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1. INTRODUCTION

In this article we consider the problem of computing the Fourier coefficients of a basis of modular forms.
Let Sy be the space of cusp forms of weight k for the full modular group SL,(Z). The standard basis for
this space for k even consists of the forms A'Gy_; for 1 < i < L‘ﬂ—}“], and ATz if k = 0 mod 12, where Gy
is the weight k Eisenstein series and A is the discriminant function. It is easy to see that the n-th Fourier
coefficient of any of these basis forms can be computed in time O(n?). In this article we show that there
is a basis for this space composed of forms for which we can compute the n-th Fourier coefficient in time

O(n%+€) by a randomized algorithm.

2. CYCLIC BASIS FOR MODULAR FORMS

Let V be any finite dimensional vector space and let T : V — V be a linear map. Suppose that there is a
v € V such that T(v), T(T(v)), -, form a basis of V, then we say that V has a cyclic basis with respect
to T (or simply T has a cyclic basis). For example, the finite field F,~ is a F,-vector space of dimension n,
and it is a fact that F,~» has a cyclic basis with respect to the Frobenius automorphism x — xP.

For the space Sy of cusp forms of weight k and level 1, we have a family of operators T,, for each prime p,
called the Hecke operators. These operators are easily defined by their action on the Fourier coefficients of
the modular forms. Suppose f =} ;_, a(n)q™ € Sy, then

T,f =) (anp)+p* 'a(n/p))q™.

1<n

It is natural to ask: for which primes p does Sy have a cyclic basis with respect to T,,. A complete answer to
this question is very difficult. For example, for k = 12 the operator T, has a cyclic basis iff T(p) # 0 and so
the existence of a cyclic basis for T, for every prime p is equivalent to Lehmer’s conjecture. In what follows
we will show that for every even k > 12 there is a set of primes P of density 1 such that for every p € P the
operator T, has a cyclic basis. We begin with a lemma.

Lemma 2.1. Let 'V be a finite dimensional vector space (say dimV =d), and let T:V — V be a linear
map. Suppose thatV has a basis of eigenvectors vi,--- ,vgq with corresponding etgenvalues &1, -+ ,xq.
If ai #0 and & # o5 for i #j then T has a cyclic basis.

Proof : Consider the vector w = vi+va+---+vq. Now T(w), T(T(w)),---,T%(w) are linearly independent
iff the determinant of the following matrix does not vanish:

*x1 [0 %) e xq
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Since this is a Vandermonde matrix, its determinant is

X1 &g H (o — o)

1<i<j<d

and so the lemma follows. O

Now we are ready to prove our main theorem.

Theorem 2.2. Let Sy be the space of weight k level 1 cusp forms. If k > 12 is even, then there is a
set of primes P of positive density such that for every prime p € P the p-th Hecke operator T, has a
cyclic basis.

Proof : The space Sk has a basis of forms that are simulataneously eigenforms for all the Hecke operators
T,. Moreover, these forms can be normalized such that the p-th Hecke eigenvalue is their p-th Fourier coef-
ficient. We show that the hypotheses of lemma 2.1 are satisfied by T, for a density 1 subset of the primes.
Let f; =) , ai(n)q™, 1 <1i < d be the Hecke eigenforms which form a basis for Si. Let P; denote the set
of primes where a;i(p) # 0, and let P;; denote the set of primes where a;i(p) # a;(p) for i #j. A theorem
of Serre shows that each of the sets P; is a density 1 subset of the primes ([Ser81] Corollary 2 to Theorem
§7.2.15). A super-strong multiplicity one theorem due to Rajan [Raj98] shows us that if f # g are cuspidal
eigenforms of level 1 then there is a density 1 subset of primes on which their coefficients differ. Note that
the techniques of Serre yield only that there is a constant proportion of primes where their coefficients differ.
Now the set P = NiP; Ni,; Pi; has density 1 since we are taking the intersection of finitely many subsets
each of density 1. Furthermore, for any prime p € P the Hecke operator T, satisfies all the hypotheses of
lemma 2.1 and consequently has a cyclic basis. [I

3. DESCRIPTION OF THE ALGORITHM

In this section we give a brief description of the algorithm to compute a basis for the space Si. For details
on some of the steps refer to [Cha03].

The space My = Ex @ Sk, where Ei is the space generated by the Eisenstein series of weight k. The n-th
Fourier coefficient of Ey is ox_1(n) for n > 1. We can compute this function in O(exp(1/Iognloglogmn))
time using randomized subexponential time factoring algorithms. We show that there is a basis for Sy of
forms whose n-th Fourier coefficient can be computed in O(n%“) time by a randomized algorithm. By
theorem 2.2 there is a density 1 subset of primes p for which the p-th Hecke operator T, has a cyclic basis.
In particular, for each k there exists a prime py such that T, has a cyclic basis. Moreover, lemma 2.1 says
that the cyclic vector can be taken to be the form whose coefficients are given by the trace of the Hecke
operators. In [Cha03] it is shown that this trace can be computed by a randomized algorithm in O(n%“:)
time. Now we can compute the n-th Fourier coefficient of each of the basis forms by finding the n-th Fourier
coefficient of the form whose coefficients are the Hecke traces and then explicitly computing the action of
the operator T,,, on this form.

REFERENCES

[Cha03] Charles, Denis; Computing the Ramanujan Tau function, preprint, 2003.

[Raj98] Rajan, C., S.; On strong multiplicity one for (-adic representations, Int. Math. Res. Notices, 3, 161-172, 1998.

[Ser81] Serre, Jean-Pierre; Quelques applications du Théoréme de Densité de Chebotarev, Publ. Math. LH.E.S., 54, 123-201,
1981.



