ON WIEFERICH PRIMES

DENIS XAVIER CHARLES

ABSTRACT. A non-Wieferich prime is a prime p for which $2^{p-1} \not\equiv 1 \mod p^2$. We show that the problem of showing that there are infinitely many non-Wieferich primes is equivalent to proving lower bounds on the squarefree part of cyclotomic polynomials. This precisely identifies the difficulty in proving that the set of non-Wieferich primes is infinite.

1. Introduction

A theorem of Fermat says that $a^{p-1} \equiv 1 \mod p$ for every prime p and a relatively prime to p. A question that goes back to Abel is to find primes p for which $a^{p-1} \equiv 1 \mod p^2$ for some a relatively prime to p. Given $a \geq 2$ consider the two sets $\{p \mid a^{p-1} \equiv 1 \mod p^2, p \text{ a prime}\}$ and $\{p \mid a^{p-1} \not\equiv 1 \mod p^2, p \text{ a prime}\}$. It is still open whether each of these sets of primes is infinite. This is a frustrating situation given that we know that at least one of these sets must be infinite. Interest in these primes increased after Wieferich [Wie09] showed that if p is a prime for which $2^{p-1} \not\equiv 1 \mod p^2$, then the first case of Fermat's last theorem holds for exponent p. It is now known that up to 5×10^{14} the primes 1093 and 3511 are the only ones for which $2^{p-1} \equiv 1 \mod p^2$. In 1988, Silverman [Sil88] showed assuming the ABC-conjecture that there are infinitely many non-Wieferich primes. Silverman's approach was to use the ABC-conjecture to find cyclotomic polynomials with non-trivial squarefree part. In this article, we show that in some sense this the only way to prove there are infinitely many non-Wieferich primes. In the next section we formally state and prove our result. Our proof relies on a key lemma of Silverman.

2. CYCLOTOMIC POLYNOMIALS AND NON-WIEFERICH PRIMES

We fix the following notation. If n is a non-zero integer, set

$$\square(\mathfrak{n}) = \prod_{\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})=1} \mathfrak{p}.$$

So that for any integer n if $p \mid (n/\square(n))$ then $p^2 \mid (n/\square(n))$. Our main result is the following theorem:

Theorem 2.1. Let

$$W = \{p \mid 2^{p-1} \not\equiv 1 \mod p^2\}$$

 $C = \{m \mid \Box(\varphi_m(2)) > m\},$

where $\phi_m(x)$ is the m-th cyclotomic polynomial. Then the set W is infinite if and only if the set C is infinite.

We need the following key lemma of Silverman ([Sil88] Lemma 3):

Lemma 2.2. If p is an odd prime such that p / n and suppose p | $\phi_n(2)$ and p^2 / $\phi_n(2)$. Then the order of 2 in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$ is exactly n and $2^{p-1} \not\equiv 1 \mod p^2$.

Proof: Since $\phi_n(2) \equiv 0 \mod p$ and $\phi_n(2)$ divides $2^n - 1$ we have that $2^n - 1 \equiv 0 \mod p$. So the order of 2 mod p is a divisor of n. We argue that the order is exactly n. Let $f(x) = x^n - 1 \in (\mathbb{Z}/p\mathbb{Z})[x]$. Now $f'(x) = nx^{n-1} \neq 0 \mod p$ (as $p \neq n$), and gcd(f(x), f'(x)) = 1. So the polynomial $f(x) = \prod_{d \mid n} \phi_d(x)$ has

Date: 19 Nov 2002.

no repeated roots in the finite field $\mathbb{Z}/p\mathbb{Z}$. Hence $\phi_d(2) \not\equiv 0 \mod p$ for any proper divisor of n. Thus the order of 2 mod p is exactly n.

Now since p divides $\phi_n(2)$ only to the first power, we have $2^n\not\equiv 1\mod p^2$. Thus $2^n=1+kp$ where k is not divisible by p. By the binomial theorem $2^{p-1}=(1+kp)^{\frac{p-1}{n}}=1+\frac{kp(p-1)}{n}\not\equiv 1\mod p^2$. \square

Now we can prove the main theorem.

Proof: (of Theorem 2.1) Suppose that the set W is infinite, we argue that C must be infinite. Let $q \in W$. By definition we have $2^{q-1} \equiv 1 \mod q$ and $2^{q-1} \not\equiv 1 \mod q^2$. Then by the factorization of the polynomial $x^{q-1} - 1$ we get

$$2^{q-1}-1=\prod_{d|q-1}\varphi_d(2).$$

Thus we get a d such that $\phi_d(2) \equiv 0 \mod q$ but $\phi_d(2) \not\equiv 0 \mod q^2$. Since d is a divisor of q-1 in particular we have d < q. Thus $\Box(\phi_d(2)) \geq q > d$. Now since $\phi_m(2) \leq 2^m - 1$ are bounded we get infinitely many integers m which are in C.

Conversely, assume that the set C is infinite. Let $m \in C$, then $\Box(\varphi_m(2)) > m$, also $\varphi_m(2)$ is odd. Since $\Box(\varphi_m(2)) > m$ and squarefree, we can find an odd prime p that divides $\Box(\varphi_m(2))$ and not m. Thus by Lemma 2.2 we get that p is a Wieferich prime. Suppose $q \mid \Box(\varphi_m(2))$ and $q \mid \Box(\varphi_{m'}(2))$ then m is the order of 2 mod q (by Lemma 2.2), but this is the same as m' which means m = m'. Thus we get infinitely many non-Wieferich primes and the set W is infinite. \Box

REFERENCES

[Sil88] Silverman, J; Wieferich's Criterion, J. Number Theory, 30, 226-237, (1988).
[Wie09] Wieferich, A.; Zum letzten Fermat'schen Theorem, J. Reine Angew. Math. 136, 293-302, (1909).