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Abstract

We present a detailed characterization of instruction
cache performance for IBM’s J2EE-enabled web server,
WebSphere Application Server (WAS). When running two
J2EE benchmarks on WebSphere, we find that instruction
cache misses cause a 12% performance penalty on current-
generation Power5-based multiprocessor systems. To mit-
igate this performance loss, we describe a new call-chain
based algorithm for inserting software prefetch instruc-
tions, and evaluate its potential for improved instruction
cache performance. The performance of this algorithm de-
pends on the selection of several independent parameters
which control the distance and number of prefetches in-
serted for a particular method. We select these param-
eters through characterization of the WebSphere applica-
tions, and ultimately find that our call-chain based inser-
tion algorithm achieves significant reduction in instruction
cache miss rate for Java methods.

1. Introduction

Despite an abundance of research over the years, in-
struction cache (icache) miss stalls remain a source of
performance degradation for many commercial applica-
tions [2][7][10][11][15][17][23]. Due to the relatively
larger performance cost of data cache misses in most ap-
plications, research and development has focused primarily
on the data cache miss problem instead. As evidence, only a
few architectures (IA-64, PA-RISC, and SPARC v9) include
instruction cache prefetch instructions, and many architec-
tures (e.g. IA-32, x86-64, and PowerPC) include no support
for instruction prefetching. In contrast, all major architec-
tures include support for software-directed data prefetching.

In theory, the icache miss problem is an easier problem
to solve, because selecting blocks for instruction prefetch-
ing is solely a function of predicting control flow, while a
data prefetching mechanism must also solve the consider-
ably more difficult problem of predicting the data address
that will be touched. In addition, control flow, through

both branch prediction and phase behavior [20] [18], has
been shown to be highly predictable. Consequently, given
hardware support for software-directed instruction cache
prefetching, we believe that it should be possible to signif-
icantly reduce instruction cache miss stalls for all applica-
tions (large and small).

In this paper, we present a detailed characterization
of instruction cache performance across three Java server
workloads running natively on an IBM Power5 multipro-
cessor, showing that instruction misses are indeed still a
problem for large-scale server applications. We follow
this characterization with a detailed study of the industry-
standard SPECjAppServer2004 J2EE benchmark [12] run-
ning in a full-system simulator. As a means of reducing
the performance penalty of instruction cache misses, we de-
scribe a simple algorithm for inserting software instruction
prefetches at points in the call-chain that lead to specific
delinquent methods, that we call call chain-based instruc-
tion prefetching.

Prior work discussed a call-graph based software
prefetch mechanism for instruction misses which uses
caller-callee relationships, inserting prefetches for a callee
at the entrance of a caller [4]. In object-oriented programs
which are characterized by small method sizes (such as
WebSphere), this may result in late prefetches due to the
short distance between the caller being invoked and its sub-
sequent calls. We investigate moving prefetches up the call
chain, inserting them at a greater distance from the callee.
This leads to a trade off between prefetch coverage, accu-
racy, and timeliness.

Using this simple scheme for software prefetching, we
show that coverage improves as we move up the call chain,
resulting in better performance improvements because of
more timely prefetches. However, hoisting prefetches too
far can result in a decrease in useful prefetches and increase
cache pollution. Our results indicate that our call-chain
prefetching enables a 31% reduction in icache misses
for Java code. This reduction translates into a significant
reduction of the stalls caused by instruction cache misses,
resulting in a 5% improvement in overall application server
performance.



In summary, we make the following contributions:

• We characterize the instruction cache behavior of J2EE
applications using a real machine and a system simu-
lator, showing that the instruction cache miss problem
remains significant.

• We describe an algorithm for prefetching using a
call-chain, using two parameters in selecting prefetch
points: confidence and miss distance.

• Using execution-driven simulation, we demonstrate
the effectiveness of the algorithm in terms of accuracy,
coverage, prefetch interference, and performance.

2. Characterization of Instruction Cache Be-
havior

This section shows that instruction cache misses are a
significant source of stalls in our J2EE applications. We
also show that it is difficult to attribute a significant number
of stalls to a few methods, given the object-oriented nature
of our target applications.

2.1. Methodology

Our study uses a two-pronged experimental setup. We
first experiment with WebSphere performance running na-
tively on a 2-socket, 4-way Power5 multiprocessor running
AIX 5.3, configured with 16GB of DRAM. We use SPEC-
jAppServer2004 and Trade6 [8], a J2EE online brokerage
benchmark internally developed by IBM. These heavily-
multithreaded applications run in a three-tier configuration
with a DB2 8.2 back-end tier and a client/driver front-end
tier. We report results for the middle-tier only, which is
running the WebSphere application server, running on top
of IBM’s Java virtual machine [14]. Performance counters
are sampled after a 15 minute warmup period, with three
30-second sampling intervals for each set of counters. We
solely focus on the L1 instruction cache in our study, which
is 64KB, 2-way set-associative with 128 byte cache lines.
These results are presented in Section 4.

For more detailed analysis (solely on SPEC-
jAppServer2004), we use Mambo [9], a full system
simulator developed at the IBM Austin Research Lab.
Mambo simulates the underlying hardware in enough
detail that it can run the entire software stack used in our
native system (AIX 5.3, J9 v2.3, WebSphere 6.1). Figure 5
illustrates this experimental methodology. Using Mambo,
we gather a method entry/exit trace augmented with
information about cache misses, and analyze it to select
relevant methods for which prefetching will be useful, and
points at which we will insert prefetches (which we refer
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Figure 1: Commit Stall Cycle Categorization (icache miss
stalls in striped bar).

to as prefetch points) for these relevant methods. The trace
is gathered over the execution of 1 billion instructions
(post-SPECjAppServer2004 warmup), which is also the
length of our simulations.

2.2. Stall Cycles

The Power5 performance counter facility offers a set
of counters that are incremented at each stall of the pro-
cessor’s commit stage, where each counter corresponds
to the cause of the stall. Figure 1 shows a breakdown
of stall cycles created using these counters, for SPEC-
jAppServer2004 [12], Trade6 [8], and SPECjbb2000 [24].
Power5’s 2-way SMT feature does a relatively good job
of keeping the pipeline busy, however instruction cache
misses still account for a significant fraction of stall cy-
cles (12%) for both of the WebSphere J2EE applications.
It has been shown that the Power5 counter mechanism ac-
tually underestimates the performance penalty of icache
misses [13]. Consequently, we consider this estimate a con-
servative lower bound. SPECjbb2000 exhibits only a small
(2%) instruction miss penalty; we have observed similar re-
sults for SPECjbb2005.

Figure 2 shows the number of L1 icache misses per 100
committed instructions, broken down by the location from
which they are serviced. The vast majority of icache misses
(92% and 93% for SPECjAppServer2004 and Trade6, re-
spectively) are satisfied from the 1.8MB L2, and nearly all
of the remaining misses are satisfied from the 36MB L3.
An insignificant fraction of misses (less than 1%) is satis-
fied from memory or from remote caches from the other
socket.
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Figure 2: Icache misses per 100 committed instructions

2.3. Simulation results

Using our Mambo-based simulation methodology [9],
we have also collected a profile of these instruction cache
misses for WebSphere running SPECjAppServer2004,
mapping each cache miss back to the individual method that
caused it. In terms of high-level software components, JIT-
TED Java code accounts for the majority of icache misses
(71%), followed by the AIX kernel (12%), and the J9 run-
time system (7%). The remaining 10% of misses are dis-
tributed over a large set of system libraries.

When taking a closer look at the individual methods in
this profile, we find that the profile is extremely flat; no sin-
gle method accounts for more than 2%, and the largest con-
tributor from the Java portion of code is merely 0.525%.
Figure 3 shows the contribution of total instruction cache
misses by the number of methods causing those misses.
This chart includes data for all misses, and data for misses
that are caused by Java code. In both cases, 50% of all
misses can be attributed to the 300 worst offending meth-
ods. In order to cover 75% of all misses, more than 700
methods must be considered. Obviously, in order for an
instruction prefetching mechanism to be beneficial, it must
target a large number of methods.

We analyzed the top ten Java methods with the highest
number of misses in more detail. Table 1 summarizes this
information. The columns list percentage icache misses,
average per-invocation miss count, number of instruction
cache blocks that are ever actually touched, and the number
of direct callers for each method. The last row shows the
average values, averaged across all Java methods. Note that
the fourth column refers to the number of static instruction
blocks in a method that are actually used, and is an indica-
tion of the instruction cache footprint for a method..

We observe that the number of callers for a method varies
and is not always small. Consequently, code positioning
schemes [19] [14] might not be effective in addressing the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 250 500 750 1000 1250 1500 1750 2000

number of methods

%
o
f
ic
a
c
h
e
m
is
s
e
s

Java Code

All Code

Figure 3: Per-method Contribution to Total icache Misses (cu-
mulative distribution)

Table 1: Prefetch Target Characteristics

1 0.525 4.404 20 2

2 0.468 2.833 14 94

3 0.446 54.897 64 9

4 0.436 2.720 16 3

5 0.377 61.214 64 1

6 0.350 0.844 3 7

7 0.280 16.431 16 1

8 0.277 7.100 9 1

9 0.273 1.194 21 1

10 0.259 13.044 14 2

Average

(4562 total)
0.013 3.094 4.203 2.168

Num. Direct 

Callers

Top

Methods

ICache

Misses

(% of Total)

Avg. Per-

invocation

Misses

Num. Used 

Cache Blocks 

(Static)

cache miss problem, because each method often has many
callers. In addition, the IBM J9 JIT [14] already optimizes
code layout by reordering basic blocks such that the com-
monly executed code appears close in memory, thus we ex-
pect the benefits of further code reordering to be small.

Our results reflect many of the facts of large-scale appli-
cations written in object-oriented styles:

• there are a large number of small methods

• each method contributes a small amount to the total
execution time

• there is a substantial reuse of functionality, for example
in the form of foundation libraries, resulting in multi-
ple callers for a method

We also observe that in most cases, excluding method
numbers 3 and 5, the average per-invocation misses for a
method is low. This bi-modal data suggests a bi-modal op-
timization: for methods with a small number of blocks and
small number of misses per invocation, prefetches should



be inserted for the entire method; for methods with a large
number of blocks or a large number of misses per invoca-
tion, only some of the blocks should be prefetched upon en-
try to the method, since there will be ample time to overlap
the prefetch latency within the method. We briefly discuss
such a bi-modal scheme in section 4. For now, we adopt the
all-or-nothing approach: at each prefetch point, we perform
prefetching for all of the blocks that have been identified
as useful (i.e. all of the method’s blocks, excluding those
blocks that are never used during our one billion instruction
profile).

3. Call-chain Prefetching

Call-chain based prefetching is an all-software profile-
driven prefetching mechanism which individually targets
methods that cause significant icache misses. It can be uti-
lized in both dynamic compilation environments and stati-
cally compiled applications. Beginning with an instruction
cache miss profile for a particular application, delinquent
methods are first chosen as prefetch targets, based on ap-
plying a threshold value. For each target method, one or
more predecessor methods in the call chain are chosen as
prefetch points, where we define the call chain as the set
of methods on the execution stack when the target method
is invoked. The method prologue of each selected prefetch
point is augmented with instruction cache prefetch instruc-
tions for one or more target methods. These prefetch points
are selected using the algorithm described here.

A prefetch must meet several criteria: it must be timely
enough to overlap the latency of the prefetch request with
other work before the prefetched block’s use, but not so
far in advance that the prefetch request is evicted from the
cache prior to its use. The confidence of the request must
also be high to reduce the risk of cache pollution with data
that will never be used. In order to maximize confidence
and timeliness, our profiling mechanism includes a means
of approximating each.

Confidence

When a method is invoked, the control flow in its body gov-
erns which callsites are executed, and as a result, which
methods are subsequently invoked. Consequently, differ-
ent call-paths can be followed for different invocations of a
method. Confidence of a prefetch point refers to the prob-
ability of reaching the target method on a call path begin-
ning with the invocation of the prefetch point method. From
the partial call graph shown in Figure 4, given a call-chain
G containing a prefetch point at node A and prefetch tar-
get at node B, confidence is the probability of reaching B
by following a call path starting from A. The confidence
of prefetch point A in this case is 80%. When choosing
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Figure 4: Example call chain. Edges are labeled with the num-
ber of calls from parent to child.

prefetch points for a method, points with high confidence
values will minimize the amount of cache pollution due to
bad prefetches, because it likely that a target will be called
if a prefetch point is reached.

Profile collection of the confidence metric is straightfor-
ward given a call graph profile [22] [5] or calling context
profile [6] [26]. To estimate confidence, we need to track
method invocation counts, and the set of methods that are
on the stack when a prefetch target is called. A complete
call graph or calling context tree, however, is not necessary,
making it possible to efficiently estimate confidence.

Miss Distance

Miss distance is a parameter we use to ensure prefetch time-
liness. We define miss distance as the number of instruction
cache misses on the path between the entry for the potential
prefetch point and the entry for the target method. This met-
ric is an indication of the amount of changing code and thus
replacement demand on that path. When choosing prefetch
points, we can selectively filter the set of candidates by mea-
suring the average miss distance from the potential prefetch
point to the prefetch target. If we require an average miss
distance of at least one between the prefetch point and the
target, we will usually be able to ensure that the prefetch
will not be late (the miss latency can be used to fulfill the
prefetch). A suitable upper bound is also chosen to avoid
prefetches that are likely to be displaced prior to reaching
the prefetch target.

Profile collection of the miss distance metric is slightly
more difficult than the confidence metric, however there are
at least two means by which it can be obtained. Using
performance counter hardware that includes an instruction
cache miss counter (which most processors provide), one
can instrument the application to read the counter value at
the entry of a prefetch point, and read again at the entry of



a prefetch target. Based on the difference of these values,
miss distance is calculated. Alternatively, one can collect
this profile for all points simultaneously using cache simu-
lation, as described in Section 4.

We use these metrics to select prefetch points from pre-
decessors in the call-chain for the method to be prefetched.
Note that the prefetch points selected after applying the cri-
teria described above form a subset of all possible prefetch
points for the target method. Depending on the control flow
and thresholds chosen, the selected prefetch points might
not trigger prefetching for every instance of the prefetched
method. For example, given a target method that is rarely
called from any other methods, it is possible that no prefetch
points will be chosen for the target.

4. Results

We next empirically evaluate the efficacy of our all-
software approach to prefetching. We describe the method-
ology we used to collect the results in this section, and then
present our performance data and analysis.

4.1. Experimental Methodology

For the performance data collected in this section, we
utilize one of Mambo’s timing simulators that models the
processor and system microarchitecture of the IBM Power5.
This timing model has been validated to be cycle-accurate
with respect to Power5 hardware within a 2% margin of er-
ror averaged across a suite of benchmarks [25]. The pub-
licly available attributes of the machine are detailed in prior
work [21]. Most pertinent to this research is its 8-way set
associative 64KB instruction cache, with 128 byte cache
blocks. The instruction cache is limited to two outstand-
ing misses, and uses a pseudo-LRU tree-based replacement
algorithm. Instruction prefetch is modeled by inserting the
prefetch address into a 512-entry prefetch FIFO when the
trigger instruction commits. The FIFO arbitrates with the
processor front-end for one of the icache’s two cache ports.

Given the recent trend towards on-chip EDRAM caches,
we increase the L2 cache latency from the Power5 model
to 35 cycles, reflecting both EDRAM’s increased latency as
well as the increasing delays due to CMP arbitration logic
in front of future shared L2 caches. All other simulation pa-
rameters are identical to the Power5. Due to workload setup
issues, we only simulate a single-threaded uniprocessor for
this evaluation. We expect the addition of multiple threads
per core to only exacerbate the instruction cache problem,
therefore these results should represent a conservative es-
timation of potential performance improvement. For each
prefetch configuration, we simulate 500 million instructions

Due to our interest in building a dynamic instruction
prefetching mechanism into a Java Virtual Machine, we
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Figure 5: Trace-based Analysis Methodology

only consider prefetching for Java methods that have been
compiled. Java methods also constitute the majority of
icache misses, at 71%. We have implemented a trace-based
algorithm to select prefetch points and studied its effect in
a timing simulator. Our objective is to observe the effect
that an offline profile-based scheme could have on the real
machine, so that future systems may consider it as an online
optimization.

For the trace-based analysis, we gather traces with
method entry and exit events, annotated with icache miss
counts, using Mambo. We then process these traces to find
both methods to prefetch and prefetch points for these meth-
ods, using the parameters described in Section 3. For the
results presented, we target the top 750 Java methods with
the most L1 icache misses. Since WebSphere has multiple
threads, we gather per-thread traces and aggregate the re-
sults of our analysis across threads. Our implementation of
the prefetching mechanism in Mambo uses a prefetch table
generated by the analysis to issue prefetches for the speci-
fied addresses at the specified prefetch points.

4.2. Evaluation

In our evaluation, we focus on the timeliness of the
prefetching mechanism, and analyze the effect of several
different miss distance ranges. Unfortunately, due to the
large number of combinations of parameters, we are unable
to collect and present sensitivity data for many combina-
tions. We consider a miss distance lower bound of two, and
experiment with six different upper bounds. The confidence
threshold is fixed at 90%, which means only prefetch points
with at least 90% confidence are chosen. Note that with a
fixed lower bound, miss distance ranges with increasing up-
per bounds will include all prefetch points from ranges with
a smaller upper bound. Since the lower bound is fixed, we
only use the upper bound to denote the miss distance range.
We also include an additional entry case, for which enter-
ing the method to be prefetched triggers prefetching. This
case is similar to the scheme described in [4]. We report
improvements with respect to the baseline, no-prefetching
case. We consider three aspects: prefetch accuracy, cover-
age, and impact on execution time. We next describe the
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metrics used and then present results for each of these as-
pects.

Prefetch Accuracy

While coverage and impact on execution time quantify the
overall efficacy of the prefetching mechanism in terms of
either reduction in the number of misses, or improvement
in execution time, accuracy analyzes individual prefetch re-
quests. More specifically, prefetches issued are categorized
as follows:

• Prefetch Hits are prefetch requests that are already in
the L1 icache.

• Prefetch Misses are prefetch requests that are not in the
L1 icache and must be fulfilled.

• Useful Prefetches are prefetch requests that bring a
block into the cache which is subsequently touched by
an instruction fetch prior to its eviction.

• Useless Prefetches are prefetch requests that bring a
block into the cache which is either unreferenced be-
fore eviction, or is requested by an instruction fetch
while the prefetch miss is outstanding (untimely).

Accuracy is computed as the percentage of Prefetch
Misses that are Useful. Using our current prefetching
mechanism, we found approximately 20% of the total
prefetches issued to be Prefetch Misses. In future work, we
plan to reduce the number of unnecessary prefetch requests
issued by eliminating redundant prefetch requests.

Figure 6 shows the percentage of Useful and Use-
less prefetches for different miss distance ranges. Useless
prefetches include prefetches that are late. As expected,

Table 2: Coverage achieved for different miss distance ranges.
Coverage is the percentage reduction in misses compared to
the baseline, no-prefetching case. We show coverage for meth-
ods targeted by the prefetching mechanism (top 750), coverage
for Java code, and coverage for all code.

Entry 8 16 24 64 256 1000

Prefetched 30.0 28.9 36.1 40.0 48.7 53.3 48.2

Java 18.5 18.3 22.9 25.5 31.4 33.6 29.5

All 12.1 12.4 15.7 17.2 21.5 21.8 17.2

Coverage (% Reduction in Misses)

prefetch accuracy increases as the prefetches are hoisted far-
ther from the method to be prefetched, owing to fewer late
prefetches. However, once the miss distance reaches an up-
per bound of 256, accuracy begins to decline as a result of
cache pollution from prefetches that are too early.

Coverage

Coverage is defined as the percentage reduction in misses
as a result of prefetching, compared with the baseline, no-
prefetching case. We track three categories of coverage:
Prefetched, Java, and All. Prefetched coverage is the cov-
erage for methods targeted by the prefetching mechanism,
Java coverage is the coverage with respect to all Java meth-
ods, and All coverage refers to coverage with respect to all
code, including non-Java methods.

As a result of carrying out prefetching, there is a possi-
bility of increasing the number of misses for some methods,
especially if the number of useless prefetches is high. These
methods include non-Java methods, Java methods not tar-
geted by the prefetching mechanism, and in some cases Java
methods that are targeted by the prefetching mechanism. In-
terference measures the negative effects due to prefetching,
and is measured as the percentage increase in misses ex-
cluding methods that are helped by prefetching, relative to
the baseline case without prefetching.

Table 2 lists coverage for different values of miss dis-
tance, whereas the graph in Figure 7 shows trends for over-
all coverage and interference. The three separate interfer-
ence curves represent interference for non-Java code, in-
terference for Java code, and total interference, which is
the sum of the first two. Overall coverage is the achieved
coverage with respect to all code, and includes interfer-
ence effects (that is it incorporates both positive and neg-
ative change in the number of misses due to prefetching)
Achieved coverage depends on several factors, including
potential coverage and interference. As mentioned in Sec-
tion 3, the set of prefetch points chosen using a particular
confidence threshold and miss distance range might only
target a subset of the prefetched method’s invocations, and
therefore a subset of the misses incurred by that method.
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Potential coverage refers to the maximum number of misses
in the prefetched method that could be reduced using the
chosen prefetch points for it. Given a certain potential cov-
erage, achieved coverage is further affected by interference,
which in turn depends on prefetch accuracy.

From Table 2, we can see that coverage improves with
increasing miss distance upper bound until the upper bound
reaches the value of 1000. From Figure 7 we can see that in-
terference is very high for this case. 64 is the best observed
upper bound for miss distance, with a relatively high overall
coverage of 21.5% and before the steep rise in interference.
For the entry case, it is interesting to note that coverage is
only 30%, in spite of the fact that potential coverage is high
(since every instance of the targeted method is prefetched).
This can be attributed to the large number of late or useless
prefetches that this case generates.

Impact on Execution Time

Finally, we measure the net effect of our prefetching mech-
anism on execution time by computing percentage improve-
ment in instructions per cycle (IPC). Table 3 lists these val-
ues for the miss distance ranges considered. With a miss
distance range of [2,64], which is the best case from our re-
sults above, we achieve a 4.6% improvement in IPC. This
is 2% better than the entry case. The IPC for the baseline,
no-prefetching case was 0.518.

Our results verify that timeliness is an important con-
sideration for prefetching schemes targeting the L1 icache,
given the trend of increasing L2 latencies for modern pro-
cessors. We show that using a simple call-chain based
mechanism to hoist prefetch requests at a suitable distance

Table 3: Improvement in IPC as a result of prefetching.
Improvement is calculated with respect to the base, no-
prefetching case. The simulation length is 500 million instruc-
tions

Entry 8 16 24 64 256 1000

2.6 2.7 3.4 3.6 4.6 5.1 3.1

% Improvement in IPC

from the target method, we can increase the accuracy and
efficacy of prefetching. For the benchmark we analyzed,
we found the miss distance upper bound of 64 to be best.
We plan to explore a larger set of configurations in future
versions of this work.

4.3. Discussion: Potential Improvements

In this section, we discuss two ways of increasing cover-
age that we have identified, with exploration of these obser-
vations planned in future work.

Callsite Interference and Incremental Prefetching

In addition to the factors affecting coverage that we dis-
cussed before (choice of prefetch points and prefetch accu-
racy), there is one more factor that can limit coverage. As
mentioned in Section 2 we currently issue prefetch requests
for all used cache blocks for a method, when a prefetch
point for that method is encountered. However, if there are
callsites within the prefetched method that divert execution
to other methods, the prefetched blocks might be replaced
before they can be used. We call this Callsite Interference,
and propose an incremental prefetching scheme to address
it. Under this scheme, we first find callsites that cause sig-
nificant interference (more than a certain number of misses
before returning to the caller), and partition the method into
blocks before and after the callsite. We then select addi-
tional prefetch points that issue prefetches for blocks after
the callsite using the same analysis parameters described
before. These prefetch points must be chosen so that they
issue timely prefetches for blocks that will be used after re-
turning from the interfering callsite. For the top 750 meth-
ods targeted by our prefetching mechanism, we found that
159 of them had one or more interfering callsites using an
interference threshold of 64.

Balancing Confidence and Potential Coverage

Confidence is one of the two parameters we use in select-
ing prefetch points. For the results presented above, we use
a high confidence threshold of 90%, which means, we do
not select prefetch points with confidence values lower than



90%. The aim is to minimize useless prefetches. How-
ever, by not choosing some prefetch points, we lose the cor-
responding potential coverage, thereby limiting the cover-
age that can be achieved. To minimize useless prefetches
due to prefetch points with low confidence, but at the same
time not ignore prefetch points that have high coverage, we
considered using a hybrid parameter composed of confi-
dence and potential coverage, instead of considering con-
fidence alone. This hybrid parameter would allow prefetch
points with relatively lower confidence values, but high cov-
erage, to be selected, potentially improving the coverage
achieved.

5. Related Work

A significant body of work has been proposed and im-
plemented for instruction prefetching. In this section, we
review the research most related to the approach that we
present herein. The primary difference that sets our work
apart is that it a software-only technique for reducing the
overhead of instruction cache misses in server applications.

Annavaram et al. [3] [4] describe a profile-based soft-
ware scheme for call graph prefetching for database ap-
plications, using both hardware and software approaches.
Their software prefetching scheme [4] uses a labeled call
graph to insert a prefetch instruction for the first callee; a
prefetch for the second callee function is inserted immedi-
ately after the call to the first callee function, and so on.
To reduce cache pollution, only the first n cache lines of
a function are prefetched; the rest of the callee function is
prefetched after entering the callee function. Their scheme
may not be timely enough for some prefetches due to the
distance between the prefetch point and the first miss, al-
though it may achieve some partial overlapping of misses.

The authors of this work also conclude that code posi-
tioning alone is not effective enough to reduce instruction
cache misses because of several factors, e.g., the number
and size of small functions, the same functions invoked by
multiple call sites. Regarding the latter, although code du-
plication or aggressive function inlining may be useful to
eliminate some of the callers of a function so that code
placement is more effective, the resulting code increase may
result in an increase in the number of instruction cache
misses. Based on the data presented in Table 1, we believe
this will also be the case for WebSphere.

Spracklen et al. [23] characterize instruction cache
prefetching in modern commercial applications, showing
that these applications incur significant instruction cache
misses. Their paper proposes a hardware scheme using both
sequential and non-sequential hardware prefetchers. Se-
quential prefetchers using next-N-line prefetching can cover
small discontinuities in the fetch stream, however it is not
effective at eliminating the misses resulting from transitions

to distant lines. In their non-sequential prefetcher, a ba-
sic block predictor predicts a sequence of basic blocks to
be prefetched, achieving a better coverage at the cost of
substantial hardware investment. Since our current scheme
considers software prefetches only for the cache blocks of
a method that are ever used, it is more precise than sequen-
tial prefetching; however, it may prefetch a block that may
be later discarded. In future work, we plan to investigate a
more fine-grain approach using control branches triggered
from method calls and returns.

Luk et al. [16] present a cooperative, hardware-software
approach to prefetching. The compiler aggressively inserts
prefetch instructions to prefetch the targets of control trans-
fers far enough in advance, often in multiple ways. To re-
duce cache pollution by the software prefetches, the hard-
ware has a filtering mechanism to allow it to get far ahead
without polluting the cache.

Other approaches to instruction prefetching include us-
ing helper prefetching threads whose only purposes is to
run ahead to provide prefetching for the main thread. [1].
We do not explore this option since server applications are
typically highly multithreaded and as such, the use of helper
threads instead of worker threads may be a liability rather
than an advantage. Another problem with this approach is
the overhead of triggering helper threads and that helper
threads need to run ahead enough of the worker threads to
be able to hide latency.

6. Conclusions and Future Work

We presented a characterization of instruction cache per-
formance for IBM’s WebSphere Application Server and
proposed a call-chain based instruction prefetching mech-
anism to improve cache performance of large scale server
applications. We evaluated the potential of our mechanism
and found a 31% reduction in icache misses for Java code
(and 22% overall) by targeting only a subset of executed
methods.

As part of future work, we plan to evaluate the improve-
ments discussed briefly in Section 4. We also plan to in-
vestigate several additional enhancements to our current
scheme including: considering more events, in addition to
method entry, in choosing prefetch points, refining our al-
gorithm to optimize prefetch decisions in the presence of
multiple methods to prefetch, minimizing redundant or use-
less prefetches, and strengthening our confidence metric us-
ing context-sensitive analysis. Finally, we plan to convert
our trace-based approach into an efficient, online prefetch-
ing mechanism for virtual execution environments, like Java
virtual machines.
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