
Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Day 10: Correctness

Suggested Reading:

Programming Perl (3rd Ed.)
Chapter 20: The Perl Debugger

http://perldoc.perl.org/ — Modules
Test::Simple, Test::More, Test::Harness

1

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Homework Review

2

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Correctness

3

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

4

I wrote a script!
\o/

Did I do it right?
>_<

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

What Does “Do It Right” Mean?

5

functionality Does it work correctly?
reliability Does it work every time?
usability Is it easy to use?
efficiency Is it fast? Low memory, disk, I/O, …?
maintainability Is it easy to change?
portability Does it work well everywhere?

(adapted from ISO 9126-1)

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

What About … Not So Right?

6

Failure Defect

An event: Something went
wrong; unexpected behavior

A mistake: Something is likely
or certain to cause a failure

Hardware Cracked solder joint

Network Flaky router

Data Data-entry errors

User Hangover

Software Bugs!

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

How to Test / Debug

• “Try it out”

• print() statements / logging
– see, e.g., Log::Log4perl

• Debugger

• Automated testing

• Code review

• Formal analysis

7

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Manual Testing

8

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Manual Debugging: print()

9

my $DEBUG = 1;
sub convert {
 my ($from, $to, $value) = @_;
 print "from = $from\n" if $DEBUG;
 print "to = $to\n" if $DEBUG;
 my $meters = $value * $UNITS{$from};
 print "meters = $meters\n" if $DEBUG;
 my $result = $meters / $UNITS{$to};
 print "result = $result\n" if $DEBUG;
 return $result;
}

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Debuggers

Common debugger features:

• View code

• Step through (running) code, line-by-line

• Examine variables

• Run and stop at breakpoints

• Stack traces

• Watch points

10

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

The Perl Debugger

11

List/search source lines: Control script execution:
 l [ln|sub] List source code T Stack trace
 - or . List previous/current line s [expr] Single step [in expr]
 v [line] View around line n [expr] Next, steps over subs
 f filename View source in file <CR/Enter> Repeat last n or s
 /pattern/ ?patt? Search forw/backw r Return from subroutine
 M Show module versions c [ln|sub] Continue until position
Debugger controls: L List break/watch/actions
 o [...] Set debugger options t [expr] Toggle trace [trace expr]
 <[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set breakpoint
 ! [N|pat] Redo a previous command B ln|* Delete a/all breakpoints
 H [-num] Display last num commands a [ln] cmd Do cmd before line
 = [a val] Define/list an alias A ln|* Delete a/all actions
 h [db_cmd] Get help on command w expr Add a watch expression
 h h Complete help page W expr|* Delete a/all watch exprs
 |[|]db_cmd Send output to pager ![!] syscmd Run cmd in a subprocess
 q or ^D Quit R Attempt a restart
Data Examination: expr Execute perl code, also see: s,n,t expr
 x|m expr Evals expr in list context, dumps the result or lists methods.
 p expr Print expression (uses script's current package).
 S [[!]pat] List subroutine names [not] matching pattern
 V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or !pattern.
 X [Vars] Same as "V current_package [Vars]". i class inheritance tree.
 y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.
 e Display thread id E Display all thread ids.
For more help, type h cmd_letter, or run man perldebug for all docs.

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Automated Testing

12

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Automated Testing

• Write software to test (other) software

• Humans vs. machines

• Types of automated tests
– Unit tests
– Functional tests
– Performance tests

13

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Test::Simple
Run a .t file to test a module

14

#!/usr/bin/perl
use strict; use warnings;

use SomeModule; # to be tested

use Test::Simple tests => 2;

ok(is_doing_ok(), 'doing ok');
ok(the_result() == 7, 'value ok');

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Test::More

15

use Test::More tests => 6;

ok(is_ok(), 'is OK');
is($the_answer, 42, 'answer ok');
isnt(exit_status(), 1, 'syscall');
like($name, qr/tim/i, 'good name');
unlike($result, qr/error/i, 'test');
diag("current value of name = $name");
SKIP: {
 skip 'not available', 1 if ...;
 ok(...);
};

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Testing a Standalone Script

16

use Getopt::Long;
GetOptions('test' => \&run_tests);

main script & subroutines here

sub run_tests {
 require Test::More;
 Test::More->import;
 plan(tests => nnn);
 # test subroutines here
 exit 0;
}

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Unit Testing Tips

• Test logical chunks of code — usually subroutines

• Aim for reasonable coverage

• Run often!
– After every (significant) change
– Before you use, hand in, commit, …

• Encode past failures as tests

17

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Test-First Development

• Radical idea: Write tests FIRST

• Then write code until tests pass

• Clarifies and documents design

• And of course… is useful for testing!

http://junit.sourceforge.net/doc/testinfected/testing.htm

18

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Wrap Up

19

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Other Scripting Languages

20

• “Try it out” and printing/logging always work

• Most have debuggers and/or interactive modes

• Unit testing:
– Most others are based on jUnit
– Expect similar and richer assertions
– Introspection rocks!

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Homework

• Write a couple of simple but non-trivial functions

• Write unit tests against them

• Make script work in “test” and normal modes

21

