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Abstract. We consider the problem of counting the number of lattice vectors of a given length
and prove several results regarding its computational complexity. We show that the problem is ♯P-
complete resolving an open problem. Furthermore, we show that the problem is at least as hard as
integer factorization even for lattices of bounded rank or lattices generated by vectors of bounded
norm. Next, we discuss a deterministic algorithm for counting the number of lattice vectors of
length d in time 2O(rs+log d), where r is the rank of the lattice, s is the number of bits that encode
the basis of the lattice. The algorithm is based on the theory of modular forms.
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1. Introduction

Lattices are a source of some remarkably hard computational problems. For example, finding the
shortest vector in a lattice or finding a closest lattice vector to a given point seem to be difficult
tasks. See [Cai99] for a survey of results in this area. In this article we consider the problem of
exactly counting the number of vectors in a lattice at a given distance (under the L2-norm). We
show the following hardness results regarding this problem.

(1) Counting lattice vectors is ♯P-complete.
(2) There is a randomized polynomial time reduction from integer factorization to the problem

of counting lattice vectors in lattices of fixed rank r ≥ 8.
(3) There is a randomized polynomial time reduction from integer factorization to the problem

of counting lattice vectors in lattices generated by vectors of bounded norm.

The first result resolves an open question posed by Ravi Kumar and Sivakumar in [RS01]. It is
known that for fixed rank lattices the problem of counting the lattice points of a given length in
L1-norm is in P (see [DyK97]). The second result shows that in L2-norm the problem is essentially
harder. Our third result shows that even with short basis vectors (where the shortest vector prob-
lem is trivial) the problem remains hard.

We also give a deterministic algorithm for this problem that has a running time of 2O(rs+log d),
where r is the rank of the lattice, s is the the number of bits in the encoding of the basis and d
is the square of the norm of the vectors. Though the problem is ♯P-hard and our algorithm has
an exponential running time, we believe that the algorithm has its own merit and is interesting.
In particular, note that any algorithm that exhaustively counts the lattice vectors of norm d re-
quires 2Ω(r log d) time, since there are lattices that have 2Ω(r log d) vectors of norm d (for example
the Gaussian lattice of rank r). The algorithm we propose uses the deep theory of modular forms
that has been developed over the past century. In particular, we use the fact that the theta series
of a lattice is a modular form. The Fourier coefficients of the theta series encode the number of
vectors of a given norm in the lattice. We then make use of recent developments that allow one
to compute the space of modular forms to find the Fourier coefficients of this theta series. One
can also interpret our algorithm, in conjunction with the hardness results, as providing a family of
modular forms whose Fourier coefficients are ♯P-hard to compute. This seems to be the first result
regarding the computational complexity of computing Fourier coefficients of modular forms.

The outline of the rest of the article is as follows. In section (§2) we define the problem formally
and describe our results. Section (§3) deals with the ♯P-hardness result. The reductions involving
integer factorization require more machinery and we discuss them later in (§7). In section (§4) we
discuss an obvious algorithm to solve this problem. We use this simple algorithm as a part of our
main algorithm. Next, we review the relevant facts about modular forms that we need in section
(§5). Subsequently, in section (§6) we discuss a version of our algorithm that works for special
lattices, where it is easy to see all the general features of the algorithm. Finally, in section (§8) we
generalize this method to work for all lattices.

2. Definition of the problem

A lattice L ⊆ Qn is the integer linear span of r ≤ n linearly independent vectors of Qn. In other
words L is a Z−submodule of Qn, not necessarily of full rank. Our encoding of a lattice lists the
basis vectors whose entries are given in binary. Throughout this article when we refer to norm we
mean the L2 norm i.e., if v = (a1, · · · , an) ∈ Qn then ‖v‖2 =

∑

1≤i≤n a2
i . If L is a lattice, then we

define a function ϑL : N → N by ϑL(d) = ♯{v ∈ L : ‖v‖2 = d}. The computational problem that
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we are interested in is the following:

Counting Lattice Vectors

Input: A lattice L ⊆ Zn (all the basis vectors have integer coordinates), and an integer d in binary.
Question: What is ϑL(d)?

The assumption on the lattices is mild since any lattice can be scaled up (say by α ∈ Z) so that
every basis vector has integer coordinates and furthermore ϑL(d) = ϑαL(α2d).

Ajtai showed in [Aj97] that finding the shortest non-zero vector in a lattice in L2-norm is NP-hard.
But the reduction he obtained is randomized and non-parsimonious, thus the ♯P-hardness of the
counting version of this problem remained open. In [RS01] Ravi Kumar and Sivakumar asked
whether counting lattice vectors is ♯P−hard. Our first result is that indeed the problem is ♯P-
hard under polynomial time Turing reductions, resolving the question. We also show that certain
restricted versions of the counting lattice vectors problem remain as hard as integer factorization.
Next, we describe an algorithm to compute ϑL(d) in time 2O(rs+log d), where r is the rank of the
lattice and s is the number of bits of the encoding of L. The exhaustive search method leads to an
algorithm that requires 2O(r log d) time, thus our method is faster for large rank r and norm d.

Remark 2.1. One could consider a variant of the problem which is perhaps more natural, namely
that of counting the number of vectors of norm at most d for a lattice L. It is evident that computing
ϑL(d) (polynomial time Turing) reduces to this problem. Thus this variant of the problem is also
♯P-complete as a consequence of Theorem 3.1. Furthermore, our algorithm for computing ϑL(d)
can be used to solve this problem by computing

∑

ℓ≤d ϑL(ℓ) in the same asymptotic running time.
Thus both variants are equivalent for our considerations.

3. ♯P-hardness result

We refer the reader to [Pap94] Chapter 18 for the definition of the complexity class ♯P and the
notion of ♯P-hardness.

Theorem 3.1. Counting lattice vectors is ♯P-complete under polynomial time Turing reductions.

Proof : It is easy to see that the problem of Counting lattice vectors is in ♯P, so we concentrate
on showing that the problem is hard for the class ♯P.

It is known that computing the permanent of an n×n-matrix with entries in {0, 1} is ♯P-complete
([Val79]). Our aim is to give a polynomial time reduction from computing the permanent of such
matrices to counting lattice vectors in suitable lattices.

We are given a matrix M = {aij}1≤i,j≤n, where aij ∈ {0, 1}. We wish to compute Per M =
∑

σ∈Sn

∏

1≤i≤n aiσ(i) where Sn denotes the full group of permutations of n letters.

Let log n < α1 < α2 < α3 < · · · < αn < β1 < β2 < · · · < βn < γ be a sequence of 2n + 1 integers.

Consider the lattice L ⊆ Q3n2
of rank n2 given by basis vectors that are defined below. A vector

in Q3n2
is given by a tuple of 3n2 rational numbers. We treat this tuple as being made up of three

blocks each of n2 consecutive entries of the vector. Each block in turn can be thought of as an
n × n matrix. We will call these blocks the A, B and C blocks respectively. We now define the
basis vector vij for 1 ≤ i, j ≤ n. Each block will have at most one non-zero entry. The 〈i, j〉-th
entry of the A-block of vij is aij from the matrix M . The 〈i, j〉-th entry of the B-block of vij is
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2αi if aij = 1 and 2γ otherwise, and the 〈i, j〉-th entry of the C-block of vij is 2βj if aij = 1 and
2γ otherwise. The rest of the entries of the A, B and C blocks are zeroes. This completes the
definition of the lattice. It is clear that the rank of L is n2.

We make the following key claim:
Claim: There are choices of the sequence 〈αi, βj〉1≤i,j≤n and γ such that the following is true.

Suppose v = θ11v11 + θ12v12 + · · · + θnnvnn. Then ‖v‖2 = n +
∑

1≤i≤n(22αi + 22βi) iff there is a

σ ∈ Sn such that
∏

1≤i≤n aiσ(i) = 1.

Proof of Claim: First suppose there is a σ ∈ Sn such that
∏

1≤i≤n aiσ(i) = 1, then the vector

v =
∑

1≤i≤n viσ(i) has ‖v‖2 = n +
∑

1≤i≤n(22αi + 22βi).

Let D = n +
∑

1≤i≤n(22αi + 22βi), and let v = θ11v11 + θ12v12 + · · · + θnnvnn be a vector in the

lattice L such that ‖v‖2 = D.

As the vij are orthogonal we get that

D = ‖v‖2 = 〈v,v〉 =
∑

1≤i,j≤n

θ2
ij‖vij‖2.(1)

Note that if θij 6= 0 this implies that aij = 1, for otherwise ‖v‖2 ≥ ‖vij‖2 ≥ 22γ+1 > D. Let

δij = θ2
ij‖vij‖, so that if θij 6= 0 then δij = θ2

ij(1 + 22αi + 22βj ). Reducing both sides of equation

(1) modulo 22α1 we get:
∑

1≤i,j≤n θ2
ij ≡ n mod 22α1 . If

∑

1≤i,j≤n θ2
ij = n + k22α1 with k ≥ 1 then

there is a θrs such that θ2
rs ≥ 22α1

n2 . This implies that δrs ≥ 22α1+2αr−2 log n. Suppose we select αi

and βj such that βn < 22α1−log n then δrs > D which is impossible. Thus k = 0 and the congruence
is an equality, so that

∑

1≤i,j≤n

θ2
ij = n.

Thus we get that |θij | ≤
√

n and since they are integers there are at most n θij’s that are non-zero.

If, in addition, we have n32αi < 2αi+1 and n32βi < 2βi+1 then we argue that in fact |θij| ≤ 1.

Suppose to the contrary we had a vector with 1 < |θij|2 ≤ n, then δij = θ2
ij + θ2

ij2
2αi + θ2

ij2
2βj .

Now θ2
ij2

2αi > 22αi so there must be at least one other vector which helps this vector “cheat” so

that the sum adds to a valid power 22αk (say). Let S be the set of basis vectors that help to make
θ2
ij2

2αi another valid power of 2. But |S| ≤ n2 and each of these vectors can add a factor of at

most n22αi to the norm to boost it to the next valid power of 2, but then since n32αi < 2αi+1 this
is impossible. Thus the set S is empty and all the |θij| ≤ 1.

But now we have
∑

1≤i,j≤n θ2
ij = n, with each |θij| ≤ 1 and θij are integers. This implies that there

must be exactly n non-zero θij. Suppose θij1, θij2, · · · , θijk
with 1 < k ≤ n are all non-zero. Then

clearly the 22αi term of the norm of v cannot be accounted for by any of the basis elements, thus
for each i there is exactly one j such that |θij| = 1. This defines for us a permutation σ ∈ Sn such
that for each i, 1 ≤ i ≤ n |θiσ(i)| = 1. It is now evident that

∏

1≤i≤n aiσ(i) = 1. Thus we have
proved the claim.

To finish the proof of the theorem note that for each σ ∈ Sn if
∏

1≤i≤n aiσ(i) = 1 then there are 2n

vectors given by
∑

1≤i≤n ±viσ(i) of norm square n +
∑

1≤i≤n(22αi + 22βi).
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Hence we have that:

2nPer M =

∣
∣
∣
∣

{

v ∈ L
∣
∣
∣
∣
‖v‖2 = n +

∑

1≤i≤n

(22αi + 22βi)

}∣
∣
∣
∣
.

Since a sequence αi, βj and γ that satisfies all the conditions imposed in our proof can be picked
in polynomial time, this proves the theorem. In particular, an acceptable sequence would be
α1 = cn2, for some constant c > 0; αi = cn2 + ib log n, for b > 3 another constant and 1 < i ≤ n;
βi = cn2 + (i + n)b log n and γ > βn. �

4. A Näıve algorithm

Let L ⊆ Qn be a lattice with basis v1, · · · ,vr and v = 〈α1, · · · , αn〉 ∈ L be such that ‖v‖2 = d

then we have that |αi| ≤
√

d. Suppose we are given a vector v we can check if it belongs to the
lattice L by solving for v = e1v1 + · · ·+ ervr for the ei and checking whether ei ∈ Z. We can thus
evaluate ϑL(d) by exhaustive search in time 2O(n log d). We can improve the exhaustive search in the
case where the lattice is not full rank as follows. Suppose vi = 〈γi1, · · · , γin〉 and assume (without
loss of generality) that the r × r minor (γij)1≤i,j≤r is full rank. A lattice vector v is then uniquely
determined by its first r coordinates. Further, given the first r coordinates of a vector v, we can
check if there is a vector in L with the same initial block of r coordinates. Furthermore, we can
produce such a lattice vector by solving the appropriate system of linear equations. Hence we can
refine our exhaustive search by generating tuples 〈α1, · · · , αr〉 with |αi| ≤

√
d and checking if there

is a vector in L whose projection along the first r coordinates matches the tuple 〈α1, · · · , αr〉 and

also if it is of the correct norm. This yields a method to compute ϑL(d) in time 2O(r log d) (ignoring
factors that are polynomial in n). Summarizing, we have:

Theorem 4.1. There is a deterministic algorithm that when given a lattice L ⊆ Qn of rank r and
an integer d in binary computes ϑL(d) in time 2O(r log d+log n+log s), where s is the number of bits to
encode the basis of L.

5. Review of Modular forms

In this section we review the relevant portion of the theory of modular forms as it applies to our dis-
cussion. For good introductions to this elegant and deep theory see [Gun62, Ogg69, La76, Kob93],
the original work of Hecke [Hec83a] or the beautiful article by Zagier [Zag92].

Let H = {z ∈ C | ℑ(z) > 0} be the Poincaré half-plane. Let Γ1 be the group PSL(2, Z) - the group
of 2 × 2 matrices of determinant 1 with integer entries.

Definition 5.1. A holomorphic function f : H → C is called a modular form (for Γ1) of weight k
(k is a non-negative integer) if the following conditions hold:

(1) f
(

aτ+b
cτ+d

)
= (cτ + d)kf(τ) for all

(
a b
c d

)

∈ Γ1.

(2) As τ → ı∞, |f(τ)| is bounded.

The set of all modular forms of a certain weight form a C-vector space, and we denote this space by

Mk(C). Since

(
1 1
0 1

)

∈ Γ1, the transformation law (1) above says that f(τ) = f(τ + 1). Thus any

modular form is periodic in vertical strips of width 1 on the complex plane. Now H/{z 7→ z + 1}
(essentially a cylinder) has a complex analytic isomorphism to the open punctured disc of radius 1,
by the map z 7→ e2πız . Holomorphic maps f on H∪{i∞} such that f(τ) = f(τ +1) when considered
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as maps on the open disc have a Taylor expansion about the origin: f(z) =
∑

0≤n anzn. It is a fact
that this expansion converges everywhere in the disc. Pulling this back via the isomorphism we
get the expansion f(τ) =

∑

n∈N
anqn where q = e2πıτ . The fact that f is a modular form, implies

that an = O(nk−1), where k is the weight. The subspace Sk(Γ1) of Mk(Γ1) of modular forms whose
Fourier expansion has a0 = 0 are the so-called cusp forms of weight k. Note that there are no

non-zero modular forms of odd weight, since

(
−1 0
0 −1

)

∈ Γ1.

The most important fact about modular forms is that Mk(= Mk(Γ1)) is a finite dimensional vector
space, with an explicit basis.

Theorem 5.2 (see [La76]). The dimension of the vector space Mk is given by (for even k)

dim Mk =







⌊
k
12

⌋
+ 1, if k ≥ 0, k 6≡ 2 mod 12

⌊
k
12

⌋
, if k ≥ 0, k ≡ 2 mod 12

0, if k < 0.

Our next task is to describe an explicit basis for Mk.

Let k > 2 be even, the Eisenstein series of weight k is Gk(τ) = −Bk

2k +
∑

1≤n σk−1(n)qn, τ ∈ H, q =

e2πıτ , where Bk is the k-th Bernoulli number (the coefficient of xk

k! in the Taylor expansion of x
ex−1)

and σk−1(n) =
∑

r | n rk−1. The Discriminant function ∆ is defined by ∆(τ) = q
∏

1≤r(1 −
qr)24, τ ∈ H, q = e2πıτ . It is a fact that Gk(τ) is a modular form of weight k, and ∆ is a cusp form
of weight 12. Now given an arbitrary modular form in Mk we can subtract a suitable multiple of
Gk to get a cusp form. This gives us a direct sum decomposition of this space Mk as 〈Gk〉 ⊕ Sk.
Also Sk is isomorphic to Mk−12. These facts lead to the following theorem:

Theorem 5.3 (see [Zag92]). The space Mk of modular forms of weight k has a basis given by the
set of forms ∆lGk−12l for 0 ≤ l ≤ k−4

12 , and if k is divisible by 12 the function ∆k/12 is also in the
basis.

6. The Approach for Unimodular Lattices

In this section we describe our method for counting the number of lattice vectors in a restricted
class of lattices. In §8 we remove the restrictions we place here.

Let L ⊆ Qd be a rank r lattice. Choosing a basis for L we can form an isomorphism to Zr,
this isomorphism is given by a linear transformation. Under the isomorphism the square of the
norm function for L transforms into a positive definite quadratic form QL on Qr. The theta series
associated to the lattice L is given by

ΘL(τ) =
∑

v∈L

q‖v‖
2

=
∑

x∈Zr

qQL(x), q = e2πıτ .

The quadratic form QL(x) can be written as 1
2x

tAx for an even symmetric matrix A (i.e., A =

(aij) ∈ Zr×r, A = At and aii are even integers). The lattice L is said to be unimodular if det A = 1.

The following astonishing fact (and some of its generalizations) was proved by Schoeneberg [Sch39],
see also [Hec83b].
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Theorem 6.1. Let L be a lattice of even rank r, such that the matrix A associated to the quadratic
form QL of the lattice is unimodular. Then the theta series ΘL of the lattice is a modular form of
weight r

2 for the full modular group.

This suggests the following algorithm. Given a lattice L of rank r, we know that the theta series
of the lattice ΘL lives in the finite dimensional space Mr/2. By definition ΘL(τ) =

∑

0≤n anqn

(q = e2πıτ ), where an = |{v ∈ L : ‖v‖2 = n}|, so our task is to compute the Fourier coefficients
of ΘL. Furthermore, we know an explicit basis for this space (say) {f1, · · · , fD}, where D is the
dimension of Mr/2. Suppose we can also find α1, · · · , αD such that ΘL = α1f1 + · · ·+ αDfD. Then
we can find the Fourier coefficients of ΘL by combining the appropriate Fourier coefficients of the
fi according to the linear relation we found for ΘL. If we can compute the Fourier coefficients of fi

asymptotically faster than the running time of the algorithm in §4 then we get a faster algorithm
for computing ΘL.

6.1. Computing the Basis of Mk. Here we show that computing the m-th Fourier coefficient of
the basis elements of Mk can be done in 2O(log m) time.

Theorem 6.2. There is a deterministic algorithm that when given m in binary computes the m-th
Fourier coefficient of Gk in 2O(log m+log log k) time if m ≥ 1 and in 2O(log k) time if m = 0.

Proof : If m = 0, we need to compute the k-th Bernoulli number. This can be done in kO(1) time
using the Akiyama-Tanigawa algorithm [Knk00]. If m > 1, then the m-th Fourier coefficient of Gk

is σk−1(m) =
∑

d|m dk−1. One simple way of computing this is to factor m completely and then to

evaluate the sum by running over all the divisors of m. Factoring the number m, can clearly be
done in 2O(log m) time, even by simple trial division. As every divisor of m is ≤ m the number of
divisors is O(m). Computing the term dk−1 can be done in O(log k log d) time. Thus the sum can

be evaluated by this procedure in log k × 2O(log m) as claimed. �

Theorem 6.3. There is a deterministic algorithm that when given m in binary, computes the m-th
Fourier coefficient of ∆l in 2O(log m+log log l) time.

Proof : Now ∆l = ql
∏

1≤r(1− qr)24l. We just need to compute this product upto the r = O(m/l)

term. Each term of the product requires (log l)O(1) multiplications (by repeated squaring), we need

to compute O(m) such products, and this can be done in 2O(log m+log log l) time. �

Given these two theorems it is easy to see that the m-th coefficient of the basis for Mk can be
computed in 2O(log m+log k) time.

Remark 6.4. Let D = dim Mk, and f1, · · · , fD be the basis for the vector space Mk given in Theorem
5.3. Let the q-expansion of the fi’s be given by

fi(τ) =
∑

0≤j

aijq
j, for 1 ≤ i ≤ D.

Then the matrix (aij)1≤i≤D,0≤j<D has full rank. This is easily seen directly, since the matrix we
get is an upper triangular matrix with non-zero entries along the diagonal.

6.2. The algorithm for unimodular lattices.

Theorem 6.5. Let L be a lattice in Qn of rank r, such that the matrix associated to the qua-
dratic form QL is unimodular. Then there is a deterministic algorithm that when given inputs L
(encoded as a sequence of basis vectors, requiring s bits) and d in binary, computes ϑL(d) in time
2O(r log r+log d+log s).
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Proof : By Theorem 6.1 the theta series of the lattice ΘL is a modular form of weight r/2. Let
D = dimMr/2 and let f1, · · · , fD be the basis for Mr/2 as given in Theorem 5.3. Our aim is to
find γ1, · · · , γD ∈ C such that ΘL = γ1f1 + · · · + γDfD. The γi are in fact in Q since the Fourier
coefficients of ΘL are integers and those of the fi are rational numbers.

To find the γi we compute D Fourier coefficients a1, · · · , aD of ΘL =
∑

l∈N
alq

l using the algorithm
in §4. Next we compute the corresponding D Fourier coefficients of basis elements fi. This yields
linear equations for the γi. By remark 6.4 this system of linear equations has full rank. Thus we
can solve for the γi in rO(1) time.

To find the ai for 1 ≤ i ≤ D (and noting that D = O(r)) we need 2O(r log r+log s) time using the
algorithm in §4. Now to compute the d-th Fourier coefficient of ΘL we need to compute the d-th
Fourier coefficients of the basis elements which can be computed in 2O(log d+log r) time. This proves
the theorem. �

Remark 6.6. One might wonder how restrictive the condition of unimodularity is on the quadratic
form associated to a lattice. It turns out that if L is a unimodular lattice then the dimension
is a multiple of 8 (see for instance [Gun62] (§23) Theorem 2). One can find some examples in
[Ogg69, Hec40, Hec83b] and [Sch39]. If the dimension is a multiple of 8 then there are unimodular
lattices of that dimension see [Cha85] Chapter 10, this fact is used in §7.

7. Reductions to Integer Factorization

In view of Theorem 3.1 we can consider various relaxations of the original problem of counting
lattice vectors. In this section we show that two natural restrictions of the problem are at least as
hard as integer factorization.

7.1. Fixed rank lattices. In the L1-norm the problem of counting the number of lattice vectors
for fixed rank lattices is in P [DyK97]. It is natural to ask if the same is true for L2-norm. The
following theorem shows that this is unlikely.

Theorem 7.1. There is a randomized polynomial time reduction from integer factorization to
counting lattice vectors in lattices of fixed rank r ≥ 8.

Proof : There is a lattice E8 with the following properties1:

(1) The rank of E8 is 8;
(2) E8 is unimodular,

see [Ser70] Chapter V, example 1.4.3 and Chapter VII, example 6.6.(i). By Theorem 6.1 ΘE8 ∈ M4.
But M4 is one dimensional with basis G4. Thus ΘE8 = cG4, a quick computation (using the fact
that any lattice has only one vector of norm 0) shows that c = 240. Thus ϑE8(d) = 240σ3(d) for
d ≥ 1. It is known that there is a randomized polynomial time reduction from integer factorization
to computing σk(n) for any fixed k [BMS86]. Now to get a reduction from integer factorization
to computing ϑL where rank(L) = r > 8 we can boost the rank of E8 to r. More precisely, let
vi = 〈vij〉 for 1 ≤ i, j ≤ 8 be the basis for E8. We construct a lattice Er

8 ⊆ Qr given by the following

1The notation reflects the fact that E8 is the root lattice associated to the exceptional Lie algebra e8.
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basis vectors:

v1 = 〈v11, · · · , v18, 0, · · · , 0
︸ ︷︷ ︸

r−8

〉

v2 = 〈v21, · · · , v28, 0, · · · , 0〉
...

v8 = 〈v81, · · · , v88, 0, · · · , 0〉
v9 = 〈0, · · · , 0

︸ ︷︷ ︸

8

, d, 0, · · · , 0〉

...

vr = 〈0, · · · , 0, 0, 0, · · · , d〉.

One can see that ϑEr
8
(d) = ϑE8(d) and so we get a reduction from factoring to computing ϑL where

rank(L) > 8. �

It is likely that one could show a result analogous to Theorem 7.1 even for lattices of rank r < 8.
In particular, note that for the lattice of dimension 2 (say) Z2, generated by 〈0, 1〉, 〈1, 0〉 we have
ϑZ2(d) = r2(d)—the number of representations of d as a sum of two squares. It is a classical fact
that r2(n) = 4(d1(n) − d3(n)) where di(n) is the number of divisors of n of the form 4k + i. It
seems that computing r2(n) is hard without a knowledge of the factorization of n.

7.2. Lattices with bounded norm basis vectors. The reduction in Theorem 3.1 has the feature
that the lattice produced has a basis of vectors that have large norms. We can consider a variant
of the counting problem, where we restrict the lattices to have a basis of vectors all of whose norms
are bounded. With regard to this question, we can show the following theorem:

Theorem 7.2. There is a reduction from integer factorization to computing ϑL for lattices with a
basis of bounded norm vectors.

We need some preliminary results before we prove Theorem 7.2.

Definition 7.3. Let L ⊆ Qm1 be a lattice of rank n1 given by basis ui = 〈uij〉 for 1 ≤ i ≤ n1,
1 ≤ j ≤ m1 and let M ⊆ Qm2 be another lattice of rank n2 given by basis vk = 〈vkl〉 for 1 ≤ k ≤ n2,
1 ≤ l ≤ m2. Then define L ⊕M ⊆ Qm1+m2 to be the lattice generated by the basis

w1 = 〈u11, · · · , u1m1 , 0, · · · , 0
︸ ︷︷ ︸

m2

〉

...

wn1 = 〈un11, · · · , un1m1 , 0, · · · , 0〉
wn1+1 = 〈0, · · · , 0

︸ ︷︷ ︸

m1

, v11, · · · , v1m2〉

...

wn1+n2 = 〈0, · · · , 0, vn21, · · · , vn2m2〉.

The following lemma is immediate from the definition.

Lemma 7.4. If L and M are two lattices then ΘL⊕M = ΘLΘM.
9



Let d ≥ 3 be an integer. Consider the lattice Ld ⊆ Qd of rank d− 1 generated by the basis vectors

v1 = 〈1,−1, 0, · · · , 0
︸ ︷︷ ︸

d

〉

v2 = 〈0, 1,−1, 0, · · · , 0〉
...

vd−1 = 〈0, · · · , 0, 1,−1〉.
The following lemma is evident from the definition of Ld.

Lemma 7.5. Suppose w = 〈w0, w1, · · · , wd−1〉 ∈ Ld, then w⊘ = 〈wd−1, w0, · · · , wd−2〉 ∈ Ld.

Proposition 7.6. Let w ∈ Lp where p is an odd prime. If w 6= 0 then w,w⊘,w⊘2
, · · · ,w⊘p−1

are all distinct.

Proof : Suppose w⊘i
= w⊘j

for 0 ≤ i 6= j ≤ p − 1. Then w⊘(i−j)
= w = w⊘p

, which implies that

w⊘gcd(i−j,p)
= w. Thus w⊘ = w, but this means that all the coordinates of w are equal. But all

vectors of Lp have coordinates summing to 0. Thus w must be the zero vector contradicting the
hypothesis of the proposition. �

Corollary 7.7. If p is an odd prime then ΘLp ≡ 1 mod p.

Proof : Group all non-zero vectors in Lp by their orbits via the action w 7→ w⊘. Each such or-
bit is of size p by Proposition 7.6. Further, noting that ‖w‖ = ‖w⊘‖ we see that ΘLp ≡ 1 mod p. �

Proof :(of Theorem 7.2) Suppose A is an algorithm that can compute ϑL for lattices generated
by a basis of bounded norm vectors. Then we show that A can be used to compute the function
σ3(n), which will prove the theorem in view of [BMS86].

We first pick small primes pi for 1 ≤ i ≤ k such that
∏

1≤i≤k pi > n4 > σ3(n). Then we use A to

compute ϑE8⊕Lpi
(n) for each pi. By Corollary 7.7 and Lemma 7.4, we have that ϑE8⊕Lpi

(n) ≡ ϑE8(n)

mod pi. Now applying the Chinese remainder theorem we can find ϑE8(n). By the prime number
theorem it suffices to take the first k = O(log n) primes for the pi. The theorem now follows. �

8. The General Case

In the general case the theta series of the lattice is no longer a modular form for the full modular
group, but for a congruence subgroup. We first describe the space of modular forms for congruence
subgroups. Let

Γ0(N) =

{(
a b
c d

)

∈ Γ1

∣
∣
∣
∣

c ≡ 0 mod N

}

Γ1(N) =

{(
a b
c d

)

∈ Γ0(N)

∣
∣
∣
∣
a ≡ 1 mod N

}

.

The space Mk(Γ1(N)) are those functions f(z) that are holomorphic on H such that for all

(
a b
c d

)

∈

Γ1(N), (cz + d)−kf
(

az+b
cz+d

)
= f(z) and for all

(
a b
c d

)

∈ Γ1 the function (cz + d)−kf
(

az+b
cz+d

)
has a

Fourier expansion
∑

n anqn such that an = 0 for all n < 0. Let χ : (Z/NZ)∗ → C be a Dirichlet
10



character modulo N (i.e., χ is a homomorphism of multiplicative groups extended so that χ(n) = 0
if gcd(n,N) 6= 1). We define

Mk(N,χ) =

{

f ∈ Mk(Γ1(N))

∣
∣
∣
∣

(cz + d)−kf

(
az + d

cz + d

)

= χ(d)f(z), for all

(
a b
c d

)

∈ Γ0(N)

}

.

Now in the general case for lattices that are not necessarily unimodular we have:

Theorem 8.1. Let L be a lattice of rank r (r even). Let QL be the associated quadratic form, and
A be the even summetric matrix with integer entries such that QL = 1

2x
tAx. Let N be the smallest

positive integer such that NA−1 is again even symmetric with integer entries. Let D = (−1)
r
2 detA.

Then the theta series of the lattice L is a modular form of level N , weight r
2 and character χ =

(
D
d

)

(the Kronecker symbol), i.e., ΘL ∈ M r
2
(N,χ).

Remark 8.2. In our situation the basis vectors have integer entries so N is always a divisor of det A,
so that χ is indeed a character modulo N , even though it need not be a primitive character modulo
N . The fact that the matrix A is invertible follows from the theory of bilinear forms and that QL

arose from an inner product (see [MiH73] Lemma I.§2.2). See Ogg’s book [Ogg69] Chapter 6, or
Zagier’s article [Zag92] for more background on this theorem.

The space Mk(Γ1(N)) decomposes as ⊕χMk(N,χ) where the sum is over all Dirichlet characters
modulo N . Further, the space Mk(Γ1(N)) splits up into a part generated by generalized Eisenstein
series and a part made up of cusp forms which in turn decomposes into a sum ⊕χSk(N,χ). The
following theorem shows that we can compute a basis of forms for the space Mk(Γ1(N)). The
algorithm is the result of the cumulative work of many individuals, see [AtL70, Cre97, Kob93,
Li75, Man72, Mer94, Ste00].

Theorem 8.3. There is a basis for Mk(Γ1(N)) composed of forms each of whose n-th Fourier

coefficient can be computed in dim Mk(Γ1(N)) × 2O(log n) time.

We only sketch the ideas behind the method for computing the Fourier coefficients of the basis
elements since the details are available in other sources. The basis for the space generated by the
generalized Eisenstein series can be explicitly worked out (see for instance [Kob93] III.§3, Proposi-
tion 22.) The Fourier coefficients of these elements can also be computed though they are no longer
rational but involve roots of unity. Computing the space of cusp forms is much more involved. In
this case there is an algebra of operators the Hecke operators on this space T : Sk(N,χ) → Sk(N,χ).
A beautiful theorem of Hecke says that there is a basis for the space Sk(N,χ) composed of eigen-
forms for this algebra [Hec83a]. More importantly, the eigenvalues are the Fourier coefficients of
the eigenform. The situation is not as straightforward as described, and one needs the full power
of the Atkin-Lehner theory [AtL70, Li75] to understand these spaces. Since we do not have a basis
for the cusp forms it seems that it is impossible to determine the eigenvectors for the operators—
seemingly a circular problem. The idea is to use the space of modular symbols for which a concrete
presentation is available by an idea of Manin [Man72], the space modular forms embeds (actually
as a dual) into the space of modular symbols by the Eichler-Shimura theory. The Hecke algebra
acts on the space of modular symbols, and the eigenvectors for this action are then translated
to the space of modular forms. The details of this method have been worked out in exhaustive
detail in [Mer94], [Cre97] chapter 2, and in [Ste00] chapters 2 and 3. The Fourier coefficients are
algebraic and the number field containing all the coefficients of the basis is a finite extension but
the degree can be very large (as big as (dim Sk(N)2)!), since we need to construct the splitting field
of the characteristic polynomials of the Hecke operators. For our purposes it suffices to get good
approximations to these coefficients, which we do indeed get from the algorithm.

11



Now our previous algorithm for computing ϑL generalizes readily to this situation. The space
Sk(N,χ) has dimension O(kN2) [CoO77, Ste00]. The key step in the algorithm is to find the
coordinates of the theta series ΘL in the space Mr/2(Γ1(N)). To do this we must accumulate
enough linear relations among the Fourier coefficients of the basis for the space and ΘL. For the
case discussed in the previous section this was easy since the matrix formed by the first dimMk

coefficients of the basis forms has full rank. In our case, we do not have an explicit basis to work
with so we must argue indirectly. We make use of a result (Proposition 2.16 in [Shi71]) that says
if F ∈ Mk(Γ) for Γ any congruence subgroup (actually this result holds in more generality) then
if Z is the number of zeros of the function F counting multiplicty in H then Z = Θ(dim(Mk(Γ))).
Let D = dim Mr/2Γ1(N), and let f1, · · · , fD be a basis for Mr/2(Γ1(N)). Suppose we had scalars

α1, · · · , αD such that α1f1 + · · ·+αDfD = cmqm + cm+1q
m+1 + · · · , with cm 6= 0 (i.e., the αi cancel

out all Fourier coefficients below m) then the function F (z) = α1f1 + · · ·+ αDfD vanishes to order
m at i∞. Thus in particular if m > Z then F (z) is identically zero by the above result. This
implies that αi = 0 since the fi form a basis. Thus among the first Θ(D) Fourier coefficients of the
basis elements, we arrive at a matrix of full rank. One can also derive this bound directly from a
theorem of Sturm [Stu87], but we do not need the full strength of Sturm’s theorem.

Suppose we have an algorithm that counts the number of points in a lattice L (of level N) of

rank r of norm square d in time T (r, d) then in time T (r,D)O(1) (D = dim Mr/2(Γ1(N))) we can
find the coordinates of the theta series ΘL in the space Mr/2(Γ1(N)) by solving the linear system
gathered from the coefficients. Then the number of points of norm square d can be found in time
T (r, rN2)O(1)2O(log r+log N+log d) by combining the Fourier coefficients. This yields the following
theorem:

Theorem 8.4. Let L be a lattice in Qn of rank r (all of whose basis vectors have integer entries
and r is even), with QL as the associated quadratic form and A the even symmetric matrix of the
quadratic form. Let N be the smallest integer such that NA−1 is integral and even symmetric.
Suppose that there is an algorithm B that can compute the number of lattice vectors of norm
square at most d in time T (r, d), then there is a deterministic algorithm to do the same in time
T (r, rN2)O(1)2O(log r+log N+log d).

Clearly, the above theorem is not useful if the existing algorithm B is very efficient, but it can be
used to boost the performance of an algorithm that does not perform well for large values of the
distance d. For example, using the algorithm presented in section 4 and observing that if the lattice
is encoded by vectors using s bits then N ≤ detA ≤ 2O(s) we get:

Theorem 8.5. Let L be a lattice of rank r (r even) in Qn, such that the basis vectors can be encoded
using s bits. Then the number of lattice vectors of norm square d can be computed deterministically
in time 2O(rs+log d).

8.1. Odd rank lattices. We can reduce the case of odd rank lattices to that of the even rank case
as follows.

The idea is to use the “rank boosting” method in section (7.) Let L ⊆ Qn be an odd rank lattice.
Set Md ⊆ Q be the rank 1 lattice generated by the vector 〈2d〉. Now the lattice Md ⊕ L is an
even rank lattice, which satisfies ϑMd⊕L(d) = ϑL(d). We can apply our algorithm to Md ⊕ L to
count the vectors of norm square d and we note that the reduction does not change the asymptotic
running time of the algorithm.
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9. Concluding Remarks

In this article we have displayed a family of modular forms (not of fixed weight or level), whose
Fourier coefficients are hard to compute (♯P-complete). It is natural to ask in view of Theorem 8.5:
How hard is it to compute a basis of modular forms? Since many number theoretically interesting
sequences of integers appear as Fourier coefficients of modular forms this is an important question
to ask. The belief seems to be that there can be no general algorithm that can compute these
Fourier coefficients efficiently. For example, factoring integers of the form n = pq (RSA moduli)
reduces to computing the Ramanujan Tau function which gives the Fourier coefficients of ∆ a cusp
form [BaC05]. It is not clear at all whether computing τ(n) is only as hard as factoring. Another
avenue of research is to look at the problem of approximating ϑL(d) or computing ϑL(d) modulo a
fixed prime p.
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