COMPUTING A BASIS OF MODULAR FORMS

DENIS XAVIER CHARLES

1. INTRODUCTION

In this article we consider the problem of computing the Fourier coefficients of a basis of modular forms. Let S_k be the space of cusp forms of weight k for the full modular group $SL_2(\mathbb{Z})$. The standard basis for this space for k even consists of the forms $\Delta^i G_{k-i}$ for $1 \leq i \leq \left\lfloor \frac{k-1}{2} \right\rfloor$, and $\Delta^i \tau$ if $k \equiv 0 \mod 12$, where G_k is the weight k Eisenstein series and Δ is the discriminant function. It is easy to see that the n-th Fourier coefficient of any of these basis forms can be computed in time $O(n^2)$. In this article we show that there is a basis for this space composed of forms for which we can compute the n-th Fourier coefficient in time $O(n^{\frac{3}{2}+\epsilon})$ by a randomized algorithm.

2. CYCLIC BASIS FOR MODULAR FORMS

Let V be any finite dimensional vector space and let $T : V \to V$ be a linear map. Suppose that there is a $v \in V$ such that $T(v), T(T(v)), \cdots$, form a basis of V, then we say that V has a cyclic basis with respect to T (or simply T has a cyclic basis). For example, the finite field \mathbb{F}_p^n is a \mathbb{F}_p-vector space of dimension n, and it is a fact that \mathbb{F}_p^n has a cyclic basis with respect to the Frobenius automorphism $x \to x^p$.

For the space S_k of cusp forms of weight k and level 1, we have a family of operators T_p for each prime p, called the Hecke operators. These operators are easily defined by their action on the Fourier coefficients of the modular forms. Suppose $f = \sum_{1 \leq n} a(n) q^n \in S_k$, then

$$T_p f = \sum_{1 \leq n} (a(np) + p^{k-1} a(n/p)) q^n.$$

It is natural to ask: for which primes p does S_k have a cyclic basis with respect to T_p. A complete answer to this question is very difficult. For example, for $k = 12$ the operator T_p has a cyclic basis iff $\tau(p) \neq 0$ and so the existence of a cyclic basis for T_p for every prime p is equivalent to Lehmer’s conjecture. In what follows we will show that for every even $k \geq 12$ there is a set of primes P of density 1 such that for every $p \in P$ the operator T_p has a cyclic basis. We begin with a lemma.

Lemma 2.1. Let V be a finite dimensional vector space (say dim $V = d$), and let $T : V \to V$ be a linear map. Suppose that V has a basis of eigenvectors v_1, \cdots, v_d with corresponding eigenvalues $\alpha_1, \cdots, \alpha_d$. If $\alpha_i \neq 0$ and $\alpha_i \neq \alpha_j$ for $i \neq j$ then T has a cyclic basis.

Proof: Consider the vector $w = v_1 + v_2 + \cdots + v_d$. Now $T[w], T[T[w]], \cdots, T^d[w]$ are linearly independent iff the determinant of the following matrix does not vanish:

$$\begin{pmatrix}
\alpha_1 & \alpha_2 & \cdots & \alpha_d \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_d^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^d & \alpha_2^d & \cdots & \alpha_d^d
\end{pmatrix}.$$
Since this is a Vandermonde matrix, its determinant is
\[
\alpha_1 \cdots \alpha_d \prod_{1 \leq i < j \leq d} (\alpha_i - \alpha_j)
\]
and so the lemma follows. \(\square \)

Now we are ready to prove our main theorem.

Theorem 2.2. Let \(S_k \) be the space of weight \(k \) level 1 cusp forms. If \(k \geq 12 \) is even, then there is a set of primes \(\mathcal{P} \) of positive density such that for every prime \(p \in \mathcal{P} \) the \(p \)-th Hecke operator \(T_p \) has a cyclic basis.

Proof: The space \(S_k \) has a basis of forms that are simultaneously eigenforms for all the Hecke operators \(T_p \). Moreover, these forms can be normalized such that the \(p \)-th Hecke eigenvalue is their \(p \)-th Fourier coefficient. We show that the hypotheses of lemma 2.1 are satisfied by \(T_p \) for a density 1 subset of the primes. Let \(f_i = \sum_n a_i(n)q^n, 1 \leq i \leq d \) be the Hecke eigenforms which form a basis for \(S_k \). Let \(P_i \) denote the set of primes where \(a_i(p) \neq 0 \), and let \(P_{ij} \) denote the set of primes where \(a_i(p) \neq a_j(p) \) for \(i \neq j \). A theorem of Serre shows that each of the sets \(P_i \) is a density 1 subset of the primes ([Ser81] Corollary 2 to Theorem §7.2.15). A **super-strong** multiplicity one theorem due to Rajan [Raj98] shows us that if \(f \neq g \) are cuspidal eigenforms of level 1 then there is a density 1 subset of primes on which their coefficients differ. Note that the techniques of Serre yield only that there is a constant proportion of primes where their coefficients differ. Now the set \(\mathcal{P} = \cap_i P_i \cap_{i \neq j} P_{ij} \) has density 1 since we are taking the intersection of finitely many subsets each of density 1. Furthermore, for any prime \(p \in \mathcal{P} \) the Hecke operator \(T_p \) satisfies all the hypotheses of lemma 2.1 and consequently has a cyclic basis. \(\square \)

3. Description of the algorithm

In this section we give a brief description of the algorithm to compute a basis for the space \(S_k \). For details on some of the steps refer to [Cha03].

The space \(M_k = E_k \oplus S_k \), where \(E_k \) is the space generated by the Eisenstein series of weight \(k \). The \(n \)-th Fourier coefficient of \(E_k \) is \(\sigma_k(n) \) for \(n > 1 \). We can compute this function in \(O(\exp(\sqrt{\log n \log \log \log n})) \) time using randomized subexponential time factoring algorithms. We show that there is a basis for \(S_k \) of forms whose \(n \)-th Fourier coefficient can be computed in \(O(n^{1/2+\epsilon}) \) time by a randomized algorithm. By theorem 2.2 there is a density 1 subset of primes \(p \) for which the \(p \)-th Hecke operator \(T_p \) has a cyclic basis. In particular, for each \(k \) there exists a prime \(p_k \) such that \(T_{p_k} \) has a cyclic basis. Moreover, lemma 2.1 says that the cyclic vector can be taken to be the form whose coefficients are given by the trace of the Hecke operators. In [Cha03] it is shown that this trace can be computed by a randomized algorithm in \(O(n^{1/2+\epsilon}) \) time. Now we can compute the \(n \)-th Fourier coefficient of each of the basis forms by finding the \(n \)-th Fourier coefficient of the form whose coefficients are the Hecke traces and then explicitly computing the action of the operator \(T_{p_k} \) on this form.

References