
Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Day 11: Correctness

Suggested Reading:

Programming Perl (3rd Ed.)
Chapter 20: The Perl Debugger

http://perldoc.perl.org/ — Modules
Test::Simple, Test::More, Test::Harness

1

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Homework Review

2

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Correctness

3

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

4

I wrote a script!
\o/

Is it right?
>_<

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

What Does “Is It Right” Mean?

5

functionality Does it do the correct thing?
reliability Does it work every time?
usability Is it easy and effective to use?
efficiency Is it fast? Low memory, disk, I/O, …?
maintainability Is it easy to change?
portability Does it work well everywhere?

(adapted from ISO 9126-1)

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

What About … Not So Right?

6

Failure Defect

An event: Something went
wrong; unexpected behavior

A mistake: Something is likely
or certain to cause a failure

Hardware Cracked solder joint

Network Flaky router

Data Data-entry errors

User Hangover

Software Bugs!

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Manual Testing

7

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Better Debugging With print()

8

my $DEBUG = 1; # 0 is no debug, 1 is debug
sub convert {
 my ($from, $to, $value) = @_;
 print "from = $from\n" if $DEBUG;
 print "to = $to\n" if $DEBUG;
 print "value = $value\n" if $DEBUG;
 my $meters = $value * $UNITS{$from};
 print "meters = $meters\n" if $DEBUG;
 my $result = $meters / $UNITS{$to};
 print "result = $result\n" if $DEBUG;
 return $result;
}

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Debugger

9

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Common Debugger Features

• View code

• Run live code, line-by-line

• Examine variables

• Run and stop at breakpoints

• Stack traces

• Watch points

10

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

The Perl Debugger

11

List/search source lines: Control script execution:
 l [ln|sub] List source code T Stack trace
 - or . List previous/current line s [expr] Single step [in expr]
 v [line] View around line n [expr] Next, steps over subs
 f filename View source in file <CR/Enter> Repeat last n or s
 /pattern/ ?patt? Search forw/backw r Return from subroutine
 M Show module versions c [ln|sub] Continue until position
Debugger controls: L List break/watch/actions
 o [...] Set debugger options t [expr] Toggle trace [trace expr]
 <[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set breakpoint
 ! [N|pat] Redo a previous command B ln|* Delete a/all breakpoints
 H [-num] Display last num commands a [ln] cmd Do cmd before line
 = [a val] Define/list an alias A ln|* Delete a/all actions
 h [db_cmd] Get help on command w expr Add a watch expression
 h h Complete help page W expr|* Delete a/all watch exprs
 |[|]db_cmd Send output to pager ![!] syscmd Run cmd in a subprocess
 q or ^D Quit R Attempt a restart
Data Examination: expr Execute perl code, also see: s,n,t expr
 x|m expr Evals expr in list context, dumps the result or lists methods.
 p expr Print expression (uses script's current package).
 S [[!]pat] List subroutine names [not] matching pattern
 V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or !pattern.
 X [Vars] Same as "V current_package [Vars]". i class inheritance tree.
 y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.
 e Display thread id E Display all thread ids.
For more help, type h cmd_letter, or run man perldebug for all docs.

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Automated Testing

12

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Automated Testing

• Write software to test (other) software

• Humans vs. machines

• Types of automated tests
– Unit tests. Parts of one script
– Functional tests. Whole script (from outside)
– Performance tests. (maybe later)

13

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

How to Create Test Cases
• Normal cases (just a few)

– c2f(50) => 122
– valid_number('42') => true

• Error cases (where you expect failure)
– Bad arguments: c2f('abc'), c2f(), c2f(50, 42)
– Range errors: $country{'ZZZ'}, read('zzzzz')

• Tricky cases (ones that are hard to get right)
– fix_operators('$foo= 6;') => '$foo = 6;'

• Boundary cases (between normal and error/tricky)
– valid_number('123abc') => ???

14

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Test::Simple
Use ok() to write a test with one boolean expression

15

sub valid_number { … } # => boolean
sub c2f { … } # => number

use Test::Simple tests => 6;

ok(valid_number(42), 'num 42');
ok(valid_number(34.5), 'num 34.5');
ok(not valid_number('abc'), 'num abc');
ok(c2f(0) == 32, 'c2f 0');
ok(c2f(-40) == -40, 'c2f -40');
ok(not defined(c2f('x')), 'c2f x');

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Test::More

16

use Test::More tests => 6;

ok(valid_number(42), 'num 42');
is(c2f(0), 32, 'c2f 0->32');
isnt($exit_code, 0, 'bad system call');
like($data[0], qr/^\d+$/, 'number out');
unlike($result{$i}, qr/error/i, 'result');
diag("current value of name = $name");

SKIP: {
 skip('no file', 1) unless -e $file;
 ok(read_file($file), 'file ok');
};

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Testing a Standalone Script

17

use Getopt::Long;
GetOptions('test' => \&run_tests);
Write your main script & subroutines here

sub run_tests {
 require Test::More;
 Test::More->import;
 plan(tests => nnn);
 # Write test cases here (e.g., ok() …)

 exit 0;
}

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Unit Testing Tips

• Test logical chunks of code — usually subroutines

• Aim for reasonable coverage

• Run often!
– After every (significant) change
– Before you use, hand in, commit, …

• Capture failures (i.e., bugs) in tests before fixing

18

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Test-First Development

• Radical idea: Write tests FIRST

• Then write code until tests pass

• Clarifies and documents design

• And of course… is useful for testing!

http://junit.sourceforge.net/doc/testinfected/testing.htm

19

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Last 2 Slides…

20

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Other Scripting Languages

21

• “Try it out” and printing/logging always work

• Most have debuggers and/or interactive modes

• Unit testing:
– Most others are based on jUnit
– Expect similar and richer assertions
– Introspection rocks!

Cartwright2011 Summer

Computer Sciences 368-1 Introduction to Perl

Homework

• Write unit tests using Test::More

• Use pattern from slide to make --test work

• What code to test?

– Option 1: Two new functions

– Option 2: Homework 9 – regexps on Perl script

• Code should pass all tests!

22

