
Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Day 15: Security & Performance

perlsec
Benchmark module

(if you like)

1

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Homework Review

2

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Security

3

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

What Is Wrong With This Script?

4

if (scalar(@ARGV) != 1) {
 die "$0: need filename argument\n";
}

my $filename = $ARGV[0];

open(my $fh, $filename) or die "…: $!\n";
my @lines = <$fh> or die "…: $!\n";
close($fh) or die "…: $!\n";

for (my $i = 0; $i < scalar(@lines); $i++) {
 print "$i: $lines[$i]";
}

"> foo""rm -f foo |"

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Problems With open()

• Filename argument is more than filename

5

open(FH, "< foo") read

open(FH, "> foo") create/(over)write

open(FH, ">> foo") create/append

open(FH, "foo |") run command, read output
 (like `foo`)

open(FH, $variable_name)

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Safer open()

• Always use three-argument version, even for reads

6

if (scalar(@ARGV) != 1) {
 die "$0: need filename argument\n";
}

my $fname = $ARGV[0];

open(my $fh, '<', $fname) or die "…: $!\n";
my @lines = <$fh> or die "…: $!\n";
close($fh) or die "…: $!\n";

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Problems With system()

• Purpose is to invoke system commands…
• May invoke shell and hence shell interpretation

7

system("curl $url");

 URL; rm -f ...
 --silent -V; rm -f ...
 --upload-file /etc/passwd URL

system("... $variable_name ...");

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Safer system()

• Use separate arguments whenever possible
• If you must use shell characters, validate everything

8

system('curl', '--silent', $url);

what if $url = '-V; rm -f ...'?

% curl --silent '-V; rm -f ...'

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

A Little Bit of Help: use taint

• Perl will try to help you identify dangerous values
• Marks all data that comes from “outside”:

– Command-line arguments
– Data from a filehandle (including STDIN)
– Environment variables
– Results of certain system calls (e.g., readlink)

• Passed to all copies of tainted data
• Cannot use tainted data directly to:

– Modify file or directory
– Run a command

• Does NOT automatically make a script secure!!!!!!!!!

9

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Taint Example

10

use taint;

my $date = $ARGV[0]; # $date is tainted
my $filename1 = "data-$date.txt"; # tainted

next line would cause Perl to exit script
open(my $fh, '>', $filename1) or die "...";

(my $ok_date = $date) =~ s/\W+/_/g; # ok now
my $filename2 = "data-$ok_date.txt"; # ok

open(my $fh, '>', $filename2) or die "...";

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Levels of Security Risk

11

Script Environment Risk

Not a service
Not privileged

Only you run Low
(but add safety checks)

Not a service
Not privileged

Anyone else runs Medium

Service or
Privileged

Anywhere High

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Performance

12

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

CPU Cycles Are Cheap

13

• Your time versus the computer’s time
– 600,000 ms to save 50 ms/run — worth it?
– 1 hour to save 1 hour/run — worth it?

• Moore’s Law: next month’s CPU will be 10% faster*

• Scripting: Waste the computer’s time, not yours

• If you need a LOT of computing power, use Condor

* horribly inaccurate representation of Moore’s actual statement…

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

We should forget about small efficiencies,
say about 97% of the time:

premature optimization is the root of all evil.

— Donald Knuth, 1974

14

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

The Other 3% of the Time…

15

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Easy Metrics

16

• Use the shell’s time command

% ./hw-15.pl hw-15.txt
Done!
% time ./hw-15.pl hw-15.txt
Done!

real 0m3.928s
user 0m3.907s
sys 0m0.012s
%

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

More Detailed Metrics

17

• Use Time::HiRes to measure “wall” time (not CPU)
• Start with just a few
• Think binary search

use Time::HiRes qw/time/;
my $time_start = time();
initialize();
do_something();
my $time_checkpoint_1 = time();
do_something_else();
wrap_up();
my $time_end = time();
my $blk1 = $time_checkpoint_1 - $time_start;

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Very Detailed Metrics
• Use Benchmark
• Good for comparing alternatives directly

18

use Benchmark qw/cmpthese/;
my $x = 3;
cmpthese(-1,
 { a => sub{$x * $x},
 b => sub{$x ** 2}, });

 Rate b a
b 4745709/s -- -12%
a 5420446/s 14% --

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Memory Is Cheap…

• … and fast
• … but limited
• Running out of memory is bad… but hard to do

19

open(my $fh, '<', $file) or die "...";

my @lines = <$fh>;
foreach my $line (@lines);

while (my $line = <$fh>) { ... }

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Disk Is Cheap…

• … and huge
• … but slow
• Do as little I/O as is reasonable
• Also watch out for too many open filehandles

20

open(my $fh, '<', $file) or die "...";
my @lines = <$fh>;
close($fh);
···
open(my $fh, '<', $file) or die "...";
my @lines_again = <$fh>;
close($fh);

my @lines_again = @lines;

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Things To Watch Out For
• CPU

– Inefficient algorithms
– Needless repetition
– Expensive operations inside tight loops

• Memory
– Too much stuff in memory
– Needless copies

• Disk
– Needless reads/writes
– Many small open/close operations

• ALWAYS USE METRICS!!!!
21

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Homework

22

Cartwright2010 Summer

Computer Sciences 368-1 Introduction to Perl

Fix Me!

23

• Homework provides a simple script

• May contain security and/or performance issues

• Make it better!

• Extra: Give before/after performance metrics!

