and one that uses a global
version number (“gv#") to avoid the full
validation, while maintaining the cor-
rectness of the operations. The fv algo-
rithm provides more concurrency at a
much higher price. The gv# is deemed
as one of the best trade-offs for STM im-
plementations.

Figure 4 presents the single-thread-
ed overhead of these algorithms over
sequential runs, illustrating again the
substantial slowdowns that the algo-
rithms induce. Figure 5 breaks down
these overheads into the various STM
components. For both algorithms, the
overhead of transactional reads domi-
nates due to the frequency of read op-
erations relative to all other operations.
The effectiveness of the global version
number in reducing overheads is shown
in the lower read overhead of “gv#.”

Figure 6 gives a fine-grain breakdown
of the overheads of the transactional
read operation. As expected, the over-
head of validating the read set domi-
nates transactional read time in the “fv”
configuration. For both algorithms, the
isync operations (necessary for ordering
the metadata read and data read as well
as the data read and validation) form a
substantial component. In applications
that perform writes before reads in the
same transaction (delaunay, kmeans),
the time spent checking whether a loca-
tion has been written by prior writes in
the same transaction forms a significant
component of the total time. Interest-
ingly, reading the data itself is a negligi-
ble amount of the total time, indicating
the hurdles that must be overcome for
the performance of these algorithms to
be compelling.

Figure 7 gives a similar breakdown
of the transactional commit operation.
As before, the “fv" configuration suf-
fers from having to validate the read set.
Other dominant overheads for both con-
figurations are that of having to acquire
the metadata for the write set (which in-
volves a sequence of load-linked/store-
conditional operations) and the sync
operations that are necessary for order-
ing the metadata acquires, data writes,
and metadata releases. Once again, the
data writes themselves form a small

100

90

80

70

60

50

40

30

20

10

0

  other
  read

  end
  free

  malloc
  write

  begin
  stack_range

  desc
  kernel

b+tree
fv fv fv fv fvgv# gv# gv# gv# gv#

ru
nt

im
e

(n
or

m
. t

o
se

qu
en

tia
l)

delaunay kmeans genome vacation

Figure 5: Percentage of time spent in different STM operations.

Figure 6: Percentage of time spent in STM read sub-operations.

100

90

80

70

60

50

40

30

20

10

0

b+tree
fv fv fv fv fvgv# gv# gv# gv# gv#

%
 o

f c
yc

le
s

(n
or

m
. t

o
fv

)

delaunay kmeans genome vacation

  return
  validate
  sync
  read data

  check read after write
  setup
  call
  other

  add metadata to read set
  check if metadata is locked
  read metadata
  calculate metadata

Compiler over-instrumentation is
more pronounced in traditional, un-
managed languages, such as C and C++,
where a compiler instrumentation with-
out interprocedural analysis may end
up instrumenting every memory refer-
ence in the transactional region (except
for stack accesses). Indeed, our compil-
er instrumentation more than doubled
the number of dynamic read barriers in
delaunay, genome, and kmeans. Interpro-
cedural analysis can help improve the
tightness of compiler instrumentation
for some cases, but is generally limited
by the accuracy of global analysis.

STM Operations Performance. Given
this baseline, we now analyze in detail
which operations in the STM cause the
overhead. For this purpose, we use a
cycle-accurate simulator of the Power-
PC architecture that provides hooks for
instrumentation. The STM operations
and suboperations are instrumented
with these simulator hooks. The reason
for this environment is that we want
to capture the overheads at instruc-
tion level and eliminate any other non-
determinism introduced by real hard-
ware. The simulator eliminates all other
bookkeeping operations introduced by

practice

november 2008 | vol. 51 | no. 11 | communications of the acm 45

component of the total time.
Overhead Optimizations. There have

been many proposals on reducing STM
overheads through compiler or runtime
techniques, most of which are comple-
mentary to STM hardware acceleration.

Redundant barrier elimination.˲˲ One
technique is to eliminate barriers to
thread-local objects through escape
analysis. Such analysis is typically quite
effective identifing thread-local access-
es that are close to the object allocation
site. It can eliminate both read- and
write-barriers, but is often more effec-
tive on write-barriers. For example, we
observe that an intra-procedural escape
analysis can eliminate 40–50% of write
barriers in vacation, genome, and b+tree.
However, its impact on performance is
more limited: from negligible to 12%.
To target redundant read-barriers, a
whole-program analysis called Not-Ac-
cessed-In-Transaction analysis27 elimi-
nates some barriers to read-only objects
in transactions;

Barrier strength reduction.˲˲ These op-
timizations do not eliminate barriers,
but identify at runtime special locations
that require only lightweight barrier
processing, such as dynamic tracking of
thread-local objects11, 27 and runtime fil-
tering of stack references and duplicate
references;11

Code generation optimizations.˲˲ One
common technique is to inline the fast
path of barriers. It has the potential
benefit of reducing function call over-
head, increasing ILP, and exposing re-
use of common sub-barrier operations.
In our experiments, compiler inlining
achieved less than 2% overall improve-
ment across our benchmark suite;

Commit sequence optimizations.˲˲
Eliminating unnecessary global version
number updates37 improves the overall
performance of several micro-bench-
marks by up to 14%.

Such optimizations have a positive
impact on STM performance. However,
the results presented here indicate how
much further innovation is needed for
the performance of STMs to become
generally appealing to users.

Related Work
The first STM system was proposed by
Shavit and Touitou26 and is based on
object ownership. The protocol is static,
which is a significant shortcoming that
has been overcome by subsequently pro-

posed STM systems.7 Conflict detection
is simplified significantly by the static
nature because conflicts can be ruled
out already when ownership records are
acquired (at transaction start).

DSTM12 is the first dynamic STM
system; the design follows a per-object
runtime organization (locator object).
Variables (objects) in the application
heap refer to a locator object. Unlike
in a design with ownership records (for
example, Harris and Fraser10), the loca-
tor does not store a version number but
refers to the most recently committed
version of the object. A particularity of
the DSTM design is that objects must be
explicitly ‘opened’ (in read-only or read-
write mode) before transactional access;
also DSTM allows for early release. The
authors argue that both mechanisms fa-
cilitate the reduction of conflicts.

The design principles of the RSTM18
system are similar to DSTM in that it as-
sociates transactional metadata with ob-
jects. Unlike DSTM however, the system
does not require the dynamic allocation
of transactional data but co-locates it
with the non-transactional data. This
scheme has two benefits: first, it facili-
tates spatial access locality and hence
fosters execution performance and
transaction throughput. Second, the dy-
namic memory management of trans-
actional data (usually done through a
garbage collector) is not necessary and

hence this scheme is amenable for use
in environments where memory man-
agement is explicit.

Recent work explored algorithmic
optimizations and/or alternative imple-
mentations of the basic STM algorithms
described here. Riegel et al. propose the
use of real-time clocks to enhance the
STM scalability using a global version
number.22 JudoSTM21 and RingSTM29 re-
duce the number of atomic operations
that must be performed when commit-
ting a transaction at the cost of serial-
izing commit and/or incurring spurious
aborts due to imprecise conflict detec-
tion. Several proposals have been made
for STMs that operate via dynamic bina-
ry rewriting in order to allow the usage
of STM on legacy binaries.8, 21, 33

Yoo et. al36 analyze the overhead in
the execution of Intel’s STM.14, 23 They
identify four major sources of overhead:
over-instrumentation, false sharing,
amortization costs, and privatization-
safety costs. False sharing, privatiza-
tion-safety, and over-instrumentation
are implementation artifacts that can
be eliminated by either using finer
granularity bookkeeping, more refined
analysis, or user annotations. Amortiza-
tion costs are inherent overheads in an
STM that, as we demonstrated here, are
not likely to be eliminated.

A large amount of research effort
has been spent in analyzing the opera-

Figure 7: Percentage of time spent in STM end sub-operations.

100

90

80

70

60

50

40

30

20

10

0

b+tree
fv fv fv fv fvgv# gv# gv# gv# gv#

%
 o

f c
yc

le
s

(n
or

m
. t

o
fv

)

delaunay kmeans genome vacation

  return
  cleanup transactional state
  release metadata
  increment gv#

  write data
  validate
  sync
  acquire metadata

  check for read-only
  setup
  call
  other

46 communications of the acm | November 2008 | vol. 51 | no. 11

practice

tions in TM systems. Recent software
optimizations have managed to accel-
erate STM performance by 2%–15%. We
believe such analysis is a good practice
that should be extended to every piece
of system software, especially open
source. However, the gains are only a mi-
nor dent in the overheads we observed,
indicating the challenge that lies before
the community in making STM perfor-
mance compelling.

Conclusion
Based on our results, we believe that the
road ahead for STM is quite challeng-
ing. Lowering the overheads of STM to
a point where it is generally appealing
is a difficult task and significantly bet-
ter results have to be demonstrated. If
we could stress a single direction for
further research, it is the elimination of
dynamically unnecessary read and write
barriers—possibly the single most pow-
erful lever toward further reduction of
STM overheads. However, given the dif-
ficulty of similar problems explored by
the research community such as alias
analysis, escape analysis, and so on, this
may be an uphill battle. And because
the argument for TM hinges upon its
simplicity and productivity benefits, we
are deeply skeptical of any proposed so-
lutions to performance problems that
require extra work by the programmer.

We observed that the TM program-
ming model itself, whether implement-
ed in hardware or software, introduces
complexities that limit the expected
productivity gains, thus reducing the
current incentive for migration to trans-
actional programming, and the justifi-
cation at present for anything more than
a small amount of hardware support.

Acknowledgments
We would like to thank Pratap Pattnaik
for his continuous support, Christoph
von Praun for numerous discussions,
work on benchmarks and runtimes,
and Rajesh Bordawekar for the B+tree
code implementation.	

References
1.	B augh, L., Neelakantam, N., and Zilles, C. Using

hardware memory protection to build a high-
performance, strongly-atomic hybrid transactional
memory. In Proceedings of the 35th International
Symposium on Computer Architecture. IEEE
Computer Society, Washington, DC, 2008, 115–126.

2.	B lundell, C., Devietti, J., Lewis, E.L., Martin, M.M.K.
Making the fast case common and the uncommon
case simple in unbounded transactional memory.
In Proceedings of the 34th Annual International

Symposium on Computer Architecture. ACM, NY, 2007.
3.	B lundell, C., Lewis, C., and Martin, M.M.K. Subtleties

of transactional memory atomicity semantics. IEEE
TCCA Computer Architecture Letters 5, 2 (Nov 2006).

4.	B obba, J., Goyal, N., Hill, M.D., Swift, M.M., and Wood,
D.A. TokenTM: Efficient execution of large transactions
with hardware transactional memory. In Proceedings
of the 35th International Symposium on Computer
Architecture. IEEE Computer Society, Washington,
D.C., 2008, 127–138.

5.	 Ceze, L., Tuck, J., Cascaval, C., Torrellas, J.
Bulk disambiguation of speculative threads in
multiprocessors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture.
ACM, NY, 2006, 237–238.

6.	D amron, P., Federova, A., Lev, Y., Luchangco, V., Moir,
M., and Nussbaum, D. Hybrid transactional memory.
In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages
and Operating Systems, Oct. 2006.

7.	D ice, D., Shalev, O., and Shavit, N. Transactional
Locking II. DISC, Sept. 2006, 194–208.

8.	F elber, P., Fetzer, C., Mueller, U., Riegel, T., Suesskraut,
M., and Sturzrehm, H. Transactifying applications
using an open compiler framework. In Proceedings
of the ACM SIGPLAN Workshop on Transactional
Computing. Aug. 2007.

9.	H ammond, L., Wong, V., Chen, M., Carlstrom, B.D.,
Davis, J.D., Hertzberg, B., Prabhu, M.K., Wijaya, H.,
Kozyrakis, C., and Olukotun, K. Transactional memory
coherence and consistency. In Proceedings of the
31st Annual International Symposium on Computer
Architecture. IEEE Computer Society, June 2004, 102.

10.	H arris, T. and Fraser, K. Language support for
lightweight transactions. In Proceedings of Object-
Oriented Programming, Systems, Languages, and
Applications. Oct. 2003, 388–402.

11.	H arris, T., Plesko, M., Shinnar, A., and Tarditi, D.
Optimizing memory transactions. In Proceedings
of the Programming Language Design and
Implementation Conference. 2003, 388–402.

12.	H erlihy, M., Luchangco, V., Moir, M., and Scherer III,
W.N. Software transactional memory for dynamic-
sized data structures. In Proceedings of the 22nd ACM
Symposium on Principles of Distributed Computing.
July 2003, 92–101.

13.	H erlihy, M. and Moss, J.E.B. Transactional memory:
Architectural support for lock-free data structures.
In Proceedings of the 20th Annual International
Symposium on Computer Architecture. May 1993.

14.	I ntel C++ STM compiler, prototype edition 2.0.; http://
softwarecommunity.intel.com/articles/eng/1460.htm/
(2008).

15.	 Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G.,
Bala, K., and Chew, P.L. Optimistic parallelism requires
abstractions. In Proceedings of the PLDI 2007. ACM,
NY, 2007, 211–222.

16.	L arus, J.R., and Rajwar, R. Transactional Memory.
Morgan Claypool, 2006.

17.	T he Lonestar benchmark suite; http://iss.ices.utexas.
edu/lonestar/ (2008).

18.	 Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A.,
Eisenstat, D., Scherer III, W.N., and Scott, M.L.
Lowering the overhead of software transactional
memory. Technical Report TR 893, Computer Science
Department, University of Rochester, Mar 2006.
Condensed version submitted for publication.

19.	M inh, C.C., Trautmann, M., Chung, J., McDonald, A.,
Bronson, N., Casper, J., Kozyrakis, C., and Olukotun, K.
An effective hybrid transactional memory system with
strong isolation guarantees. In Proceedings of the
34th Annual International Symposium on Computer
Architecture. ACM, NY, 2007, 69–80.

20.	M oore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., and
Wood, D.A. LogTM: Log-based transactional memory.
In Proceedings of the 12th Annual International
Symposium on High Performance Computer
Architecture, Feb 2006.

21.	O lszewski, M., Cutler, J., Steffan, J.G. Judostm: A
dynamic binary-rewriting approach to software
transactional memory. In Proceedings of the 16th
International Conference on Parallel Architecture
and Compilation Techniques. 2007. IEEE Computer
Society, Washington D.C., 365-375.

22.	R iegel, T., Fetzer, C., and Felber, P. Time-based
transactional memory with scalable time bases.
In Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures, 2007.

23.	S aha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C.,
and Hertzberg, B. Mcrt-stm: A high performance
software transactional memory system for a
multi-core runtime. In Proceedings of the 11th ACM

Symposium on Principles and Practice of Parallel
Programming. Mar. 2006, ACM, NY, 187–197.

24.	S aha, B., Adl-Tabatabai, A.R., and Jacobson, Q.
Architectural support for software transactional
memory. In Proceedings of the 39th Annual
International Symposium on Microarchitecture. Dec.
2006, 185–196.

25.	S havit, N., and Touitou, D. Software Transactional
Memory. In Proceedings of the ACM Symposium of
Principles of Distributed Computing. ACM, 1995.

26.	S havit, N. and Touitou, D. Software transactional
memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing. ACM, NY, 1995.

27.	S hpeisman, T., Menon, V., Adl-Tabatabai, A-R.,
Balensiefer, S., Grossman, D., Hudson, R., Moore, K.F.,
and Saha, B. Enforcing isolation and ordering in STM.
In Proceedings of Proceedings of the Programming
Language Design and Implementation Conference.
ACM, 2007, 78–88.

28.	S hriraman, A., Spear, M.F., Hossain, H., Marathe,
V.J., Dwarkadas, S., and Scott, M.L. An integrated
hardware-software approach to flexible transactional
memory. In Proceedings of the 34th Annual
International Symposium on Computer Architecture.
ACM, NY, 2007, 104–115.

29.	S pears, M.T., Michael, M.M., and von Praum, C.
Ringstm: Scalable transactions with a single
atomic instruction. In Proceedings of the 20th
ACM Symposium on Parallelism in Algorithms and
Architectures. ACM, NY, 275–284.

30.	STAMP benchmark; http://stamp.stanford.edu/ (2007).
31.	 (IBM) XL C/C++ for Transactional Memory for AIX;

www.alphaworks.ibm.com/tech/xlcstm/ (2008).
32.	T remblay, M. and Chaudhry, S. A third generation

65nm 16-core 32-thread plus 32-scout-thread CMT.
In Proceedings of the IEEE International Solid-State
Circuits Conference. Feb. 2008.

33.	 Wang, C. Chein, W-Y, Wu, Y., Saha, B., and Adl-
Tabatabai, A.R. Code generation and optimization for
transactional memory constructs in an unmanaged
language. In Proceedings of International Symposium
on Code Generation and Optimization. 2007, 34–48.

34.	 Wu, P., Michael, M.M., von Praun, C., Nakaike, T.,
Bordawekar, R., Cain, H.W., Cascaval, C., Chatterjee,
S., Chiras, S., Hou, R., Mergen, M., Shen, X., Spear,
M.F., Wang, H.Y., and Wang, K. Compiler and
runtime techniques for software transactional
memory optimization. To appear in Concurrency and
Computation: Practice and Experience, 2008.

35.	Y en, L., Bobba, J., Marty, M.M., Moore, K.E., Volos,
H., Hill, M.D., Swift, M.M., and Wood, D.A. LogTM-SE:
Decoupling hardware transactional memory from
caches. In Proceedings of the 13th International
Symposium on High-Performance Computer
Architecture. Feb 2007.

36.	Y oo, R.M., Ni, Y., Welc, A., Saha, B. Adl-Tabatabai,
A-R. and Lee, H-H.S. Kicking the tires of software
transactional memory: why the going gets tough.
Proceedings of the 20th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, 2008.

37.	Z hang, R., Budimlić, Z. and Scherer III, W.N. Commit
phase in timestamp-based STM. In Proceedings of the
20th Annual Symposium on Parallelism in Algorithms
and Architectures. ACM, NY, 326–335.

Călin Cas̨caval (cascaval@us.ibm.com) is a Research
Staff Member and Manager of Programming Models and
Tools for Scalable Systems at IBM TJ Watson Research
Center, Yorktown Heights, NY.

Colin Blundell is a member of the Architecture
and Compilers Group, Department of Computer and
Information Science, University of Pennsylvania.

Maged Michael is a Research Staff Research Member at
IBM TJ Watson Research Center, Yorktown Heights, NY.

Trey Cain is a Research Staff Member at IBM TJ Watson
Research Center, Yorktown Heights, NY.

Peng Wu is a Research Staff Member at IBM TJ Watson
Research Center, Yorktown Heights, NY.

Stefanie Chiras is a manager in IBM's Systems and
Technology Group.

Siddhartha Chatterjee is director of the Austin Research
Laboratory, IBM Research, Austin, TX.

© 2008 ACM 0001-0782/08/1100 $5.00

