Redeeming IPC as a Performance Metric for Multithreaded
Programs

Kevin M. Lepak, Harold W. Cain, and Mikko H. Lipasti

Electrical and Computer Engineering and Computer Sciences Department
University of Wisconsin
Madison, WI 53706

{lepak,mikko}@ece.wisc.edu, cain@cs.wisc.edu

Abstract

Recent work has shown that multithreaded workloads
running in execution-driven, full-system simulation
environments cannot use instructions per cycle (IPC) as
a valid performance metric due to non-deterministic
program behavior. Unfortunately, invalidating IPC as a
performance metric introduces its own host of difficul-
ties: special workload setup, consideration of cold-start
and end-effects, statistical methodologies leading to
increased simulation bandwidth, and workload-specific,
higher-level metrics to measure performance. This
paper explores the non-determinism problem in multi-
threaded programs, describes a method to eliminate
non-determinism across simulations of different experi-
mental machine models, and demonstrates the suitabil-
ity of this methodology for performing architectural
performance analysis, thus redeeming IPC as a perfor-
mance metric for multithreaded programs.

1 Introduction

For many years, simulation at various levels of abstraction has
played a key role in the design of computer systems. In particular,
detailed, cycle-accurate simulators are widely used to estimate
performance and make design trade-offs for both real and pro-
posed designs by academics and industry practitioners alike.
There appears to be broad consensus that such simulators ought
to be execution-driven, in order to capture the effects of wrong-
path instructions. However, the introduction of wrong-path
instructions in execution-driven simulation invalidates the naive
use of the instructions-per-cycle (IPC) metric, since changes in
branch predictor configuration or branch resolution latency can
increase or decrease the number of instructions fetched and exe-
cuted. A similar problem exists for ISAs with compiler controlled
speculation (for example delayed exception semantics or predi-
cated instruction execution in IA-64 [14].) Fortunately, there is a
simple solution: namely, only counting committed instructions,
or instructions guaranteed to be present across all machine con-
figurations in this metric. As long as the simulated program has a
well-defined beginning and ending, the committed instruction
count should be the same across machine models, hence enabling
the continued use of IPC as a valid and intuitively appealing per-
formance metric. More recently, advances in simulation technol-
ogy have enabled execution-driven simulators that are also
capable of simulating both supervisor and user code in order to
exercise all aspects of the system design. Full-system simulators
such as SimOS [18] and Simics [13] are capable of booting and
running full-fledged multitasking operating systems. Hence, exe-
cution-driven simulation can be used to faithfully model not just
the behavior of user code, but also kernel-mode paths through the
operating system, eliminating errors in accuracy that can exceed

100% [6].

However, as pointed out in [2], even minute changes in the
simulated configuration can cause dramatic spatial variation in
the executed instruction stream in a full-system simulator. In a
uniprocessor system, the catalyst for this variation is the arrival
time of asynchronous interrupts: if the changes in machine model
either accelerate or decelerate instruction commit rate, an inter-
rupt occurring at a fixed point in simulated time will be serviced
at differing instruction boundaries across the different simula-
tions. The operating system task dispatcher which is invoked by
the interrupt handler may then respond to these differences by
choosing to schedule a different ready task, leading to dramatic
spatial variation [3]. In a multiprocessor system, this problem is
compounded by data and/or synchronization races in multi-
threaded programs. If changes in the simulated machine model
accelerate processors at nonuniform rates, a race that was won by
processor A in one simulation may now be won by processor B
instead. Once again, dramatic spatial variation in program execu-
tion can result. Since most current and future general-purpose
processors are designed to operate in multiprocessor systems, or
are multithreaded [5, 12], there is an urgent need for a tractable
simulation methodology for such designs.

The fundamental problem created by this nondeterministic
behavior is that accurate performance comparisons can no longer
be made across simulations with varying machine models, since
there is no longer any guarantee that a comparable type and
amount of work was performed in both simulations. In other
words, instruction count is no longer a reliable measure of work,
and hence, IPC loses its validity as a meaningful performance
metric. Therefore, higher-level metrics are needed to measure the
amount of work performed in each simulation. For example, stan-
dalone programs may need to run end to end, eliminating the
attractive option of time-domain sampling, or transaction-based
workloads may need to commit a certain number of transactions.
Ultimately, performance must be measured in transactions per
cycle, queries per cycle, or some other high-level metric instead
of instructions per cycle. Such coarse-grained simulations can
also suffer from cold-start and end effects, since there is no easy
way to guarantee that the set of transactions completed in each
simulation were in comparable stages at the beginning of the sim-
ulations. In other words, a database may have 1000 in-flight
transactions at the beginning of a simulation, and 100 of those
transactions may be 90% complete, while the remaining 900 are
only 10% complete. One simulation may complete the 100
nearly-ready transactions, and then exit, while another may com-
plete 100 transactions that had barely started to execute. As a
result, there can be dramatic variation in the amount of work
actually performed, even though the high-level metric of com-
pleted transactions is the same. Figure 1 illustrates this variation
for multiple simulations of the SPECjbb2000 [19] benchmark
running on 16 processors and completing 400 transactions. This

- 12 - = 0%
[\ 359
2 ~ = 205
Z os N2
o 06 05
E - 155
S 04 »— Cycles 3
° 0.2 —— Instructions 10 i

475 480 485 490 495 500 505 510 515 520 525
Memory Latency (cycles)

FIGURE 1. End-to-end simulated cycles (SPECjbb2000)
for varying main memory latency. Main memory latency is
varied from 475 to 525 cycles for a 16 processor run of|
SPECjbb2000 for 400 transactions starting from the same
checkpoint. The measured number of cycles and instructions to
complete the run is indicated, showing substantial variation in
performance measurement for a minor architectural change.

effect can be reduced by counting a large number of transactions
and relying on the law of large numbers to even out the varia-
tions. Since these higher-level metrics can usually only be mea-
sured in a coarse-grained manner (e.g. hundreds of transactions at
several million instructions per transaction for typical database
applications), the end-to-end simulation time for each data point
becomes quite large.

Alameldeen and Wood suggest that statistical analysis of mul-
tiple runs with random perturbations can be used to regain statis-
tical confidence in the measured results, but this requires one or
more orders of magnitude of additional simulation time to gener-
ate a single relatively comparable data point [3]. This dramati-
cally complicates engineering trade-off analysis, since minute
machine model changes can result in performance variations of
only a few percent, yet the spatial variation can often result in 5-
10% or even more variation in measured performance. Using sta-
tistical confidence can require a very large number of randomized
simulation measurements to bound the error in such cases (the
case study in Section 4.2 would require 8100 simulation runs per
data point).

In this paper, we describe an alternative and complementary
approach to simulation of inherently nondeterministic systems.
Instead of relying on statistical methods to bound error, we sys-
tematically remove the sources of nondeterminism in a controlled
and defensible fashion, quantify the performance effect of this
removal, and count on the measured performance, once again
expressed in IPC, as a reliable measure of relative performance.
In Section 2, we provide a general overview of multithreaded
simulation methodology, in order to place deterministic simula-
tion in the proper context. In Section 3 we describe our determin-
istic simulation infrastructure, including details on the
composition of the determinism trace used to control different
simulators. We also describe several obstacles to deterministic
simulation which were encountered in this work, and their solu-
tions. In Section 4, we evaluate the usefulness of deterministic
simulation and show that it is an effective means of achieving
comparability among different simulation models without sacri-
ficing fidelity with respect to the modeled system. Section 5 con-
cludes the paper and suggests several directions for future work.

2 Simulation methodologies for multithreaded
programs

In this section we discuss the advantages and disadvantages of
using deterministic execution-driven simulation relative to tradi-
tional execution-driven simulation and trace-driven simulation.

We begin with a review of the strengths and weaknesses of tradi-
tional trace-driven and execution-driven multiprocessor simula-
tion, in order to properly compare the strengths and weaknesses
of our method.

2.1 Trace-driven simulation

The constraints placed on a multithreaded execution by a fixed
trace can have an effect on the outcome of the comparison of two
simulations, and the magnitude of this effect is dependent upon
the type of optimization being evaluated. When evaluating an
optimization which changes the timing of a program’s inter-
thread dependences, the optimization’s impact may be over or
under-estimated because the optimized execution is constrained
by a fixed trace. For example, suppose a designer is evaluating an
optimization which decreases the latency of inter-processor cache
block transfers in a coherence protocol for those blocks contain-
ing lock variables. In an actual system, such an optimization may
decrease the number of spin iterations for processors waiting to
acquire the lock. If one were to evaluate this optimization using
trace-driven simulation, the spinning processors would continue
to execute the same number of spin instructions, even though the
lock release should have been observed earlier, and these addi-
tional spin instructions would offset any gains obtained through
the optimization. Using a fixed trace artificially forces a timing
simulator to follow that trace, whereas in a real system the lock
transfer optimization would have caused fewer spin loop itera-
tions in the application’s execution.

Despite this drawback, trace-driven simulation offers advan-
tages over execution-driven simulation. Because the simulator
does not need to contain logic for executing the semantics of an
architecture, trace-driven simulators are inherently more efficient
and require less development effort. This is true of trace-driven
simulators modeling both uniprocessor and multiprocessor sys-
tems. The other major advantage to trace-driven simulation is
that because the simulator’s execution path is dictated by the
trace, one is guaranteed an identical execution across simulations
of multiple machine models, despite potential sources of non-
determinism present in most multi-threaded software. Conse-
quently, the non-determinism problem does not exist for trace-
driven simulators, and one can compare one machine model to
another machine model using a single comparison of the results
of running the trace on each machine model, rather than using
many runs and gaining confidence through statistical methods
[3].

2.2 Traditional execution-driven simulation

Mauer et. al. describe a useful taxonomy of execution-driven
simulators [17]. In this section, we summarize their taxonomy,
which we will expand upon in Section 2.3 to include determinis-
tic execution-driven simulation. Figure 2 illustrates four simula-
tor organizations, each different from one another in terms of the
coupling of functional component and timing component. The
functional component of a simulator consists of the logic neces-
sary to implement the semantics of the computer’s architecture,
ranging from simple user-level instruction set architecture simu-
lators to complex full-system simulators which implement the
complete architecture including functional models of various I/O
devices. The timing component is responsible for implementing a
cycle-accurate simulator of a certain system.

For the sake of simulator flexibility and maintainability, it is
useful to isolate each component from one another. Should a
designer wish to evaluate an new experimental feature, he or she
can modify the timing simulator without the risk of accidentally
introducing an error into the functional model. However, if the

Integrated Timing and Functional

Functional-First Timing |[¢——| Functional
Timing-Directed Timing —» Functional
Timing-First Timing <_—__’ Functional

FIGURE 2. Execution-driven simulation organizations
(from Mauer et. al. [17]).

separation between the two components is not carefully chosen,
their interaction can also fundamentally affect the fidelity of the
timing simulator with respect to the actual machine it simulates.
Each arrow in Figure 2 represents per-instruction communication
between the two simulator components. In the functional-first
simulation model, a functional simulator feeds a fixed instruction
stream to the timing simulator, which simulates the timing asso-
ciated with this particular stream. Assuming a simple functional
simulator which does not augment the instruction trace with
wrong-path speculatively executed instructions, this organization
results in a timing simulator which is unable to speculatively exe-
cute wrong-path instructions. This organization also prevents
multiprocessor timing simulators from resolving timing-depen-
dent inter-thread races (data and synchronization) and interrupts
differently for different timing models. Due to this strict adher-
ence to a fixed execution path, the timing simulator may only
approximate the timing of the actual system.

To alleviate these drawbacks, some simulators allow the tim-
ing simulator to direct the execution path followed by the func-
tional simulator. Such an organization is called a timing-directed
simulator [11]. This organization allows the timing simulator to
react to timing-dependent inter-processor events or speculatively
execute wrong-path instructions by redirecting the functional
simulator appropriately. However, support for this organization
requires a more complex timing simulator because it must
include some functional support to choose wrong-paths and
detect inter-processor races, and a more complex functional sim-
ulator because it must be able to checkpoint state in order to per-
form wrong path execution.

Another alternative is the timing-first organization [17], in
which a near-functionally correct timing simulator is checked by
a simple functional simulator. The timing simulator must contain
enough functionality to correctly execute most software, with the
functional simulator serving as a safety net in case of error. When
an error is detected, the timing simulator reloads its state from the
functional simulator, and restarts execution at the next PC. This
organization can be advantageous because it reduces the com-
plexity of the functional simulator and communication mecha-
nism between the two simulators, at the expense of greater
functional modeling within the timing simulator. The drawback
of such an organization is that the presence of races in multi-
threaded workloads may cause load instructions to return differ-
ent values in the timing simulator and functional simulator,
incurring an unnecessary squash/restart of the timing simulator’s
simulated pipeline. Depending on the frequency of errors in the
timing simulator’s functional model or frequency of races caus-
ing different values to be returned between the two models, the
the timing simulator’s fidelity may be compromised.

The integrated simulator combines the functional model and

v]
o
Integrated | Timing and Functional g'
v 2.
=
Functional-First | Timing |4—{ Functional %
\ 2 2
— P) a
Timing-Directed | Timing <« Functional g

A4
Timing-First | Timing < P! Functional

FIGURE 3. Deterministic execution-driven simulation
organizations.

timing model into a monolithic entity. Like the timing-directed
simulator, it can faithfully model all aspects of a real system,
including the timing dependent execution path behavior of inter-
processor races and interrupts. The main drawback of integrated
simulators is the additional complexity from combining the two
components, which often results in a lack of simulator flexibility.

Each of the simulation methodologies discussed thus far suf-
fers from the determinism problem (with the exception of trace-
driven/functional-first), which prevents the direct comparison of
a single execution from two different timing models. Although
the trace-driven/functional-first methodology does not have a
determinism problem, the strict adherence to a fixed trace can
skew results, without any indication of the level of skew. In the
next subsection, we will discuss how deterministic multiproces-
sor simulation solves these problems using the determinism-
delay metric.

2.3 Deterministic MP simulation

In deterministic multiprocessor simulation, a trace of “deter-
minism events” is fed to the simulator. The simulator uses this
trace to determine when it is “safe” to perform operations, to
ensure that the path followed by this execution will match the
path of any other execution which uses the same determinism-
trace. Using this deterministic simulation approach, we can
directly compare results from different timing models because
exactly the same work was performed in each.

It is possible to construct a deterministic simulator from any of
the simulator types discussed above. Figure 3 illustrates the aug-
mentation of each type with the determinism trace, which is an
input to the simulator component which controls the path of exe-
cution. Details on the construction of the determinism trace and
how it is used to control the simulator are found in Section 3 and
Section 4.

Figure 4 presents a qualitative comparison of the fundamental
differences among each simulation methodology, in terms of the
fidelity of the simulator with respect to the modeled system, and
ability to yield comparable results when simulating different
machine models using the methodology. Of course, the fidelity of
the simulator with respect to the modeled system depends on the
level of detail used when implementing the timing simulator. For
the comparison in Figure 4, we assume that each type of timing
simulator perfectly models all aspects of the system, and thus the
losses in fidelity are due to the inherent nature of the simulation
methodology, not due to the lack of a detailed timing model.

Because the integrated, timing-directed, and timing-first simu-
lators suffer from the non-determinism problem, it is not possible
to yield directly comparable results without running simulations
for a prohibitively long time. Consequently, these methodologies
fall on the lesser side of the comparability spectrum. In terms of

Integrated/
{:}: Integrated/ Timing-directed
Timing-directed w/ stats Deterministic
- s Integrated/
o] . . Timing-First e A
% SSJ Timing-First w/stat% Timing-directed
= Deterministic
< Timing-First
Trace-Driven/
Functional-First
— >
Comparability
FIGURE 4. The fidelity/comparability trade-off in
multiprocessor simulation.

CPU 1 CPU 2

owrp

FIGURE 5. Race resolution for deterministic execution.
The figure illustrates the logical time at which references from
CPU 2 must appear to occur in order to obtain consistent race
resolution between executions..

the fidelity of these methodologies with respect to one another,
timing-first simulators are inherently less faithful to the real sys-
tem than timing-directed and integrated simulators, due to the
errors between the timing simulator and the functional safety-net
caused by different race resolutions.

By augmenting each simulator with support for deterministic
replay, one can collect timing results which are comparable
because determinism guarantees that the same work is being per-
formed in each execution. This level of comparability is also pos-
sible in trace-driven/functional first simulation, at the expense of
fidelity because the trace-driven timing simulator is restricted to a
more rigid trace. Using deterministic simulation, we sacrifice
some fidelity compared to traditional execution-driven simula-
tion, because we introduce delays to enforce determinism, in
order to increase comparability. We explain our metric for quan-
tifying the loss in fidelity (determinism-delay) in Section 4.1.

Statistical methods are a complementary approach to deter-
ministic simulation. One can perform a set of simulations for
each machine configuration, and using statistics estimate the
level of confidence associated with the outcome of a comparison
between two simulated machine models. Should this level of con-
fidence be too low, confidence can be increased by performing
additional runs (and using additional CPU bandwidth), thus
increasing the sample size. Unfortunately, when the simulated
machine configurations being compared to one another are very
close in terms of performance, one must have a large sample size
in order to gain statistical confidence that one is better than the
other. Using deterministic simulation, one can make this compar-
ison using a sample size of one. As the performance of the simu-
lated machines diverge, the sample size needed to gain statistical
confidence shrinks, and the determinism-delay metric grows,
indicating that deterministic simulation is not suitable for such
disparate machine configurations (as we will show in Section 4).
Consequently, deterministic simulation and traditional simulation
with statistical methods are very complementary in terms of the
trade-off between simulation time and comparability.

3 Implementing a deterministic
multiprocessor simulator

In this section we discuss fundamental issues which must be
considered to construct a deterministic multiprocessor simulator.
We then discuss more subtle complications, some of which are
specific to our target architecture (PowerPC) and also general
complications with synchronization primitives and how such
primitives affect performance modeling in a deterministic envi-
ronment.

3.1 Handling sources of non-determinism

To implement a deterministic multiprocessor simulator, we

must provide mechanisms to deterministically resolve both races
and interrupts. In this section we describe the mechanisms imple-
mented in our execution-driven, full-system simulator PHARM-
sim [6].

3.1.1 Data and synchronization races

In a deterministic multiprocessor simulator, we must consider
data and synchronization races. We use the general term race to
refer to either type. A race occurs when two or more processors
perform unsynchronized conflicting accesses to a memory loca-
tion. Two memory operations are said to be conflicting if they are
executed by different processors, they both reference the same
memory location, and at least one is a write, resulting in the
occurrence of a RAW, WAW, or WAR dependence.

We illustrate the problem for all three types of dependences in
Figure 5. The figure also shows the window of opportunity for
the ST A and LD B by CPU 2 to be performed with respect to
memory references by CPU 1. For example, CPU 2’s ST A must
be performed after ST A at time 1 to maintain write-after-write
order, and also before LD A at time 5 to maintain read-after-write
order. A similar window exists for CPU 2’s LD B.

In order to handle such races, we must express the relative
ordering of memory references to shared data in both a meaning-
ful and concise way. The description should be “meaningful” in
that it allows for re-creation of the same committed instruction
stream across all processors; “concise” in that we effectively
limit the amount of both processing and storage required. We dis-
cuss the method used in PHARMSsim in Section 3.2.

3.1.2 External interrupts

External interrupts can come from many sources: DMA trans-
fers (i.e. disk requests, network interfaces, and other I/O devices),
system timers, other processors, etc., which must be modeled in
full-system simulators. Our approach for ensuring the determinis-
tic delivery of interrupts is to align them in a logical timebase
within the simulation environment. Because we are interested in
creating a deterministic instruction commit stream among all
cpus, the logical timebase we use is committed instruction count,
as used in other work (many references included in [4], [23]). For
example, instead of signaling timer interrupts every N cycles, our
deterministic simulator signals them every n committed instruc-
tions. Similarly, I/O interrupts are forced to occur m instructions
after a request, rather than M cycles. We have observed experi-
mentally in our simulation environment no meaningful perfor-
mance difference between configurations with interrupts aligned
and unaligned.

Our approach works well for many interrupt scenarios, but
unfortunately not all; as an example, consider a multiprocessor
system configured with all external interrupts routed to a single
processor in the system, or a certain number of fixed processors
[20]. This can be desirable to localize interrupt handling on a sin-

Table 1: Interrupt alignment difficulties arising in
multiprocessor systems. The table shows an I/O (disk) request
initiated by CPU 2, which is handled upon completion by CPU 1.

Cycle CPU 1 CPU2 I/0 (Disk)
100 1/0 read
(blocking)
200 kernel
starts /O
300 request
initiated
400 request
completes
500 disk interrupt
600 kernel
finishes I/0
700 I/O read
(completes)

gle processor, both improving locality of interrupt handling code
and minimizing perturbation of other processors for the relatively
infrequent event of external interrupts. An example using disk I/
O requests is illustrated in Table 1.

CPU 2 initiates an I/O request at cycle 100. The disk control-
ler reads the data from disk and transfers it into memory using
DMA, which completes at cycle 400. The disk controller then
raises an external interrupt which is observed by CPU 1 at cycle
500, vectoring it into the interrupt handler so it can complete the
kernel’s tracking of the I/O request. This processing leads to CPU
2’s completion of the I/O request at cycle 700.

The key point of the example is that a request performed by
CPU 2 (initiating the I/O read) impacts the instruction stream on
CPU 1 (completing the I/O read). Therefore, even if we align the
timing of the disk request completion with CPU 2 in logical time,
this will not guarantee alignment in CPU 1°s logical time. There-
fore, I/0 requests must be treated as synchronization events, and
handled accordingly, to maintain deterministic execution.

3.2 PHARMSsim deterministic execution traces

The approach taken in PHARMsim to re-create multithreaded
executions is to record a frace of the observed execution. This
trace contains both interrupt information (the interrupt vector PC,
processor servicing the interrupt, and instruction boundary at
which it was observed) and race information (relative logical
order of memory references to shared locations). After the execu-
tion is properly recorded, it is replicated on subsequent execu-
tions of the same workload (discussed in Section 3.3).

Throughout the following discussion, keep in mind that we
use the trace to express inter-processor dependencies in the logi-
cal time-base of committed instructions on each processor. All
aspects of deterministic simulation which can be handled on a
per-processor basis (by converting to the local logical time-base)
need not be part of the trace. We discuss and justify the specific
format used throughout the following sections. We use the term
identity liberally throughout the following discussion to describe
the coordinates of an instruction in logical time; this is uniquely
determined by CPU number and instruction from the start of sim-
ulation, e.g. (Instruction x, CPU y). No single (system-wide) log-
ical timebase is used for recording trace events.

3.2.1 Interrupt handling

Interrupts which can be converted into the local logical time-
base (in PowerPC, the decrementer/timebase interrupts which
control context-switching) cause no synchronization issues
between processors and hence need not be part of the trace. Inter-
processor interrupts (as illustrated by example in Table 1) consti-
tute synchronization between processors and must have their rel-
ative order recorded in the trace. To record the order, we place an
I (Interrupt) record into the trace, as shown in Table 2.

3.2.2 Race resolution

To record races, we track accesses to shared memory locations
by all processors. Accesses are tracked at cache line granularity
to reduce trace size (exploiting spatial locality) and also for
proper handling of store-conditional operations (discussed in
Section 3.4.4). Furthermore, local references (references which
do not contribute to a dynamic instance of sharing between pro-
cessors) are combined to further reduce trace size.

To handle shared loads, we add a trace record with the identity
of the first reader and the last writer, indicated with the L (Load)
record in Table 2.

Handling shared stores requires maintaining additional identi-
ties in the trace (compared to shared loads) because stores can
create both WAW and WAR dependences (as shown in
Figure 5). The WAW dependence is handled similarly to RAW;
we simply track the identity of the current writer and the previous
writer. The WAR dependence further requires we track the iden-
tities of all previous readers. Therefore, shared stores are
recorded indicating all such dependences, indicated with the S
(Store) record in Table 2.

Finally, since PowerPC implements load-locked, store-condi-
tional atomic primitives, we create additional records for store-
conditional operations, indicated with the C (Conditional-store)
record in Table 2. Records are placed into the trace for all store-
conditionals, whether they succeed or fail. Successful store-con-
ditionals additionally create shared store records, if necessary.

Table 2: Trace record types, data fields, and description. The information contained within each determinism-trace record is
indicated. “LT” indicates “logical time” which is determined at architected instruction boundaries for each CPU.

Type Dependence Information

Description

T| {CPU_ID, LT, Int. Vector PC, Int. Type}

Interrupt record, CPU servicing the interrupt, the instruction
boundary, vector PC, and interrupt type

L | {Physical Address, Load CPU_ID, Load LT,
Previous Store CPU_ID, Previous Store LT}

Load record, physical memory address referenced, load iden-
tity, and previous store identity

S | {Physical Address, Store CPU_ID, Store LT,
Previous Store CPU_ID, Previous Store LT,
Previous Load LT[Numprocs]}

Store record, physical memory address referenced, current
store identity, previous store identity, and previous load identi-
ties for each processor in the system (Numprocs)

C | {Physical Address, Store CPU_ID, Store LT,
Success/Failure}

Conditional store record, physical memory address referenced,
and success/failure status of the conditional store

Table 3: Observed execution and corresponding trace format. An execution involving three processors is shown with trace entries for
shared references. Cells with double outlines indicate inter-processor dependencies (WAR, RAW, RAW, and WAR/WAW from top to
bottom) requiring trace storage. The logical time (instruction count) is shown for each CPU adjacent to the memory reference.

CPU 1 CPU 2 CPU 3 Corresponding Trace Entries
1LD A L A 1 1 -1 -1
[1STA] s |a |2 1 EE 1
2LD A L A 1 2 2 1
3LDA
4STA
[1LpA |l [A |3 1 1 4
2STA | S A 2 2 1 4 3 1

In Table 3 we show a three-processor example and the corre-
sponding trace that would be generated for the observed execu-
tion. Horizontal rows in the table indicate the observed global
order of memory references for ease of presentation. The exam-
ple shows two RAW dependences (Time 2, CPU 1; Time 1, CPU
3), two WAR dependences (Time 1, CPU 2; Time 2 CPU 2), and
a single WAW dependence (Time 2, CPU 2). Note that the com-
bined WAR/WAW dependence (Time 2, CPU 2) is represented
with a single shared store record. Also note that only references
creating or observing shared values lead to storage in the trace;
therefore the LD A at (Time 3, CPU 1) and ST A at (Time 4,
CPU 1) do not create trace records.! The LD A at (Time 1, CPU
1) record reflects a cold miss, which is also recorded for both
loads and stores.

It is obvious from this example that our deterministic execu-
tion traces bear little similarity to traditional hardware traces used
for architectural evaluation as described in Section 2. Our traces
only indicate relative orderings to allow race resolution and basic
information for interrupt handling--no memory value or instruc-
tion sequencing information is maintained. Note that our traces
serve the same purpose as many other proposals related to both
multithreaded programming debugging and deterministic replay
(e.g. [4], [23]). However, our traces are designed for maximal
concurrency in playback, and not to minimize trace size, in con-
trast to these approaches. Furthermore, to our knowledge, we are
the first to propose and evaluate such deterministic playback in
the context of multithreaded program performance evaluation.

3.3 Deterministically resolving races by inserting
delays

When running PHARMSsim in deterministic mode, we load a
trace of the execution to be re-created, as described previously.
Once the trace is loaded, PHARMSsim’s execution semantics
must be changed to ensure the desired execution is re-created.
We ensure this by delaying references until correct memory order
or interrupt alignment conditions are satisfied. For races, using
the example from Table 3: we must ensure that ST A (Time 1,
CPU 2) is not performed until LD A (Time 1, CPU 1) is per-
formed; LD A (Time 2, CPU 1) is not performed until ST A
(Time 1, CPU 2) is performed, etc. Note that “performed” in this
context implies that a store is visible to all processors in the sys-
tem (and has been reflected throughout their respective cache
hierarchies) or a load has bound its value and is non-speculative.

In the case of interrupts, the processor queries the trace to see
if an interrupt is to occur at the current instruction; if so, two pos-

1. However, the ST A at (Time 4, CPU 1) is reflected in the trace when it
is observed at (Time 1, CPU 3) and (Time 2, CPU 2).

sibilities arise: the interrupt is already pending or it has not yet
been signaled. If the interrupt is already pending, we service it by
vectoring to the interrupt handler as indicated in the trace. If the
interrupt has not yet been signaled, we stall the processor at the
current instruction to wait for the interrupt. For the example pre-
sented in Table 1, the inter-processor interrupt can now be cor-
rectly handled by CPU 1 at cycle 500 because it will either wait
for the interrupt (if it reaches the interrupt instruction boundary
too early) or the interrupt will be deferred until the CPU reaches
the correct instruction boundary.

Of course, delaying execution of instructions artificially to
maintain deterministic execution affects PHARMsim’s fidelity.
We discuss our metric for fidelity, determinism-delay and the
impact on fidelity in detail in Section 4.

3.4 Implementation considerations

We have previously discussed the difficulties of interrupt
alignment and race resolution which are common across virtually
all modern architectures. In this section, we discuss more subtle
implementation issues which may not apply across all architec-
tures, focusing on PowerPC (on which PHARMsim is based)
while also commenting on other common ISAs. We then give
two examples of potential performance optimizations that present
complications within a deterministic simulation environment.

3.4.1 Speculative references

When simulating a modern microprocessor that performs
speculative execution, we must correctly deal with speculative
references. PHARMSsim is a completely integrated timing and
functional microprocessor model, in which we do not know a pri-
ori whether a given instruction is from the wrong path when it is
executed. Because the determinism trace contains only a subset
of the committed instruction stream, it cannot be used to distin-
guish incorrect speculative references from correct ones. There-
fore, we force all references to follow the semantics specified by
the trace--incorrect speculative references may either be delayed
(if a record governing their execution exists in the trace) or
allowed to issue with no restrictions. This creates no correctness
problem since incorrect references will be squashed anyway.
3.4.2 Address translation/page table references

Memory references must undergo translation from virtual to
physical address to be correctly serviced by the memory system.
In order for the translation to be performed when a TLB miss
occurs, the page table must be consulted. Fundamentally, this
page table walk has an implicit dependence on the data stored
within the page table used to correctly translate the memory
address.”

Hardware TLBs:

PowerPC specifies an autonomous, hardware-based, page
table walker to service TLB misses and TLB misses are not archi-
tecturally visible. Therefore, updates to the page table performed
by the kernel (and potentially TLB shoot-down) should be
tracked to maintain deterministic execution. Since the TLB fill
mechanism is completely autonomous, all types of dependences
through the page table (WAWI, RAW, and WAR) must be con-
sidered.

Since our traces only reflect architected events, handling this
problem in general is very difficult. The solution employed in
PHARMSsim is to assume that races to page table data will be
serialized transitively, i.e. any dependence on page table data will
be protected by other architecturally visible synchronization, and
therefore will be correctly resolved. In practice, we have empiri-
cally observed only one occurrence of an unsynchronized page
table update that was not properly reflected under deterministic
simulation after many machine-years of simulation; therefore, we
believe the current solution is viable for our purposes. Work-
arounds for this problem exist, but all are relatively heavy-weight
solutions. One method to handle explicit page table modifications
involves placing barriers in the trace whenever such an event
occurs; this would also require modification to PHARMSsim (to
implement actually implement the barrier at trace generation)
when explicit page table modification occurs. Another solution is
to add trace records for page table modification and also reflect
the translation dependence in the load and store records
(Table 2). Since PHARMsim can detect when it deviates from the
trace, we can easily determine when implementing such methods
becomes necessary.

Software TLBs:

Many ISAs implement software TLB miss handlers; in these
architectures page table WAW dependences require no special
handling since the writes are explicit architecturally visible
instructions. RAW dependences are also correctly handled, since
both the read (TLB miss, assuming appropriate TLB shoot-down)
and write (page table update) are explicitly visible. However,
WAR dependences must be considered to ensure a translation is
not changed before its last use. Solutions similar to those
described for hardware TLBs may be applied here.

3.4.3 Self-modifying code

Self-modifying code is not a problem, in general, in our Pow-
erPC simulation environment since the architecture specifies any
self-modifying code must be protected with explicit cache control
which is architecturally visible. Therefore, self-modifying code is
handled through transitive synchronization. However, in ISAs
which do not provide such guarantees, additional instruction
fetch records, essentially identical to shared load records (“L”
Table 2), and appropriately reflecting fetch in shared store
records (“S” Table 2) can address this issue.
3.44 Load-locked and store-conditional primitives

Many architectures, including PowerPC, provide load-locked
(LL) and store-conditional (SC) primitives to allow efficient cre-
ation of multiple synchronization constructs. However, LL-SC
primitives cause a problem in deterministic simulation. Similar to
the page table (Section 3.4.2), such references create an implicit
dependence on the reservation register, or reservation granule
(rgranule). Therefore, to maintain deterministic execution, we

2. A similar problem occurs for the reference/change bits (R/C bits)
which we neglect for the sake of brevity.

1. The WAW dependence can occur with R/C updates by the TLB fill
mechanism and explicit kernel stores to clear these bits.

must ensure that this implicit dependence is resolved correctly at
trace playback. We can do this by assuring SCs can only fail for
one of two reasons within PHARMSsim during trace creation: The
SC is not paired with a LL (i.e. the reservation is not set), or
another store to the rgranule from a remote processor is observed
between the LL-SC pair. Practically, this means a reserved cache
line can never be replaced due to capacity/conflict misses or other
implementation artifacts.

For this reason, we make traces at cache line (rgranule) granu-
larity, as indicated in Section 3.2. Since stores to locations within
the same cache line (but not to the rgranule, i.e. false sharing
[10]) can cause a SC on another processor to fail, and therefore
can be observed architecturally, the trace serializes both true
sharing and false sharing references. Work-arounds to mitigate
false sharing are possible, but not detailed in this work.

3.4.5 Performance techniques: exclusive prefetching
and silent stores
A common optimization in microprocessors is to speculatively
prefetch exclusive permission for stores to improve the latency
and throughput of store retirement. Also, academic researchers
have proposed exploiting stores which to not change memory
state, so-called silent stores, to improve multiprocessor system
performance [16]. Both optimizations complicate deterministic
simulation in PHARMSsim because of LL-SC pairs (Section
3.4.4). Non-architected exclusive prefetches present in the execu-
tion generating the trace may have the side-effect of causing SCs
to fail; if the exclusive prefetch is not present upon trace playback
due to different speculative execution paths, an execution mis-
match will result (since the SC will succeed in the recreated exe-
cution). Furthermore, exclusive prefetches not present in the
execution generating the trace but occurring during trace play-
back may cause SCs to fail upon playback which succeeded dur-
ing trace generation. A similar scenario exists for silent stores.
There are many potential solutions to the problems caused by
the potential side-effects of memory references. The solutions
which we have devised fall into three categories: to ensure such
events never can be architecturally visible (by design), to ensure
that a dynamic instance of the event will not affect execution, or
use information from the trace to directly govern execution. A
host of options are available to handle such problems. As a sim-
ple illustration of each type of method, consider the following:
® We can ensure an exclusive prefetch will never be architectur-
ally visible by only prefetching ownership before the coher-
ence point in the memory system (in PHARMsim, between
the L1 and L2 caches). This may still provide performance
benefit as we prefetch for L1 misses which hit the L2 in
exclusive or modified state.

® We can ensure a dynamic exclusive prefetch will not affect
execution by only issuing exclusive prefetches which are
guaranteed to be protected by other synchronization, NACK-
ing exclusive prefetches to reserved memory locations, or
appropriately stalling succeeding LL-SC pairs when exclu-
sive prefetches are in-flight to the target memory address.

® We can force a dynamic SC in the controlled execution to
succeed or fail based solely on the trace (by simply reading
the SC success or failure status from the trace and forcing the
experiment to have the same behavior), ignoring the success
or failure status produced within the memory system of the
controlled execution (this is why we have records for every
SC, i.e. “C” Table 2).

We tend to favor the first two methods (and avoid relying on
the trace to govern execution) so the deterministic simulation
environment does not mask functional errors within PHARMsim.

However, controlling execution from the trace is a valid solution,
since the traces are either directly produced from, or validated by,
the SimOS-PPC [15] functional simulator.! This guarantees the
traces represent a legal execution under the PowerPC architecture
(see Section 4.3).

3.5 Memory consistency considerations

PHARMSsim deterministic execution traces, as described, pro-
vide a mechanism for describing coherence; the combining
assumption for memory references in the trace is that program
order rules within a processor apply to memory references. For
example (all operations to the same memory location), if a load at
(Time n, CPU x) must observe a store at (Time m, CPU y), we
assume that a load at (Time n+1, CPU x) must also observe the
store at (Time m, CPU y). This is a fundamental tenet of coher-
ence (total order of writes to any memory location and program
order) [8]. Therefore, the traces can be used to describe an execu-
tion from any common memory consistency model which
requires coherence [1].

In the current implementation within PHARMsim, we only
support trace creation from sequentially consistent systems. Sim-
ilarly, we only support re-creating sequentially consistent execu-
tions when controlling execution from a trace. However,
PHARMsim can exploit implementation freedoms available
under other memory models (TSO and PowerPC weak ordering)
when running in deterministic simulation mode. The constraints
described previously only stipulate that the machine will follow a
sequentially consistent execution. Extending the current infra-
structure to support trace generation and controlled execution of
weaker models is an interesting area of future research.

Furthermore, we note that deterministic simulation enforces a
causal relationship between synchronizing events (i.e. interrupts
and races). This approach allows maintaining the invariant that
the architected state of each processor at each instruction bound-
ary across deterministic simulations is identical. This is desirable
for many reasons, including simulator verification. However, this
causal relationship can also be overly conservative if we are only
concerned with recreating the same “work™ across deterministic
simulations of an entire workload. As an example, consider the
case of two processors racing to each increment a shared counter
once; the two increments can be performed in either order by the
respective processors, with the same result observed subse-
quently. Deterministic simulation artificially enforces whichever
order was observed at trace creation upon playback.

Due to the causal relationships and execution restrictions
imposed, any performance optimization which changes or
exploits relaxed architectural semantics should be thoughtfully
considered before using deterministic simulation (e.g. delayed
consistency [9]). However, as illustrated in the following section,
deterministic simulation may be used for many architectural stud-
ies.

4 Evaluation

In this section, we define a metric used to gauge the degrada-
tion of fidelity in our deterministic environment (determinism-
delay) and also explore the suitability of this method for various

1. The details of validating traces from PHARMSsim with SimOS-PPC
are non-trivial and beyond the scope of this work. However, the validation
assures the architected state observed by every committed instruction in
both simulations is identical without passing any execution semantic
information between simulators. Therefore, a trace is only validated if its
execution can be recreated with a semantically unmodified SimOS-PPC.

Table 4: Simulated machine parameters. Functional unit
latencies are shown in parenthesis.

Attribute Value
Fetch/Xlate/ 4/4/4/4/4
Decode/Issue/Com-
mit
Pipeline Depth 6 stages
BTB/Branch 8K sets, 4-way/8K combining

Predictor/RAS (bimodal and GShare)/64 entry
RUU/LSQ 128 entry/64 entry
Integer ALUS: 4 simple (1), 1 mul/div

(3/12); Memory: 2 LD/ST

ALUS: 4 add/sub (4/4),
2 mul/div/fmac (4/4/4)

Floating Point

L1-Caches 1$: 32KB, 2-way, 64B lines (1);
D$: 32KB, 2-way, 64B lines (1)
L2-Cache Unified: 2MB, 4-way, 64B lines (8)
Memory/ Minimum latency: 500 cycles, 50
Cache-to-Cache cycles occupancy/txn, crossbar
Address Network Minimum latency: 30 cycles,
20 cycles occupancy/txn, bus
TLB Hardware page table walker, 1-

level, 2K sets, 2-way, 4K pages

architectural evaluations. The simulation parameters used for all
simulators in the evaluation are given in Table 4.

4.1 The determinism-delay metric

Architectural studies normally consist of relative performance
comparisons; we have a base machine with a given performance
and we want to determine the impact of a novel/modified
microarchitectural feature. We call the base execution the control
and the subsequent execution an experiment. For example, we
choose a particular cache size (the control) and ask the question:
“Does doubling the cache size improve performance? If so, by
how much?” (the experiment).

To enable direct comparison of the control and experiment
and avoid non-determinism effects, we propose re-creating an
execution by appropriately delaying interrupt signaling or
selected memory operations. Intuitively, if the amount of delay
injected is small relative to the measurement interval of our
workload, we can directly compare the control and experiment to
determine relative performance. However, to make the compari-
son meaningful, we must know how much the experiment’s exe-
cution was affected by the artificial delay introduced.

We can bound the error by counting the number of cycles in
which any operation within a processor is stalled and dividing the
number of stall cycles by the total number of cycles executed by
all processors in the experiment. For example, in a 16 processor
simulation, if a total of 10M stall cycles (across all processors)
were introduced for a 100M cycle run to complete the workload,
we say the experiment had (10M/(100M*16 processors)) * 100%
= 0.63% determinism-delay. This method is conservative; if only
a single operation within the processor is delayed, and execution
of this operation does not contribute to the critical path through
the workload, this will artificially inflate the determinism-delay.

We can use the formulas from Figure 6 to determine the rela-

if (IPCExperiment > IPCcontron)
=> Better

else if ([IPCgyperiment / (1 - Determinism-Delay)] >
(1) IPCControl)
=> [nconclusive
else
=> Worse

(2) [IPCExperiment/IPCControl’
(IPCgxperiment/(1 - Determinism-Delay)) / IPCcop.

FIGURE 6. Determining relative performance in the
presence of determinism-delay. The figure indicates (1) how
to determine if an experiment is better or worse than the
control and (2) how to bound relative performance..

tive performance of the experiment. If the experiment provides
greater instruction throughput even with inserted delay, it is bet-
ter; if the experiment provides lower instruction throughput, but
the decrease in performance is less than the injected delay, the
result is inconclusive; otherwise the decrease in performance is
greater than the injected delay and the experiment performs
worse. Since determinism-delay measures the fidelity sacrificed
to maintain deterministic simulation (a worst-case bound on
absolute simulation error), when graphing results, we use error
bars to indicate determinism-delay. In similar fashion, we can
bound the relative performance benefit as within the interval
shown in (2). Note that this formulation is equivalent to (1) if we
subtract unity from both sides of the bound; strictly positive indi-
cates performance improvement, alternating signs indicates an
inconclusive result, and strictly negative indicates performance
degradation.

4.1.1 Intrinsic and artifactual determinism-delay

The determinism control implemented in PHARMSsim has
overhead in tracking visibility and binding of memory values
(Section 3.1). This overhead manifests itself as delay injected
even when the control and experiment configurations are identi-
cal. This delay is an artifact of the mechanics used to control
determinism, thus we call it artifactual determinism-delay. In
contrast, when delay is injected due to different intrinsic work-
load executions observed between the control and experiment
(because of machine model differences), we call such delay
intrinsic determinism-delay.

We determine the artifactual determinism-delay by running an
experiment which exactly matches the control. We call this simu-
lation the Artifactual Simulation. To improve the utility of the
formulas proposed previously, we may then imagine using
IPC A ttifactual 0 place of IPC o) for relative performance com-
parisons. Strictly speaking, determinism-delay is the only valid
metric for measuring the absolute amount that we have compro-
mised the fidelity of simulation to maintain deterministic execu-
tion, and thus it can be considered the precision of the
deterministic approach. However, we will show empirically
throughout the next sections that the precision of the determinis-
tic approach is much better than the conservative determinism-
delay metric indicates. We also note that additional tuning of our
deterministic simulation control mechanism can decrease the arti-
factual determinism-delay to near zero; therefore the true limit to
precision of the methodology itself is intrinsic determinism-
delay. We report both metrics throughout our results.

T T 245

LN Vi A Bt 24

i \ = s “h o= -k g 23.5

<4.2% 2

. o
0.6 2257

Cycles (Billions)

— - - End to End Cycles 2

Experiment IPC 21.5

1 - -4~ - Experiment w/Stall IPC

0 . : : : : : : : . . 21
475 480 485 490 495 500 505 510 515 520 525

Memory Latency (cycles)

FIGURE 7. Comparison of non-deterministic vs.
deterministic simulation. The performance of SPECjbb2000
(16 processor) is shown with varying main-memory latency.
The “End to End” result indicates the difference in simulated
cycles observed, illustrating significant potential for
measurement error. The Experiment results show the change in
IPC simulating deterministically, including/excluding IPC
contribution due to determinism-stall.

4.2 Restoring intuition of simulation results via
deterministic simulation

In Figure 1, we varied main-memory latency and showed the
measured difference in cycles to complete our SPECjbb-16p
workload. These results indicate that significant non-determinism
exists in multithreaded commercial workloads, even with long
simulation intervals (approximately 30 billion instructions per
run), as described in [3]. With PHARMsim, each data point took
more than 300 simulation hours to collect and the result is defi-
nitely counter-intuitive; from these runs, we would conclude that
a memory latency of 525 cycles is better than 475 cycles.

In Figure 7, we overlay the results shown previously with the
IPC results from our deterministic simulation approach (using a
main-memory latency of 500 cycles as the control). The figure
shows both IPCgyperiment 2nd IPC considering determinism-stall.
We can see the intuitive behavior of monotonically decreasing
performance for increasing memory latency for both IPC curves.
Note that no statistical method is used to generate this result--
each data point is collected from a single simulation run. Further-
more, deterministic simulation allows reliable measurement of
even minute machine changes; each data point corresponds to
roughly a 1% difference in main-memory latency, which trans-
lates to approximately 0.4% IPC per data point. Rigorously vali-
dating this observation requires statistical methods since the
determinism-stall is approximately 4%. To obtain this level of
resolution statistically (95% confidence interval, coefficient of
variation=18%, relative error=0.4%) we would need 8100 runs to
prove each reduction of 5 cycles was advantageous. This trans-
lates into 8100*11*300=27M simulation hours (3000 simulation
years). Obviously such validation is not tractable. Therefore, we
let the intuitive result justify that the precision of the determinis-
tic simulation approach is greater than the conservative determin-
ism-stall metric indicates.

4.3 Exploration of different control simulators

In the previous section we showed that deterministic simula-
tion can reliably measure minute changes in machine perfor-
mance for relative performance characterization. How well does
the deterministic simulation approach work for large machine
changes? What sacrifice in fidelity do we observe with the deter-

Table 5: Benchmark description and characteristics. IPC (across all processors) for the PRAM, Inorder, O0O¢gptr01 and O00 A tifactual

simulations as well as Artifactual Determinism-Delay are shown.

Workload Description IPC IPC IPCpo0, | IPCooo, | Artifactual
PRAM InOrder Control Artifactual | Determinism-Delay
barnes-4p SPLASH-2 N-body simulation (8K) [22] | 4.0 3.58 5.77 5.77 0.0%
ocean-4p SPLASH-2 Ocean simulation (258x258) | 4.0 1.45 3.34 3.29 1.5%
radiosity-4p SPLASH-2 Light Interaction application | 4.0 3.6 5.95 5.94 0.2%
(-room -ae 5000.0 -en 0.050 -bf 0.10)
raytrace-4p SPLASH-2 Raytracing application (car) 4.0 2.80 5.46 5.45 0.2%
SPEC;jbb-4p Commercial Server-Side Java [19] 4.0 1.70 1.94 1.87 3.6%
tpc-h-4p Commercial Decision Support [21] 4.0 1.34 1.80 1.54 14.4%
tpc-w- Commercial 3-Tier Web-Based OLTP 5.0 2.10 7.65 7.52 1.7%
shopping-4p application (shopping mix) [7]
barnes-16p SPLASH-2 N-body simulation (8K) 16.0 13.6 36.2 353 2.4%
ocean-16p SPLASH-2 Ocean simulation (514x514) 16.0 7.05 27.9 27.4 1.4%
radiosity-16p SPLASH-2 Light Interaction application 16.0 13.7 24.9 24.0 3.7%
(-room -ae 5000.0 -en 0.050 -bf 0.10)
raytrace-16p SPLASH-2 Raytracing application (car) 16.0 11.8 21.0 19.9 5.4%
SPECjbb-16p | Commercial Server-Side Java [19] 16.0 13.5 223 21.5 3.4%
tpc-h-16p Commercial Decision Support [21] 16.0 8.03 29.3 27.0 7.8%
ministic approach? We explore these questions by making traces
from three different control simulators: An in-order model which 7 2
runs at 1 IPC for all instructions including memory (PRAM); An s
in-order model with perfect core IPC of 1 and the memory laten- s B =
cies shown in Table 4 (InOrder); and the PHARMsim out-of- e . =
order model as described in Table 4 (O00O). Note that these B o
machines correspond to a pure functional multiprocessor simula- 2 9 L
tor, a functional simulator simply augmented with memory sys- :é s 1
tem timing, and a fully-integrated out-of-order simulator, g 2 E—Eﬁ;:ﬁ} —
respectively. The benchmarks are described and IPCs for control e ° < N o
and artifactual simulations are given in Table 5. < & 0&&* é&"“ Q&Q’ & Qc;“
We can estimate the performance difference between these < < = = = = =
machines and our faithful out-of-order model by loading the trace z O
collected from each simulator (as the control) and duplicating the L_% 60 i
execution in PHARMsim. The determinism-delay metric pro- & s0 —
vides a bound on how much fidelity has been sacrificed between €
the control environment (i.e. the one creating the trace) and the s 30
experiment environment. Put another way, determinism-delay £ 20 |
measures how “difficult” it is for PHARMsim (our target simula- T 10 2 B
tor) to re-create the same execution. Results of this study are 2 né]? /) M —':
shown in Figure 8. & o & & Rt 2
On average, 19.6%, 16.2%, and 3.5% determinism-delay is Pl Sl & vl il <
(e))kzzzf;t]f:nioirne?)il; ‘g’:gorlnsol(l;:lﬂitgfsatrzlsé’:eitlVﬂﬁé?if:;ggli:t FIGURE 8. Comparison of determinism stall injected for
hen the InOrd del. and finally th PRA}{\/I del. Thi l’ different control simulators. We indicate the IPC and stall for
then the InOrder model, and tinally the model. This result PHARMsim running traces created from three different
shows that an out-of-order model with cache hierarchy more is simulators (PRAM, InOrder, and itself). IPC is normalized to
more closely approximated by an in-order model with cache hier- the control simulator (see Table 5). 4p workloads are shown
archy than PRAM, as one would expect. Note that even though above, 16p below..

the average delay for the InOrder model is large, it is modest in
many cases (all 4p benchmarks except tpc—h-4p1). This result is
encouraging from an engineering perspective. Because determin-

1. In this case, delay from the OoO model (i.e. artifactual delay) is also
large, implying that most of the delay can be removed by improving
determinism control within PHARMSsim, and is not in fact due to intrinsic
machine differences.

ism eliminates races, a simulator designed solely for determinis-
tic simulation can simplify coherence protocol race handling and
rely on conservative deterministic simulation control to resolve
them and still maintain correct execution. Our results indicate
that one may be able to rely on a functional with memory-system
timing simulator to generate traces and build an out-of-order
model with this substantial simplifying assumption. This may be

110
Intrinsic Determinism-Delay
105 Artifactual Determinism-Delay
,_\ T T r %
S
g
=
H . 1]
=
E
s
=
22
=]
80 {2|2 |2
=8
75 IS8
5.77 3.29 5.94 . 5.45 e 1.54 1.87 Q 7.52
:;(a:se) & &5 609\ *\""o % e,°§> N
P g Pl Py PN R <K
125 -
120 r
= 115 -
g 110
B 105 T F —
T 100 L T T
S o T T
= 95 =] -
=3 ||
90 {2 r r
85 2
35.3 27.4 240) 19.9 e 21.5 K2 27.0
:;‘:se) «°°6 & &oa\ {éﬁo e"? (}b
F [<* ® R N

FIGURE 9. Performance comparison for varying RUU
sizes. We indicate the relative IPC for each machine model
relative to the control of 128-entry RUU. Baseline IPC,
normalized IPC, artifactual determinism-delay, and intrinsic
determinism-delay are shown for each benchmark. 4p

workloads are shown above, 16p below.

beneficial, since races and concurrency within a coherence proto-
col are widely accepted to be the most difficult cases to handle
correctly. Furthermore, the fidelity sacrificed with such an envi-
ronment can always be bounded by the determinism-delay met-
ric. Although we do not explore it in this work, we expect that
hardware traces (commonly used in industry) might also be used
to drive such a simplified, deterministic, simulator, simplifying
the design of high-fidelity performance models.

However, if a validated out-of-order simulator exists, such
traces are most suitable, as the least determinism-delay (3.5%)
needs to be injected in this case. This delay is exactly the artifac-
tual determinism-delay (as explained in Section 4.1.1 and shown
in Table 5). This low determinism-delay indicates that recreating
an execution by delaying operations introduces little error. How-
ever, we point out that the artifactual determinism-delay can be
large (tpc-h-4p is 18%, raytrace-16p is 22%), indicating addi-
tional tuning of our control mechanisms is worthwhile. We are
continuing to tune our infrastructure to improve this result. Note
that reducing artifactual stall to near zero is an engineering prob-
lem within the simulator and is not a fundamental shortcoming of
our approach.

4.4 Suitability for architectural evaluation

To illustrate the suitability of deterministic simulation for rela-
tive performance comparison, we perform a simple study with
our 00O model--varying the RUU size from 64 entries to 256
entries and measuring the delivered performance (128 entries is
the control). Intuitively, we expect monotonic increase in perfor-
mance for increasing RUU sizes; this result was shown to be sta-
tistically valid for a similar simulation environment in [3]. The
results of this experiment are shown in Figure 9.

Focusing first on the normalized IPC results, we see the
expected trend, i.e. increasing RUU size is an effective means of
increasing performance. As described in Section 4.1, to strictly
determine relative performance we must rely on the formulas in

Figure 6. Graphically, these formulas correspond to comparing
the reported IPC against the determinism-delay measurements.
As a specific example, consider ocean-4p: the graph indicates 64-
entry RUU IPC as 87% of the baseline including determinism-
delay. 128-entry RUU IPC (without determinism-delay) is 98%
of the baseline. Therefore, we can conclude that a 64-entry RUU
is at least 11% worse than a 128-entry RUU for this benchmark.
The upper bound is the converse (IPC without determinism-delay
for 64-entry RUU, with determinism-delay for 128-entry RUU);
86% and 100% (respectively), yielding 14%. Consider further
tpc-h-4p: here we can make no strict comparison because deter-
minism-stall for a 64-entry RUU exceeds reported IPC for a 128-
entry RUU. The rest of the results can be interpreted similarly.

However, as we pointed out in Section 4.2, the precision of
deterministic simulation may be higher than the conservative
determinism-stall metric indicates. In that section we showed that
even with 4% determinism-delay, we could reliably measure
changes in performance of 0.4%. These results show a similar
conclusion; in all cases the IPC, artifactual stall, and intrinsic stall
show the expected trend. The only exception in specjbb-16p,
which shows a performance decrease for a 256-entry RUU vs. a
128-entry RUU. We have examined the data further, and we
observe additional cache misses in the 256-entry RUU case,
implying that the slowdown reported may indeed be plausible--
possibly caused by additional cache misses due to wrong-path
memory references. Overall, these results indicate substantial
precision (beyond the conservative determinism-delay bound) for
deterministic simulation.

5 Summary and conclusion

The goals of this paper were to:

® Describe a new simulation methodology which increases our
confidence in the outcomes of multiprocessor simulation
experiments by removing variances intrinsic to non-determin-
istic workloads.

® Provide a precise mechanism which can identify those exper-
iments for which this methodology is suitable, and those for
which it is not.

Using the determinism-delay metric, we are able to gauge the
amount that a workload is perturbed by forcing its execution to be
deterministic. We have shown that for many experiments this
value is quite low. For such experiments, it is therefore valid to
draw conclusions based on the outcome of a single run. If deter-
minism-delay is high, one can simply fall back on performing
multiple runs and gaining experimental confidence through sta-
tistics. Furthermore, deterministic simulation must be carefully
considered when used to explore any optimization which is
designed to exploit changed/relaxed architectural semantics.

Although there are caveats associated with deterministic simu-
lation, we believe that we have achieved our goals. There remain
several open opportunities to improve our deterministic simula-
tion environment. We are actively reducing the artifactual delays
induced when following a trace, and believe we will achieve sub-
stantial reduction by migrating the load/store stall point from the
processor issue/commit stage toward the race resolution point
(the address network). There are also opportunities for reducing
intrinsic stall through the identification and removal of spin-loop
iterations which can artificially inflate the instruction count of the
control execution but essentially perform no useful work. This
inflated instruction count in the control execution can cause
intrinsic stall because of the overhead associated with executing
the precise number of spin iterations present in the control.

Acknowledgements

This work was supported in part by the National Science
Foundation with grants CCR-0073440, CCR-0083126, EIA-
0103670, and CCR-0133437, and generous equipment donations
and Fellowship support from IBM and Intel. We also thank the
anonymous reviewers for their many helpful comments.

References

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66—76, December
1996.

[2] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper,
Milo M.K. Martin, Daniel J. Sorin, Mark D. Hill, and
David A. Wood. Evaluating non-deterministic multi-threaded
commercial workloads. Workshop On Computer Architecture
Evaluation using Commercial Workloads, February 2002.

[3] Alaa R. Alameldeen and David A. Wood. Variability in archi-
tectural simulations of multi-threaded workloads. In Proceed-
ings of the 9th Annual International Symposium on High
Performance Computer Architecture, 2003.

[4] David F. Bacon and Seth Copen Goldstein. Hardware-assist-
ed replay of multiprocessor programs. Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debug-
ging, published in ACM SIGPLAN Notices, 26(12):194-206,
1991.

[5]1 J. Borkenhagen and S. Storino. Sth Generation 64-bit Power-
PC-Compatible Commercial Processor Design. IBM White-
paper available from http:/www.rs6000.ibm.com, 1999.

[6] Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz, and
Mikko H. Lipasti. Precise and accurate processor simulation.
Proceedings of Computer Architecture Evaluation using
Commercial Workloads (CAECW-02), February 2002.

[7] Harold W. Cain, Ravi Rajwar, Morris Marden, and Mikko H.
Lipasti. An architectural characterization of Java TPC-W. In
Proceedings of the Seventh International Symposium on
High-Performance Computer Architecture, pages 229-240,
Monterrey, Mexico, January 2001.

[8] David E. Culler and Jaswinder P. Singh. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1999.

[9] M. Dubois, L. Barroso, J. C. Wang, and Y. S. Chen. Delayed
consistency and its effects on the miss rate of parallel pro-
grams. In Proceedings of Supercomputing '91. ACM Press,
1991.

[10] Michel Dubois, Jonas Skeppstedt, Livio Ricciulli, Krishnan
Ramamurthy, and Per Stenstrom. The detection and elimina-
tion of useless misses in multiprocessors. In 20th Annual In-
ternational Symposium on Computer Architecture, May 1993.

[11]J. Emer, P. Ahuja, E.Borch, A.Klauser, C.-K. Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,
R. Espasa, and T. Juan. Asim: A performance model frame-
work. IEEE Computer, 35(2):68-76, February 2002.

[12] D. T. Marr et. al. Hyper-Threading technology architecture
and microarchitecture. /ntel Technology Journal, 6(1), 2002.

[13] P.S. Magnusson et. al. Simics: A full system simulation plat-
form. IEEE Computer, 35(2):50-58, 2002.

[14] Intel Corporation. I4-64 Application Developer’s Architec-
ture Guide, 1999.

[15] Tom Keller, Ann M. Maynard, Rick Simpson, and Pat Bohr-
er. Simos-ppc full system simulator. http://www.cs.utex-
as.edu/users/cart/simOS.

[16] Kevin M. Lepak and Mikko H. Lipasti. On the value locality
of store instructions. In Proceedings of the 27th International
Symposium on Computer Architecture, pages 182—-191, Van-
couver, B.C., Canada, June 2000.

[17] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-sys-
tem timing-first simulation. In Proceedings of the 2002 ACM
Sigmetrics Conference on Measurement and Modeling of

Computer Systems, 2003.

[18] Mendel Rosenblum. Simos full system simulator. http://si-
mos.stanford.edu.

[19] Systems Performance Evaluation Cooperative. SPEC bench-
marks. http://www.spec.org.

[20] Joel M. Tendler, J. Steve Dodson, J. S. Fields, Hung Le, and
Balaram Sinharoy. Power4 system microarchitecture. http://
www-1.ibm.com/servers/eserver/pseries/hardware/whitepa-
pers/power4.htm% 1, November 2001.

[21] Transaction Processing Performance Council. TPC bench-
marks. http://www.tpc.org.

[22] Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder P.
Singh, and Anoop Gupta. The SPLASH-2 programs: Charac-
terization and methodological considerations. In Proceedings
of the 22nd International Symposium on Computer Architec-
ture, June 1995.

[23] Min Xu, Rastislav Bodik, and Mark D. Hill. A "flight data re-
corder" for enabling full-system multiprocessor deterministic
replay. In Proceedings of the 30th International Symposium
on Computer Architecture, San Diego, CA, USA, 2003.

