A Study of Instruction Cache Performance and the Potential for Instruction
Prefetching in J2EE Server Applications

Priya Nagpurkar’ Harold W. Cain*

TUniversity of California, Santa Barbara

Abstract

We present a detailed characterization of instruction cache
performance for IBM’s J2EE-enabled web server, Web-
Sphere Application Server (WAS). When running two
J2EE benchmarks on WebSphere, we find that instruc-
tion cache misses cause a 12% performance penalty on
current-generation Power5-based multiprocessor systems.
To mitigate this performance loss, we describe a new
call-chain based algorithm for inserting software prefetch
instructions and evaluate its potential for improved instruc-
tion cache performance. The performance of this algorithm
depends on the selection of several independent parameters
which control the distance and number of prefetches
inserted for a particular method. Through characterization
of the WebSphere applications, we select these parameters,
and ultimately find that our call-chain based insertion
algorithm achieves an 18% reduction in instructon cache
miss rate for Java methods.

1 Introduction

Despite an abundance of research over the years, in-
struction cache (icache) miss stalls remain a source of per-
formance degradation for many commercial applications
[21[51(81[9]1[12][14]. Due to the relatively larger perfor-
mance cost of data cache misses in most applications, re-
search and development has largely focused on the data
cache miss problem instead. As evidence, only a few archi-
tectures (IA-64, PA-RISC, and SPARC v9) include instruc-
tion cache prefetch instructions, while many architectures
(e.g. IA-32, x86-64, and PowerPC), include no support for
instruction prefetching. In contrast, all major architectures
include support for software-directed data prefetching.

In theory, the icache miss problem is an easier problem
to solve, because choosing blocks for instruction prefetch-
ing is solely a function of predicting control flow, while a
data prefetching mechanism must also solve the consider-
ably more difficult problem of predicting the data address
that will be touched. In addition, control flow, through
both branch prediction and phasing behavior [17, 15], has
been shown to be highly predictable. Consequently, given
hardware support for software-directed instruction cache

Mauricio Serrano?

Jong-Deok Choi* Chandra Krintz'
IBM T.J. Watson Research Center

Pre-fetch points,

€--n

Trace-based

WebSphere 6.1

Instruction

(0

Java VM (J9)

0s ‘AIX)

pre-fetching

Method Entry/Exit, L1 scheme
I-Cache miss trace

Evaluation

Figure 1: Methodology

prefetching, we believe that it should be possible to signif-
icantly reduce instruction cache miss stalls for all applica-
tions (large and small).

In this paper, we present a detailed characterization of in-
struction cache performance across three Java server work-
loads running natively on an IBM Power5 multiprocessor,
showing that instruction misses are indeed still a problem
for large-scale server applications. We follow this char-
acterization with a detailed study of the industry-standard
SPECjAppServer2004 J2EE benchmark [10] running in a
full-system simulator, investigating the potential of an all-
software instruction prefetch mechanism as a means of re-
ducing icache miss rate.

Prior work also proposed a call-graph based software
prefetch mechanism for instruction misses which uses
caller-callee relationships, inserting prefetches for a callee
at the entrance of a caller [4]. In object-oriented programs
which are characterized by small method sizes (such as
WebSphere), this may result in late prefetches due to the
short distance between the caller being invoked and its sub-
sequent calls. We investigate moving prefetches up the call
chain, inserting them at a greater distance from the callee.
This leads to a trade off between prefetch coverage, accu-
racy, and timeliness, which we explore in section 4.

2 Methodology

Our study uses a two-pronged experimental setup. We
first experiment with WebSphere performance running na-
tively on a 2-socket, 4-way Power5 multiprocessor running
AIX 5.3, configured with 16GB of DRAM. We use SPEC-
jAppServer2004 and Trade6 [6], a J2EE online brokerage
benchmark internally developed by IBM. These heavily-

multithreaded applications run in a three-tier configuration
with a DB2 8.2 back-end tier and a client/driver front-end
tier. We report results for the middle-tier only, which is
running the WebSphere application server, running on top
of IBM’s Java virtual machine [11]. Performance counters
are sampled after a 15 minute warmup period, with three
30-second sampling intervals for each set of counters. We
solely focus on the L1 instruction cache in our study, which
is 64KBytes, 2-way set-associative with 128-bytes cache
lines. These results are presented in section 3.

For more detailed analysis (solely on SPEC-
jAppServer2004), we use Mambo [7], a full system
simulator developed at the IBM Austin Research Lab.
Mambo simulates the underlying hardware in enough
detail that it can run the entire software stack used in
our native system (AIX 5.3, J9 v2.3, WebSphere 6.1).
Figure 1 illustrates this experimental methodology. Using
Mambo, we gather a method entry/exit trace augmented
with information about cache misses, and analyze it to
select delinquent methods for which prefetching will
be useful, and points at which we will insert prefetches
(which we refer to as prefetch points) for these delinquent
methods. The trace is gathered over the execution of 1
billion instructions (post-SPECjAppServer2004 warmup),
which is also the length of our simulations.

3 Instruction Cache Miss Characterization

100%

80% -

60% - O Other front-end stall

1%
@
S B Br Mispred
; 7| Cache
< 40% A OFPU Stall
W FXU Stall
@ LSU basic latency
20% A B LSU Reject

ODERAT

0D Cache

W Other back-end stall
O Instr Completion

0%

SPECjAppServer2004 Trade6 SPECjbb2000

Figure 2: Commit Stall Cycle Categorization (icache miss
stalls in striped bar).

The Power5 performance counter facility offers a set of
counters that are incremented at each stall of the processor’s
commit stage, where each counter corresponds to the cause
of the stall. Figure 2 shows a breakdown of stall cycles cre-
ated using these counters, for SPECjAppServer2004 [10],
Trade6 [6], and SPECjbb2000 [18]. PowerS5’s 2-way SMT
feature does a relatively good job of keeping the pipeline
busy, however instruction cache misses still account for a
significant fraction of stall cycles (12%) for both of the

WebSphere J2EE applications. SPECjbb2000 exhibits only
a small (2%) instruction miss penalty; we have observed
similar results for SPECjbb2005.

Figure 3 shows the number of L1 icache misses per 100
committed instructions, broken down by the location from
which they are serviced. The vast majority of icache misses
(92% and 93% for SPECjAppServer2004 and Trade6, re-
spectively) are satisfied from the 1.8MB L2, and nearly all
of the remaining misses are satisfied from the 36MB L3. An
insignificant fraction of misses (less than 1%) are satisfied
from memory or from another remote cache.

14

12
mserviced by L2
Dserviced by L3
0.8
0.6
0.4
§ l
0

SPECjAppServer2004 Trade6 SPECjbb2000

-

L1l cache misses per 100 instr

Figure 3: i-cache misses per 100 committed instructions

100% -
90% -
80%

70% -
60% -

50% 1 — Java Code
—All Code

40% -

% of icache misses

30% -
20% -
10%

0%

0 250 500 750 1000 1250 1500 1750 2000
number of methods

Figure 4: Per-method Contribution to Total iCache Misses (cu-
mulative distribution)

Using our Mambo-based simulation methodology [7],
we have also collected a profile of these instruction cache
misses for WebSphere running SPECjAppServer2004,
mapping each cache miss back to the individual method that
caused it. In terms of high-level software components, JIT-
TED java code accounts for the majority of icache misses
(71%), followed by the AIX kernel (12%), and the J9 run-
time system (7%). The remaining 10% of misses are dis-
tributed over a large set of system libraries.

When taking a closer look at the individual methods in
this profile, we find that the profile is extremely flat; no sin-
gle method accounts for more than 2%, and the largest con-
tributor from the Java portion of code is merely 0.525%.
Figure 4 shows the contribution of total instruction cache
misses by the number of methods causing those misses.
This chart includes data for all misses, and data for misses
that are caused by Java code. In both cases, 50% of all
misses can be attributed to the 300 worst offending meth-
ods. In order to cover 75% of all misses, more than 700
methods must be considered. Obviously, in order for an
instruction prefetching mechanism to be beneficial, it must
target a large number of methods. We analyzed the top ten
Java methods with the highest number of misses in more
detail. Table 5 summarizes this information. The columns
list percentage icache misses, average per-invocation miss
count, number instruction cache blocks that are ever ac-
tually touched, and the number of direct callers for each
method. The last row shows the average values, averaged
across all Java methods. Note that the fourth column refers
to the static number of used blocks for a method and is an
indication of method size.

We observe that the number of callers for a method varies
and is not always small. Consequently, code positioning
schemes [16, 11] might not be effective in addressing the
cache miss problem, because each method often has many
callers. In addition, the IBM JO JIT [11] already optimizes
code layout by reordering basic blocks such that the com-
monly executed code appears close in memory, thus we ex-
pect the benefits of further code reordering to be small.

We also observe that in most cases, excluding method
numbers 3 and 5, the average per-invocation misses for a
method is low. This bi-modal data suggests a bi-modal op-
timization: for methods with a small number of blocks and
small number of misses per invocation, prefetches should
be inserted for the entire method; for methods with a large
number of blocks or a large number of misses per invoca-
tion, some of the blocks should be prefetched upon entry
to the method, since there will be ample time to overlap
the prefetch latency within the method. We plan to explore
such a bi-modal mechanism in future work. For now, we
adopt the all-or-nothing approach: at each prefetch point,
we perform prefetching for all of the blocks that have been
identified as useful (i.e. all of the method’s blocks, exclud-
ing those blocks that are never used during our one billion
instruction profile).

4 Instruction Prefetching Characterization

We now present our prefetching mechanism, the param-
eters used to select the prefetch points, the metrics used to
evaluate them, and some results.

ICache Avg. Per- Num. Used .
Top R . - Num. Direct
Methods Misses |nvqcat|on Cache B.Iocks Callers
(% of Total) Misses (Static)
1 0.525 4.404 20 2
2 0.468 2.833 14 94
3 0.446 54.897 64 9
4 0.436 2.720 16 3
5 0.377 61.214 64 1
6 0.350 0.844 3 7
7 0.280 16.431 16 1
8 0.277 7.100 9 1
9 0.273 1.194 21 1
10 0.259 13.044 14 2
Average
(4562 tgtal) 0.013 3.094 4.203 2.168

Figure 5: Prefetch Target Characteristics

4.1 Overview

Call-chain based prefetching is an all software approach
which individually targets delinquent methods (methods
which cause significant icache misses). For each delinquent
method, predecessor methods in the call-chain are chosen
as prefetch points, whose method prologue is augmented
with instruction cache prefetch instructions for one or more
delinquent targets. These prefetch points are selected based
on criteria defined in the next subsection. There can be mul-
tiple prefetch points for a single target to ensure sufficient
coverage of the target.

4.2 Choosing Prefetch Points

Prefetching needs to meet several criteria: it needs to be
timely enough to be able to overlap the prefetch request with
other work before the block’s next use, but not too far in
advance because the prefetch request may be evicted from
the cache before its use. The confidence in the request needs
to be high to reduce the risk of cache pollution with data
which will never be used.

Confidence and miss distance are the two parameters we
use in selecting prefetch points from the call-chain of the
method to be prefetched.

Confidence: given a call-graph G, containing a prefetch
point at node m, and prefetch target at node n, confidence
is the probability of reaching n by following a call path
starting from m. When choosing prefetch points for a
method, points with high confidence values will minimize
the amount of cache pollution due to bad prefetches, be-
cause it is an indication that a target will be called if a
prefetch point is reached.

Miss distance is the parameter we use to ensure prefetch
timeliness. It is computed as the number of misses on the
path between the entry for the potential prefetch point and
the entry for the target method. It is an indication of the
amount of changing code and thus replacement demand on
the path. By requiring a miss distance of at least one be-
tween the prefetch point and the target, we can ensure that

90

80 -
70 A —&—Potential
Coverage

o 60
o —#-Same-method-
© i interference
= 50
1] —+—Other-methods-
O 404 interference
[4]
& 304
—
20 4
10
0
8 16 24 32 40

Miss Distance

(a)
Top Num. Prefetch Points
Methods | g 16 24 32 40

1 1 3 5 6 7

2 0 2 4 11 18

3 0 0 0 0 0

4 19 40 51 61 66

5 0 0 0 0 0

6 27 50 76 89 97

7 0 0 0 0 0

8 2 2 2 3 3

9 4 8 8 8 8

10 1 1 2 2 2
(b)

Figure 6: Effect of Miss distance. The graph (a) shows po-
tential coverage and interference at five different upper bounds
of miss distance (x-axis), averaged across ten methods. When
choosing a miss distance range, we want to maximize cover-
age, but at the same time keep interference low. The table (b)
shows the number of prefetch points for each method at differ-
ent miss distance upper bounds

the prefetch will not be late (the miss latency can be used to
fulfill the prefetch). A suitable upper bound is used to avoid
early prefetches. Early prefetches can increase cache pol-
lution and lead to useless prefetches, where the prefetched
data is evicted before it can be used by the target method.

We use a confidence threshold and miss distance range
to select prefetch points from predecessors in the call-chain
for the method to be prefetched.

4.3 Results

Due to our interest in building a dynamic instruction
prefetching mechanism into a Java Virtual Machine, we
only consider prefetching for Java ! methods (Java methods
also constitute the majority of icache misses, at 71%.) We
have implemented a trace-based algorithm to select prefetch
points and studied its effects in simulation. We first studied
the top ten delinquent methods listed in Figure 5 individ-

'We only consider JITTED Java methods

ually, followed by experiments to evaluate the effect of si-
multaneously prefetching for multiple methods. Before de-
scribing these experiments, we present the metrics we used
to assess the effectiveness of our instruction prefetching.

4.3.1 Maetrics

Potential Coverage is the percentage of original (without
prefetching) misses in the target method(s), that the cho-
sen prefetch points issue prefetches for. Depending on the
prefetch points chosen, prefetching will be carried out only
for some invocations of the target method, and can therefore
only eliminate misses incurred by these instances. Potential
coverage is a measure of the maximum number of misses
that can be eliminated using the chosen set of prefetch
points. Actual coverage obtained can be less than poten-
tial coverage in the presence of same-method-interference
described below.

Interference gauges the negative effects of prefetching.
We use two measures to quantify interference, namely
same-method-interference and other-methods-interference.
We define same-method-interference as misses incurred by
a method in spite of issuing prefetches for that particular in-
vocation of the method (indication of having prefetched too
soon, resulting in eviction of the prefetched block before its
use). For example, when m, a prefetch point for method n
is entered, it will issue prefetches for n. Any misses that oc-
cur in n between this point and the exit of n will be counted
as same-method-interference. Other-methods-interference
refers to the increase in number of misses for other meth-
ods, compared to the original number of misses without
prefetching, and is an indication of cache pollution resulting
from prefetching. Percentage same-method-interference is
calculated as a percentage of total original misses in the
prefetched method (or methods if multiple methods are
prefetched). Percentage other-methods-interference is cal-
culated as a percentage of the total overall original misses.

Measured Coverage is the percentage of original misses
that are eliminated as a result of prefetching. We measure
coverage for prefetched methods, all Java methods and all
methods.

Increase in Bandwidth represents the cost of prefetching
in terms of additional data that must be transferred to the L1
icache.

4.3.2 Deciding When to Prefetch

Miss distance is one of the parameters we use in select-
ing prefetch points. A good miss distance value is one that
yields prefetch points with high potential coverage and low
interference. To gain a better understanding of how miss
distance affects potential coverage and interference, and to
help us choose a suitable miss distance upper bound, we
studied the ten methods listed in Figure 5 individually. For
each of the ten methods, we selected prefetch points using

Num. Num. Unique % Potential % Measured Coverage % Interference %
Prefetched Prefetch Coverage Bandwidth
(Num Points (Prefetched | Prefetched Java overall Same- Other- Increase
Considered) Methods) Methods method | methods
7 (10) 95 76.6 52.4 1.4 1.0 22.1 0.3 0.9
84 (100) 589 75.8 58.4 9.7 6.8 16.8 1.3 7.1
201(250) 952 76.6 60.2 18.0 12.6 14.6 1.2 10.8

Figure 7: Prefetching Multiple Methods. This table presents results for cases when prefetching is performed for the top 10, 100,
and 250 delinquent methods. We compute measured coverage, interference, and increase in bandwidth to evaluate the efficacy of
our scheme. Measured coverage can also be interpreted as reduction in icache misses due to prefetching.

a confidence threshold of 0.9, a miss distance lower bound
of 2 and five different values of miss distance upper bound:
8, 16, 24, 32, 40. The table in Figure 6 lists the number
of prefetch points selected at different miss distance upper
bounds.

The number of prefetch points per method increases as
miss distance increases. It is interesting to note that three
methods have no prefetch points that fit the chosen crite-
ria, whereas two methods have significantly more prefetch
points than others. Comparing this information with the
number of direct callers (last column) in Figure 5, we
see that there is no strong correlation between number of
prefetch points and number of direct callers. We gathered
potential coverage and interference information for each
prefetch point. Figure 6 shows the average behavior (av-
eraged across the ten methods) for total (all prefetch points
in the miss distance range) potential coverage and interfer-
ence at different miss distance upper bounds.

As the miss distance increases, potential coverage in-
creases indicating that it might be late to trigger prefetch-
ing closer to the target. However, as expected, both same-
method-interference, and other-methods-interference also
increase as miss distance increases. We choose a miss
distance upper bound of 24, since it has good potential
coverage without the slight increase in interference shown
by higher values, to perform our simultaneous prefetching
study described next.

4.3.3 Prefetching Multiple Methods

In the previous subsection, we analyzed the effects of
our prefetching scheme when a single method was being
prefetched at a time. But, as observed before, to obtain sig-
nificant benefit, prefetching must be carried out for a large
number of methods. Figure 7 presents the results for em-
ploying prefetching simultaneously for the top 10, 100, and
250 delinquent methods. Prefetch points are chosen using
a confidence threshold of 0.9 and a miss distance range of
[2,24]. The first column lists the number of methods with at
least one prefetch point that fit the chosen criteria, and the
number of methods targeted by the prefetching mechanism
in braces. The second column lists the number of unique
prefetch points found. Remember that it is possible for a
single prefetch point to have multiple targets. The next col-
umn displays potential coverage for the prefetched methods

with the chosen set of prefetch points. The three columns
under % Measured Coverage list the achieved coverage for:
prefetched methods, all Java methods, all methods respec-
tively. Interference and % Increase in Bandwidth form the
last two columns.

Potential coverage for prefetched methods at a 0.9 confi-
dence threshold and a [2,24] miss distance range is similar
for all three cases, and is approximately 76%. Achieved
coverage for prefetched methods is maximum in the third
case at 60.2%, due to lower same-method-interference;
From Figure 4, the top 250 Java methods account for
roughly 40% of Java code. We are able to carry out
prefetching for only 201 of these methods, and with a cov-
erage of 60.2% for the prefetched methods, obtain an 18%
coverage for Java code This comes at a cost of a 10.8%
increase in bandwidth.

As such coverage for Java methods, and overall cover-
age improvement scales linearly with the number of meth-
ods prefetched. Other-methods-interference, on the other
hand, does not increase much, making it feasible to target
a large number of methods. Refinements to our current al-
gorithm for choosing prefetch points might further improve
the coverage we can achieve.

5 Related Work

Code placement inspired by Pettis and Hansen [16] is
widely employed in many systems. Their algorithm uses
edge-profiling to build an undirected cyclic graph and uses
a greedy approach to produce a code placement ordering.
Our IBM Java [11] uses a dynamic approach to separate hot
code from cold code, which brings most of the benefits of
code placement.

Annavaram et al [3, 4] discuss a profile-based software
scheme for call graph prefetching for database applications.
Their scheme uses a labeled call graph to insert a prefetch
instruction for the first callee; a prefetch for the second
callee function is inserted immediately after the call to the
first callee function, and so on. To reduce cache pollution,
only the first n cache lines of a function are prefetched; the
rest of the callee function is prefetched after entering the
callee function. Their scheme may not be timely enough for
some prefetches due to the distance between the prefetching
point and the first miss, although it may achieve some par-
tial overlapping of misses. They also conclude that code
positioning alone is not effective enough to reduce instruc-

tion cache misses because of several factors. For exam-
ple, a number of small functions used in the design, each
function called from many places, which could render pro-
cedure placement ineffective. Although code duplication
or aggressive function inlining may be useful to eliminate
some of the callers of a function so that code placement is
more effective, the resulting code increase may result in an
increase of the number of instruction cache misses. Based
on the data presented in figure 5, we believe this will also
be the case for WebSphere.

Luk et al [13] discuss a cooperative hardware-software
approach to prefetching. The compiler aggressively inserts
prefetch instructions to prefetch the targets of control trans-
fers far enough in advance, often in multiple ways. To re-
duce cache pollution by the software prefetches, hardware
has a filtering mechanism to allow it to get far ahead without
polluting the cache.

Other approaches to instruction prefetching include us-
ing helper prefetching threads whose only purposes is to
run ahead to provide prefetching for the main thread. [1].
This option is not explored here because server applica-
tions are typically highly multithreaded so the use of helper
threads instead of worker threads may be a liability rather
than an advantage. Another problems of their approach are
the overhead of triggering helper threads and that helper
threads need to run ahead enough of the worker threads to
be able to hide latency.

6 Conclusions and Future Work

We presented a detailed characterization of instruc-
tion cache performance for IBM’s WebSphere Application
Server and proposed a new call-chain based instruction
prefetching mechanism to improve cache performance of
large scale server applications. We evaluated the potential
of our mechanism and found an 18% reduction in icache
misses for Java code by targeting only a subset of executed
methods.

As part of future work, we plan to investigate several
enhancements to our current scheme including: consider-
ing more events, in addition to method entry, in choosing
prefetch points, refining our algorithm to optimize prefetch
decisions in the presence of multiple methods to prefetch,
and minimizing redundant or useless prefetches. We also
plan to pursue our idea of bi-modal prefetching, which
would distinguish between small and large methods and
apply method-level or intra-procedural prefetching accord-
ingly. Finally, we plan to convert our trace-based approach
into an efficient, online prefetching mechanism for Virtual
Execution Environments, like Java Virtual Machines.

References

[1] T. M. Aamodt, P. Marcuello, P. Chow, A. Gonzalez, P. Hammarlund,
H. Wang, and J. Shen. A framework for modeling and optimiza-
tion of prescient instruction prefetch. In International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS),
June 2003.

[2] A. Ailamaki, D.J. Dewitt, M.D. Hill, and D.A. Wood. DBMSs on
a modern processor: where does time go? In The VLDB Journal,
pages 266-277, 1999.

[3] M. Annavaram, J. Patel, and E. Davidson. Call graph prefetching for
database applications. In International Symposium on High Perfor-
mance Computer Architecture (HPCA), February 2000.

[4] M. Annavaram, J. Patel, and E. Davidson. Call graph prefetching
for database applications. ACM Transactions on Computer Systems,
21(4):412-444, November 2003.

[5] L. Barroso, K. Gharachorloo, and E. Bugnion. Memory system char-
acterization of commercial workloads. In Proc. of the 26th Intl.
Symp. on Computer Architecture, May 1999.

[6] IBM Trade Performance Benchmark. Trade6.

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=trade6.

[7]1 P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith,
R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E. Speight,
K. Sudeep, E. Hensbergen, and L. Zhang. Mambo: A full system
simulator for the powerpc architecture. ACM SIGMETRICS Perfor-
mance Evaluation Review, 31(4):8—-12, March 2004.

[8] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An architec-
tural evaluation of Java TPC-W. In Proc. of the Seventh Intl. Symp.
on High-Performance Computer Architecture, pages 229-240, Mon-
terrey, Mexico, January 2001.

[9] Q. Cao, P. Trancoso, J. Larriba, J. Torrellas, B. Knighten, and Y. Won.
Detailed characterization of a quad pentium pro server running TPC-
D. In Proc. of the IEEE International Conference on Computer De-
sign, 1999.
[10] Standard Performance Evaluation Corporation. Specjappserver2004
benchmark. http://www.spec.org/jAppServer2004/, 2004.

[11] N. Greevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundare-
san. Java just-in-time compiler and virtual machine improvements
for server and middleware applications. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium (VEE), 2004.

[12] K. Keeton, D. Paterson, Y.Q. He, R. C. Raphael, and W. Baker.
Performance characterization of a quad pentium pro smp using oltp
workloads. In Proc. of the 26th Intl. Symp. on Computer Architec-
ture, pages 25-26, May 1998.

[13] C-K. Luk and T. C. Mowry. Architectural and compiler support
for effective instruction prefetching: A cooperative approach. ACM
Transactions on Computer Systems, 19(1):71-109, February 2001.

[14] A.M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrast-
ing characteristics and cache performance of technical and multi-user
commercial workloads. In Proc. of the Sixth Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems,
pages 145-156, 1994.

[15] P.Nagpurkar, M. Hind, C. Krintz, P. Sweeney, and V.T. Rajan. Online
Phase Detection Algorithms. In International Symposium on Code
Generation and Optimization (CGO), 2006.

[16] K. Pettis and R. Hansen. Profile guided code positioning. In Inter-
national Conference on Programming Language Design and Imple-
mentation (PLDI), June 1990.

[17] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In 30th Annual International Symposium on Computer Architecture,
June 2003.

[18] The Standard Performance Evaluation Corporation. SPEC JBB 2000.
http://www.spec.org/osg/jbb2000, 2000.

