ON WIEFERICH PRIMES

DENIS XAVIER CHARLES

ABSTRACT. A non-Wieferich prime is a prime p for which 2P—! # 1 mod p2. We show that the problem
of showing that there are infinitely many non-Wieferich primes is equivalent to proving lower bounds on
the squarefree part of cyclotomic polynomials. This precisely identifies the difficulty in proving that the set
of non-Wieferich primes is infinite.

1. INTRODUCTION

A theorem of Fermat says that aP~' = 1 mod p for every prime p and a relatively prime to p. A question
that goes back to Abel is to find primes p for which aP~! = 1 mod p? for some a relatively prime to p.
Given a > 2 consider the two sets {p | a?~' =1 mod p?,p a prime} and {p | aP~' # 1 mod p?,p a prime}.
It is still open whether each of these sets of primes is infinite. This is a frustrating situation given that
we know that at least one of these sets must be infinite. Interest in these primes increased after Wieferich
[Wie09] showed that if p is a prime for which 2P~ ! # 1 mod p?, then the first case of Fermat’s last theorem
holds for exponent p. It is now known that up to 5 x 10'* the primes 1093 and 3511 are the only ones
for which 2°P~! = 1 mod p?. In 1988, Silverman [Sil88] showed assuming the ABC-conjecture that there
are infinitely many non-Wieferich primes. Silverman’s approach was to use the ABC-conjecture to find
cyclotomic polynomials with non-trivial squarefree part. In this article, we show that in some sense this the
only way to prove there are infinitely many non-Wieferich primes. In the next section we formally state and
prove our result. Qur proof relies on a key lemma of Silverman.

2. CYCLOTOMIC POLYNOMIALS AND NON-WIEFERICH PRIMES

We fix the following notation. If n is a non-zero integer, set

Omn) = H p.

ord, (n)=1

So that for any integer n if p | (n/0(n)) then p? | (n/O(n)).
Our main result is the following theorem:
Theorem 2.1. Let

W={p|2"""#£1 modp?}

C={m|O(dm(2)) >m},
where G (x) s the m-th cyclotomic polynomial. Then the set W 1is infinite if and only if the set C is
infinite.
We need the following key lemma of Silverman ([Sil88] Lemma 3):

Lemma 2.2. Ifp is an odd prime such thatp }n and suppose p | &n(2) and p> / $n(2). Then the
order of 2 in the multiplicative group (Z/pZ)* is exactly n and 2P~ # 1 mod p2.

Proof : Since ¢(2) =0 mod p and ¢ (2) divides 2™ — 1 we have that 2" — 1 = 0 mod p. So the order
of 2 mod p is a divisor of n. We argue that the order is exactly n. Let f(x) =x™ — 1 € (Z/pZ)[x]. Now
f'(x) =nx™"1 #£0 modp (asp fn), and ged(f(x),f’(x)) = 1. So the polynomial f(x) = Hd‘n da(x) has
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no repeated roots in the finite field Z /pZ. Hence ¢4(2) # 0 mod p for any proper divisor of n. Thus the
order of 2 mod p is exactly n.

Now since p divides ¢, (2) only to the first power, we have 2™ # 1 mod p?. Thus 2™ = 1 + kp where k is

P

not divisible by p. By the binomial theorem 2P~ = (1 + k'p)T] =1+ w #1 mod p2. O

Now we can prove the main theorem.
Proof :(of Theorem 2.1) Suppose that the set W is infinite, we argue that C must be infinite.
Let ¢ € W. By definition we have 29! =1 mod q and 29! # 1 mod q%. Then by the factorization of
the polynomial x9~! — 1 we get
297 1= [] ¢al2.
dlg—1
Thus we get a d such that $4(2) = 0 mod q but ¢4(2) # 0 mod q2. Since d is a divisor of g — 1 in

particular we have d < q. Thus O($4(2)) > q > d. Now since ¢ (2) < 2™ — 1 are bounded we get
infinitely many integers m which are in C.

Conversely, assume that the set C is infinite. Let m € C, then O(¢$m(2)) > m, also ¢ (2) is odd. Since
O(¢pm(2)) > m and squarefree, we can find an odd prime p that divides (¢, (2)) and not m. Thus by
Lemma 2.2 we get that p is a Wieferich prime. Suppose q | O($n(2)) and q | O(dm/(2)) then m is the
order of 2 mod q (by Lemma 2.2), but this is the same as m’ which means m = m’. Thus we get infinitely
many non-Wieferich primes and the set W is infinite. O
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