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CHAPTER 1
IntroductionJe vais essayer de dresser une liste des onjetures (ou \questions") que l'on peut faire dans la di-retion \formes modulaires - repr�esentations galoisiennes".Si f est une forme modulaire mod p sur Γ0(N), de poids k, fontion propre des op�erateurs de Heke

Tp ′ , pour p ′ ne divisant pas N, et �a oeÆients dans Fp, je noterai ρf la repr�esentation de Gal(Q/Q)�a valeurs dans GL2(Fp) orrespondant �a f. Et je dirai qu'une telle repr�esentation est \modulaire"; etje dirai aussi, si j'en ai besoin, qu'elle est \de niveau N et de poids k". La question la plus ambitieuseque l'on pourrait se poser serait de donner un rit�ere portant sur une repr�esentation
ρ : Gal(Q/Q) −→ GL2(Fp)qui permette d'aÆrmer que ette repre�esentation est bien modulaire de niveau N et de poids k. J'yreviendrai �a la �n de ette lettre. Pour l'instant, je vais me onentrer sur les probl�emes que pose lepoids 2. C'est e dont on a besoin, si l'on veut prouver que \Weil + ǫ⇒ Fermat".Serre, in a letter to Mestre, dated 13 August, 1985.The work of Eihler and Shimura showed that for ertain usp forms of weight 2 and level N,we an assoiate 2-dimensional Galois representations over a �nite �eld. This was generalizedby Deligne [Del69, DeS74℄ to show that assoiated to every newform in Sk(Γ0(N), ǫ) we anassoiate a Galois representation. Serre posed in 1975 the onverse problem, of showing thatertain 2-dimensional Galois representations over a �nite �eld do indeed ome from modular forms([Ser75℄). In the 1980s, Gerhard Frey had the idea that if Fermat's Last theorem was false, thenthis gives rise to an ellipti urve with strange properties, in partiular he suspeted that suh aurve annot be modular, thereby ontraditing a onjeture of Shimura and Taniyama. With aview toward making this onnetion expliit, Serre set out to formulate his onjeture very preisely(alled Serre's strong onjeture), whih he aomplished in 1987 [Ser87℄. Serre showed that aounter-example to Fermat's last theorem, gives a ontradition to this preise formulation of hisonjeture. A sequene of further developments showed that the Shimura-Taniyama onjetureimplies Fermat's last theorem, this result was proved by Ribet [Rib90℄ (this is the ǫ referred to inthe above letter to Mestre). The onnetion to Fermat's Last theorem is explained in greater detailin [Bos03℄. This onjeture of Serre remains a fundamental open problem in Number theory. Herewe will be onerned mainly with the mehanis of the formulation of the onjeture and presentsome (paltry) evidene for it.

1.1. The statement of the conjectureThe weak form of Serre's onjeture is the following statement:7



Weak Conjecture: Let GQ = Gal(Q/Q) be the absolute Galois group. Suppose we are givena ontinuous representation:
ρ : GQ → GL2(Fℓ)suh that ρ is irreduible and satis�es det ρ(c) = −1, where c ∈ GQ is omplex onjugation.Then there is a uspidal eigenform f, for some ongruene subgroup, suh that for all but�nitely many primes p, Tr ρ(Frobp) = ϕ(ap(f)). Here ap(f) is the p-th Fourier oeÆient of

f and ϕ : Q(· · · , ap(f), · · · )→ Fl is a ring homomorphism.The strong version of the onjeture gives a reipe for the spae Sk(Γ0(N), ǫ) where the form f inthe above onjeture resides.
Strong Conjecture: With the same hypothesis as the Weak Conjeture. There is a uspidaleigenform f ∈ Sk(Γ0(N), ǫ) that satis�es the onlusions of the Weak Conjeture, where k,N, ǫare desribed in the following sub-setions.Remark 1.1.1. We will restrit ourselves to the ase where ℓ > 2. For the ase ℓ = 2 the originalreipe of Serre, needs to be modi�ed so we simply ignore this ase (see [Edi92℄).In the following setions we give basi de�nitions of the level and the harater, but we give thevalue of the weight k only mod ℓ − 1. The de�nition of the atual weight is quite ompliatedand we relegate it to the hapter that onerns itself with aspets of the weight.We will adopt the following notations. Let V be a 2-dimensional vetor spae over Fℓ. We are givena ontinuous homorphism

ρ : GQ −→ GL(V).The group GL(V) is disrete, so ker ρ = ρ−1(I) is open. Thus ker(ρ) is of �nite index in GQ (asthese are the open sets of the pro�nite group GQ), and so the representation fators through a�nite extension of Q. This also says that the image of ρ is a �nite group, so it lies in GL(Fℓn) fora suitable n.
1.1.1. Definition of the level N. The integer N is simply the prime to ℓ part of the Artinondutor of the representation ρ (f. [Art30, Ser79℄). More preisely, let Gal(Qp/Qp) bethe absolute Galois group of the p-adi ompletion of Q. There is an injetion Gal(Qp/Qp) →֒Gal(Q/Q). This group omes with a �ltration G0 ⊇ G1 ⊇ G2 ⊇ · · · | the inertia subgroups (in theupper numbering sheme f. [Bos03℄ Chapters 3 & 5 or [Ser79℄). Let Vi = VGi be the subspaes�xed by Gi. Set

n(p, ρ) =
∑

0≤i

1

[G0 : Gi]
dimV/Vi.(1.1.1)This an also be written as

n(p, ρ) = dimV/V0+ Swan(V)where Swan(V) is the Swan ondutor of the G0-module V . Serre alls Swan(V) the \wild invariant"([Ser78℄ x19.3).We note the following properties: 8



(1) n(p, ρ) ≥ 0 is an integer (see Chapter 3).(2) n(p, ρ) = 0 i� G0 = {1}, simply beause eah term is non-negative in (1.1.1). If G0 = {1},we all the representation unrami�ed at p.(3) n(p, ρ) = dimV/V0 if and only if G1 = {1}. If G1 = {1}, the representation is said to betamely rami�ed at p.Now the level N is de�ned by
N

⊲

=
∏

ℓ6=p

pn(p,ρ).The \integer" de�ned above is an honest to God integer sine n(p, ρ) 6= 0 only for �nitely manyprimes p. This is essentially beause the representation fators through a �nite extension whih isrami�ed only at �nitely many primes.
1.1.2. Definition of the Character ε and k mod ℓ − 1. Taking the determinant of therepresentation ρ gives us a 1-dimensional representation, whih we study to pik out the harater.We have det ρ : GQ → GL(F

∗
ℓ),its image is a �nite yli subgroup of F

∗
ℓ of order prime to ℓ. Suppose the representation weremodular (and we believe the reipe for N is the orret one) then omparing with the Deligne'stheorem (Chapter 2), we �nd that the ondutor of det ρ should be a divisor of ℓN. Thus det ρan be identi�ed with a homomorphism (Z/ℓNZ)∗ → F

∗
ℓ. By the Chinese remainder theorem, thisis equivalent (sine ℓ 6 | N) to giving a pair of homomorphisms:

ϕ : (Z/ℓZ)∗ → F
∗
ℓand

ε : (Z/NZ)∗ → F
∗
ℓ.Sine (Z/ℓZ)∗ is yli of order ℓ − 1, this homomorphism is of the form x 7→ xh for some h ∈

Z/(ℓ− 1)Z. So it an be written as ϕ = χh where χ : GQ → F∗
ℓ is the ℓ-th ylotomi harater i.e.,the harater that gives the ation on GQ on the ℓ-th roots of unity in Q. Again omparing withDeligne's presription shows that h ≡ k − 1 mod ℓ − 1. This gives us the lass of k mod ℓ − 1.Giving the exat value of k is muh more involved, and again involves the ation of ρ at loal p-thdeomposition groups.

1.2. Representations from Elliptic CurvesIn ase we know that the representation arises from an ellipti urve over Q, we an show thatSerre's onjeture is true. Let E/Q be an ellipti urve. Suppose ℓ is a prime (not dividing theondutor NE of E) and E[ℓ] denotes the points on E(Q) of ℓ-torsion. This is a subgroup of Eisomorphi to (Z/ℓZ)× (Z/ℓZ). If σ ∈ GQ and P ∈ E[ℓ] then so is Pσ. This gives us a 2-dimensionalvetor spae over a �nite �eld Fℓ on whih GQ ats ontinuously. Thus E gives rise to a Galoisrepresentation:
ρE,ℓ : GQ → Aut(E[ℓ]) ∼= GL2(Fℓ).9



Suppose p 6 | NEℓ is a prime then ρE,ℓ is unrami�ed at p as the redution mod p map on thepoints of ℓ torsion is injetive for these primes. For suh primes ρ(Frobp) is well de�ned uptoonjugation and its trae Tr ρ(Frobp) is well de�ned. It is known that Tr ρ(Frobp) = ap mod ℓ,where ap = p+1−♯~E(Fp). By the theorem of Breuil, Conrad, Diamond and Taylor following Wiles'work we know that there is a weight 2 usp form of level NE whose p-th Fourier oeÆient is ap(f. [BCDF00, Wil95, TWi95℄). Thus Serre's onjeture is true for suh Galois representations.
1.3. Outline of the rest of the ArticleIn Chapter 2 we disuss the Eihler-Shimura onstrution whih onerns itself with produingGalois representations given a usp form. Chapter 3 takes up the task of motivating and larifyingthe de�nition of the level reipe given by Serre. In partiular we shall see a result of Carayoland Livn�e that says that if at all the representation is modular then the level of suh a form isa multiple of the one given by Serre's reipe. Chapter 4 gives the full de�nition of the weight inSerre's onjeture. Throughout these two hapters we also disuss the level and weight optimizationideas and results whih led to the proof that the Weak onjeture implies the Strong onjeture if

ℓ > 2. The last hapter gives some idea about the proof that Serre's onjeture is true if the imageof the representation is in GL2(F3), an important result whih plays a ruial role in the work ofWiles.
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CHAPTER 2
The Eichler-Shimura constructionSerre's onjeture states that ertain 2-dimensional Galois representations over �nite �elds arisefrom modular forms. In this hapter we shall onsider the other diretion, where we start with amodular form and try to onstrut a Galois representation that is assoiated to it (in the sense ofthe previous hapter). The �rst avatar of this idea was in the onstrution of Eihler and Shimurawho showed how to onstrut suh a representation given a newform in S2(Γ0(N)). A general on-strution of suh representations from newforms in Sk(Γ0(N), ǫ) remained a thorny open problemresisting several attaks [Iha67, KSh65, Ser67℄, until in a brilliant paper by Deligne [Del69℄ theonstrution for Sk(Γ0(N)) for k ≥ 2 was solved. In subsequent papers [DeS74, Car86℄ all theremaining ases were worked out. The omplete aount of the whole proof with all the details isavailable in the Conrad's book [Con99℄.We will restrit our study to the weight 2 ase, i.e., the Eihler-Shimura onstrution. Reall thebasi steps involved ([Bos03℄ Chapter 4): We are given a newform f ∈ S2(Γ0(N)) whih in parti-ular is an eigenform for the Heke algebra T. This gives us a paket of data ap for eah p prime,where f =

∑
1≤nanq

n and ap is the p-th oeÆient. Sine f is a newform, its fourier oeÆientsare algebrai integers and K = Q(· · · , an, · · · ) is a �nite extension. Let Of be the ring of integersof K. Given a prime ℓ, let λ be a prime lying over ℓ in K and let Kλ be the ompletion of K atthe plae λ. Our task is to engineer a ontinuous representation ρλ : Gal(Q/Q) → GL2(Kλ) suhthat Tr ρ(Frobp) = ap for all but �nitely many primes p. We will �rst onstrut a GQ-module.Our beginning observation is that if ω ∈ S2(N)
⊳

= S2(Γ0(N)) then ω is a holomorphi di�erentialform on X0(N) = (h/Γ0(N))∗. Let C1, · · · , C2g be generators for H1(X0(N),Z) as a free abeliangroup (g is the genus of X0(N)). Let V = Hom(S2(Γ0(N)),C). The map that sends C ∈ H1(X,Z)to V giving the map ω 7→
∫
C
ω has disrete image, a subgroup of Cg i.e., a lattie Λ of rank

2g. The quotient V/Λ is alled the Jaobian of X0(N) whih we denote J0(N). The desription of
J0(N) as this quotient makes it easy to see that it is an abelian variety. Hene, it omes with themultipliation by ℓn maps (whih we denote [ℓn]) and we an look at the orresponding torsionsubgroups J0(N)[ℓn] = {P : [ℓn]P = 0}. Pathing these together we get the ℓ-adi Tate moduleof J0(N), Tℓ(J0(N)) = lim

←
J0(N)[ℓn] ∼= Z

2g
ℓ . J0(N) being de�ned over Q with the multipliationmaps also de�ned over Q gives us a module on whih GQ ats. We annot use this module forde�ning our Galois representation as it has rank 2g and not 2. Here omes a miraulous fat: ifwe set W ⊲

= Tℓ(J0(N)) ⊗Zℓ Qℓ then as a T ⊗Z Qℓ-module this is rank 2. Where the Heke oper-ators at on Div0(X0(N)) and preserve prinipal divisors (and hene at on the degree 0 portionof the Piard group whih is J0(N)) by extending Tm[z] =
∑

[αiz] linearly, where αi runs throughmatries (a b

0 d

), ad = N,d > 0, gd(a,N) = 1 and 0 ≤ b < d. This yields a representation11



GQ → GL2(T ⊗Z Qℓ). Sine f is a newform, the map T → Of given by Tp → ap is a ring homo-morphism alled the eigenharater of f. Composing the representation with the eigenharaterwe get a representation GQ → GL2(Of⊗ Qℓ) ∼= GL2(∏λ′ Kλ′) where λ ′ runs over primes above ℓ.Mapping onto the λ-th fator gives us the representation ρλ : GQ → GL2(Kλ). There still remainsthe task of showing that this is the required representation, namely has trae of Frobenius at pequal to the ap. This is atually hard and we will only outline the proof in the following setions.Our desription of the Eihler-Shimura onstrution follows the elegant exposition in [RiS01℄ byConrad and Chapter 3 in [Con99℄. In what follows we shall use the moduli spae X1(N) instead of
X0(N) whih parametrizes ellipti urves with a hosen point of exat order N. Sine we are onlygiving a detailed overview, we shall skip the many ompatibility heks that must be performedbetween the analyti theory, algebrai geometry and the theory of modular forms.

2.1. The Analytic SideLet N ≥ 5 be an integer and let X1(N)an denote the ompati�ation of the urve Y1(N)an =

Γ1(N)\H, where
Γ1(N)

⊲

=

{(
1 ∗
0 1

) mod N} ⊆ SL2(Z).For N < 5, X1(N)an has genus 0 and dimS2(Γ1(N)) = 0 so there is no loss of generality in ourassumption that N ≥ 5. Now S2(Γ1(N)) is the spae of holomorphi di�erential 1-forms on X1(N)and in terms of ohomology this says
H0(X1(N),Ω1,holX1(N)an) ∼= S2(Γ1(N)).The Hodge deomposition for the ompat K�ahler manifold X1(N)an says that:

H1(Xan1 ,Z) ⊗Z C ∼= H1(Xan1 ,C)

∼=
⊕

p+q=1

Hp,q(X1(N)an)

= H1,0(X1(N)an) ⊕H0,1(X1(N)an)

= H0(X1(N)an,Ω1,holX1(N)an) ⊕H0(X1(N)an,Ω
1,hol
X1(N)an)

= S2(Γ1(N)) ⊕ S2(Γ1(N))(the notation A for an abelian group A refers to the onstant sheaf assoiated to A). This isalled the weight-2 Shimura Isomorphism. We know that the Heke operators at on the spae
S2(Γ1(N)), we would like to onstrut geometri operations on X1(N)an whih indue ations on
H1(Xan1 (N),Z) that under the isomorphism orrespond to the Heke operators. We would like toshow that the geometri operations that we onstrut are \natural", this entails understanding
X1(N)an as a ertain moduli spae, whih then omes naturally with some maps.Let z ∈ H, assoiate to this point the ellipti urve given by the omplex analyti desription
Ez = C/[1, z] and 1/N is a point of exat order N on Ez. Under the ation of (a b

c d

)

∈ Γ1(N)a lattie L = [ω1,ω2] is sent to L ′ = [ω ′
1,ω

′
2] where ω ′

1 = aω1 + bω2,ω
′
2 = cω1 + dω2. Sine12



c ≡ 0 mod N and d ≡ 1 mod N, we get ω ′
2 ≡ ω2 mod NL or in other words 1

N
ω ′
2 ≡ 1

N
ω2mod L, sine (a b

c d

)

∈ SL2(Z) the two latties are the same, and this shows that points of ex-at order N get sent to points of exat order N. Thus the assoiation of the ellipti urve Ezto z ∈ H shows that we an identify Y1(N)an as the set of isomorphism lasses (E, P) onsistingof an ellipti urve E/C and a point P ∈ E of exat order N. Now onsider the intrinsi map
Y1(N)an→ Y1(N)an given by (E, P) 7→ (E,nP) where n ∈ (Z/NZ)∗, this is given by the ation ofany matrix γn ∈ SL2(Z), γn ≡

(

n−1 ∗
0 n

) mod N on Y1(N)an. The ation of γn extends to anation on X1(N)an whih we denote In.There is another map indued by the involution z 7→ −1
Nz

on H this extends to a map wN :

X1(N)an→ X1(N)an. There is a generalization of this map whih we give oneptually as follows:Let 〈 , 〉N be the Weil pairing on N-torsion points on an ellipti urve E (with sign onventionas in [Mum70℄ Chapter IV, x20). Then given ζ ∈ µN(C) a primitive N-th root of unity, de�nethe map ωζ that sends the pair (E, P) to (E/〈P〉, P ′ mod P) where P ′ ∈ E has exat order N and
〈P ′, P〉N = ζ. Thus we have indued maps on the ohomology:

w∗
ζ, I

∗
n : H1(X1(N)an,Z)→ H1(X1(N)an,Z),we will write 〈n〉∗ instead of I∗n.Let p be a prime and de�ne Γ1(N,p) = Γ1(N) ∩ Γ0(p) when p 6 | N and Γ1(N,p) = Γ1(N) ∩ Γ0(p)twhen p | N where Γ0(p)t is the transpose of Γ0(p). De�ne Y1(N,p)an to be Γ1(N,p)\H and set

Xan1 (N,p) to be the ompati�ation of Y1(N,p)an. By the maps
z 7→

(

C/[1, z],
1

N
, 〈1
p
〉
)when p 6 | N and

z 7→
(

C/[1, z],
1

N
, 〈 z
p
〉
)when p | N, we an identify Y1(N,p)an as the set of isomorphism lasses of (E, P,C) where E is anellipti urve, P a point of exat order N and C ⊆ E is a yli subgroup of order p, meeting 〈P〉trivially.There are unique analyti maps orresponding to the following oneptual maps: π

(p)
1 , π

(p)
2 :

X1(N,p)
an→ X1(N,p)

an, given by π(p)
1 (E, P,C) = (E, P) the \forgetful" map, and π(p)

2 (E, P,C) =

(E/C, P mod C). We get a pullbak map on ohomology by
(π

(p)
2 )∗ : H1(X1(N)an,Z)→ H1(X1(N,p),Z).The map π(p)

1 is a �nite holomorphi map and we an take the trae ([GrH78℄ Chapter 5) to de�nethe map (π
(p)
1 )∗ : H1(X1(N,p),Z)→ H1(X1(N)an,Z). De�ne

T∗p = (π
(p)

1 )∗ ◦ (π
(p)

2 )∗ : H1(X1(N)an,Z)→ H1(X1(N)an,Z).13



The following ompatibility theorem whose general form is given as Proposition 3.18, 3.19 in[Del69℄ states:Theorem 2.1.1. The weight-2 Shimura isomorphism
ShΓ1(N) : S2(Γ1(N)) ⊕ S2(Γ1(N)) ∼= H1(X1(N)an,Z) ⊗Z Cidenti�es 〈n〉 ⊕ 〈n〉 with 〈n〉∗ ⊗ 1, Tp⊕ Tp with T∗p⊗ 1 and wN⊕wN with w∗

e2πı/N
⊗ 1.Let T1(N) ⊆ EndZ(H1(X1(N)an,Z)) be the subring generated by the T∗p and 〈n〉∗, Theorem 2.1.1shows that via the Shimura isomorphism this is identi�ed with the lassial weight-2 Heke opera-tors of level N.There is another ompatibility between the up produt on H1(X1(N),Z) and the Petersson salarprodut on S2(Γ1(N)). For f, g ∈ S2(Γ1(N)) de�ne

〈f, g〉Γ1(N) =

∫

Γ1(N)\H

f(z)g(z)dxdy.Sine X1(N)an is a urve we have that H2(X1(N)an,Z) ∼= Z. The up produt on ohomology givesus another pairing
( , )Γ1(N) : H1(X1(N)an,Z) ⊗Z H

1(X1(N)an,Z)→ H2(X1(N)an,Z) ∼= Z.After base hange to C, this pairing enjoys the following ompatibility:Theorem 2.1.2. Under the weight-2 Shimura isomorphism ShΓ1(N) we have
(ShΓ1(N)(f1+ g1), ShΓ1(N)(f2+ g2))Γ1(N) = 4π(〈f1, g1〉Γ1(N) − 〈f2, g2〉Γ1(N)).Set [x, y]Γ1(N) = (x,w∗

ζy)Γ1(N) with ζ = e2πı/N. Then we get the following orollary of Theorem2.1.2Corollary 2.1.3. The ation of T1(N) on H1(X1(N)an,Z) is equivariant with respet to thepairing [·, ·]Γ1(N), i.e.,
[x, Ty]Γ1(N) = [Tx, y]Γ1(N)for all T ∈ T1(N). With respet to ( , )Γ1(N), the adjoint of T∗p for p 6 | N is 〈p−1〉∗T∗p and theadjoint of 〈n〉∗ is 〈n−1〉∗ for n ∈ (Z/NZ)∗.Now we fous our attention on the Jaobian with a view towards reformulating our maps withrespet to it. For any ompat Riemann surfae X, we have an isomorphism of omplex Lie groupsPi0X ∼= H1(X,OX)/H

1(X,Z). If f : X→ Y is a �nite map between ompat Riemann surfaes, thenwe get a natural trae map
f∗ : H1(X,OX) ∼= H1(Y, f∗OX)→ H1(Y,OY).14



It turns out that this trae map is ompatible with the other trae map enountered earlier. Givenany �nite map f : X→ Y gives rise to the following ommutative diagrams:
H1(Y,OY)

f∗
// H1(X,OX)

H1(Y,Z)
f∗

//

OO

H1(X,Z)

OO

H1(X,OX)
f∗

// H1(Y,OY)

H1(X,Z)
f∗

//

OO

H1(Y,Z)

OOwith the olumn maps indued by the anonial maps Z→ OY and Z→ OX.Passing to quotients on the olumns gives rise to the maps
f∗ : Pi0Y → Pi0X, f∗ : Pi0X→ Pi0Yof analyti Lie groups. It turns out that these maps are preisely those indued by Pi0 andAlbanese funtoriality ([GrH78℄, Chapter 2 x6), so that f∗ = Pi0(f) and f∗ = Alb(f). Now wede�ne endomorphisms of the Jaobian Pi0X1(N)an via

T∗p = Alb(π
(p)
1 ) ◦ Pi0(π(p)

2 ), 〈n〉∗ = Pi0(In), w∗
ζ = Pi0(wζ)

(Tp)∗ = Alb(π
(p)

2 ) ◦ Pi0(π(p)

1 ), 〈n〉∗ = Alb(In), (wζ)∗ = Alb(wζ).Taking the ℓ-adi Tate module of the Jaobian, we �nd:
Tℓ(Pi0X1(N)an) ∼= H1(X1(N)an,Zℓ)(2.1.2)

∼= H1(X1(N)an,Z) ⊗Z Zℓ.(2.1.3)Thus our struggle has given us the Tate module of an abelian variety on whih our Heke operatorsat by the Shimura isomorphism. We do not yet have a Galois ation, this is the subjet of thenext setion. We thus have that T1(N) ats on Pi0X1(N) in a unique manner ompatible with theabove de�nition, and (2.1.2) is an isomorphism of T1(N) ⊗Z Zℓ-modules.Let Vℓ(N) = Qℓ ⊗Zℓ Tℓ(Pi0X1(N)an) this omes with a perfet alternating Weil pairing ( , )ℓ :

Vℓ(N) ⊗ Vℓ(N) → Qℓ and has two Qℓ ⊗ T1(N)-ations oming from the ()∗ and ()∗ ations. As
w−1
ζ = wζ we �nd that (wζ)∗ = w∗

ζ, and we write wζ for this operator.Theorem 2.1.4. Let T1(N) at on Vℓ(N) with respet to the ()∗-ation or with respet to the
()∗-ation. With respet to ( , )ℓ, the adjoint of Tp for p 6 | N is 〈p〉−1Tp and the adjoint of
〈n〉 is 〈n〉−1 for n ∈ (Z/NZ)∗. With respet to [x, y]ℓ = (x,wζ(y))ℓ for ζ ∈ µN(C) a primitive
Nth root of unity, the ation of T1(N) on Vℓ(N) is self-adjoint. In general, adjointness withrespet to ( , )ℓ interhanges the ()∗ and ()∗ ations.We �nally ome to the following important orollary:Corollary 2.1.5. The Qℓ ⊗Z T1(N)-module Vℓ(N) is free of rank 2 for either ation andHomQ(Q ⊗Z T1(N),Q) is free of rank 1 over Q ⊗Z T1(N).
Proof :(Sketch) We sketh the proof of the �rst assertion, whih by (2.1.2) redues to showing
H1(X1(N)an,Q) is free of rank 2 over Q ⊗Z T1(N). Using [ , ]Γ1(N), we see that

H1(X1(N)an,Q) ∼= HomQ(H1(X1(N)an,Q),Q)15



as Q ⊗Z T1(N)-modules. A series of redutions shows that it suÆes to show thatHomC(H1(X1(N)an,C),C)is free of rank 2 over T1(N) ⊗Z C. Now by the Shimura isomorphism whih is ompatible withHeke ations, this is redued to showing that Hom(S2(Γ1(N)),C) is free of rank 1 over C⊗Z T1(N).For this, we study the C ⊗ T1(N)-equivariant C-bilinear pairing
S2(Γ1(N),C) ⊗C (C ⊗ T1(N))→ Cby (f, T) 7→ a1(Tf), where an(·) is the n-th Fourier oeÆient. This is C ⊗ T1(N)-equivariant, as

T1(N) is ommutative. We verify that the kernel on either side is trivial. The map C ⊗ T1(N) →EndC(S2(Γ1(N))) is injetive. Now suppose (f, T) = 0 for all T then sine (f, Tn) = a1(Tn(f)) =

an(f) = 0 we see that f = 0 so there is no kernel on the left. Now if (f, T) = 0 for all f, thenapplying this to Tnf, we see that a1(T(Tnf)) = an(Tf) = 0 showing that Tf = 0 or that T is 0 bythe injetion of the Heke algebra into EndC(S1(Γ1(N))). �

2.2. The Algebraic SideThis setion will be more skethy as a proper disussion of it needs a good understanding of shemetheoreti methods. The aim now given the work we did in the previous setion, is to endow Vℓ(N)with a Galois ation, and �nally tie up the relation between the Frobenius ation and geometriHeke ation under the representation that we get. It is known that for N ≥ 5, we an produe aproper smooth Z[ 1
N

]-sheme X1(N) equipped with a \nie" map to P1
Z[ 1
N

]
, suh that an open sub-sheme Y1(N) lying above the aÆne piee P1

Z[ 1
N

]
− {∞} is the base of a universal objet for elliptiurves with a point of exat order N over variable Z[ 1

N
]-shemes [KaM85℄. The point is that basehange of this sheme X1(N) upto C reovers X1(N)an with the isomorphism arrying the modulidata ompatibly. Similarly one de�nes X1(N,p) now a proper smooth Z[ 1

Np
] sheme, whose basehange to C reovers X1(N,p)an.Analogous to the previous setion, we an de�ne the maps 〈n〉∗, 〈n〉∗,w∗

ζ, T
∗
p, (Tp)∗, it turns out asbefore that w∗

ζ = (wζ)∗. Analytization then reovers the same operators that we de�ned earlier.Let T
alg
1 (N) be the subring of End(Pi0X1(N)) generated by T∗p and 〈n〉∗. It turns out that T

alg
1 (N)is identi�ed with T1(N) de�ned earlier bylim

←
Pi0

X1(N)/Z[ 1
N

]
[ℓn](Q) ∼= Tℓ(Pi0X1(N)an).(2.2.4)Now this gives our Vℓ(N) with a anonial ontinuous Galois ation! By N�eron-Ogg-Shafarevih([SeT68℄ Theorem 1) we have that this ation is unrami�ed at all p 6 | Nℓ. We summarize ourprogress in this lemma:Lemma 2.2.1. Let T1(N) at on Vℓ(N) through either the ()∗-ation on ()∗-ation. Then

ρN,ℓ : GQ → Aut(Vℓ(N)) ∼= GL2(Qℓ ⊗ T1(N)) is a ontinuous representation, unrami�ed at
p 6 | Nℓ.Of ourse, the mystery is why should the p-th Frobenius ation and the p-th Heke operator havethe same trae. Unfortunately we will not be able to show this fat here, referring the interestedreader to [RiS01℄ x5.3 instead. We state what we need as the following theorem:16



Theorem 2.2.2. Let T1(N) at on Pi0
X1(N)/Z[ 1

N
]
via the ()∗-ation. For any p 6 | Nℓ, theharateristi polynomial of ρN,ℓ(Frobp) is

X2− (Tp)∗X+ p〈p〉∗relative to the Qℓ ⊗ T1(N)-module struture on Vℓ(N), where Frobp denotes an arithmetiFrobenius element at p.Note that upto now, our disussion has been pretty generi and we have not yet used the newform
f ∈ S2(Γ1(N)). This is where we speialize the situation to the form f. Let Kf = Q(· · · , ap, · · · )where ap is the p-th fourier oeÆient of f. Assume that χf the Nebentypus harater of f alsotakes values in Kf. Now onsider the eigenharater map Tf : T1(N) → Kf, by Tp 7→ ap. Let
pf = ker(Tf), this is a prime ideal as the image is an integral domain.Let Af be the quotient of Pi0X1(N)/Z[ 1

N
]
by pf. The ation of T1(N) on Pi0X1(N) indues an ationof T1(N)/pf on Af and hene an ation of Kf ∼= (T1(N)/pf⊗ Q) on it.Then we have:Theorem 2.2.3. (Shimura) We have dimAf = [Kf : Q] and Vℓ(Af) is free of rank 2 over

Qf⊗Q Kf, with Frobp having harateristi polynomial,
X2− (1⊗ ap(f))X + 1⊗ pχf(p)for all p 6 | Nℓ.Choosing a plae λ of Kf over ℓ we dedue:Corollary 2.2.4. Let f ∈ S2(Γ1(N)) be a newform and λ a plae of Kf over ℓ. There exists aontinuous representation ρf,λ : GQ → GL2(Kf,λ) unrami�ed at all p 6 | Nℓ, with Frobp havingharateristi polynomial
X2− ap(f)X+ pχf(p) ∈ Kf,λ[X].Suppose now we are given a newform f in Sk(Γ1(N)) for k ≥ 2, we an redue the problem of �ndinga Galois representation assoiated to f, to the ase of k = 2 in the ase that we are only looking formod λ ongruenes between the traes. This is disussed for example in Gross's paper [Gro90℄.
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CHAPTER 3
The LevelLet ρ : GQ → GL2(Fℓ) be an irreduible representation that arises from a modular form. Sinethere are many ongruenes between modular forms, it turns out that suh a representation ouldarise from an in�nite number of modular forms. The strong form of Serre's onjeture predits theoptimal weight and level of a modular form from whih this representation ould arise. In x1.1.1we gave a de�nition of Serre's presription for the optimal level for suh a form. The optimal levelwhih we shall denote by N(ρ) is the prime to ℓ part of the Artin ondutor. The Artin ondutor isobtained by looking at the loal representations the ρ yields of GQp for every prime p and de�ningertain exponents n(ρ, p). From the de�nition of n(ρ, p) given in (1.1.1), it is not even lear thatthis is an integer! In the next setion we will outline the proof that n(ρ, p) is an integer. In x3.2we look at a result of Carayol and Livn�e that shows that any modular form that gives rise to ρmust ome from a level that is a multiple of N. Sine ℓ 6 | N(ρ), we must be able to remove theprime ℓ from the level of the modular form giving rise to ρ, this will be the subjet of x3.3. Finally,in x3.4 we give a brief idea of how general level lowering is ahieved by a redution to the weight

2 ase.
3.1. The Artin Conductor of ρTo give a proof of the integrality of the n(ρ, p), we need to digress a bit and disuss Rami�ationgroups. We will simply ollet some of the relevant fats and state the important Hasse-Arf the-orem. Then we will de�ne the Artin representation of the Galois group of a loal �eld, and thenstate Artin's fundamental theorem regarding this representation. The integrality of n(ρ, p) followsas an easy orollary of this theorem. Our prinipal referene is Serre's book Loal �elds [Ser79℄,the presentation here is simply a weak shadow of the one given there.

Notation: For the following subsetions, we adopt the following notations and onventions. Kwill denote a loal �eld, omplete under a disrete valuation vK. Let AK = {x ∈ K | vK(x) ≥ 0} bethe valuation ring orresponding to vK, i.e., its ring of integers. Let pK = {x ∈ K : vK(x) > 0}be its unique maximal ideal, and let K = AK/pK be its residue �eld, and UK = AK− pK. We willonly onsider separable extensions L of K. In this ase, we know that AL the integral losure of
AK in L is again a omplete disrete valuation ring (f. [Ser79℄ Chapter II x2). De�ne vL, pL, ULand L as above. We will also assume that L/K is separable. In the ase that we are interestedin the residue �elds will be �nite and sine these �elds are perfet, this assumption will not be arestrition. The rami�ation index of pL in L/K is denoted eL/K and the residue lass degree fL/Kso that eL/KfL/K = [L : K].

3.1.1. Definition of the Ramification Groups. Let L/K be a Galois extension in additionto the above assumptions and let G = Gal(L/K) be its Galois group. G ats on the ring AL. We19



know that there is an element x ∈ AL whih generates AL as an AK-algebra (f. [Ser79℄ ChapterIII).Lemma 3.1.1. Let σ ∈ G and i ≥ −1 an integer. Then the following are equivalent:(1) σ operates trivially on AL/pi+1L ;(2) For all a ∈ AL, vL(σ(a) − a) ≥ i+ 1;(3) vL(σ(x) − x) ≥ i+ 1.
Proof : (1) ⇔ (2) is trivial. The image of x in AL/pi+1L generates Ai as an AK-algebra, and thus
(3) is equivalent to the �rst two onditions. �Proposition 3.1.2. Let i ≥ −1 be an intger, let Gi ⊲

= {σ ∈ G : σ�xesAL/pi+1L }. Then GiDGi+1forming a dereasing sequene of normal subgroups of G. Furthermore, if i is suÆientlylarge Gi is {1}.
Proof : The Gi are normal by assertion (1) of Lemma 3.1.1. The last assertion follows from thefat that if i ≥ supσ6=1{vL(σ(x) − x)} then Gi is trivial. �

Gi is alled the ith rami�ation group of G. Note that G−1 = G. G0 is alled the inertia subgroupof G. The quotient G/G0 ∼= Gal(L/K) whih is yli of order equal to the residue lass degree fL/Kif K is a �nite �eld (f. [Ser79℄ Chapter I). We de�ne a ertain index funtion of the group G asfollows:
iG(σ) = vL(σ(x) − x).(3.1.5)If σ 6= 1, then iG(σ) is a non-negative integer and iG(1) = +∞. The index funtion gives the index(o� by 1 atually) of the \deepest" rami�ation group in whih σ sits. It enjoys the followingproperties:
iG(σ) ≥ i+ 1⇔ σ ∈ Gi

iG(ψσψ−1) = iG(σ)

iG(στ) ≥ inf(iG(σ), iG(τ)).Let HE G be a normal subgroup and let K ′ be the �xed �eld of H. Thus G/H an be indenti�edwith the Galois group of K ′/K. The index funtion satis�es the following nie property:Proposition 3.1.3. For σ ∈ G/H,
iG/H(σ) =

1

eL/K′

∑

s→σ

iG(s).Next we ollet properties of the quotient Gi/Gi+1 for i ≥ 0. For this purpose, we de�ne a �ltrationof the group of units UL by:
U

(0)
L = UL

U
(i)
L = 1+ piL for i ≥ 1.Its easy to see that UL = lim

←
UL/U

(i)
L .The struture of U(i)

L /U
(i+1)
L is desribed by the following proposition:20



Proposition 3.1.4. The quotient U(0)
L /U

(1)
L = L

∗. For i ≥ 1, the group U(i)
L /U

(i+1)
L is anon-ially isomorphi to the grop piL/p

i+1
L whih is isomorphi to the additive group of the reside�eld L.Let π be a uniformizer of L.Proposition 3.1.5. The map whih assigns to σ ∈ Gi to σ(π)/π indues an isomorphism θiby passage to quotient from Gi/Gi+1 onto a subgroup of U(i)

L /U
(i+1)
L .Now we reap the harvest of properties of Gi/Gi+1 in the following orollary:Corollary 3.1.6. (1) The group G0/G1 is yli, and is mapped isomorphially by θ0onto a subgroup of the group of roots of unity ontained in L∗. Its order is prime tothe harateristi of the residue �eld L.(2) If the harateristi of L is zero, then G1 = {1} and the group G0 is yli.(3) If the harateristi of L is p 6= 0, the quotient Gi/Gi+1, i ≥ 1 are abelian groups, andare diret produts of yli groups of order p. The group G1 is a p-group.(4) The group G0 is solvable. If K is a �nite �eld, then G is also solvable.

3.1.2. Upper numbering scheme and the Hasse-Arf theorem. It turns out that for sev-eral appliations the most natural numbering of the rami�ation groups is not the one de�ned above.For our purposes we need to de�ne what is alled the upper numbering sheme of rami�ationgroups. Firstly, if u ≥ −1 is a real number then de�ne Gu = G⌈u⌉. Thus σ ∈ Gu⇔ iG(σ) ≥ u+ 1.De�ne
ϕ(u) =

∫u

0

dt

[G0 : Gt]where if −1 ≤ t ≤ 0, our onvention is [G0 : Gt] = 1 if −1 < t ≤ 0 and for t = −1, it is [G−1 : G0]
−1.Expliitly, if m ≤ u ≤ m + 1, with m a positive integer, then

ϕ(u) =
1

|G0|

(

|G1| + · · · + |Gm| + (u−m)|Gm+1|
)

.Let ψ denote the inverse of the map ϕ. We now de�ne the upper numbering of the rami�ationgroups by:
Gv = Gψ(v)or equivalently

Gϕ(u) = Gu.A diret hek shows that G−1 = G,G0 = G0, and Gv = {1} if v is suÆiently large.Let L/K be an in�nite Galois extension, with G as its Galois group. We an de�ne Gv =lim
←

Gal(L ′/K)v, L ′ running through the set of �nite Galois subextensions of L. The Gv form a�ltration of G as in the �nite ase. This �ltration is left ontinous, i.e., Gv = ∩w<vGw. We saythat v is a jump for the �ltration if Gv 6= Gv+ǫ for all ǫ > 0. A jump need not be an integer (evenif L/K is �nite, f. [Ser79℄ Chapter IV.)Now we ome to the Hasse-Arf theorem, a proof of whih is given in [Ser79℄ Chapter V x7.21



Theorem 3.1.7 (Hasse-Arf). If G is an abelian group, and if v is a jump in the �ltration Gv,then v is an integer.
3.1.3. Artin Representation. We assume a nodding familiarity with harater theory, agood referene is [Isa76℄. Let L/K be a �nite Galois extension, with Galois group G. Let f = [L : K].If σ 6= is an element of G, then we de�ne a ertain funtion aG : G→ Z as follows:

aG(σ) = −fiG(σ), if σ 6= 1

aG(1) = fσs6=1iG(s).By de�nition ∑σ∈GaG(σ) = 0, in other words, the inner produt with the trivial harater
[aG, 1G] = 0. Sine iG(ψσψ−1) = iG(σ), the funtion aG is a lass funtion (meaning that itsvalue is insensitive to elements in the same onjugay lass.) The irreduible haraters of G forman orthogonal basis for every lass funtion thus we have

aG =
∑

χ∈Irr(G)

cχχ,where cχ = [χ, aG]. The theorem of Artin shows that this lass funtion is in fat a harater!Theorem 3.1.8 ([Art30℄). The funtion aG is a harater. In partiular, [aG, χ] is a non-negative integer for every harater χ of G.The seond part of the laim of the theorem follows from the �rst, sine every harater is a linearombination of the irreduible haraters with non-negative integer oeÆients.We ollet some properties of the funtion aG.Proposition 3.1.9. Let Gi be the ith rami�ation group of G, let ui be the harater a�ordedby the agumentation representation of Gi, and let u∗i be the harater of G indued by ui.Then
aG =

∑

0≤i

1

[G0 : Gt]
u∗i .

Proof : Let gi = |Gi|. We have u∗i(σ) = 0 if σ /∈ Gi, while u∗i(σ) = −g/gi = −fg0/gi if σ ∈ Gi,
σ 6= 1. For σ ∈ Gk but not in Gk+1, the sum on the right side is −f(k+ 1) and aG(σ) has the samevalue. For s = 1 by orthogonality of both sides with 1G we get the result. �If φ is a lass funtion on G, de�ne

φ(Gi) =
1

gi

∑

σ∈Gi

φ(σ)where gi = |Gi|.Corollary 3.1.10. If φ is a lass funtion on G, then
[φ,aG] =

∑

0≤i

gi

g0
(φ(1) − φ(Gi)).22



Proof : This follows from the Proposition 3.1.9, by observing that [φ,u∗i ] = [φ|Gi , u
∗
i ] = φ(1) −

φ(Gi). �Finally we get:Corollary 3.1.11. If χ is the harater of a representation of G in a vetor spae V, then
[χ, aG] =

∑

i

gi

g0
dimV/VGi ,where VGi is the subspae of V �xed by Gi.

Proof : This follows from the previous orollary beause χ(1) = dimV and chi(Gi) = dimVGi . �Remark 3.1.12. Now returning to our loal representation ρp : GQp
→ GL2(Fℓ) we an substitutethe harater a�orded by ρp as χ in the above Corollary and using Artin's theorem, we �nd that

n(ρ, p) is an integer. Thus all that is left to do is prove Artin's theorem.The idea of the proof is to redue the omputation of [χ, aG] for a harater of G to haraters ofsubgroups of G. This is ahieved by Brauer's \Charaterization of Charaters" theorem. Brauer'stheorem atually gives more (and this is ritial) in that every harater is indued from degree 1haraters, namely homomorphisms from G to a subgroup of the roots of unity of C. This enablesus to redue to onsidering abelian sub-extensions and we will be able to prove the theorem in thisase by using the Hasse-Arf theorem. We begin with the following lemma for whose proof we referto [Ser79℄ (orollary to proposition 4 in VI x2.)Lemma 3.1.13. Let H be a subgroup of G with K ′ being the orresponding subextension K ′/Kof L, and let dK′/K. Suppose ψ is a harater of H, and ψ∗ the harater indued on G, then
[ψ∗, aG] = vK(dK′/K)ψ(1) + fK′/K[ψ,aG]Sine ψ(1) is simply the dimension of the representation that yields ψ so it is an integer. So allthe terms are non-negative integers exept possibly [ψ,aG].Proposition 3.1.14. Let χ be a degree 1 harater on G. Let cχ be the largest integer forwhih the restrition of χ to the rami�ation group Gcχ is not the unit harater (if χ = 1Gthen set cχ = −1). Then

[χ, aG] = ϕL/K(cχ) + 1.Where ϕL/K is the funtion de�ned in the previous setion.
Proof : If i ≤ cχ, then χ(Gi) = 0 (use the fat that degree of χ = 1), so that χ(1) − χ(Gi) = 1.Now if i > cχ, then χ(Gi) = 1, and so χ(1) − χ(Gi) = 0. By Corollary 3.1.10 we see that

[χ, aG] =
∑

0≤i≤cχ

|Gi|

|G0|
= ϕL/K(cχ) + 1.
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Corollary 3.1.15. Let H be the kernel of χ (a degree 1 harater), let K ′ be the subextensionof L/K orresponding to H. Let c ′χ be the largest integer for whih (G/H)c′χ 6= 1. Then
[χ, aG] = ϕK′/K(c

′
χ) + 1, and this is a non-negative integer.

Proof : Herbrand's theorem ([Ser79℄ VI x3 lemma 5) shows that c ′χ = ϕL/K′(cχ). Now by propo-sition 3.1.14 we have [χ, aG] = ϕL/K(cχ) + 1. But the funtion ϕ is transitive, in the sense that
ϕL/K = ϕK′/K ◦ ϕL/K′ . Using this we have ϕL/K(cχ) = ϕK′/K(ϕL/K′(cχ)) = ϕK′/K(c

′
χ). Thus

[χ, aG] = ϕL/K(cχ) + 1. Sine χ is a degree 1 harater, we have that G/H is abelian. Thusthe Hasse-Arf theorem (3.1.7) shows that ϕK′/K(c
′
χ) is an integer. The non-negativity is lear as

ϕ(u) ≥ −1. �

Proof :[of Theorem 3.1.8℄ We need to show [χ, aG] is a non-negative integer for every harater
χ of G. By orollary 3.1.11 it is at least a non-negative rational number. By Brauer's theorem
χ =
∑
niχ

∗
i where χ∗i is the indued harater of some degree 1 harater χi on a subgroup Hi of

G. This redues us to showing that [χ∗, aG] is an integer, if χ is a degree 1 harater. In this aseorollary 3.1.15 says that [χ, aG] is an integer, and lemma 3.1.13 says that [χ∗, aG] is an integer. �

3.2. The result of Carayol and LivnéOur aim here is to show that if at all an irreduible odd representation ρ : GQ → GL2(Fℓ) ismodular, i.e., f ∈ Sk(M,χ) suh that ρ ∼ ρf then N | M, where N is the level given by Serre'sreipe. It turns out that this fat is an easy onsequene of fats about ℓ-adi and automorphirepresentations (Carayol in [Car89℄ devotes a single paragraph at the end of page 787 to its proof).We will simply outline the key idea, without any proofs.Now given the modular form f, we an onstrut by Deligne's mehanism a λ-adi representationof GQ all this ρ̂f. Now the redution of this λ-adi representation gives rise to our residualrepresentation to ρ : GQ → GL2(Fℓn). The following two fats are true:(1) Under the redution operation, the loal exponents of the Artin ondutor do not go up,i.e. n(ρ, p) ≤ n(ρ̂f, p). This is the ontent of Proposition 1.1 and 2.1 in [Liv89℄.(2) The \ondutor" obtained by the taking the produts of primes with the loal exponentsof the λ-adi representation is the level M in whih the form f resides. This is Lemma 4.1of [Liv89℄.Now the above two fats say that the Artin ondutor of ρ is a divisor of the level M of f,whih is what we wanted. The proof of fat (1) does not use anything more that the ma-terial in [Ser79℄, the proof of fat (2) requires some work by Jaquet-Langlands and Tunnell[JLa70, Tun79, Del73, Car86℄.
3.3. Removing the prime ℓ from the levelIn this setion, we will show that if the odd irreduible Galois representation given to us is modular,then the representation also arises from a modular form of level prime to ℓ. This result is from[Rib94℄. 24



Theorem 3.3.1. Assume ℓ ≥ 3. Suppose that ρ : GQ → GL2(Fℓ) is an odd irreduible repre-sentation, that arises from a modular form on Γ1(M), where M = Nℓα, with (ℓ,N) = 1. Then
ρ arises from a modular form on Γ1(N).
Proof : Let f be the eigenform that gives rise to ρ, we will assume that it is normalized (withoutloss of generality). In the proof v will denote a prime dividing ℓ in Q. Clearly, we an assume that
α ≥ 1 for otherwise there is nothing to prove.

(1) The representation ρ arises from Γ0(ℓ
r) ∩ Γ1(ℓN) for some r ≥ 0.Let f =

∑
1≤nanq

n ∈ Sk(Γ1(M)) and let κ be its assoiated Dirihlet harater mod M.We assume k ≥ 2. This means that if (a b

c d

)

∈ Γ0(M), then
f

(

az+ b

cz+ d

)

= κ(d)(cz + d)kf(z).Sine M = ℓαN, we an deompose the harater κ as a produt ǫηωi, where ǫ hasondutor dividing N, η has ℓ-power order and ℓ-power ondutor, and ω is a haraterof ondutor ℓ and order ℓ − 1 whih is the identity mod v (suh a harater is alleda \Teihm�uller" harater). The harater η has odd order so it an be written as ξ−2where ξ is a harater of ℓ-power order. The usp form f ⊗ ξ whih is ∑1≤nξ(n)anq
nis a form in Sk(Γ0(ℓ2hM), ξ2(ǫηωi)) where ℓh is the ondutor of ξ (see [Bum97℄ Ex.1.5.1). Sine η = ξ−2, f ⊗ ξ ∈ Sk(Γ0(ℓ

2hM), ǫωi). Now assume that r ≥ 2h, so that
f⊗ ξ ∈ Sk(Γ0(ℓrN), ǫωi). Suppose γ =

(

a b

c d

)

∈ Γ0(ℓrN), then
(f⊗ ξ)

(

az+ b

cz+ d

)

= ǫ(d)ωi(d)(f⊗ ξ)(z)but if γ ∈ Γ0(ℓr) ∩ Γ1(ℓN) then ǫ(d) = ωi(d) = 1, so that
(f⊗ ξ)

(

az+ b

cz+ d

)

= (f⊗ ξ)(z).The twisted form f ⊗ ξ also gives rise to the same representation. Thus we an assumethat ρ arises from some form on Γ0(ℓr) ∩ Γ1(ℓN) for some r > 0.
(2) ρ arises from Γ0(ℓ

r) ∩ Γ1(N).Now from (1) we are provided with a modular form f on Γ0(ℓr)∩ Γ1(ℓN) with nebentypusharater ǫωi, where we an assume that i is a positive integer. Consider the Eisensteinseries
G

⊲

= L(1− i,ω−i) +
∑

1≤n

(∑

d | n

ω−i(d)di−1
)

qn.It is a known fat that G is of weight i nebentypus ω−i on Γ0(ℓ) (see [Ser73℄ Lemma 10).Normalizing G by setting E = c−1G, where c is the onstant oeÆient, we get a form Ethat is in fat ≡ 1 mod v. Thus fE viewed mod v, is a non-zero eigenform. By a similar25



analysis as in (1) fE is on the group Γ0(ℓr) ∩ Γ1(N) (essentially beause all the haraterswith ondutor a power ℓ have been killed). Now a beautiful result of Deligne and Serre([DeS74℄ Lemma 6.11) ensures that we an �nd an eigenform on Γ0(ℓr) ∩ Γ1(N) whoseeigenvalues are ongruent to those of f.
(3) ρ arises from Γ0(ℓ) ∩ Γ1(N).Now we have an f =

∑
1≤nanq

n an eigenform on Γ0(ℓr) ∩ Γ1(N), with r > 1. Let K bea �nite Galois extension of Q ontaining the an, and let σ ∈ Gal(K/Q) be an elementsuh that σa ≡ aℓ mod v for all a ∈ OK. Now σ−1f =
∑
1≤nσ

−1anq
n is a normalizedeigenform of the same weight as f. We wish to show that f is ongruent mod v to ausp form of some weight on Γ0(ℓr−1) ∩ Γ1(N). Let g = (σ−1f)ℓ|U, where U = Tℓ the ℓthHeke operator. It turns out that g is a form on Γ0(ℓr−1) ∩ Γ1(N) ([Li75℄ Lemma 1), andby our hoie the Fourier expansion of g is ongruent mod v to ∑(σ−1an)

ℓqn whih isongruent to the Fourier expansion of f.
(4) ρ arises from Γ1(N).Let W be the operator given by the matrix ( ℓx y

Nℓz ℓ

) where x, y, z are integers suh that
ℓx−Nℓz = 1. Now if F is a form on Γ0(ℓ)∩ Γ1(N) of weight w and harater ǫ, then [Li75℄Lemma 3, implies that the formTr (F)

⊲

= F + ǫ−1(ℓ)ℓ1−
w
2 F|W|Uis a form of weight w on Γ1(N). Also, if G is a form of weight w and harater ǫ on Γ1(N)then G|W = ℓw/2ǫ(ℓ)G|V ([AtL78℄ Proposition 1.5). If ℓ = 3, let E be the normalizedEisenstein series E4 of weight four, and if ℓ 6= 3, let E be the normalized Eisenstein seriesof weight ℓ − 1, so that E ≡ 1 mod ℓ. Let a denote the weight of E, onsider the form

g
⊲

= E− ℓa/2E|W = E− ℓaE|V.The g ≡ 1 mod ℓ and furthermore g|W is divisible by ℓ. Let f be an eigenform giving riseto ρ on Γ0(ℓ) ∩ Γ1(N). Then for large enough i one an show that Tr (fgi) ≡ f mod ℓ.
�

3.4. General level lowering principlesMany methods of level lowering proeed by �rst reduing the problem to the weight 2 ase. The�rst step replaes the representation ρ by a suitable twise by a mod ℓ ylotomi harater χ sothat it arises from a newform of weight k, where 2 ≤ k ≤ ℓ + 1 (see [Edi92℄). Next we use atheorem of Ribet ([Rib94℄ Theorem 2.2) that says that mod ℓ, the eigenforms of level N whoseweight lies in the range 2 < k ≤ ℓ+ 1 orrespond to eigenforms of weight 2 and level ℓN. So at theost of putting bak one power of ℓ into the level we an redue the weight to 2.26



One we are in weight 2, we use a theorem of Carayol ([Car89℄ Th�eor�eme 2) to redue to thefollowing problem (alled the Key ase by Ribet):
Key case: Let ρ : GQ → GL2(Fℓ) be a Galois representation that arises from a weight 2 newform
f of level pM, with p 6 | ℓM, and harater ǫ : (Z/pMZ∗)→ C∗. Assume that ρ is unrami�ed at p,and that ǫ fators through the natural map (Z/pMZ)→ (Z/MZ)∗. Then show that ρ arises froma form of level M.Another advantage of weight 2 is that we have the lean geometri interpretation of the modularrepresentation as explained in Chapter 2. In this ase there are basially four di�erent approahesto level lowering as explained in x3.5 of [RiS01℄, we refer the reader to that artile for the disussionof these priniples.
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CHAPTER 4
The WeightLet ρ : GQ → GL2(Fℓ) be an odd irreduible Galois representation. Our main task in this hapteris to give Serre's reipe for k(ρ) the weight of the modular form that onjeturally gives rise to ρ([Ser87℄ x2). After that, we will disuss a result of Edixhoven that says that if ρ arises from amodular form of weight k level N and nebentypus ǫ, then it also arises from a weight k(ρ) modularform of same level and nebentypus.

4.1. The prescription for the weightAssume the notation of Chapter 1. The de�nition of the weight k(ρ) depends only on the induedloal representation at ℓ:
ρℓ : Gℓ→ GL(V) ∼= GL2(Fℓ),where Gℓ = Gal(Qℓ/Qℓ). Let I denote the inertia subgroup of Gℓ, and Iw denote the largest pro-ℓsubgroup of I (this is alled the wild inertia subgroup). The quotient It = I/Iw is alled the tameinertia subgroup. This quotient is isomorphi to lim

←
F∗
ℓn where the limit is taking with respet tothe norm maps ([Ser72℄ Propositions 1 & 2). A harater of It is said to be of level n, if it fatorsthrough F∗

ℓn but not through F∗
ℓm for any proper divisor of n. Let ρss denote the semi-simpli�ationof ρℓ, it is either ρ if the ation is irreduible or a diret sum of two haraters. Serre shows in[Ser72℄ (Proposition 4) that in either ase ρss(Iw) ats trivially (ρℓ is a tame representation at

ℓ). Thus we an think of It ating on Vss (the semi-simpli�ation of V). This ation of It isdiagonalizable; it is given by two haraters:
ϕ,ϕ ′ : It→ F

∗
ℓ.Proposition 4.1.1 ([Ser72℄ Prop. 1). The haraters ϕ and ϕ ′ giving the ation of It on Vssare either level 1 or 2. If they are level 2, then they are onjugate in the sense that ϕ ′ = ϕℓand ϕ = ϕ ′ℓ.

Proof : Let σ ∈ Gℓ, whose image in the group Gℓ/I ∼= Gal(Fℓ/Fℓ) gives the Frobenius automor-phism x 7→ xℓ. One an hek that this ondition implies that σuσ−1 ≡ uℓ mod Iw for u ∈ I. Sothat onjugation by σ operates on It by u 7→ uℓ. This results in the set {ϕ,ϕ ′} being stable underthe operation of raising to the ℓ-th power. Thus we have two ases:(1) ϕℓ = ϕ,ϕ ′ℓ = ϕ ′, so that both the haraters are level 1;(2) ϕℓ = ϕ ′, ϕ ′ℓ = ϕ and ϕ 6= ϕ ′, so that they are haraters of level 2.This proves the proposition. � 29



We will deal with eah ase above separately. Before that we need to disuss fundamental haraters(see also [Bos03℄ x3.2).
4.1.1. Fundamental characters. For a nie disussion of this see [Ser72℄ x1.3 { x1.7 (and[RiS01℄ x2.1.2). Let Qunrℓ be the maximal unrami�ed extension of Qℓ, and Qtmℓ the maximaltamely rami�ed extension of Qunrℓ . We have the following diagram of �eld inlusions and relativeGalois groups:

Qℓ

Qtmℓ

Iw

Qunrℓ

It

I

Qℓ

Ẑ

Gℓ

The extension Qtmℓ is generated by the extensions Qunrℓ (ℓ
1
n ) for all n not divisible by ℓ. For n withgd(n, ℓ) = 1, the n-th roots of unity µn are ontained in Qunrℓ . By Kummer theory, we get foreah n, a anonial isomorphism: Gal(Qunrℓ (ℓ

1
n )/Qunrℓ )

∼−→ µn,by σ 7→ σ(ℓ
1
n )

ℓ
1
n

. Eah isomorphism gives a map from I → µn that fator through It. Composingany of the maps It → µn with redution mod the maximal ideal of Zℓ gives a mod ℓ hrater
It → F

∗
ℓ. The map It → µℓ de�nes a harater ǫ : I → F∗

ℓk
. There are k embeddings of Fℓk → Fℓ,omposing gives us k di�erent haraters It→ Fℓ. These are the k fundamental haraters of level

k. In partiular, there are 2 fundamental haraters of level 2, and these are onjugate under the
ℓ-th power map.

4.1.2. Definition of k(ρ) when ϕ and ϕ ′ are level 2. Suppose that ϕ and ϕ ′ are of level
2. In this ase the representation is irreduible. For if there was a 1-dimensional subspae stableunder the ation, then the ation of It on this subspae is given by a harater that will extend to
Gℓ, whih is of level 1. Let ψ and ψ ′ = ψℓ be the two fundamental haraters of level 2 of It (f.x4.1.1). Thus we an write ϕ in the following manner:

ϕ = ψa+pb = ψaψ ′b, with 0 ≤ a, b ≤ p− 1.We have a 6= b sine otherwise ϕ = (ψψ ′)a = χa, where χ|I is a ylotomi harater ontraditingthe assumption that ψ is of level 2. Sine ϕ ′ is a onjugate of ϕ, we have ϕ ′ = ψbψ ′a. Thus byreordering ϕ and ϕ ′, we an assume that 0 ≤ a < b ≤ p− 1. In this ase we de�ne
k(ρ) = 1+ ℓa + b.(4.1.6) 30



4.1.3. Definition of k(ρ) when ϕ and ϕ ′ are level 1, and Iw operates trivially. In thisase, we an assume that the ation of I on V is semisimple, and is given by two haraters ϕ,ϕ ′that are powers χa and χb of the ylotomi harater χ, i.e.,
ρℓ|I ∼

(

χa 0

0 χb

)

.The integers a and b are determined mod ℓ − 1. Normalizing so that 0 ≤ a, b ≤ p − 2. We analso assume 0 ≤ a ≤ b ≤ p− 2 by permuting ϕ and ϕ ′. The weight in this ase is de�ned by:
k =

{
1+ ℓa + b if (a, b) 6= (0, 0)

ℓ if (a, b) = (0, 0).
(4.1.7)

4.1.4. Definition of k(ρ) when ϕ and ϕ ′ are level 1, and Iw does not operate trivially.In this ase VIw forms a subspae of V that is stable under the Gℓ ation. The ation of Gℓ on
V/D is given by a harater θ1 and on D by another harater θ2 of Gℓ, so that the ation on V isgiven by:

ρℓ ∼

(

θ2 ∗
0 θ1

)

.We an write θ1, θ2 uniquely in the form: θ1 = χαǫ1 and theta2 = χβǫ2, where ǫi is an unrami�edharater on Gp and α,β ∈ Z/(ℓ− 1)Z. Restrition to the inertia subgroup is thus of the form:
ρℓ|I ∼

(

χβ ∗
0 χα

)

.Note that α 6= β, for otherwise the ation on Iw will be trivial ontraditing our assumption.Normalizing so that 0 ≤ α ≤ ℓ − 2 and 1 ≤ β ≤ ℓ − 1 we set a = inf(α,β) and b = sup(α,β).Now for de�ning k(ρ) we distinguish between two ases:(1) The ase β 6= α+ 1: In this ase as in 4.1.6 we set
k(ρ) = 1+ ℓa + b.(4.1.8)(2) The ase β = α + 1: In this ase we have to distinguish between the type of the wildrami�ation. We shall distinguish between two ases that we all slightly rami�ed andhighly rami�ed (Serre alls them peu rami��e and tr�es rami�e�e).Let K0 = Qunrℓ . The group ρℓ(I) is the Galois group of a ertain totally rami�ed extension

K of K0, and the wild inertia group ρℓ(Iw) is the Galois group of K/Kt, where Kt is themaximal tamely rami�ed extension of K0 ontaining K. Sine β = α+1, one an show thatGal(Kt/K0) ∼= (Z/ℓZ)∗, thus Kt = K0(ζ), where ζ is a primitive ℓ-th root of unity. On theother hand Gal(K/Kt) = ρℓ(Iw) is an elementary abelian group of type (ℓ, · · · , ℓ), whihan be represented by matries (1 ∗
0 1

). Furthermore, one an show that the ation byongugation of Gal(Kt/K0) = (Z/pZ)∗ on Gal(K/Kt) is the obvious ation. By Kummertheory, this implies that K an be written as K = Kt(x
1
ℓ

1 , · · · , x
1
ℓ
m), where ℓm = [K : Kt]. Let31



vℓ the normalized valuation of K0 that gives vℓ(ℓ) = 1, we say that K is slightly rami�edif
vℓ(xi) ≡ 0 mod ℓ, for 1 ≤ i ≤ m.So that the xi an be hosen to be units of K0. If the above is not true, then we say that

K and ρℓ are highly rami�ed.Now we an de�ne k(ρ) in these ases:(a) The ase β = α+ 1, slightly rami�ed. The presription is the same as for β 6= α+ 1

k = 1+ ℓa + b.(4.1.9) (b) The ase β = α+ 1, highly rami�ed. Here we de�ne
k = 1+ ℓa + b+ (ℓ− 1).(4.1.10) Note that we have assumed ℓ 6= 2.Finally, we have given a full desription of Serre's presription of the weight of the representation

k(ρ).Remark 4.1.2. Note that in all the ases we have de�ned, the value of k(ρ) lies in the interval
[2 · · · ℓ2− 1].

4.2. Edixhoven’s resultIn [Edi92℄ Edixhoven proved the following theorem:Theorem 4.2.1. Let ρ : GQ → GL2(Fℓ) be a ontinous, odd irreduible representation. Supposethere is a usp form g of level N, weight k and nebentypus ǫ with ℓ 6 | N whih is an eigenform,suh that ρ is isomorphi to ρg. Then there exists a uspidal eigenform f of weight k(ρ),level N and nebentypus ǫ that gives rise to ρ. Here k(ρ) is the weight of ρ as de�ned in theprevious setion.The proof makes use of the following result of Fontaine (whih was proved in two letters to Serre)Theorem 4.2.2 (Fontaine). Let f be a usp form of level N, weight k and nebentypus ǫ thatis an eigenform with eigenvalue ap for the p-th Heke operator. Assume that 2 ≤ k ≤ ℓ + 1,and aℓ = 0. Then the loal representation at ℓ a�orded by f (in the sense of Chapter 2) ρf,ℓis irreduible. Furthermore,
ρf|I ∼

(

ψk−1 0

0 ψ ′k−1

)where ψ,ψ ′ are the two fundamental haraters of level 2.We will also need the θ-operator, that operates on q-expansions by θ(∑anq
n) =

∑
nanq

n. Thisoperator has the property that if f is an eigenform of weight k, then there is a mod ℓ eigenform
θf of weight k+ ℓ + 1 of the same level N, whose q-expansion is θ(∑anq

n).We outline the onstrution of f with the properties laimed in Theorem 4.2.1 in a speial ase.Suppose ρ|I ∼

(

ϕ 0

0 ϕ ′

), where ϕ and ϕ ′ are level 2 haraters as in x4.1.2. Let ψ,ψ ′ be the two32



fundamental haraters of level 2, and assume a, b are suh that ϕ = ψaψ ′b with 0 ≤ a < b ≤ ℓ−1.Now as mentioned in x3.4, we an �nd a twist of the representation ρ by a ylotomi harater
ρ ⊗ χ−α (say) that is assoiated to a modular form of weight 2 ≤ k1 ≤ ℓ + 1. Call the modularform giving rise to ρ⊗ χ, f1. The eigenform f1 has p-th eigenvalue p−αap for p 6= ℓ. Furthermore,one an show that aℓ(f1) = 0 and that the weight of f1, is k1 = 1 + b − a. De�ne the modularform f by f ⊲

= θaf, where θ is the operator de�ned above. Then by the property alluded to above,we have weight(f) = 1 + b − a + (ℓ + 1)a = 1 + ℓa + b. A detailed hek then shows that f givesrise to ρ, so that it is the desired form. We refer to [Edi92℄ for all the details and also a proof ofTheorem 4.2.2.
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CHAPTER 5
The Evidence for the conjectureIn this hapter we give a short overview of the evidene that has been aumulated for Serre'sonjeture. As might be lear from the previous hapters, most of the results that have beenobtained have been in the diretion of proving that the strong and weak onjetures of Serre areequivalent. We know very little about the onjeture itself, and it has been proved only when theimage of the Galois representation is very small. In x1.2 we showed how Galois representationsarising from ellipti urves provides some evidene for Serre's onjeture. This gives us at least anin�nite number of examples where the onjeture is true. In x5.1 we will examine a onsequene ofSerre's onjeture for whih there is some supporting evidene. In x5.2 we examine the ase whenwe have a Galois representation to GL2(F3), here Serre's onjeture an be proved. This ase alsoplayed a pivotal role in the proof of Fermat's Last theorem.
5.1. A consequence of Serre’s conjectureSuppose we have an odd irreduible ontinuous representation ρ : GQ → GL2(Fℓ) that is unrami�edoutside ℓ. Then Serre's reipe gives 1 for the level, and the nebentypus harater as a onsequenemust be trivial. Now tehniques we have seen and used in the previous hapters tell us, that ifwe look at twists by a ylotomi harater, we will get a representation that has weight ≤ ℓ + 1(see x4.2), but the same level and nebentypus. Now suppose ℓ < 11, in this ase dim Sk(Γ0(1)) = 0.Thus there are no non-zero Galois representations of weight ℓ < 11 that are unrami�ed outside

ℓ. That this is The ase for ℓ = 2 was proved by Tate in a letter to Serre. The proof idea is toget an upper bound for the number �eld through whih this representation fators and then useMinkowski's bound to get a bound on the degree. Then an expliit alulation then shows all ofthese �elds to be solvable, whih is then handled by Class �eld theory [Tat94℄. The ase ℓ = 3was treated by Serre using similar methods ([Ser75℄ x3, see also the notes in his �uvres for artile104.) The ase ℓ = 5 has been proved under the Generalized Riemann Hypothesis by Brueggeman[Bru99℄.
5.2. The case of GL2(F3)In x5.3 of [Ser87℄, Serre proves the onjeture when the image of the representation is in GL2(F3).In this setion we will outline the proof of this theorem. More preisely,Theorem 5.2.1. Let ρ : GQ → GL2(F3) is an odd irreduible representation, then there is auspidal eigenform

f =
∑

1≤n

anq
n35



of weight 2, and a prime λ of Q lying above 3 suh that
aq ≡ Tr (ρ(Frobq)) mod λfor all but �nitely many primes q.The ritial point is the use of the following theorem due to Langlands and Tunnell.Theorem 5.2.2 ([Lan80, Tun81℄). Suppose σ : GQ → GL2(C) is a ontinuous, odd, irreduiblerepresentation whose image in PGL2(C) is a solvable group. Then there is a normalizeduspidal eigenform g =

∑
1≤nbnq

n of weight 1 and level N and nebentypus ψ, suh that
bp = Tr (σ(Frobp)) for all but �nitely many primes p.The work of Langlands and Tunnell produes an automorphi representation not the modular form,we refer to [Gel97℄ x4.2 for the steps needed to onstrut the form g(z) from the automorphi rep-resentation.
Proof : (of 5.2.1). The idea is to lift ρ to a representation to GL2(C), then apply Theorem 5.2.2to get a weight 1 eigenform. Then use the tehniques used in [DeS74℄ to get a weight 2 eigenformthat gives rise to an isomorphi representation. The lifting an be expliitly ahieved by giving aspei� injetive homomorphism

Ψ : GL2(F3)→ GL2(Z(
√

−2))by
Ψ

(

−1 1

−1 0

)

=

(

−1 1

−1 0

)and
Ψ

(

1 −1

1 1

)

=

(

1 −1

−
√

−2 −1+
√

−2

)

.Sine the matries (−1 1

−1 0

) and (1 −1

1 1

) generates GL2(F3), this de�nes the map. It is easy toverify that this gives rise to a homomorphism that is the identity mod (1+
√

−2). In partiular,Tr (Ψ(g)) ≡ Tr (g) mod (1+
√

−2). Further, the \lifted" representation satis�es all the hypothesesof Theorem 5.2.2. Thus we get a weight 1 uspidal eigenform g with the properties laimed byTheorem 5.2.2. Now pik an eisenstein series E of weight 1 suh that E ≡ 1 mod 3. Now Eg hasweight 2, some level and harater that gives rise to ρ (but is not an eigenform!). For onretenesstake
E = 1+ 6

∑

1≤n

(∑

d|n

χ(d)

)

qnwhere
χ(d) =






0, if d ≡ 0 mod 3
1, if d ≡ 1 mod 3
−1, if d ≡ −1 mod 3.36



Though Eg is an eigenform mod 3 it by itself is not one, but this is no problem (we have enoun-tered exatly this situation in x3.3). We use the lemma of Deligne-Serre ([DeS74℄ Lemma 6.11)to onlude that there exists an eigenform of weight 2 that is ongruent modulo some prime lyingover 3 to Eg. This �nishes the proof. �Representations with image in GL2(F4) and GL2(F5) have been handled under some restritionsby the work of Sheperd-Barron and Taylor [ShT97℄.
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