
Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Day 15: Security & Performance

perlsec
Benchmark module

(if you like)

1

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Homework Review

2

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Security

3

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Think Like a Hacker

• How can I affect this script?
– Outside data (@ARGV, files, environment, …)
– Perfectly crafted
– Too much, too little, malformed, out of range, …
– No limits to creativity

• What can I cause the script to do?
– Crash
– Change the system
– Change the results
– eval(), s///e, s///ee

4

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

What Is Wrong With This Script?

5

if (scalar(@ARGV) != 1) {
 die "$0: need filename argument\n";
}

my $filename = $ARGV[0];

open(my $fh, $filename) or die "…: $!\n";
my @lines = <$fh> or die "…: $!\n";
close($fh) or die "…: $!\n";

for (my $i = 0; $i < scalar(@lines); $i++) {
 print "$i: $lines[$i]";
}

"> foo"'rm -f *.txt |'

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Problems With open()

• Filename argument is more than filename

6

open(FH, "< foo") read

open(FH, "> foo") create/(over)write

open(FH, ">> foo") create/append

open(FH, "foo |") run command, read output
 (like `foo`)

open(FH, $unchecked_variable)

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Safer open()

• Always use three-argument version, even for reads

7

if (scalar(@ARGV) != 1) {
 die "$0: need filename argument\n";
}

my $fname = $ARGV[0];

open(my $fh, '<', $fname) or die "…: $!\n";
my @lines = <$fh> or die "…: $!\n";
close($fh) or die "…: $!\n";

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Problems With system()

• Purpose is to invoke system commands…
• May invoke shell and hence shell interpretation

8

system("curl $url");
 URL; rm -f ...
 --silent -V; rm -f ...
 --upload-file /etc/passwd URL

system("... $variable_name ...");

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Safer system()

• Use separate arguments whenever possible
• If you must use shell characters, validate everything

9

system('curl', '--silent', $url);
what if $url = '-V; rm -f ...'?
% curl --silent '-V; rm -f ...'

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

A Little Bit of Help: use taint

• Perl will try to help you identify dangerous values
• Marks all data that comes from “outside”:

– Command-line arguments
– Data from a filehandle (including STDIN)
– Environment variables
– Results of certain system calls (e.g., readlink)

• Passed to all copies of tainted data
• Cannot use tainted data directly to:

– Modify file or directory
– Run a command

• Does NOT automatically make a script secure!!!!!!!!!
10

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Taint Example

11

use taint;

my $date = $ARGV[0]; # $date is tainted
my $filename1 = "data-$date.txt"; # tainted

next line would cause Perl to exit script
open(my $fh, '>', $filename1) or die "...";

(my $ok_date = $date) =~ s/\W+/_/g; # ok now
my $filename2 = "data-$ok_date.txt"; # ok

open(my $fh, '>', $filename2) or die "...";

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Just because you’re paranoid doesn’t
mean they’re not out to get you

12

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Performance

13

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

CPU Cycles Are Cheap…

14

• Your time versus the computer’s time
– 1 hour to save 50 ms/run — worth it?
– 1 hour to save 1 hour/run — worth it?

• Moore’s Law: next month’s CPU will be 10% faster*

• Waste the computer’s time, not yours

• If you need a LOT of computing power, use CHTC

* horribly inaccurate representation of Moore’s actual statement…

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

But…

15

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

We should forget about small efficiencies,
say about 97% of the time:

premature optimization is the root of all evil.

— Donald Knuth, 1974

16

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

The Other 3% of the Time…

17

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Easy Metrics

18

• Use the shell’s time command

% perl homework-15.pl input-15.txt
Done!
% time perl homework-15.pl input-15.txt
Done!

real 0m3.928s
user 0m3.907s
sys 0m0.012s
%

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

More Detailed Metrics

19

• Use Time::HiRes to measure “wall” time (not CPU)
• Start with just a few
• Think binary search

use Time::HiRes qw/time/;
my $t_start = time();
initialize();
do_something();
my $t_mid = time();
do_something_else();
wrap_up();
my $t_end = time();
printf "Part 1: %.1f s\n", $t_mid - $t_start;
printf "Part 2: %.1f s\n", $t_end - $t_mid;

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Very Detailed Metrics
• Use Benchmark
• Good for comparing alternatives directly

20

use Benchmark qw/cmpthese/;
my $x = 3;
cmpthese(-1,
 { 'a' => sub{$x * $x},
 'b' => sub{$x ** 2}, });

 Rate b a
b 4745709/s -- -12%
a 5420446/s 14% --

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Memory Is Cheap…

• … and fast
• … but limited
• Running out of memory is bad… but hard to do

21

open(my $fh, '<', $file) or die "...";

Option 1: Read ALL lines into memory
my @lines = <$fh>;
foreach my $line (@lines);

Option 2: Only 1 line in memory at a time
while (my $line = <$fh>) { ... }

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

open(my $fh, '<', $file) or die "...";
my @lines = <$fh>;
close($fh);
···
open(my $fh, '<', $file) or die "...";
my @lines_again = <$fh>;
close($fh);
my @lines_again = @lines;

Disk Is Cheap…

• … and huge
• … but slow
• Do as little I/O as is reasonable
• Also watch out for too many open filehandles

22

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Things to Avoid
• CPU

– Inefficient algorithms
– Needless repetition
– Expensive operations inside tight loops

• Memory
– Too much stuff in memory
– Needless copies

• Disk
– Needless reads/writes
– Many small open/close operations

• ALWAYS USE METRICS!!!!
23

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Homework

24

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Fix Me!

25

• Homework provides a simple script

• Likely contains security, performance, and
correctness problems

• Make it better!

• Extra: Give before/after performance metrics!

Cartwright2012 Summer

Computer Sciences 368 Introduction to Perl

Evaluations

26

• Instructor: CARTWRIGHT

• Course #: 368

• Section #: 3

