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Day 15: Security & Performance

perlsec
Benchmark module

(if you like)
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Homework Review
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Security
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Think Like a Hacker

• How can I affect this script?
– Outside data (@ARGV, files, environment, …)
– Perfectly crafted
– Too much, too little, malformed, out of range, …
– No limits to creativity

• What can I cause the script to do?
– Crash
– Change the system
– Change the results
– eval(), s///e, s///ee
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What Is Wrong With This Script?
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if (scalar(@ARGV) != 1) {
  die "$0: need filename argument\n";
}

my $filename = $ARGV[0];

open(my $fh, $filename)    or die "…: $!\n";
my @lines = <$fh>          or die "…: $!\n";
close($fh)                 or die "…: $!\n";

for (my $i = 0; $i < scalar(@lines); $i++) {
  print "$i: $lines[$i]";
}

"> foo"'rm -f *.txt |'
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Problems With open()

• Filename argument is more than filename
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open(FH, "< foo") read

open(FH, "> foo") create/(over)write

open(FH, ">> foo") create/append

open(FH, "foo |") run command, read output
 (like `foo`)

open(FH, $unchecked_variable)



Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Safer open()

• Always use three-argument version, even for reads
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if (scalar(@ARGV) != 1) {
  die "$0: need filename argument\n";
}

my $fname = $ARGV[0];

open(my $fh, '<', $fname)  or die "…: $!\n";
my @lines = <$fh>          or die "…: $!\n";
close($fh)                 or die "…: $!\n";
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Problems With system()

• Purpose is to invoke system commands…
• May invoke shell and hence shell interpretation
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system("curl $url");
             URL; rm -f ...
             --silent -V; rm -f ...
             --upload-file /etc/passwd URL

system("... $variable_name ...");



Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Safer system()

• Use separate arguments whenever possible
• If you must use shell characters, validate everything
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system('curl', '--silent', $url);
# what if $url = '-V; rm -f ...'?
% curl --silent '-V; rm -f ...'
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A Little Bit of Help:   use taint

• Perl will try to help you identify dangerous values
• Marks all data that comes from “outside”:

– Command-line arguments
– Data from a filehandle (including STDIN)
– Environment variables
– Results of certain system calls (e.g., readlink)

• Passed to all copies of tainted data
• Cannot use tainted data directly to:

– Modify file or directory
– Run a command

• Does NOT automatically make a script secure!!!!!!!!!
10
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Taint Example
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use taint;

my $date = $ARGV[0];      # $date is tainted
my $filename1 = "data-$date.txt";  # tainted

# next line would cause Perl to exit script
open(my $fh, '>', $filename1) or die "...";

(my $ok_date = $date) =~ s/\W+/_/g; # ok now
my $filename2 = "data-$ok_date.txt";    # ok

open(my $fh, '>', $filename2) or die "...";
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Just because you’re paranoid doesn’t 
mean they’re not out to get you
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Performance
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CPU Cycles Are Cheap…
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• Your time versus the computer’s time
– 1 hour to save 50 ms/run — worth it?
– 1 hour to save 1 hour/run — worth it?

• Moore’s Law: next month’s CPU will be 10% faster*

• Waste the computer’s time, not yours

• If you need a LOT of computing power, use CHTC

* horribly inaccurate representation of Moore’s actual statement…



Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

But…
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We should forget about small efficiencies,
say about 97% of the time:

premature optimization is the root of all evil.

— Donald Knuth, 1974
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The Other 3% of the Time…
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Easy Metrics
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• Use the shell’s time command

% perl homework-15.pl input-15.txt
Done!
% time perl homework-15.pl input-15.txt
Done!

real    0m3.928s
user    0m3.907s
sys     0m0.012s
% 
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More Detailed Metrics
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• Use Time::HiRes to measure “wall” time (not CPU)
• Start with just a few
• Think binary search

use Time::HiRes qw/time/;
my $t_start = time();
initialize();
do_something();
my $t_mid = time();
do_something_else();
wrap_up();
my $t_end = time();
printf "Part 1: %.1f s\n", $t_mid - $t_start;
printf "Part 2: %.1f s\n", $t_end - $t_mid;
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Very Detailed Metrics
• Use Benchmark
• Good for comparing alternatives directly
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use Benchmark qw/cmpthese/;
my $x = 3;
cmpthese( -1,
          { 'a' => sub{$x * $x},
            'b' => sub{$x ** 2}, } );

       Rate    b    a
b 4745709/s   -- -12%
a 5420446/s  14%   --
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Memory Is Cheap…

• … and fast
• … but limited
• Running out of memory is bad… but hard to do
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open(my $fh, '<', $file) or die "...";

# Option 1: Read ALL lines into memory
my @lines = <$fh>;
foreach my $line (@lines);

# Option 2: Only 1 line in memory at a time
while (my $line = <$fh>) { ... }
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open(my $fh, '<', $file) or die "...";
my @lines = <$fh>;
close($fh);
···
open(my $fh, '<', $file) or die "...";
my @lines_again = <$fh>;
close($fh);
my @lines_again = @lines;

Disk Is Cheap…

• … and huge
• … but slow
• Do as little I/O as is reasonable
• Also watch out for too many open filehandles

22
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Things to Avoid
• CPU

– Inefficient algorithms
– Needless repetition
– Expensive operations inside tight loops

• Memory
– Too much stuff in memory
– Needless copies

• Disk
– Needless reads/writes
– Many small open/close operations

• ALWAYS USE METRICS!!!!
23
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Homework
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Fix Me!
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• Homework provides a simple script

• Likely contains security, performance, and 
correctness problems

• Make it better!

• Extra: Give before/after performance metrics!
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Evaluations
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• Instructor: CARTWRIGHT

• Course #: 368

• Section #: 3


