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Preface

Sieve methods have had a long and fruitful history. The sieve of Eratosthenes (around 3rd century B.C.) was a
device to generate prime numbers. Later Legendre used it in his studies of the prime number counting function π(x).
Sieve methods bloomed and became a topic of intense investigation after the pioneering work of Viggo Brun (see
[Bru16],[Bru19], [Bru22]). Using his formulation of the sieve Brun proved, that the sum

∑
p, p+2 both prime

1
p

converges. This was the first result of its kind, regarding the Twin-prime problem. A slew of sieve methods were de-
veloped over the years — Selberg’s upper bound sieve, Rosser’s Sieve, the Large Sieve, the Asymptotic sieve, to name
a few. Many beautiful results have been proved using these sieves. The Brun-Titchmarsh theorem and the extremely
powerful result of Bombieri are two important examples. Chen’s theorem [Che73], namely that there are infinitely
many primes p such that p+2 is a product of at most two primes, is another indication of the power of sieve methods.

Sieve methods are of importance even in applied fields of number theory such as Algorithmic Number Theory, and
Cryptography. There are many direct applications, for example finding all the prime numbers below a certain bound,
or constructing numbers free of large prime factors. There are indirect applications too, for example the running time
of several factoring algorithms depends directly on the distribution of smooth numbers in short intervals. The so called
undeniable signature schemes require prime numbers of the form 2p+1 such that p is also prime. Sieve methods can
yield valuable clues about these distributions and hence allow us to bound the running times of these algorithms.

In this treatise we survey the major sieve methods and their important applications in number theory. We apply sieves
to study the distribution of square-free numbers, smooth numbers, and prime numbers. The first chapter is a discussion
of the basic sieve formulation of Legendre. We show that the distribution of square-free numbers can be deduced using
a square-free sieve1. We give an account of improvements in the error term of this distribution, using known results
regarding the Riemann Zeta function.

The second chapter deals with Brun’s Combinatorial sieve as presented in the modern language of [HR74]. We apply
the general sieve to give a simpler proof of a theorem of Rademacher [Rad24]. The bound obtained by this simpler
proof is slightly inferior, but still sufficient for applications such as the result of Erdős, Chowla and Briggs on the
number of mutually orthogonal Latin squares. The formulation of Brun’s sieve in [HR74] also includes a proof of the
important Buchstab identity. We use it to derive some bounds on the distribution of smooth numbers ([Hal70]).

The third chapter deals with the development and the applications of Selberg’s upper bound method. The proof by van
Lint and Richert [vLR65] of the Brun-Titchmarsh theorem is given as the chief application. Hooley’s improvement
of bounds on prime factors in a problem studied by Chebyschev is also outlined here. The last chapter is a study of
the Large Sieve. We give an outline of a proof of Bombieri’s central theorem on the error term in the distribution of
primes. A new application of the Bombieri theorem is shown; we prove that there are infinitely many primes p such
that p+2 is a square-free number with at most 7 prime factors.
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CHAPTER 0

Notation and preliminaries

0.1. Standard Nomenclature

The largest integer not exceeding x is denoted bxc. We write a\b for two integers a,b a 6= 0 if a divides b. The Möbius
function is denoted by µ(n) and defined as:

µ(n) =

{

(−1)k if n = p1 · · · pk, for 1≤ i < j ≤ k : pi 6= p j,

0 otherwise.

The prime counting function is π(x) defined as the cardinality of the set P = {p≤ x | p a prime}, while π(x;q,a) will
denote the cardinality of {p≤ x | p≡ a mod q}. We denote the von-Mangoldt function by Λ(n):

Λ(n) =

{

log p if n = pk for a prime p,

0 otherwise,

and its cumulation by ψ(x) = ∑n≤x Λ(n). If n = pe1
1 · · · p

ek
k is the prime factorization of n then ν(n) = k denotes the

number of distinct primes in the factorization. We write ϕ(n) for Euler’s totient function:

ϕ(n) = n∏
p\n

(

1− 1
p

)

.

0.2. Conventions

The letter p will always denote a prime number. Consequently, ∑n≤p≤m f (p) will denote a sum over the prime numbers
in the range of summation. A will stand for a general integer sequence to be sifted, and P for the sifting set of primes.
We employ the standard O and o-notation. We use the Vinogradov notation � to mean that inequality holds with
some constant, i.e., f (n)� g(n)⇒∃c > 0 : f (n)≤ cg(n). If gcd(a,b) = 1 for two integers a and b, then we also write
a⊥ b.

0.3. Preliminaries

THEOREM 0.3.1. Let n≥ 1 be an integer. Then

∑
d\n

µ(d) =

{

1, if n = 1,

0, otherwise.

Proof : Since divisors that are not squarefree drop out of the sum by the definition of µ, we may without loss of
generality assume that n is squarefree.

Let n = p1 p2 · · · pl , then any divisor d of n has the form pe1
1 pe2

2 · · · p
el
l with ei ∈ {0,1} for 1≤ i≤ l. Using this we can

split up the sum we wish to evaluate:

∑
d\n

µ(d) = ∑
p

e1
1 p

e2
2 ···p

el
l

e1+···+el= even

1− ∑
p

e1
1 p

e2
2 ···p

el
l

e1+···+el= odd

1

=

(

n
0

)

−
(

n
1

)

+

(

n
2

)

+ · · ·+(−1)n
(

n
n

)

= (1−1)n

= 0.

9



10 0. NOTATION AND PRELIMINARIES

There is another way we could have evaluated the sum. Let T (l) be the number of 0-1 strings of length l that have odd
number of 1s in them. Consider the last position of such a string. If it is a 1, then we must fill the rest of the positions
with an even number of 1s which can be done in 2l−1−T (l−1) ways. If the last position is a 0, then the rest of the
string must have an odd number of 1s which can be done in T (l− 1) ways. We have argued that T (l) satisfies the
following recurrence:

T (l) = T (l−1)+(2l−1−T(l−1))

= 2l−1.

Thus the number of sequences with odd number of 1s and the number of them with even number of 1s is the same,
and so the above sum is zero.

�

THEOREM 0.3.2. (Möbius Inversion) If

f (n) = ∑
d\n

g(d)

then

g(n) = ∑
d\n

µ(d) f
(n

d

)

.

Proof :

∑
d\n

µ(d) f
( n

d

)

= ∑
d\n

µ(d) ∑
l\(n/d)

g(l)

= ∑
l\n

g(l)

(

∑
d\(n/l)

µ(d)

)

= ∑
l=n

g(l) by Theorem 0.3.1

= g(n).

�

THEOREM 0.3.3. If

f (n) = ∑
d\n

g(d)

then

g(n) = ∑
d\n

µ
(n

d

)

f (d).

Proof :

∑
d\n

µ
(n

d

)

f (d) = ∑
d\n

µ
(n

d

)

∑
l\d

g(l)

= ∑
l\n

g(l) ∑
d\n/l

µ
( n

dl

)

= ∑
l=n

g(l) by Theorem 0.3.1

= g(n).

�
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THEOREM 0.3.4.

∑
d\n

µ(d)

d
= ∏

p\n

(

1− 1
p

)

= ∏
p\n

(

1+
µ(p)

p

)

.

Proof : We know that ∑d\n ϕ(d) = n. Using Möbius inversion on this we get:

n∏
p\n

(

1− 1
p

)

= ϕ(n) = ∑
d\n

µ(d)
n
d

= n ∑
d\n

µ(d)

d
.

�

REMARK 0.3.5. The proof of Theorem 0.3.4 actually works for any multiplicative function of the divisors of n in
the denominator, provided it is zero at non-squarefree divisors. We could have also proved Theorem 0.3.1 using the
identity:

∑
d\n

µ(d) = ∏
p\n

(

1+µ(p)
)

.
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CHAPTER 1

The sieve of Eratosthenes

1.1. Introduction

The sieve of Eratosthenes is a simple effective procedure for finding all the primes up to a certain bound x. Take a list
of the numbers 2,3, · · · ,bxc. Call 2 a prime, and start by crossing out all the multiples of 2. Because 3 is uncrossed
at this stage 3 must be prime. Cross out the multiples of 3 since they are composite, and then pick the next number
that is still uncrossed and repeat. If after a stage the next uncrossed number exceeds

√
x then stop. At this stage all the

numbers that are not crossed out are prime.

Legendre realized that this procedure can be captured succinctly in a theoretical analog of the sifting process, and used
this in his study of the function π(x) =

∣

∣{p≤ x | p a prime}
∣

∣.

In this chapter we will try to apply this basic technique to study some simple problems. First we shall look at the sieve
applied to the problem of estimating π(x). Although the method would lead to an exact formula for π(x)− π(

√
x)

this does not give useful estimates for π(x) owing to a huge error term. However we can adapt the basic method
to study other sequences of numbers, for example the squarefree numbers, meaning numbers that are products of
distinct primes. The basic sieve we develop will be more successful in dealing with squarefree numbers, essentially
because they are denser than the primes. We will be able to give interesting bounds on the density of these numbers
in arithmetic progressions and in pairs (n,n+2). We shall also find a bound on the smallest squarefree number in an
arithmetic progression. Finally we shall give the general setup of a sieve problem and re-formulate the classical sieve
of Eratosthenes-Legendre in this framework.

1.2. Sieve of Eratosthenes-Legendre

Let Pz = ∏p<z p. The sieve of Eratosthenes deletes from the list of numbers all those numbers that are not relatively
prime to Pz, except the primes dividing Pz itself. We are interested in finding bounds on the cardinality of the set
S = {n | n≤ x,n⊥ Pz}. We define

s(n) =

{

1, if n ∈ S

0 otherwise.

This is the characteristic function of the set S. Using the properties of the Möbius function (see Chapter 0), we can
write an explicit expression for s(n).

s(n) = ∑
d\gcd(n,Pz)

µ(d).

We will call such a function s(n) the sifting function.

13



14 1. THE SIEVE OF ERATOSTHENES

Then

|S|= ∑
n≤x

s(n)

= ∑
n≤x

∑
d\gcd(n,Pz)

µ(d)

= ∑
d\Pz

µ(d)

(

∑
n≤x
d\n

1

)

= ∑
d\Pz

µ(d)

⌊

x
d

⌋

= ∑
d\Pz

µ(d)

(

x
d

+

⌊

x
d

⌋

− x
d

)

= ∑
d\Pz

µ(d)
x
d

+ ∑
d\Pz

µ(d)

(⌊

x
d

⌋

− x
d

)

.

Since each term in the second sum has absolute value at most 1, we obtain

|S| ≤ x ∑
d\Pz

µ(d)

d
+2π(z)

= x ∏
p\Pz

(

1− 1
p

)

+2π(z).

Now a theorem of Mertens states that

∏
p<z

(

1− 1
p

)

∼ eγ

lnz
,

and this yields the estimate:

|S| ≤ x
eγ

lnz
+2π(z)

provided z→ ∞ as x→ ∞.

The usefulness of the above scheme is restricted by the huge error term 2π(z). For z = O(lnx) for example we get

π(x)−π(lnx) = O

(

x
lnlnx

)

,

and since π(x)≤ x we get the estimate

π(x) = O

(

x
ln lnx

)

.

This is markedly inferior to the truth π(x)∼ x
lnx .

Note that if z =
√

x then |S| measures π(x)−π(
√

x), for which we have derived the following exact formula:

π(x)−π(
√

x)+1 = x ∏
p<
√

x

(

1− 1
p

)

+ ∑
d\P√x

µ(d)

(⌊

x
d

⌋

− x
d

)

.
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1.3. Smooth numbers

DEFINITION 1.3.1. A number n will be called k-smooth if

∀p : (p\n)⇒ (p < k).

Let Ψ(x,k) = |{n≤ x | n is k-smooth}| i.e., the number of k-smooth numbers up to a bound x.

We can use our sieve argument to try to find a bound on Ψ(x,k). The weakness of this simple sieve will be apparent in
the bound it gives us.

PROPOSITION 1.3.2.

Ψ(x,k) = O

(

x
lnk
lnx

+2π(x)−π(k)
)

.

Proof : Since a number is k-smooth only if all its prime divisors are below k, we can find the k-smooth numbers below
a bound x, by using as our sifting set P = {p | k < p≤ x}. Let Pk,x = ∏p∈P p.
Let S = {n | n is k-smooth}, and this time define

s(n) =

{

1 if n ∈ S or n = 1,

0 otherwise.

Now rewriting s(n) using the Möbius function, we obtain

s(n) = ∑
d\gcd(n,Pk,x)

µ(d).

Setting S(n) = |S|, we apply Mertens’ Theorem at the end to conclude:

S(n) = ∑
n≤x

s(n)

= ∑
n≤x

∑
d\gcd(n,Pk,x)

µ(d)

= ∑
d\Pk,x

µ(d)

(

∑
n≤x
d\n

1

)

= ∑
d\Pk,x

µ(d)

⌊

x
d

⌋

= x ∏
k<p≤x

(

1− 1
p

)

+O(2π(x)−π(k))

= O

(

x
lnk
lnx

+2π(x)−π(k)
)

.

�

The bound is clearly very poor. However we can improve this bound using more advanced sieve techniques. In
[Warl90], a much better bound is given under some conditions on the sifting primes.

1.4. Density of squarefree numbers

The basic method of the sieve of Eratosthenes-Legendre can be adapted to prove a more interesting result. Let S =
{n | n ≤ x,n is squarefree}, and let κ(x) = |S|. To obtain S as a result of a sifting process, all we need to do is take
primes p <

√
x and cross of multiples of p2 from the list. We shall show that a variant of the function s(n) introduced

earlier works in this case.

THEOREM 1.4.1.

κ(x) =
6
π2 x+O(

√
x).
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Proof : The sifting function for this set is now

s(n) = |µ(n)|,
and κ(x) = ∑n≤x s(n) = ∑n≤x |µ(n)|. Now we reach an impasse, because there does not seem to be any easy way of
evaluating this sum. The trick is to look for another expression for the sifting function.

���������
	
s(n) = ∑d2\n µ(d).

������������ ���������
	
Any number n can be represented as n = m2w, where w is squarefree and m is the largest square

divisor of n. If n = pe1
1 pe2

2 · · · p
el
l with ei = 2qi + ri,0≤ ri ≤ 1, then m = ∏i pqi

i satisfies the expression. We shall write
�

(n) to stand for the largest square divisor of n. Now

∑
d2\n

µ(d) = ∑
d\ � (n)

µ(d),

and this sum is 0 unless
�

(n) = 1 in which case it is also 1. This proves the claim.

Setting m =
√

x, we obtain:

κ(n) = ∑
n≤x

s(n)

= ∑
n≤x

∑
d2\n

µ(d)

= ∑
d≤m

µ(d) ∑
n≤x
d2\n

1

= ∑
d≤m

µ(d)

⌊

x
d2

⌋

= x ∑
d≤m

µ(d)

d2 + ∑
d≤m

µ(d)

(⌊

x
d2

⌋

− x
d2

)

= x ∑
d≤m

µ(d)

d2 +O(m).

Using the fact that

∏
p

(

1− 1
p2

)

= ∑
n≥1

µ(n)

n2

we get

κ(n) = x∏
p

(

1− 1
p2

)

− ∑
d>m

µ(d)

d2 +O(m)

= x∏
p

(

1− 1
p2

)

+O(m).

Also

∏
p

(

1− 1
p2

)

=
1

ζ(2)
,

so that we finally get

κ(n) = x
1

ζ(2)
+O(

√
x).

Euler showed that ζ(2) = π2

6 , and using this in the above expression we have

κ(n) =
6
π2 x+O(

√
x).
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�

Another natural question to ask is: what is the density of squarefree numbers in an arithmetic progression? We shall
give a partial answer to that question in the next theorem. Let κ(x;a, l) = |{n≤ x | n is squarefree,n≡ a mod l}|.

THEOREM 1.4.2. Let q > 2 be a prime, and let a be a positive integer relatively prime to q. Then there is a constant
c > 0 depending only on q such that

κ(x;a,q)≥ cx+O(
√

x).

Proof : Using the same idea as in the previous proof we have:

κ(x;a,q) = ∑
n≡qa
n≤x

∑
d2\n

µ(d)(1.1)

= ∑
d≤m

(

∑
d2\n
n≡qa
n≤x

1

)

where m is b
√

xc.(1.2)

The quantity we need to bound is defined by

N(x;d,a,q) = ∑
d2\n
n≡qa
n≤x

1

This is essentially the number of solutions in k to the congruence

kd2 ≡ a mod q.

There are two cases:
[d⊥ q] In this case there is a unique solution k such that

k ≡ a(d−2) mod q.

However, if k ∈ {0,1, · · · ,q−1} is such a solution then for e≥ 1, k+eq is also a solution. Now (k+eq)d2 = n≤ x, so

(k + eq)≤ x
d2

e≤ x
d2q
− k

q

e≤
⌊

x
d2q

⌋

as k < q.

[d 6⊥ q] In this case there are no solutions to the congruence as a > 0.

Thus N(x;d,a,q) =
⌊

x
d2q

⌋

if d ⊥ q, and 0 otherwise. Substituting in (1.2) we get

κ(x;a,q) = ∑
d≤m

µ(d)

⌊

x
d2q

⌋

− ∑
d≤m
d 6⊥q

µ(d)

⌊

x
d2q

⌋

=
x
q

(

∑
d≤m

µ(d)

d2 −∑
d 6⊥q

µ(d)

d2

)

+O(m)
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∑
d 6⊥q

µ(d)

d2 ≤ ∑
d 6⊥q

1
d2

= ∑
q\d,d≤x

1
d2

= ∑
k≤(x/q)

1
k2q2

=
1
q2 ∑

k≤(x/q)

1
k2

≤ 1
q2 ∑

k≥1

1
k2

≤ π2

6q2

Thus we get

κ(x;a,q)≥ x

(

1
qζ(2)

− ζ(2)

q2

)

+O(
√

x).

and hence κ(x;a,q)≥ cx+O(
√

x).
�

1.5. The error term in the distribution of Squarefree numbers

We proved in the previous section that κ(x)− 6
π2 x = O(

√
x), and it turns out to be extremely difficult to improve on

this bound. In this section we briefly digress form the topic of sieves to show a strengthening of the error term if one
assumes the Riemann Hypothesis (henceforth called RH). First we shall strengthen the error term (unconditionally)
using a theorem of Walfisz.

THEOREM 1.5.1 ([Wal63] Satz §5.5.3).

∑
n≤x

µ(n) = Bxexp
{

−A log
3
5 x loglog−

1
5 x
}

for some positive constants A and B.

We simplify the proof in [Wal63] of the following theorem:

THEOREM 1.5.2 ([Wal63] Satz §5.6.1).

κ(x) =
6
π2 x+O

(√
xexp

{

−c log
3
5 x loglog−

1
5 x
})

for some positive constant c > 0.

Proof :

κ(x) = ∑
1≤n≤x

∑
d2\n

µ(d)

= ∑
d2m≤x

µ(d)

= ∑
d2≤x

µ(d)

⌊

x
d2

⌋

.
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Let S2(x,y) = ∑d≤y µ(d)δ
(

x
d2

)

, where δ(z) = z−bzc− 1
2 and M(y) = ∑n≤y µ(n). Then

κ(x) = x ∑
d2≤x

µ2(d)

d2 −S2(x,
√

x)− 1
2

M(
√

x).

In [MV81] (see p.255) the following bound is proved:

S2(x,y) = O(x
2
7 + y

1
2 x

1
7 +ε),

and this implies that S(x,
√

x) = O(x
11
28 ).

Now consider:

∑
d>y

µ(d)

d2 = 2 ∑
d>y

µ(d)
� ∞

d

1
z3 dz

= 2
� ∞

y

dz
z3

{

∑
y<n<z

µ(n)

}

(interchanging of the sum and the integral is valid since both of them are convergent)

= 2
� ∞

y

M(z)dz
z3 −2M(y)

� ∞

y

dz
z3

= O

{

M(y)
� ∞

y

dz
z3

}

−o(1)

= O

{

M(y)
y2

}

.

Hence

∑
d>
√

x

µ(d)

d2 = O

{

exp{c log
3
5 x loglog−

1
5 x}√

x

}

and also

∑
d≤√x

µ(d)

d2 =
1

ζ(2)
+O

{

exp{c log
3
5 x loglog−

1
5 x}√

x

}

.

The theorem follows from these estimates.
�

COROLLARY 1.5.3. The number of squarefree numbers in the interval [x, · · · ,x+
√

x] is asymptotic to 6
√

x
π2 .

The corresponding problem for primes seems to be far more difficult, see [HB88].

It turns out that if the Riemann Hypothesis holds then M(y) = O(
√

y), and using this in the above proof we get the
following theorem:

THEOREM 1.5.4. Assuming the Riemann Hypothesis,

κ(x) =
6
π2 x+O(x

11
28 ).



20 1. THE SIEVE OF ERATOSTHENES

It turns out that if we assume the Riemann Hypothesis we can do better even without the strong bound on S2(x,y). We
begin as we did before,

κ(x) = ∑
1≤d≤x

µ(d)

{

∑
1≤n≤x
d2\n

1

}

= ∑
d2n≤x

µ(d)

= ∑
d2n≤x
d≤y

µ(d)+ ∑
d2n≤x
d>y

µ(d)

= Σ1 +Σ2 (say).

Now (as in the proof of the previous theorem)

Σ1 = ∑
d≤y

µ(d)

⌊

x
d2

⌋

= ∑
d≤y

µ(d)

(

x
d2 −

(

x
d2 −

⌊

x
d2

⌋

− 1
2

)

)

− 1
2 ∑

d≤y

µ(d).

Let as before

S2(x,y) = ∑
d≤y

µ(d)δ
(

x
d2

)

and M(y) = ∑d≤y µ(d), where δ(z) = z−bzc− 1
2 , so that

Σ1 = x ∑
d≤y

µ(d)

d2 −S2(x,y)−
1
2

M(y).

Let

fy(s) =
1

ζ(s)
−∑

d≤y

µ(d)

ds .

We adopt the standard convention of referring to the real part of s as σ and the imaginary part as t. If σ > 1 then we
have

fy(s) = ∑
d>y

µ(d)

ds ,

since in this case we also have
1

ζ(s)
= ∑

1≤d

µ(d)

ds .

Consider

ζ(s) fy(2s) =

{

∑
1≤n

1
ns

}{

∑
d>y

µ(d)

d2s

}

= ∑
1≤n

1
ns

(

∑
d>y
d2\n

µ(d)

)

.

If we look at the restricted version of this sum, namely,

∑
1≤n≤x

1
ns

(

∑
d>y
d2\n

µ(d)

)

,

then as s→ 0 this sum equals Σ2. Thus we need a way of evaluating this sum when s→ 0. The following result
(Lemma (3.12) [Tit86] p60) will help us do just that.
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LEMMA 1.5.5. [Tit86] Let 〈an〉 be a sequence of real numbers, such that as σ→ 1 from above,

∑
n≥1

|an|
nσ = O

(

1
(σ−1)α

)

,

for some α≥ 1. Let ψ(n) be an upper bound for |an|, and define:

f (s) = ∑
n≥1

an

ns ,

for σ > 1. If c > 0,σ≥ 0,σ+ c > 1, x is not an integer, and N is the nearest integer to x, then for all T > 0:

∑
n<x

an

ns =
1

2πi

� c+iT

c−iT
f (s+w)

xw

w
dw+O

(

xc

T (σ+ c−1)α

)

+O

(

ψ(2x)x1−σ logx
T

)

+O

(

ψ(N)x1−σ

T |x−N|

)

.

Applying this lemma to the series

∑
1≤n≤x

1
ns

(

∑
d>y
d2\n

µ(d)

)

with c = 1 + 1
logx and T = x gives remainder terms of O(xε), since ψ(z) = O(

√
z). Making the change of variable

w← s taking the s in the lemma to be 0, and setting x0 = bxc+ 1
2 so that x0 is not an integer, we obtain

Σ2 =
1

2πi

� c+ix

c−ix
ζ(s) fy(2s)

xs
0

s
ds+O(xε).

Now consider splitting the integral into four regions:
� c+ix

c−ix
+

� 1
2 +ix

c+ix
+

� 1
2−ix

1
2 +ix

+

� c−ix

1
2−ix

(where the integrand is the same as above). Since the integrand has a simple pole at s = 1, with residue 2πi fy(2)x0, we
have

� c+ix

c−ix
+

� 1
2 +ix

c+ix
+

� 1
2−ix

1
2 +ix

+
� c−ix

1
2−ix

= 2πi fy(2)x0

and so

Σ2 = fy(2)x0 +
1

2πi

�
C

ζ(s) fy(2s)
xs

0

s
ds+O(xε),

where C is the path made up of the line segments

c− ix−→ 1
2
− ix

1
2
− ix−→ 1

2
+ ix

1
2

+ ix−→ c+ ix.

By Theorem (14.2) on p.337 of [Tit86], RH implies that 1
ζ(s) = O(|t|ε). Also

THEOREM 1.5.6 ([Tit86] (14.25A)). Assume RH. For s with σ > 1
2 ,

∑
n<x

µ(n)

ns =
1

ζ(s)
+O(T 1−εx2)+O(T εx

1
2−σ+δ).

Using this we can take T large so that

fy(s) = O(y
1
2−σ+δ′)(1.3)

under RH.
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Also by Theorem (14.25C) [Tit86], RH implies M(z) = O(z
1
2 +ε). Using all this information we can bound�

C
ζ(s) fy(2s)

xs
0

s
ds

on the contour C : we have fy(2s) = O(y
1
2−1+ε) = O(y−

1
2 +ε) and ζ(s) = 1

s−1 +O(tε), and since xs = xσ+it = e(σ+it) logx =

eσ logx+it logx, we have |xs|= xσ. Thus the integral in (1.3) is:

O(x
1
2 +εy−

1
2 +ε).

Combining all these estimates we get the following bounds:

THEOREM 1.5.7 ([MV81]). Assuming the Riemann Hypothesis, for any y > 0

κ(x) =
x

ζ(2)
−S2(x,y)+O

(

x
1
2 +εy−

1
2 +ε + y

1
2 +ε).

COROLLARY 1.5.8. Assuming the Riemann Hypothesis,

κ(x) =
x

ζ(2)
+O

(

x
1
3 +δ).

Proof : Clearly we have S2(x,y) = O(y), now setting y = x
1
3 in the above theorem we get the result.

�

In the same article [MV81] Montgomery and Vaughan went on to estimate the sums involved more precisely to show
that κ(x) = 1

ζ(2)
x+O(x

9
28 +ε). Subsequently the exponent of the error term was reduced to 7

22 by various authors (see
[BakPin85]).

1.6. Pairs of squarefree numbers

The famous twin prime problem asks whether there are infinitely many primes p such that p + 2 is also prime. Al-
though this problem is still open, the analogous question for the squarefree numbers can be settled rather easily using
the methods we have seen so far. For a more general version of this result see [Mir49].

Let κ2(x) =
∣

∣{n(n+2) | µ(n)2 = µ(n+2)2 = 1,n≤ x}
∣

∣.

THEOREM 1.6.1.

κ2(x) = ∏
p

(

1− 2
p2

)

x+O(x
2
3 ln

4
3 x).

Proof : Let s(n) = ∑d2\n µ(d). Using this we have

κ2(x) = ∑
n≤x

s(n)s(n+2)

= ∑
n≤x

(

∑
a2\n

µ(a)

)(

∑
b2\n

µ(b)

)

.

If a2\n and b2\(n + 2), then writing n = k1a2 and n + 2 = k2b2 we have k′1a2 + k2b2 = 2 (k′1 = −k1). This says that
gcd(a2,b2) divides 2, so gcd(a,b) must be 1, i.e. a⊥ b. Now interchanging the sum we get

κ2(x) = ∑
k1a2−k2b2=2

k2b2≤x
a⊥b

µ(a)µ(b).

The rest of the proof is now to bound the above sum, and to this end we split up the sum into two parts:

κ2(x) = ∑
ab≤y

µ(a)µ(b)N(x;a2,b2,2)+ ∑
ab>y

k1a2−k2b2=2,k2b2≤x

µ(a)µ(b).

Here N(x;a2,b2,2) is a count of the number of solutions to the equation

k1a2− k2b2 = 2, k2b2 ≤ x.
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It is clear that N(x;a2,b2,2) = 0 if gcd(a2,b2) does not divide 2, and otherwise

N(x;a2,b2,2) =
x

lcm( a2,b2)
+O(1)

=
x

(ab)2 +O(1),

since a⊥ b.

Using this we have

∑
ab≤y
a⊥b

µ(a)µ(b)N(x;a2,b2,2)≤ ∑
ab≤y
a⊥b

µ(a)µ(b)

(

x
(ab)2 +O(1)

)

= x ∑
ab≤y

µ(ab)

(ab)2 + ∑
ab≤y

µ(a)µ(b),

since the terms with a 6⊥ b are killed by the Möbius function.

Thus

∑
ab≤y

µ(a)µ(b)≤ ∑
ab≤y

1

=

⌊

y
1

⌋

+

⌊

y
2

⌋

+ · · ·+
⌊

y
y

⌋

= O

(

y ∑
1≤k≤y

1
k

)

= O(y lny).

Now the sum

∑
ab≤y

µ(ab)

(ab)2

can be evaluated by looking at the terms with ν(ab) = k. Write a = pε1
1 pε2

2 · · · p
εk
k and b = pδ1

1 pδ2
2 · · · p

δk
k . Since a⊥ b

we should have (∀i : 1≤ i≤ k) εi +δi = 1, so there are 2ν(ab) terms whose denominator is (ab)2. Hence

∑
ab≤y

µ(ab)

(ab)2 = ∑
n≤y

µ(n)2ν(n)

n2

= ∏
p≤y

(

1− 2
p2

)

.

So

∑
ab≤y

µ(ab)

(ab)2 = ∏
p

(

1− 2
p2

)

−∑
n>y

µ(n)2ν(n)

n2 .

We need a bound on the sum on the right hand side of the above equation.
Now

∑
ab>y

1
(ab)2 = ∑

b<y,ab>y

1
(ab)2 + ∑

a>y,b>y

1
(ab)2 .

The second sum converges so we need to bound on the first part of the sum. Now:

∑
b<y,ab>y

1
(ab)2 ≤ ∑

1≤b≤y

1
b2

(

∑
a> y

b

1
a2

)
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∑
a> y

b

1
a2 ≤

� ∞

y
b

1
a2 da =

b
y

so we have

∑
b<y,ab>y

1
(ab)2 ≤

1
y ∑

1≤b≤y

1
b

=
1
y

lny.

We finally get

x ∑
ab≤y

µ(ab)

(ab)2 = x∏
p

(

1− 1
p2

)

+O

(

x
y

lny

)

.

Now we have to bound the sum

∑
ab>y

k1a2−k2b2=2,k2b2≤x

µ(a)µ(b).

We re-express this sum as follows:

∑
ab>y

a2c−b2d=2
b2d≤x

µ(a)µ(b)≤ ∑
a2c−b2d=2

b2d≤x
ab>y

1.

Since a2c = 2+b2d, a2c≤ 2+ x, and this gives us c≤ (x+2)
a2 . Since d ≤ x

b2 and y < ab we have either cd ≤ x(x+2)
a2b2 or

cd ≤ x(x+2)
y2 . This gives

∑
a2c−b2d=2
b2d≤x,ab>y

1≤ ∑
cd<

x(x+2)

y2

M(x;c,d,2),

where M(x;c,d,2) is the number of solutions of

ca2−db2 = 2,db2 ≤ x.(1.4)

The above equation implies that
(

2c−1

p

)

≡ 1 mod p, for all p\d,

(

2d−1

p

)

≡ 1 mod p, for all p\c.

Estermann studied these congruences and for the case cd not a square he proved [Est31]:

M(x;c,d,2) = O(lnx),

in fact that M(x;c,d,2)≤ 4(ln(x+2)+1).
If cd is a square then since the equation (1.4) implies c⊥ d we can set c = l2, d = m2 to obtain:

M(x;c,d,2) = ∑
l2a2−m2b2=2

1

≤ ∑
r2−s2=2

1

= 0.
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In any case we have M(x;c,d,2) = O(lnx), and using this we have:

∑
cd<

x(x+2)

y2

M(x;c,d,2) ≤ lnx ∑
cd<

x(x+2)

y2

1.

For any positive constant K we have:

∑
cd<K

1 = ∑
c<K

K
c

≤ K lnK,

so

∑
cd<

x(x+2)

y2

M(x;c,d,2) ≤ ln2 x
x(x+2)

y2

= O

(

x2

y2 ln2 x

)

.

Setting y = x
2
3 ln

1
3 x we have

∑
ab>y

µ(ab)≤ ∑
cd<

x(x+2)
2

M(x;c,d,2)

≤ x
2
3 ln

4
3 x,

and also

x ∑
ab≤y

µ(ab)

(ab)2 = x∏
p

(

1− 1
p2

)

+O

(

x
1
3
(

ln
2
3 x+o(1)

)

)

.

The theorem follows from these two bounds.
�

1.7. The smallest squarefree number in an arithmetic progression

The simple methods that we have seen so far are surprisingly powerful and provide a quick bound on the smallest
squarefree number in an arithmetic progression. The following result is from [Erd60] and is one of the early uses of a
squarefree sieve.

THEOREM 1.7.1. Let a ⊥ D, 1 ≤ a < D. Then the smallest squarefree number in the arithmetic progression 〈a +
kD : k≥ 0〉 is

O

(

D
3
2

lnD

)

.

Proof : Let A = 〈a+ kD : k ≥ 0〉 be the sequence. The first step would be to sift A by all squares of primes below a
certain limit z. This will leave out only those numbers that could have a large prime as their square divisor. We will
finally bound the number of such integers below x and show that there are still some numbers left over — and that will
prove the theorem.
Let Pz = ∏p<z p. The result of the sifting of the sequence A by Pz is:

S(A ;Pz,x) = ∑
n∈A
n≤x

∑
d2\n
d\Pz

µ(d)

= ∑
d\Pz

µ(d)

(

∑
n∈A

n≤x,d2\n

1

)

.



26 1. THE SIEVE OF ERATOSTHENES

Now

∑
n∈A

n≤x,d2\n

1

is exactly the number of solutions to the following pair of congruences:

n≡ 0 mod d2

n≡ a mod D.

Suppose d ⊥ D. Then there is exactly one solution in the interval lcm(D,d2) = Dd2, so the total number of solutions
in 1≤ n≤ x is at most

x
Dd2 +1.

If gcd(d,D) = δ then n = kδ by the first congruence and n−a = k′δ by the second congruence. This yields a = (k−k′)δ
and so gcd(a,D) 6= 1. This is a contradiction, so if d 6⊥ D there are no solutions to the congruence. Let k = b (x−a)

D c,
which is the maximum value of k for a+ kD to be in A . Then

S(A ;Pz,x) = ∑
d\Pz,d⊥D

µ(d)

(

x
Dd2 +1

)

=
x
D ∑

d\Pz,d⊥D

µ(d)

d2

= k

(

∑
d\Pz
d⊥D

µ(d)

d2 +o(1)

)

= k

(

∏
p\Pz,p6\d

(

1− 1
p2

)

+o(1)

)

≥ k

(

∏
p

(

1− 1
p2

)

+o(1)

)

= k

(

6
π2 +o(1)

)

.

Taking k to be c
√

D
lnD we have

S(A ;Pz,k)≥
6
π2

c
√

D
lnD

.

The number of integers a+ kD in A for which k < c
√

D
lnD and also

n≡ 0 mod p2

n≡ a mod D

is at most c
√

D
p2 lnD

+1.

Let N stand for the number of integers k < c
√

D
lnD in A for which a+ kD 6≡ 0 mod p2 for all p≤

√
cD. Then

N ≥ 6
π2

c
√

D
lnD

− c
√

D
lnD

(

∑
p≥z

1
p2

)

− ∑
p≥z,p≤

√
cD

1(1.5)

≥ 6
π2

c
√

D
lnD

− c
√

D
lnD

1
z
−π(
√

cD),(1.6)

and so for large enough c and L

N >
1
2

c
√

D
lnD

.(1.7)

We have used the fact that π(x) < 2x
lnx for large enough x.
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Now we are left with the numbers that are either squarefree or divisible by a prime p >
√

cD. For these numbers
a+ kD either

a+ kD≡ 0 mod p2,k <
c
√

D
lnD

and p >
√

cD

or

a+ kD = αp2 with α <

√
D

lnD
.

Supposing p > D
1
2 +ε, we would have α < D

1
2−ε if D is large enough, so we also have p < D.

Thus a + kD = αp2 yields a congruence a ≡ αp2 mod D. Let us fix an α; then clearly the number of such prime
solutions is less than the number of solutions for the congruence x2 ≡ aα−1 mod D, 0 < x < D. If aα−1 is a quadratic
residue modulo D, then by the Chinese Remainder Theorem there are at most 2ν(D) such solutions to this congruence.
Since ν(n) = o(lnn), we can write 2ν(D) = o(D

ε
2 ). If p > D

1
2 +ε then there are only D

1
2−ε choices for α, so on the

whole there are only o(D
1
2− ε

2 ) such solutions.

Let us consider the solutions for
√

cD < p < D
1
2 +ε. We have

p2 ≡ aα−1 mod D, α <

√
D

lnD
,
√

cD < p < D
1
2 +ε.

Let cα be the number of solutions of this congruence for a fixed α. These solutions give rise to ∑
(cα

2

)

solutions to the
congruence

p2 ≡ q2, p,q < D
1
2 +ε.(1.8)

Since (1.8) implies (p− q)(p + q)≡ 0 mod D, the number of such solutions is at most the number of solutions to

uv≡ 0 mod D, u < 2D
1
2 +ε,v < 2D

1
2 +ε. This gives us

uv = βD,1≤ β < 4D2ε.(1.9)

Also for a fixed β the number of such solutions is less than the number of factors of the number βD, which is o((βD)ε),
so the number of solutions of (1.9) is o((βD)ε)4D2ε = o(D4ε). This gives

∑
(

cα

2

)

= o(D4ε)

and hence

∑
cα>1

cα = o(D4ε).

Since α <
√

D
lnD , ∑cα ≤

√
D

lnD +o(D4ε). Thus the number of integers 0≤ k < c
√

D
lnD for which

a+ kD≡ 0 mod p2

for some p >
√

cD is at most D
1
2

lnD +o(D
1
2− ε

2 ). So the number of integers k, 0≤ k < c
√

D
lnD , for which a+kD is squarefree

is

1
2

c
√

D
lnD

−
√

D
lnD
−o(D

1−ε
2 ) > 0

for large enough c.
�

1.8. The Sieve Problem

Now that we have seen some examples of sieve techniques at work, we can formulate the sieve problem in a generic
setting so that the essential quantities are clearly visible. The notation we shall adopt is that of the seminal book by
Halberstam and Richert [HR74].
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1.8.1. Notation.

1. A ,B , · · · will stand for integer sequences.
2. Ad = 〈a ∈ A : a≡ 0 mod d〉.
3. A z = 〈a ∈ A : a≤ z〉.
4. If A is a finite sequence then |A | will denote the length of the sequence.
5. P = 〈pi : pi is the i-th prime〉.
6. Pz = ∏p∈P z p.
7. S(A ;P z,x) will be the number of elements in A x that survive the sifting process by the sequence P z. In general

the sifting is determined by a sifting function σ : A →{0,1} which determines whether a number survives the
sifting, but usually we will only be considering simple sifting functions like

σ(n) = 1⇔
(

n⊥ ∏
p∈S z

p

)

8. If A is a finite sequence then ω(p) is defined such that ω(p)
p x is a good approximation to |A x

p|. If d is any
squarefree integer we can generalize this notation by defining ω(d) = ∏p\d ω(d).

9. Define Rd(x) = |Ax
d |−

ω(p)
p x, i.e. the remainder term in our estimate of |A x

d |.
10. Define

W (z) = ∏
p\Pz

(

1− ω(p)

p

)

.

1.8.2. The Sieve of Eratosthenes-Legendre revisited. The generic sieve problem is to estimate S(A ;P z,x).
Needless to say solving the problem as stated in this generality is too great a task. This treatise will only be concerned
with restricted versions of the sieve problem which nevertheless yield interesting and non-trivial results. The case of
great importance is when S z = P z and A is some subsequence of positive integers.

The sieve of Eratosthenes-Legendre can be recast in this framework as follows.
Let A be the sequence to be sifted, and let ω(d) and Rd be the modulo counting function and the remainder function
for the sequence, respectively. Let P z be the sifting sequence; then the sifting function is

σ(n) =

{

1 if, n⊥ Pz

0 otherwise.

We can rewrite σ(n) as

σ(n) = ∑
d\gcd(n,Pz)

µ(d).
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Thus we have

S(A ,P z,x) = ∑
n∈A,n≤x

σ(n)

= ∑
n∈Ax

∑
d\gcd(n,Pz)

µ(d)

= ∑
d\Pz

µ(d)

(

∑
n∈Ax

d\n

1

)

= ∑
d\Pz

µ(d)|Ax
d |

= ∑
d\Pz

µ(d)

(

ω(d)

d
x+Rd(x)

)

= x ∑
d\Pz

µ(d)ω(d)

d
+ ∑

d\Pz

µ(d)Rd(x)

= x ∏
p\Pz

(

1− ω(p)

p

)

+ ∑
d\Pz

µ(d)Rd(x)

= xW (z)+ ∑
d\Pz

µ(d)Rd(x)

= xW (z)+θ ∑
d\Pz

Rd(x) where |θ| ≤ 1.

If we assume that |Rd(x)| ≤ ω(d) and suppose that ω(p)≤C0, where C0 is some constant, then ω(d)≤Cν(d)
0 . So

∑
d\Pz

Rd(x)≤ ∑
d\Pz

Cν(d)
0

= ∏
p\Pz

(1+C0)

= (1+C0)
π(z).

Thus we have proved the following theorem.

THEOREM 1.8.1. For all sufficiently large x and z < x, there is a θ with |θ| ≤ 1 (θ depending on z), such that

S(A ;P z,x) = xW (z)+θ ∑
d\Pz

Rd(x).

If we have |Rd(x)| ≤ ω(d) and ω(p)≤C0 then

S(A ;P z,x) = xW (z)+O

(

(1+C0)
π(z)
)

.

It is very clear that the effectiveness of the basic sieve is limited by the fact that the remainder term is a sum over all
the divisors of Pz. Beginning with the next chapter we shall systematically try to reduce this term.
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CHAPTER 2

The Combinatorial Sieve

In this chapter we begin by exploring the ideas of Viggo Brun, who first showed how we can improve on the Legendre
method if we relax our requirement of asymptotic results but instead look for inequalities. After developing Brun’s
sieve in general we shall look at applications that bring out the surprising power of the technique. We follow the
presentation in Halberstam & Richert [HR74] rather closely since its form is well suited for our applications. However
our development will be targeted only to the Brun’s sieve.

2.1. Brun’s Pure Sieve

Let Ax be a finite sequence of integers and let S z be the sifting primes. In the previous chapter the sifting function
was:

σ(n) = ∑
d\gcd(n,Pz)

µ(d).

Let us see what can be done if instead we have a pair of functions χ1(d) and χ2(d) such that

σ2(n)≡∑
d\n

µ(d)χ2(d)≤∑
d\n

µ(d)≤∑
d\n

µ(d)χ1(d)≡ σ1(n).

Since

S(A ;Pz,x) = ∑
d\Pz

µ(d)|Ad|

= |A |− ∑
p\Pz

|Ap|+ ∑
pq\Pz

|Apq|+ · · ·

we expect that truncating the series after an even (odd) number of sums will give us a lower (upper) bound. Brun’s
pure sieve is an application of this well-known idea.

Using the notation developed in the last chapter we have

∑
n∈A

∑
d\n
d\Pz

µ(d)χ2(d)≤ S(A ,P z,x)≤ ∑
n∈A

∑
d\n
d\Pz

µ(d)χ1(d).

Let us first look at the upper bound:

∑
n∈A

∑
d\n
d\Pz

µ(d)χ1(d) = ∑
d\Pz

µ(d)χ1(d)|Ax
d |

= ∑
d\Pz

µ(d)χ1(d)

(

ω(d)x
d

+ |Rd(x)|
)

= x ∑
d\Pz

µ(d)χ1(d)
ω(d)

d
+ ∑

d\Pz

µ(d)χ1(d)|Rd(x)|.

Let σ1(n) = ∑d\n µ(d)χ1(d); then by Möbius inversion we get

µ(d)χ1(d) = ∑
δ\d

µ
(d

δ
)

σ(δ).

31
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Substituting this in the above expression we get

x ∑
d\Pz

µ(d)χ1(d)
ω(d)

d
= x ∑

d\Pz

ω(d)

d

(

∑
δ\d

µ
(d

δ
)

σ1(δ)

)

= x ∑
δ\Pz

σ1(δ)ω(δ)

δ

(

∑
t\(Pz/δ)

µ(t)
ω(t)

t

)

(since ω(d) is a multiplicative function)

= x ∑
δ\Pz

σ1(δ)
ω(δ)

δ ∏
p\(Pz/δ)

(

1− ω(p)

p

)

= xW (z) ∑
δ\Pz

σ1(δ)
ω(δ)

δ∏p\δ

(

1− ω(p)
p

)

= xW (z) ∑
δ\Pz

σ1(δ)g(δ)

= xW (z)

(

1+ ∑
1<δ\Pz

σ1(δ)g(δ)

)

,

where g(d) abbreviates ω(d)

d ∏p\d
(

1−ω(p)
p

) .

The remainder term is clearly at most

∑
d\Pz

µ(d)χ1(d)|Rd(x)| ≤ ∑
d\Pz

|χ1(d)||Rd(x)|.

A similar argument works for the lower bound too. Thus we have:

xW (z)

(

1+ ∑
1<δ\Pz

σ2(δ)g(δ)

)

− ∑
d\Pz

|χ2(d)||Rd(x)| ≤ S(A ,P z,x)(2.10)

≤ xW (z)

(

1+ ∑
1<δ\Pz

σ1(δ)g(δ)

)

+ ∑
d\Pz

|χ1(d)||Rd(x)|.(2.11)

Our aim will be to minimize |∑1<δ\Pz σi(δ)g(δ)| for i = 1,2 such that the remainder term ∑d\Pz |χi(d)||Rd | is small.

A whole class of estimates can be obtained by restricting the functions χi to be the characteristic sequences of two
divisor sets D+ and D− of Pz. The resulting sieves are called Combinatorial Sieves.
Let us consider the following functions:

χ(r)(d) =

{

1 if ν(d)≤ r, and µ2(d) = 1,

0 otherwise.

These functions restrict the divisor sets over which we take the sum. In particular the restriction is on the number of
distinct prime factors of the divisors.
We will require the following lemma.

LEMMA 2.1.1.

∑
0≤i≤k

(−1)i
(

n
i

)

= (−1)k
(

n−1
k

)

.

Proof : The proof is by induction on k.
For k = 0 we have

(−1)0
(

n
0

)

=

(

n−1
0

)

+

(

n−1
−1

)

=

(

n−1
0

)

.



2.1. BRUN’S PURE SIEVE 33

Now

∑
0≤i≤(k+1)

(−1)i
(

n
i

)

= ∑
0≤i≤k

(−1)i
(

n
i

)

+(−1)k+1
(

n
k +1

)

= (−1)k
(

n−1
k

)

+(−1)k+1
(

n
k +1

)

= (−1)k
(

n−1
k

)

+(−1)k+1
((

n−1
k

)

+

(

n−1
k +1

))

= (−1)k+1
(

n−1
k +1

)

.

�

LEMMA 2.1.2. Let n be a positive integer and s a non-negative integer. Then

∑
d\n

µ(d)χ(2s+1)(d)≤∑
d\n

µ(d)≤∑
d\n

µ(d)χ(2s)(d).

Proof : When n = 1 all the sums are equal so we can assume n > 1. Then

∑
d\n

µ(d)χ(r)(d) = ∑
1≤k≤r

(−1)k
(

ν(n)

k

)

= (−1)r
(

ν(n)−1
r

)

.

by Lemma (2.1.1).
�

Now let us try to bound the terms involved in (2.11). Let σ(r)(n) = ∑d\n µ(d)χ(r)(d), so that we have

σ(r)(n) = ∑
d\n

ν(d)≤r

µ(d)

= (−1)r
(

ν(n)−1
r

)

and hence |σ(r)(n)|=
(ν(n)−1

r

)

≤
(ν(n)

r

)

.
Then we have

∣

∣

∣

∣

∑
1<d\Pz

σ(r)(d)g(d)

∣

∣

∣

∣

≤ ∑
1<d\Pz

(

ν(d)

r

)

g(d)

= ∑
r≤m≤ν(Pz)=π(z)

(

m
r

)

∑
1<d\Pz
ν(d)=m

g(d)

≤ ∑
m≤r

(

m
r

)

1
m!

(

∑
p<z

g(p)

)m

=
1
r!

(

∑
p<z

g(p)

)r

exp ∑
p<z

g(p).

Suppose we make the assumption |Rd(x)| ≤ ω(d); then we can also bound the remainder term as follows:

∑
d\Pz

|χ(r)(d)||Rd(x)| ≤ ∑
d\Pz,ν(d)≤r

ω(d)≤
(

1+ ∑
p<z

ω(p)

)r

.
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Since

∑
d\Pz

ν(d)≤2s+1

µ(d)|Ad|= ∑
d\Pz

ν(d)≤2s

µ(d)|Ad|− ∑
d\Pz

ν(d)=2s+1

|Ad| ≤ S(A ;Pz,x)≤ ∑
d\Pz

ν(d)≤2s

µ(d)|Ad |

we can always write

S(A ;Pz,x) = ∑
d\Pz

ν(d)≤r

µ(d)|Ad |+θ ∑
d\Pz

ν(d)=r+1

|Ad |, |θ| ≤ 1.

Putting all these together we have:

S(A ;P z,x) = xW (z)

(

1+θ
1
r!

(

∑
p<z

g(p)

)r

exp

{

∑
p<z

g(p)

})

+θ′
(

1+ ∑
p<z

ω(p)

)r

for some positive integer r, and with |θ| ≤ 1, |θ′| ≤ 1.
Thus we have proved:

THEOREM 2.1.3 (Brun’s Pure Sieve). Let

g(d) =
ω(d)

d ∏p\d
(

1− ω(p)
p

)

be well defined for all d with µ(d) 6= 0, and suppose |Rd(x)| ≤ ω(d). Then for every non-negative integer r there exist
θ,θ′ with |θ| ≤ 1, |θ′| ≤ 1 such that

S(A ;P z,x) = xW (z)

(

1+θ
1
r!

(

∑
p<z

g(p)

)r

exp

{

∑
p<z

g(p)

})

+θ′
(

1+ ∑
p<z

ω(p)

)r

.

We can apply this theorem to derive a much better bound on π(x) that we obtained eariler.
We consider the sequence � x , and in this case since � x

p = {n≤ x | n≡ 0 mod p} we have | � x
p |= b x

pc= 1
p x+δ′, |δ′|<

1. So we can take ω(p) = 1, and the condition |Rd(x)| ≤ ω(d) is also satisified.
Also

g(p) =
1

p
(

1− 1
p

) ≤ 2
p
,

and this gives us

∑
p<z

g(p)≤ 2 ∑
p<z

1
p

< 2(lnlnz+1).

We use the trivial estimate 1+ ∑p<z ω(p)≤ z. In this case we have

W (z) = ∏
p<z

(

1− 1
p

)

∼ e−γ

lnz
.

We begin with the following observations. First 1
r! ≤

(

e
r

)r
by the Stirling approximation. Next if we set z such that

∑p<z g(p)≤ λr, then the result of the theorem simplifies to

S(A ;P z,x) = xW (z)

(

1+θ(e1+λλ)r
)

+θ′zr.

Defining

r =

⌊

2(lnlnz+1)

λ

⌋

+1
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gives us ∑p<z g(p)≤ λr.
We restrict z so that

lnz =
lnx

γ ln lnx
,

and set

λ =
ξ lnz(ln lnz+1)

lnx

so that for a large enough x and appropriate settings of ξ,γ we get λe1+λ ≤ 1. For this setting of z and r we have
zr = o

(

x1−ε) for some ε > 0. Thus the theorem gives

π(x) = O

(

x ln lnx
lnx

{

1+θe−c lnlnx
})

+o(x1−ε).

This approximation is significantly better than our first and shows the improvement that can be made using this simple
idea. Next we will look at the twin primes problem, which was Brun’s primary application of his pure sieve.
In this case we take the sequence to be

A = |{n(n+2) | n≤ x}|.

Let p > 2; then Ap = {n(n+2) | n≤ x,n(n+2) ≡ 0 mod p}. Now n(n+2)≡ 0 mod p only if n≡ 0 or n+2≡ 0
since p is an odd prime. Clearly 0 and p−2 are two solutions in the interval 0, · · · , p−1. So we can take ω(p) = 2,
p > 2. For p = 2 we have ω(p) = 1. By the Chinese Remainder Theorem we have |Rd(x)| ≤ω(d). We take the sifting
primes to be P = {p | p > 2}. Since S(A ;Pz,x) counts all the twin-prime pairs above z, S(A ;Pz,x)+ 2z is an upper
bound on the number of twin-primes below x. Then:

W (z) = ∏
2<p<z

(

1− 2
p

)

≤ ∏
2<p<z

(

1− 2
p

)2

= O

(

1

ln2 z

)

.

Carrying out the rest of the analysis again using lnz = lnx
γ ln lnx we get the following theorem.

THEOREM 2.1.4. Let π2(x) = |{p≤ x | p+2 = q}|

π2(x) = O

(

x

(

ln lnx
lnx

)2)

.

The above theorem can be put in a more impressive form.

THEOREM 2.1.5.

∑
p

p+2=q

1
p

converges.

Proof :
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∑
p

p+2=q

1
p

= ∑
n

π2(n)−π2(n−1)

n

= ∑
n

π2(n)

(

1
n
− 1

n+1

)

= ∑
n

π2(n)
1

n(n+1)

≤ B∑
n

n(ln lnn)2

n(n+1) ln2 n

= B∑
n

1
n

(

ln lnn
lnn

)2

= O(1).

The last step follows via

∑
n≤x

1
n

(

ln lnn
lnn

)2

≤
(

2
lnx

+
2lnlnx

lnx
+

(ln lnx)2

lnx

)

(1+o(1))

using approximation by integration and taking the limit x→ ∞.
�

2.2. Brun’s Sieve

The second idea of Brun was to limit the remainder term by restricting the size of primes making up the divisors.
This simple idea results in a sieve of remarkable power which can be used to prove rather sharp bounds on S(A ,Pz,x).
Since we are modifying the divisor sets in a non-trivial fashion we would like to have some simple conditions on the
characteristic functions χ of the divisor sets, such that χ still yields good lower or upper bounds. Our first task is to
find such a set of conditions.
We begin with the following observation.

PROPOSITION 2.2.1.

S(A ,Pz,x) = ∑
d\Pz

µ(d)χ(d)|Ad|− ∑
1<d\Pz

σ(d)S(Ad ;Pz
(d),z)

where Pz
(d) = ∏p∈Pz

p6\d
p.

Proof :

∑
d\Pz

µ(d)χ(d)|Ax
d |= ∑

d\Pz

|Ax
d |∑

δ\d
µ

(

d
δ

)

σ(δ)

= ∑
δ\Pz

σ(δ) ∑
t\Pz/δ

µ(t)|Aδt |

= ∑
t\Pz

µ(t)|At |+ ∑
1<δ\Pz

σ(δ) ∑
t\Pz/δ

µ(t)|Aδt |

= S(A ,Pz,x)+ ∑
1<δ\Pz

σ(δ) ∑
t\Pz/δ

µ(t)|Aδt |

= S(A ,Pz,x)+ ∑
1<d\Pz

σ(d)S(Ad ;Pz
(d),z),

where we have used the Möbius inversion on the expression for σ(d) as in the previous section.
�

We will use the above proposition to compare ∑d\Pz µ(d)|Ad | with ∑d\Pz µ(d)χ(d)|Ad |.



2.2. BRUN’S SIEVE 37

Now

σ(d) = ∑
l\d

µ(l)χ(l)

= ∑
l\d/p

µ(l)χ(l)+ ∑
l\d/p

µ(l p)χ(l p)

= ∑
l\d/p

µ(l)χ(l)− ∑
l\d/p

µ(l)χ(l p)

= ∑
l\d/p

µ(l)
(

χ(l)−χ(l p)
)

.

Let q(d) be the smallest prime divisor of d. Now using the above expression we can write

∑
1<d\Pz

σ(d)S(Ad ;Pz
(d),x) = ∑

δ\Pz

∑
p\Pz

p<q(δ)

σ(pδ)S(Apδ;Pz
(pδ),x)

= ∑
δ\Pz

∑
p\Pz

p<q(δ)

S(Apδ;Pz
(pδ)

,x)∑
l\δ

µ(l)

(

χ(l)−χ(pl)

)

= ∑
l\Pz

∑
p\Pz

p<q(l)

µ(l)

(

χ(l)−χ(pl)

)

∑
t\Pz/l
p<q(t)

S(Aplt ;Pz
(plt),x)

= ∑
l\Pz

∑
p\Pz

p<q(l)

µ(l)

(

χ(l)−χ(pl)

)

S(Apl;Pp
(pl),x).

Using this in the above proposition,

S(A ;Pz,x) = ∑
d\Pz

µ(d)χ(d)|Ad |− ∑
d\Pz

∑
p\Pz

p<q(d)

µ(d)

(

χ(d)−χ(pd)

)

S(Apd;Pp
(pd),x)

= ∑
d\Pz

µ(d)χ(d)|Ad |− ∑
d\Pz

∑
p\Pz

p<q(d)

µ(d)

(

χ(d)−χ(pd)

)

S(Apd;Pp,x)

since Pp
(pd) = Pp.

Suppose we have χ(1) = 1 and χ(d) = 0 for d > 1. Then

S(A ;Pz,x) = |A|− ∑
p<z,p∈P

S(Ap;Pp,x).

Now let χ1,χ2 be the characteristic functions of the divisor sets that we wish to use to get upper and lower bounds
respectively. If we arrange

(−1)i−1µ(d)

(

χi(d)−χi(pd)

)

≥ 0

whenever pd\Pz and p < q(d) for i = 1,2, then

∑
d\Pz

µ(d)χ2(d)|Ad | ≤ S(A ;Pz,x)≤ ∑
d\Pz

µ(d)χ1(d)|Ad |.

The above inequality is valid (needless to say) only if the sums involving χi are positive. This gives us a set of suffi-
cient conditions for our functions χi to be well behaved.

If pd\Pz and p < q(d) then the conditions can be satisfied in only one of the following ways:

1. χi(d) = χi(pd)
2. χi(d) = 1,χi(pd) = 0 and µ(d) = (−1)i−1

3. χi(d) = 0,χi(pd) = 1 and µ(d) = (−1)i.
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We can avoid the last possibility by requiring that the functions χi be divisor closed, i.e. that

χi(d) = 1⇒
(

∀δ\d : χi(δ) = 1

)

.

So the functions χi for i = 1,2 should have the following properties:

1. If d\Pz, then either χi(d) = 0 or χi(d) = 1;
2. χi(1) = 1 (this is required for the derivation in Proposition (2.2.1));

3. χi(d) = 1⇒
(

∀δ\d : χi(δ) = 1

)

;

4. χi(d) = 1,µ(d) = (−1)i⇒ χi(pd) = 1 for all pd\Pz, where p < q(d).

Suppose we restrict χ(r) (which was the divisor selection function of the previous section) to also limit the number of
prime factors that come from a certain interval. Suppose at most δ1 divisors can come from the interval z1 < p < z.
Then the remainder term obeys

∑
d\Pz

χ(r)(d)|Rd | ≤
(

1+ ∑
p<z

ω(p)

)δ1
(

1+ ∑
p<z1

ω(p)

)r−1−δ1

.

This allows a more accurate estimation of the remainder term. The full Brun Sieve uses n such intervals to minimize
the remainder term.

The first step is to compare ∑d\Pz µ(d)ω(d)
d with ∑d\Pz µ(d)χi(d)ω(d)

d . By writing χi(d) = 1 + � i(d), we can split the
sum

∑
d\Pz

µ(d)χi(d)
ω(d)

d
= ∑

d\Pz

µ(d)χi(d)
ω(d)

d
+ ∑

d\Pz

µ(d) � i(d)
ω(d)

d
.

Let d = p1 · · · pr; then

1−χi(d) = χi(p2 · · · pr)−χi(p1 · · · pr)

+χi(p3 · · · pr)−χi(p2 · · · pr)

+ · · ·
+χi(1)−χi(pr).

If we write P(p+,z) = ∏p<q<z,q∈P q then we can write the above as:

1−χi(d) = ∑
p\d

{

χi(gcd(d,P(p+,z)))−χi(gcd(d,Pp,z))

}

.

This gives us

∑
d\Pz

µ(d)χi(d)
ω(d)

d
= W (z)+ ∑

d\Pz

∑
p\d

µ

(

d
p

){

χi(gcd(d,P(p+,z)))−χi(gcd(d,P(p,z)))

}

ω(d)

d
.

Let d = δpt, where δ\Pp and t\P(p+,z). Rewriting the above expression we get:

∑
d\Pz

µ(d)χi(d)
ω(d)

d
= W (z)+ ∑

p<z

ω(p)

p ∑
δ\Pp

µ(δ)
ω(δ)

δ ∑
t\P(p+,z)

µ(t)

(

χi(t)−χi(pt)
)

t
ω(t)

= W (z)+(−1)i−1 ∑
p<z

ω(p)

p
W (p) ∑

t\P(p+,z)

(

χi(t)(1−χi(pt))
)

t
ω(t),

where we have used χi(t)−χi(pt) = (−1)i−1µ(t)χi(t)(1− χi(pt)) if pt\Pz and p < q(t). To verify this, if χi(t) =
χi(pt), then both sides are 0, and this is the case if χi(pt) = 1 (since the χi are divisor closed). Now if χi(t) = 1 and
χi(pt) = 0, then from the properties of χi listed above, we have that µ(t) = (−1)i−1, and so the relation holds.
So finally we get

∑
d\Pz

µ(d)χi(d)
ω(d)

d
= W (z)

{

1+(−1)i−1 ∑
p<z

ω(p)

p
W (p)

W(z) ∑
t\P(p+,z)

χi(t)
(

1−χi(pt)
)

t
ω(t)

}

.
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This identity holds in general for every combinatorial sieve with χi satisfying the properties listed above, provided
W (z) and W (p) are well defined. This will happen if g(d) stays bounded.

Construction of the Divisor sets: Let r be a positive integer and let zi for 1≤ i≤ r be real numbers. We will divide
the interval [2 · · ·z] into r intervals as follows: let

2 = zr < zr−1 < · · ·< z1 < z0 = z.

Let d\Pz and βn = gcd(d,P(zn,z)) for 1≤ n≤ r. Let us set χi(d) = 1 if for all 1≤ n≤ r we have ν(βn)≤ A+Cn, where
A and C will be picked to make χi an acceptable function. For the current choice χi is already divisor closed, so the
only property we need to check is:

χi(t) = 1,µ(t) = (−1)i⇒
(

∀pt\Pz, p < q(t) : χi(pt) = 1

)

.

Let zm ≤ p < zm−1. Since χi(t) = 1 we should have ν(βm) ≤ A +Cm. If ν(βm) < A +Cm then χi(pt) = 1. Now
if ν(βm) = A +Cm, then we also have µ(t) = (−1)i. By definition µ(t) = (−1)ν(t), since ν(t) = A +Cm, we have
µ(t) = (−1)A+Cm. This suggests that we set A = B− i. Then we have that (−1)B+Cm = 1 or B+Cm should be even.
If we make B +Cm an odd number, then the assumption that χi(t) = 1 and µ(t) = (−1)i results in a contradiction.
Consequently, ν(βm) = A +Cm cannot happen if χi(t) = 1. For some integer b we set B = 2b− 1 and C = 2. This
suggests using ν(βn) ≤ 2b− 1 + i + 2n to be the condition on the number of factors of d in the interval [zn, · · · ,z).
Summarizing, the characteristic functions of the divisor sets will be (for i = 1,2)

χi(d) =

{

1 if ∀m : 1≤ m≤ r, ν(βm)≤ 2b− i−1+2m,

0 otherwise.

The construction was such that the above function is the characteristic function of an acceptable divisor set.

Derivation of the Sieve bounds: Now

∑
1≤n≤r

∑
zn≤p<zn−1

ω(p)W (p)

pW (z) ∑
t\P(p+,z)

χi(t)
(

1−χi(pt)
)

t
ω(t)

≤ ∑
1≤n≤r

W (zn)

W (z) ∑
z≤p<zn−1

ω(p)

p ∑
t\P(p+,z)

χi(t)(1−χi(pt))
t

ω(t).

We have used the fact that W (p) ≤W (zn) if zn ≤ p < zn−1. Now for each t which makes a contribution we have
χi(pt) = 0 and χi(t) = 1. So we must have ν(t) = 2b− i+2n−1 for zn ≤ p < zn−1. Hence this sum is at most

∑
1≤n≤r

W (zn)

W (z) ∑
d\P(zn,z)

ν(d)=2b−i+2n

ω(d)

d
,

and so

∑
p<z

ω(p)W (p)

pW (z) ∑
t\P(p+,z)

χi(t)
(

1−χi(pt)
)

t
ω(t)≤ ∑

1≤n≤r

W (zn)

W (z)
1

(2b− i+2n)!

(

∑
zn≤p<z

ω(p)

p

)(2b−i+2n)

.

Now to simplify this sum further we have to make some assumptions about the function ω(p); instead of assuming
ω(p) = O(1) we shall use the more general assumption:

∑
w≤p<z

ω(p) ln p
p

≤ κ ln

(

z
w

)

+η, for 2≤ w≤ z.(2.12)

If indeed we had ω(p) = 1, then we have

∑
w≤p<z

ln p
p
≤ ln

(

z
w

)

+1, for 2≤ w≤ z.
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So the assumption we have made is an assumption on the average distribution of ω(p). Such an assumption usually
holds, and is much easier to verify in more complicated situations.

A question we can ask is: Does the above assumption imply a bound for the sum

∑
w≤p<z

ω(p)

p
?

Let

S(k)≡ ∑
w≤p<k

ω(p) ln p
p

.

Since S(k)−S(k−1) = ω(k) lnk
k if k is prime we have

∑
w≤p<z

ω(p)

p
= ∑

w≤k<z

S(k)−S(k−1)

lnk

= ∑
w≤k<z−1

S(k)

(

1
lnk
− 1

lnk +1

)

= ∑
w≤k<z−1

S(k)

(

ln(k +1)− lnk
lnk lnk +1

)

Now

ln(k +1) = lnk + ln

(

1+
1
k

)

,

and since 1+ x≤ ex we have ln

(

1+ 1
k

)

≤ 1
k .

Then

∑
w≤p<z

ω(p)

p
≤ ∑

w≤k<z−1

S(k)

k ln2 k
(2.13)

≤ ∑
w≤k<z−1

κ ln

(

k
w

)

+η

k ln2 k
(2.14)

≤ κ ∑
w≤k<z−1

1
k lnk

− lnw ∑
w≤k<z−1

1

k ln2 k
+η ∑

w≤k<z−1

1

k ln2 k
(2.15)

≤ κ ln

(

lnz
lnw

)

+
η

lnw
.(2.16)

Here we have used � z

w

1
x lnx

dx =− ln lnw+ lnlnz,

and � z

w

1

x ln2 x
dx =

1
lnw
− 1

lnz
.

Now returning to our original problem we need bounds on

W (zn)

W (z)
= ∏

zn≤p<z

1
(

1− ω(p)
p

) ,
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and so

ln
W (zn)

W (z)
≈ ∑

zn≤p<z

ω(p)

p
.

Our assumption (2.12) yields a bound on

∑
zn≤p<z

ω(p)

p

by (2.16). Thus we expect that a bound of the form

W (zn)

W (z)
≤ eγ

(

nλ+ c
ln z

)

can be enforced with some— constants γ,λ and c. This can be achieved for example with a double-exponential fall-off
of zn with respect to z, in fact this is what we shall do later.
If a bound for W (zn)

W (z) of the above form exists, then this also gives us (as we might expect)

∑
zn≤p<z

ω(p)

p
≤ ∑

zn≤p<z
ln

(

1

1− ω(p)
p

)

≤ ln
W (zn)

W (z)
< γ
(

nλ+
c

lnz

)

.

Let f = c
lnz , and suppose we can enforce γ = 2 (this helps in the simplification to follow). Then

∑
1≤n≤r

W (zn)

W (z) ∑
d\P(zn,z)

ν(d)=2b−i+2n

ω(d)

d
≤ ∑

1≤n≤r

e2nλ+2 f (2nλ+2 f )2b−i+2n

(2b− i+2n)!

≤ ∑
1≤n≤r

e2 f (eλ)2n (2n)2b−i+2n

(2n)!(2n)2b−i

(

1+
f
n

)2b−i+2n

(since (2b− i+2n)!≥ (2n)!(2n)2b−i)

= ∑
1≤n≤r

e2 f (λeλ)2n (2ne−1)2ne2n

(2n)!
(λ2b−i)

(

1+
f

nλ

)2b−i(

1+
f

nλ

)2n

= e2 f (λ+ f )2b−i ∑
1≤n≤r

(2ne−1)2n

(2n)!
(λe1+λ)2n

(

1+
f

nλ

)2n

since (ne−1)n

n! is decreasing, and
(

1+ f
nλ
)2n ≤ e

2 f
λ . Also assuming λe1+λ ≤ 1;

∑
1≤n≤r

W (zn)

W (z) ∑
d\P(zn,z)

ν(d)=2b−i+2n

ω(d)

d
≤ e2 f (λ+ f )2b−i2e−2e

2 f
λ ∑

1≤n

(

λe1+λ
)

=
2λ2b−i+2e2λ

1− (λe1+λ)2

(

1+
c
λ

)2b−i

e2 f (1+ 1
λ )

≤ 2λ2b−i+2e2λ

1− (λe1+λ)2
e(2b−i+4) f

λ .

Thus

∑
d\Pz

µ(d)χi(d)
ω(d)

d
= W (z)

(

1+2θ
λ2b−i+2e2λ

1− (λe1+λ)2
e(2b−i+4) f

λ

)

for i = 1,2.
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Now we have to bound the remainder term, which is significantly easier. Let us assume that ω(p) ≤ A for some
constant A > 0. Then

∑
d\Pz

χi(d)|Rd | ≤ ∑
d\Pz

χi(d)ω(d)

≤
(

1+ ∑
p<z

ω(p)

)2b−i+1

∏
1≤n≤r−1

(

1+ ∑
p<zn

ω(p)

)2

≤ (1+A(2li z+3))2b−i+1 ∏
1≤n≤r−1

(1+A(2li zn +3))2 for i = 1,2.

Selection of the intervals: We select the numbers zn with an exponential fall-off in the logarithm. Let Λ > 0 be a
real number. Define

lnzn = e−nΛ lnz for n = 1, · · · ,r−1;

and set zr = 2.
Here r is selected such that

lnzr−1 = e−(r−1)Λ lnz > ln2,

and

e−rΛ lnz≤ ln2,

so we have

e(r−1)Λ <
lnz
ln2
≤ erΛ.

Thus for a suitable constant B the remainder term becomes

∑
d\Pz

χi(d)|Rd | ≤
(

Bz
lnz

)2b−i+1

∏
1≤n<r

(

BznenΛ

lnz

)

=

(

Bz
lnz

)2b−i+1

∏
1≤n≤r−1

(

Be
1
2 rΛ

lnz

)r−1

∏
1≤n≤r−1

z2
n.

Now

Be
1
2 rΛ

lnz
≤ BeΛ/2

lnz

√

lnz
ln2

< 1,

and also

∏
1≤n≤r−1

z2
n = exp

(

2lnz ∑
1≤n≤r−1

e−nΛ
)

≤ z
2

eΛ−1 .

Thus

∑
d\Pz

χi(d)|Rd |= O
(

z
2b−i+1+ 2

eΛ−1
)

for i = 1,2.

We still have to check that W (zn)
W(z) ≤ e2(nλ+ f ). By our assumptions about the sum ∑w≤p<z

ω(p) ln p
p we have

W (zn)

W (z)
≤ exp

(

nΛκ+
2cenΛ

lnz

)

= e2c exp

(

n

(

Λκ+
2c
lnz

enΛ−1
n

)

)

,n = 1, · · · ,r.
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If 1≤ 1

1−ω(p)
p

≤ A, then

c =
η
2

(

1+Aκ+
ηA
ln2

)

.

Since Λ > 0 we have

enΛ−1
n

≤ erΛ−1
r

,

and this is at most

Λ
erΛ

rΛ
≤ Λ

eΛ

ln2
lnz

ln(lnz/ ln2)
.

So we get

W (zn)

W (z)
≤ e2c exp

(

nΛκ
(

1+
2ceΛ

κ ln2
1

ln(lnz/ ln2)

)

)

for n = 1, · · · ,r.

To meet our conditions on W (zn)
W (z) we take

Λ =
2λ
κ

1
1+ ε

ε =
1

δe
1
κ
,

and so

e
2λ
κ − eΛ ≤

(

2λ
κ
−Λ

)

e
2λ
κ

≤ εΛe
1
κ .

Since eΛ−1≥ Λ we have

e
2λ
κ −1

eΛ−1
≤ 1+

εΛe
1
k

eΛ−1 ≤ 1+ εe
1
κ = 1+

1
δ
.

With ξ = 1+ 1
δ we obtain

∑
d\Pz

χi(d)|Rd |= O

(

z
2b−i+1+ 2ξ

(

e
2λ
κ −1
)

)

for i = 1,2.

Thus we have proved the following theorem.

THEOREM 2.2.2. Assume that

1≤ 1

1− ω(p)
p

≤ A,

∑
w≤p<z

ω(p) ln p
p

≤ κ ln

(

lnz
lnw

)

+
η

lnw
,

and

|Rd | ≤ ω(d).

Let λ be such that 0 < λe1+λ < 1. Then

S(A ;Pz,x)≤ xW (z)

{

1+2
λ2b+1e2λ

1− (λe1+λ)2
exp

(

(2b+3)
c

λ lnz

)}

+O

(

z
2b−1+ 2ξ

e
2λ
κ −1

)

,(2.17)
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and

S(A ;Pz,x)≥ xW (z)

{

1−2
λ2be2λ

1− (λe1+λ)2
exp

(

(2b+2)
c

λ lnz

)}

+O

(

z
2b−1+ 2ξ

e
2λ
κ −1

)

,(2.18)

where

c =
η
2

(

1+A

(

κ+
η

ln2

))

and ξ = 1+ ε for 0 < ε < 1.

Application to the Twin Primes problem : We set A = {n(n + 2) | n ≤ x}. In this case we have ω(2) = 1 and
ω(p) = 2. Further, all the conditions of Theorem (2.2.2) hold, and the lower bound is seen to be positive. Thus (2.18)

tends to infinity with x, ([HR74], p.63) for z = x
1
u with u < 8. This implies that every divisor of a number in the sifted

set is ≥ x
1
u so each number in the sifted set can have at most u < 8 factors1. Thus we have the following theorem.

THEOREM 2.2.3. There are infinitely many n such that ν(n(n+2))≤ 7.

We will look at some interesting applications of Brun’s sieve in the following sections.

2.3. Orthogonal Latin Squares and the Euler Conjecture

DEFINITION 2.3.1. A Latin square of order n is an n×n matrix with entries in S = {1, · · · ,n} such that every row and
column is a permutation of the set S.

DEFINITION 2.3.2. Two Latin squares A and B or order n are said to be mutually orthogonal if the n2 pairs (ai j,bi j)
are distinct.

Here is a Latin square of order 3:

A =





1 2 3
2 3 1
3 1 2



 ,

and here is a latin square that is orthogonal to it:

B =





1 2 3
3 1 2
2 3 1



 .

Euler conjectured that there are no mutually orthogonal Latin squares of order n, where n≡ 2 mod 4. The conjecture
was disproved for the case n = 10, and later Bose, Parker and Shrikande [BPS60] showed that for every higher n > 6
the conjecture was false. Let ⊥(n) be the number of orthogonal latin squares of order n. Chowla, Erdős and Straus

[CES60] building on this and some previous results, established that ⊥(n) > 1
3 n

1
91 for large enough n. The proof

involves an interesting use of the Brun Sieve, and we shall give an account of this. The exponent 1
91 is far from optimal

and has been subsequently improved.
The starting point for the proof is the following pair of results:

THEOREM 2.3.3. [BPS60] If k ≤⊥(m)+1 and 1 < u < m then

⊥(km+u)≥min{⊥(k),⊥(k +1),⊥(m)+1,⊥(u)+1}−1.

THEOREM 2.3.4 (MacNiesh). 1. ⊥(ab)≥min{⊥(a),⊥(b)};
2. ⊥(q) = q−1 if q is a power of a prime.

First we shall prove the following:

THEOREM 2.3.5.

lim
n→∞
⊥(n) = ∞.

1For a similar derivation see Theorem (2.3.6).
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Proof : The idea is to have a lower bound on each of the quantities involved in Theorem (2.3.3), and then use the
theorem with km+u = n.

Let x be a large positive integer. If

k +1 = ∏
p≤x

px,

then by Theorem (2.3.4) we have⊥(k+1)≥ 2x−1≥ x. Also since k≡ 1 mod p for p≤ x all the prime factors k are
larger than x, so applying Theorem (2.3.4) again we have ⊥(k)≥ x.
Now we select m in two pieces m1 and m2. The first piece is set to be

m1 = kk ∏
q6\n
q≤x

qk.

Note that m1 is bounded in terms of x alone. Now if n is large enough the interval
[

n
(k +1)m1

· · · n−1
km1

]

contains an integer m2 such that m2 ≡ 1 mod k!, simply because the length of the interval becomes larger than k!.

Now set m = m1m2 then⊥(m)≥min{⊥(m1),⊥(m2)}≥min{2k−1,k}≥ k. Thus we have⊥(m)+1≥ k to satisfy the
condition of Theorem (2.3.3). Set u = n− km; we need to bound⊥(u), but first we need to verify that 1 < u < m. We

have n
(k+1)m1

< m2 < (n−1)
km1

or n
(k+1) < m < n−1

k . This yields km+1 < n and km+m > n, which implies that 1 < u < m.
Let p≤ x then

km 6≡ n mod p.

This is because k has prime factors only above x, m1 has a small prime factor only if it does not divide n, and m2 has
prime factors only above k≥ x. Thus km+u 6≡ n mod p for p < x, and so no prime smaller than x divides u. Thus we
get ⊥(u)≥ x. Now applying Theorem (2.3.3) we have ⊥(km+u) =⊥(n)≥ x.

�

Note that this has already disproved Euler’s conjecture. It is clear that our method of proof relied on our ability to
produce some numbers with large prime factors and some congruence properties, this indicates that a sieve argument
might help. The necessary machinery from sieves is encapsulated in the following theorem:

THEOREM 2.3.6. [Rad24] Let p1, · · · , pr be primes, and let ai < pi,bi < pi be non-negative integers for 1≤ i≤ r. Let
D > 1 be an integer with gcd(D, pi) = 1 for each i, 1≤ i≤ r, and Λ is an integer, 0 < Λ < D such that gcd(Λ,D) = 1.
Let

P(D,x; p1,a1,b1; p2,a2,b2; · · · ; pr,ar,br)

=
∣

∣{n≤ x | n≡ Λ(mod D),(∀i : 1≤ i≤ r) : n 6≡ ai(mod pi),n 6≡ bi(mod pi)}
∣

∣.

If p1 < p2 < · · ·< pr and pi > 2, then

P(D,x; p1,a1,b1; · · · ; pr,ar,br) >
Cx

D ln2 pr
−C′p7.938

r ,

where C and C′ are positive constants.

REMARK 2.3.7. The original theorem has 7.9 instead of our slightly worse 7.938, but this can be improved using a
more detailed analysis of our proof.

Proof : The quantity S(A ;Pz,x) is the number of integers in A that are 6≡ 0 modulo pi for each pi ∈ P, pi ≤ z. In this
case we have two constraints for each prime pi. But we can collapse these two constraints into one as follows. The
constraint for the prime i is that n 6≡ ai, n 6≡ bi modulo pi. So the constraint fails iff

(n−ai)(n−bi)≡ 0 mod pi.

Let A = {n ≤ x | n ≡ Λ mod D}, Api = {n ≤ x | (n− ai)(n− bi) ≡ 0 mod pi}, and if d = pi1 · · · pik then Ad =

{n≤ x | ∏1≤ j≤k(n−ai j)(n−bi j)≡ 0 mod d}. Suppose |Api |=
ω(pi)

pi
x+Rpi; then we see that if d is squarefree then

|Ad |= ω(d)
d x+Rd, where ω(d) is defined multiplicatively. Thus we are interested in the estimate:
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P(D,x; p1,a1,b1; · · · ; pr,ar,br) = |A |−∑ |Api |+∑ |Api p j |− · · ·
= ∑

d\p1···pr

µ(d)|Ad |,

which is just the sieve estimate.

The congruence (n−ai)(n−bi)≡ 0 mod pi has at most 2 solutions modulo pi so ω(pi) = 2 for each i. We will try to
apply Brun’s Sieve to this problem.

We just need to verify that the conditions of the proof of Theorem (2.2.2) are valid. First

1

1− ω(p)
p

≤ 3

so A = 3. Next

∑
w≤p<z

p∈{p1,··· ,pr}

ω(p) ln p
p

≤ 2 ∑
w≤p<z

ln p
p
≤
(

ln
z
w

+1

)

,

from which we have κ = 2, and η = 2. Rd ≤ ω(d) also holds. Thus by the lower bound we have (with b = 2):

S(A ;P = {p1, · · · , pr},z)≥ |Ax|W (z)

{

1−2
(λeλ)2

1− (λeλ)2
exp

(

4c
λ lnz

)}

+O

(

z
1+

2ξ
eλ−1

)

.

So all we need to show is that there is a λ such that

1+
2+2ε
eλ−1

≤ u≤ 7.938

and

1− 2(λeλ)2

1− (λe1+λ)2
> 0.

Then the second condition implies

λeλ <
1√

2+ e2
≈ 0.3263540699 · · ·

and the first implies

2+2ξ
6.938

+1≤ eλ.

Now set ξ = 10−9, so we must have λ≥ log1.288267513692707. This value of λ also satisfies the other constraint.

Now we take z = pr, and using |Ax|= x
D +θ, |θ|< 1,

S(A ;Ppr ,x)≥ Cx
D ∏

1≤i≤r

(

1− 2
pi

)

+O(p7.938
r ),

and also

∏
i

(

1− 2
pi

)

≤ ∏
p≤pr

(

1− 2
pi

)

.

Now in

ln ∏
p≤pr

(

1− 2
pi

)

=−2 ∑
p≤pr

1
pi
−2 ∑

p≤pr

∑
m>1

1
mpm

the second sum converges, so we have

∏
p≤pr

(

1− 2
pi

)

=
1

ln2 pr
+o

(

1

ln2 pr

)

.
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The theorem follows.
�

Now we have the following simple lemma:

LEMMA 2.3.8. For all c,0 < c < 1, the number of integers y≤ x that are divisible by a prime factor p > nc of n, is at
most x

cnc .

Proof : At most x
p integers y≤ x are divisble by p and so the total number of such integers is given by:

∑
p\n

p>nc

x
p
≤ x

nc ∑
p\n

p>nc

1

≤ x
cnc .

The last part follows because, there can be at most 1/c prime factors of a number n that are greater than nc.
�

THEOREM 2.3.9. [CES60] There is an n0 > 0 such that for all n > n0, ⊥(n) > 1
3 n

1
91 .

Proof : The idea as before is to apply Theorem (2.3.3) to suitable k, m and u for a given n such that n = km+u. For
this to yield a lower bound on⊥(n) we need lower bounds on ⊥(k),⊥(k +1),⊥(m) and ⊥(u).
We begin with the selection of k: we need k as well as k +1 to have no small prime factors. This is exactly the sort of
problem handled by the theorem we have just proved. It turns out that the constraints on k depend on the parity of n.
Case 1. (n even). Consider the constraints:

k ≡−1 mod 2b
1
91 lgnc

k 6≡ 0 or −1 for p≤ n
1
10

and k < n
1
10 . The first congruence restricts k to lie in an arithmetic progression with difference 2b

1
91 lgnc < c1n

1
91 . The

second incongruence implies that both k and k + 1 are free of small prime factors, apart from the large power of 2
dividing k +1.
Now applying Theorem (2.3.6) there are at least:

Cn
1

10

c1
1

902 n
1

91 log2 n
−C′n

79.38
10

1
90 = c2

n
81
910

log2 n
−C′n

79.38
900

> c3
n

81
910

log2 n

values of k satisfying the constraints.

By Lemma (2.3.8) the number of integers below n
1

10 that have a prime factor greater than n
1
90 in common with n is

at most 90n
8

90 . Thus from the bound for the values of k we have that there is a k such that gcd(k,n) = 1. Just by our
selection of k we have that k has no small prime factors and though k + 1 has 2 as a prime factor we still have that

k +1≡ 0 mod 2b
1

91 lgnc and all the other factors are bigger than n
1
90 so using Theorem (2.3.4)

⊥(k) > n
1

90 −1 >
1
3

n
1

91

⊥(k +1) > min

{

1
2

n
1
91 ,n

1
90

}

−1 >
1
3

n
1

91 .

We now set n = n1 +n2k where 0 < n1 < k. We cannot directly use n1 and n2 in our application of Theorem (2.3.3),
since we have no bounds for⊥(n1) and⊥(n2). Though we have freedom in our choice of m we are still forced to pick
k as our quotient in the division of n by m to write n = km+u. This suggests picking a u subject to certain conditions
and then set m = n−u

k . Again this immediately restricts us to look at numbers that are congruent to n1 modulo k. Let
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u = n1 +u1k where u1 is picked according to the following conditions:

u1 6≡ n1 mod 2,

u1 6≡ −
n1

k
mod p, p 6 \k,

u1 6≡ n2 mod p, for 3≤ p≤ k,

and u1 < n
159
200 . The first incongruence forces u1k to be of opposite parity from n1 and always fixes u to be odd. In this

setup we will set m = n−u
k = n2− u1. We want m to be free of small prime factors to guarantee a good lower bound

for ⊥(m) and this is taken care by the third incongruence. Meanwhile, the second incongruence arranges for u itself
to have no small prime factors. The limit on u1 is forced on us because of the limitations of Theorem (2.3.6).

The restrictions of the incongruences modulo the primes 2,3, and 5 can be handled by restricting u1 to belong to an
arithmetic progression with difference 30. To apply Theorem (2.3.6) we need gcd(u1,30) = 1. If we had gcd(u1,30) >
1, then we can set u′1 = u1

gcd(u1,30) and apply Theorem (2.3.6). Thus there are at least

Cn
159
200

30log2 k
−C′k

79.38
10 > c4

n
159
200

log2 n
−C′n

79.38
100 > 0

choices for u1, if n is large enough. Now u is not divisible by any prime p ≤ k. First suppose that p 6 \k, then
this contradicts the incongruence n1 6≡ −u1k mod p. Next, if p\k, then p\n1 which implies p\n a contradiction to
gcd(k,n) = 1.

Thus ⊥(u)≥ k, but k is not divisible by any prime ≤ n
1
90 , so ⊥(u)≥ n

1
90 > 1

3 n
1

91 . Now as promised we set m = n−u
k ,

we need to verify that m > u > 1 to apply Theorem (2.3.3), and observe that

m >
n

n
1
10

− (1+n
159
200 ) >

1
2

n
9

10

> n
1
10 +(1+n

159
200 )

> u > 1,

for large enough n.
Furthermore, all prime factors of m exceed k by our choice of u, and hence:

⊥(m)≥ k >
1
3

n
1
91 .

Finally putting all these together and applying Theorem (2.3.3) we get: ⊥(n) > 1
3 n

1
91 for large enough even numbers n.

Case 2. (n odd). We apply Theorem (2.3.6) to k +1 instead with the following constraints:

k +1≡ 1 mod 2b
1

91 lgnc

k +1 6≡ 0 or 1 mod p, p≤ n
1

90

k +1≤ n
1

10 .

Now the argument proceeds with the role of k and k +1 interchanged, and the second set of constraints becomes:

u1 6≡ n2 mod 2,

u1 6≡ −
n1

k
mod p, p≤ k, p 6 \k,

u1 6≡ n2 mod p, p≤ k,

and u1 < n
159
200 . So here both n and m are odd. The argument then proceeds similarly.

�

Better estimates for⊥(n) are known— for example in [Wil74] a bound⊥(n)≥ n
1
17 −2 is proved (for large enough n).

The current best estimate seems to be ⊥(n)≥ n
1

14.8 [Be83].
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2.4. A Theorem of Schinzel

In this section we will give an application involving a variation of Theorem 2.3.6, where we look at some constant
number of constraints. The proof is an interesting use of Brun’s sieve.

THEOREM 2.4.1. [Sch66] For all positive integers h and N ≥ 3 there is an integer D such that:

1. 1≤ D≤ (logN)20h;
2. gcd(iD+1,N) = 1, for 1≤ i≤ h.

Proof : For h = 1 we can take D = q−1, where q is the least prime not dividing N. Since ∑p≤D log p≤ logN, we have
from [RS62] Theorem 10, that either D≤ 100 or 0.84D≤ logN. Since D≤ N we have D≤ (logN)20, for all N ≥ 3.

If N ≤ (logN)20h, then D = N satisfies the conditions of the theorem, so we can assume N > (logN)20h, with h≥ 2.
Now

N > (logN)20h⇒ logN > 20h loglogN.

If logN < 110h, then N < e110h and

(logN)20h ≥ (110h)20h = elog110h20h

≥ elog110+logh20h

= e94.0069h+20h logh

≥ e114.0096h,

which is a contradiction to N > (logN)20h. Hence we must have logN ≥ 110h, and loglogN ≥ log110 + logh ≥
5.3936, or loglogN > 5.

Let H = ∏p≤10h p, and we let p1, · · · , pr be the primes pi > 10h such that pi\N. Let p1 < p2 < · · · < pr. Let
P(H,x; p1, · · · , pr) be the number of integers n≤ x such that

n≡ 0 mod H,

and

(∀i ∀ j) : 1≤ i≤ h,1≤ j ≤ r : in+1 6≡ 0 mod p j.

Since pi > 10h for all the values of i in the incongruences, i is invertible. Thus, the above constraints are equivalent
to a system of h incongruences per prime (we had 2 such constraints in Theorem 2.3.6). Thus we have a system of
incongruences:

x 6≡ ai j mod p j,

for some ai j.

Here we are in a special situation of the Sieve problem. The number of primes with respect to which we sift the
sequence is very small, namely we sift only by the prime factors of N, of which there can be at most logN. Hence we
shall re-do the analysis of the Brun sieve and thereby get a better estimate.
Let A = {n≤ x | n≡ 0 mod H}, P = ∏1≤i≤r pi and let

Ap j =

{

n ∈ A | ∏
1≤i≤h

(n−ai j)≡ 0 mod p j

}

.

We extend the notation to Ad for d a divisor of P.
We have that

P(H;x; p1, · · · , pr) = ∑
d\P

µ(d)|Ad |.

For |Ap j |, we can select ω(p) = hx
H p j

, and Rp j ≤ h since for each congruence there is an error of at most 1 in the

approximation. The denominator H can be taken out of our analysis if we set x← x
H . We also have that Rd ≤ ω(d).
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Hence

W (k) = ∏
1≤i≤k

(

1− h
pi

)

.

From our earlier work in section (2), we have

P(H;x, p1, · · · , pr) >
xW (pr)

H
(1+Θ)+R,

where

Θ = 1−∑
i≤r

ω(pi)

pi

W (pi)

W (pr)
∑

t\P(i···r]

χ(t)(1−χ(pt))
t

ω(t)

and P(i···r) = ∏i<k≤r pk. We let 1 ≤ rt ≤ rt−1 ≤ ·· · ≤ r0 = r, be a sequence of integers. These correspond to the real
numbers zi, but here we select the indices of the primes instead. We use the function χ≡ χ2 (in the proof of Theorem
2.2.2), with P(ri···r) instead of P(zn,z) in the definition.

We will show that in this case we can select the intervals (ri) such that Θ < 1.

Following the same argument as in Section 2 (with b = 1), we arrive at the following upper bound for Θ:

∑
1≤n≤t

W (rn)

W (r)
1

(2n+1)!

(

∑
rn≤i≤r

ω(pi)

pi

)2n+1

.

We will show later that we can pick ri such that

W (rn)

W (r)
=

1

∏rn≤i≤r

(

1− h
pi

) ≤ enγ,

where γ = log1.3. As before

∑
rn≤i≤r

ω(pi)

pi
≤ log

(

W (rn)

W (r)

)

≤ nγ.

So the bound for Θ is

∑
1≤n≤t

enγ

(2n+1)!
(nγ)2n+1 = ∑

1≤n≤t

(ne−1)2n+1

(2n+1)!
e2n+1γ2n+1enγ

≤ 1
e3(3!) ∑

1≤n≤t

(γe1+γ)2n+1

(since (ne−1)2n+1

(2n+1)! is decreasing)

≤ 1
e3(3!)

γe1+γ
(

∑
1≤n<∞

(γe1+γ)2n
)

=
1

e3(3!)
γe1+γ 1

1− (γe1+γ)2 .

The last step follows because γe1+γ < 1. The final expression is ≈ 0.05478 < 1. Thus Θ < 1.

Let us define the intervals by selecting ri (for 1≤ i≤ t), as the least index such that

πi = ∏
ri<k≤ri−1

(

1− h
pk

)

≥ 1
1.3

.
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Since pi > 10h this is always possible. This automatically satisfies the requirements set earlier on γ. Select t such that

πt = ∏
1≤k≤rt−1

(

1− h
pk

)

≥ 1
1.3

.

Since pi > 10h we have

1− h
pi

> 1− h
10h

=
9
10

so

9
10

πi =

(

1− h
10h

)

πi

<

(

1− h
pri

)

πi,

which by the definition of ri is such that

<
1

1.3
.

Thus

πi ≤
10
9

1
1.3

=
1

1.17
<

8
9
.

We will show that

log ∏
1≤i≤r

(

1− h
pi

)

>
−h loglogN

e logeh
>−0.2h loglogN.

Using the series expansion of log(1+ x) we see that

log ∏
1≤i≤r

(

1− h
pi

)

+ log ∏
1≤i≤r

(

1− h
pi

)−h

≥− ∑
1≤i≤r

∑
2≤m

1
m

(

h
pi

)m

≥ ∑
1≤i≤r

1
2 ∑

1≤m

(

h
pi

)m

=−1
2 ∑

1≤i≤r

(

h
pi

)2( 1

1− h
pi

)

.

We need a good bound on ∑i
1
p2

i
. We have by [RS62] (p.87), that

∑
x<p

1
pn ≤

1.02n
xn−1 lnx

.

Using this with n = 2 and x = 10h, (all the primes pi > 10h by our choice) we have

∑
1≤i≤r

1

p2
i

≤ 2.04
10h log10h

.

Thus

−1
2 ∑

1≤i≤r

1

1− h
pi

(

h
pi

)2

≥−5
9

h2 ∑
1≤i≤r

1

p2
i

≥− 0.2h
log10h

.

Now if we can bound from above

log ∏
1≤i≤r

(

1− h
pi

)−h

,
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then we can obtain a lower bound on log∏1≤i≤r

(

1− h
pi

)

.

Let N ′ = N
gcd(H,N) . We have

A
ϕ(A)

1

∏1≤i≤r

(

1− 1
pi

) =
AN′

ϕ(AN ′)
.

By [RS62] Theorem (15): For n≥ 3

n
ϕ(n)

< eγ loglogn+
5

2loglogn
,

where γ is the Euler constant. Also by [RS62] Theorem (9): logH < 11h < 0.1logN.
Using this we have

HN ′

ϕ(HN ′)
< eγ loglogHN ′+

2.51
loglogHN ′

< eγ loglogN ′+
eγ

10
+

2.51
5

< eγ(loglogN +0.4),

as HN ′ ≥ N, log logN > 5 by our conditions, and also N ′ ≤ N.

Now by [RS62], where a lower bound of e−γ

logx

(

1− 1
log2 x

)

for ∏p≤x
1

1− 1
p

is given, we have:

H
ϕ(H)

> eγ log10h

(

1− 1

2log2 10h

)

> eγ(logh+2.1).

Since loglogN > log10h,

∏
1≤i≤r

(

1− h
pi

)−1

<
1

eγ(logh+2.1)

{

eγ loglogN +0.4

}

yielding

−h log ∏
1≤i≤r

(

1− 1
pi

)

< h

(

log(loglogN +0.4)− log(logh+2.1)+
0.2

log10h

)

and finally

log ∏
1≤i≤r

(

1− h
pi

)

>−h
(

logloglogN− loglogeh
)

.

Using logx− loga = 1+ log
(

x
ae

)

≤ x
ae , we have

log ∏
1≤i≤r

(

1− h
pi

)

>
−h loglogN

e logeh
.

Since πi ≤ 1
1.17 , we obtain

(t−1) log1.17≤ log ∏
1≤i≤r

(

1− h
pi

)−1

≤ h loglogN
e logeh

<
h loglogN

e log(h+1)
.

This yields

(2t +1) log(h+1) < 3log(h+1)+
2h loglogN
e log1.17

< 3log(h+1)+4.7h loglogN.



2.4. A THEOREM OF SCHINZEL 53

Now pi > i log i, by [RS62] (Corollary to Theorem 3). Hence

logπi = ∑
rn<i≤rn−1

log

(

1− h
pi

)

>−10
9 ∑

rn<i≤rn−1

h
ps

>−10h
9

� rn−1

rn

dt
t logt

=−10h
9

log
logrn−1

logrn
.

Since πi ≤ 1
1.17 , we have

logrn

logrn−1
<

(

1
1.17

) 9
10h

<

(

1+
9

10h
log1.17

)−1

≤ (1+0.141h−1)−1,

and so
logrn

logr
< (1+0.141h−1)−n

for 1≤ n≤ t−1. Further

logN ≥ ∑
1≤i≤r

log pi > r log10h≥ r log20,

so logr < loglogN−1.

Now for the remainder term:

R = ∑
d\P

χ(d)|Rd | ≤
(

1+ ∑
1≤i≤r

ω(pi)
)

∏
1≤i≤t−1

(

1+ ∑
j≤ri

ω(p j)
)2

(since ω(p) = h)

≤ (1+hr) ∏
1≤i≤t−1

(1+hri)
2.

Thus

logR≤ log(1+h)+ logr +2(t−1) log(h+1)+2 ∑
1≤i≤t−1

logri

= (2t−1) log(h+1)+ logr +2 ∑
1≤i≤t−1

logri

< 3log(h+1)+4.7h loglogN +(loglogN−1)

(

2 ∑
0≤n

(1+0.141h−1)−n−1

)

< 3log(h+1)+4.7h loglogN +(loglogN−1)(14.2h+1)

< 19.4h loglogN−11h−1.

Since logH < 11h, we have

logR < 19.4h loglogN− logH−1,

and

log

(

c(logN)20h

H ∏
1≤i≤r

(

1− h
pi

))

> logR,
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where c = 1−0.05478. Thus P(H,(logN)20h, p1, · · · , pr) > 0. Thus there is an integer D satisfying the conditions of
the theorem.

�

2.5. Smooth Numbers

Here we illustrate the surprising power of the indentity proved in Proposition 2.2.1.

Let Px
z = {p | z≤ p < x}. Then setting χ(1) = 1 and χ(d) = 1 for d > 1 in Proposition 2.2.1, we have that for 2≤ z1 ≤ z

:

S(Ax;Px
z1

) = S(Ax;Px
z )− ∑

z1≤p<z
S(Ap;Px

p).

Recall that S(Ax;Px
z ) = Ψ(x,z) the number z-smooth integers below x, also S(Ap;Px

p) = Ψ( x
p , p).

Hence we have, for 2≤ z1 ≤ z that

Ψ(x,z) = Ψ(x,z1)+ ∑
z1≤p<z

Ψ
(

x
p
, p

)

.(2.19)

As an application we show the following theorem.

THEOREM 2.5.1 ([Hal70]). Let y = x
1
θ where 1 < θ≤ 2. Then

Ψ(x,y) = x

{

1− logθ+O

(

1
logx

)}

.

Proof :
Applying the identity (2.19) with z = x and z1 = y, we have

Ψ(x,y) = Ψ(x,x)− ∑
y≤p<x

Ψ
(

x
p
, p

)

.(2.20)

Now Ψ(x,x) = bxc. Since 1 < θ≤ 2, p≥√x, we have that x
p ≤
√

x≤ p. Consequently, Ψ
(

x
p , p
)

=
⌊

x
p

⌋

.
Substituting in (2.20), we have

Ψ(x,y) = bxc− ∑
y≤p<x

⌊

x
p

⌋

= x− x ∑
y≤p<x

1
p

+O(π(x))

= x

{

1− loglogx+ loglogy+O

(

1
logx

)}

.

Now x≥ yθ, so logx≥ θ logy, and also loglogx≥ logθ+ loglogy this yields

Ψ(x,y) = x

{

1− logθ+O

(

1
logx

)}

.

�

The recurrence formula can be used to convert upper bounds to other useful lower bounds, and can also be used
iteratively. Here is a simple example.

Let us try to evaluate Ψ(x,x
1
δ ) for 2 < δ < e using the recurrence formula

Ψ(x,x
1
δ ) = Ψ(x,x

1
2 )− ∑

x
1
δ≤p≤x

1
2

Ψ
(

x
p
, p

)

.
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Applying the trivial bound Ψ
(

x
p , p
)

≤ x
p

∑
x

1
δ≤p≤x

1
2

Ψ
(

x
p
, p

)

≤ x ∑
x

1
δ≤p≤x

1
2

1
p

= x(logδ− log2).

Now applying the theorem with θ = 2, we have

Ψ(x,x
1
2 ) = x

(

1− log2+O

(

1
logx

))

.

Thus we obtain

Ψ(x,x
1
δ )≥ x

(

1− logδ+O

(

1
logx

))

.

Of course, in this case we could have directly derived this result as in the theorem, but this just is an illustration of
the usage of Buchstab’s identity. In estimating ψ(x,y) we could try to use Brun’s sieve as in section (1.3). It is clear
however, that to obtain a good estimate we need to take lnz < ε lnx, but this would make the error term very large,
since that depends on the size of the interval x− z.

2.6. On the number of integers prime to a given number

Let k > 1 be an integer and x > 1 a real number, here we will find bounds for the sum:

∑
n≤x

gcd(n,k)=1

1.

It is clear that in every interval mod k there are ϕ(k) such integers. However, it is not clear how uniform the distribu-
tion of these numbers are inside the interval.

The sequence to be sifted is A = {n | 1≤ n≤ x}, and the sifting primes are P = {p | p\k}. We assume x≥ k.
In this case we can take |Ad |= x

d +Rd, where ω(d) = 1 and Rd ≤ 1. Now, 1
1− 1

p
≤ 2. Hence A = 2, we also have

∑
w≤p≤z

p∈P

ω(p) ln p
p

≤ ln

(

lnz
lnw

)

+
1

lnw

thus κ = η = 1.
To apply the lower bound estimate of the Brun sieve (with b = 1), we need to find λ such that

1− 2(λeλ)2

1+(λe1+λ)2
> 0

and

1+
2.01

e2λ−1
< γ,

where we have used ξ = 1.005. It turns out that we can take γ < 5, and satisfy both the constraints for λ = 0.204. This
gives

S(A ;P,z)≥ xW (z)
(

1−o(1)
)

+O
(

z4.85).

Taking z = x
1
5 , we obtain

S(A ;P,z)≥ c∏
p\k

(

1− 1
p

)

x+O
(

x0.97).

Now to get the actual estimate ∑n≤x,n⊥k 1 we need to account for the numbers that might have been included in this
estimate which are not really prime to k. Clearly, by our choice of the limit for z, each number which is over-counted

must share a factor p with k that is larger than x
1
5 . Let us assume that the largest prime factor of k is < x

1
5 .
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Thus we have:

∑
n≤x

gcd(n,k)=1

1≥ cϕ(k)
k

x+O
(

x0.97),

where c < 1.
For the upper bound we can take the same value of λ as for the lower bound but this forces us to take z = x

1
6 in this

case and we get

∑
n≤x

gcd(n,k)=1

1≤ c′ϕ(k)
k

x+O
(

x0.975),

where c′ < 4.
In summary we have proved:

THEOREM 2.6.1. Let x > 0 and k a positive integer whose largest prime factor p is less than x
1
5 . Then

cϕ(k)
k

x+O
(

x0.97)≤ ∑
n≤x

gcd(n,k)=1

1≤ c′ϕ(k)
k

x+O
(

x0.975),

where c < 1 and c′ < 4 are constants.



CHAPTER 3

Selberg’s Sieve

Around 1946 Atle Selberg introduced a new method for finding upper bounds to the sieve estimate [Sel47]. The
method usually gives much better bounds than the Brun’s sieve. To obtain lower bounds one can couple the Selberg
sieve with the Buchstab identities. After developing the basic ideas of this sieve technique, we shall look at the most
important application of this method - to derive inequalities of the Brun-Titchmarsh type.

3.1. The Selberg upper-bound method

Selberg’s method of estimating the sum

S(A ;Pz,x) = ∑
a∈A

(

∑
d\gcd(a,Pz)

µ(d)

)

relies on finding a sequence of numbers λd such that λ1 = 1 and using the inequality:

S(A ;Pz,x)≤ ∑
a∈A

(

∑
d\gcd(a,Pz)

λd

)2

.

This allows us complete freedom in our choice of the numbers λd for d > 1, and the idea of this method is to select
the λd such that the sum is minimized. Note that setting λ1 = 1 and λd = 0 for d > 1, leads to the trivial estimate
S(A ;Pz,x)≤ |Ax|. Selberg’s method relies on choices of λd that mimic the cancellation occuring in the sum ∑d\n µ(d).
Such choices lead to better estimates when we interchange the sum.

Now

∑
a∈Ax

(

∑
d\gcd(a,Pz)

λd

)2

= ∑
di\Pz
i=1,2

λd1λd2

(

∑
a∈Ax

a≡0 mod D

1

)

,

where D = lcm(d1,d2) . By our conventions about the sequence A , we have

∑
a∈Ax

a≡0 modD

1 = |Ax
D|=

ω(D)

D
x+RD.

This yields,

∑
di\Pz
i=1,2

λd1λd2 |Ax
D|, = x ∑

di\Pz
i=1,2

λd1λd2

ω(D)

D
+ ∑

di\Pz
i=1,2

λd1λd2 |RD|

= xΣ1 +Σ2.

The problem of selecting λd already seems difficult. We can make the assumption that λd = 0 for d > z and hope that
since the second sum σ2 contains only z2 terms we can concentrate on minimizing the leading sum σ1. Our first effort
will be directed towards this.

Minimization of ∑1 : Using the fact that ω(d) is a multiplicative function, we have

ω(D)

D
=

ω(d1)ω(d2)

ω(gcd(d1,d2))

gcd(d1,d2)

d1d2
,

57
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so

Σ1 = ∑
di\Pz

λd1λd2

ω(d1)

d1

ω(d2)

d2

gcd(d1,d2)

d1d2
.

Let f (d) = ω(d)
d , so that the sum becomes

Σ1 = ∑
di\Pz

λd1λd2

f (d1) f (d2)

f (d)
,(3.21)

where d = gcd(d1,d2).

We need to get rid of the term in the denominator, and to this end we introduce the function

J(r) =
1

f (r) ∏
p\r

(

1− f (p)
)

.

Let r = ps, and consider:

∑
δ\ps

J(δ) = ∑
δ\s

{

J(pδ)+ J(δ)

}

= ∑
δ\s

(

1
f (pδ) ∏

q\pδ

(

1− f (q)
)

+
1

f (δ) ∏
q\δ

(

1− f (q)
)

)

= ∑
δ\s

J(δ)

{

1
f (p)

(

1− f (p)
)

+1

}

=
1

f (p) ∑
δ\s

J(δ),

together with

∑
δ\p

J(δ) = J(p)+ J(1) =
1

f (p)
.

Thus we have

1
f (d)

= ∑
δ\d

J(d).

Substituting this for 1
f (d) in (3.21) we get,

∑
di\Pz

λd1λd2

f (d1) f (d2)

f (d)
= ∑

di\Pz

λd1λd2 f (d1) f (d2) ∑
δ\d1,δ\d2

J(d)

= ∑
r≤z
r\Pz

J(r)

{

∑
r\d
d≤z

λd f (d)

}2

.

Let ξr = ∑ r\d
d≤z

λd f (d), so that

Σ1 = ∑
r≤z
r\Pz

J(r)ξ2
r .

This is what we need to minimize subject to the restriction λ1 = 1. We wish to write this constraint as a constraint
among the variables ξi, which would allow us to convert the minimization problem to one entirely involving the
variables ξi.
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The idea is to use Möbius inversion to pick out λ1, and this is not difficult:

∑
r≤z

µ(r)ξr = ∑
r≤z

µ(r) ∑
r\d
d≤z

λd f (d)

= ∑
d≤z

f (d)λd

(

∑
r\d

µ(d)

)

= λ1 f (1)

= λ1

= 1.

Thus we need to minimize ∑r≤z J(r)ξ2
r , subject to the constraint ∑r≤z µ(r)ξr = 1. Let F = ∑r J(r)ξ2

r −∆ for some real
∆. Since ∑r≤z µ(r)ξr = 1, we have F = ∑r J(r)ξ2

r −∆∑r µ(r)ξr. Minimizing F is the same as minimizing the function
∑r≤z J(r)ξ2

r . Let us try to complete the square term in the first sum in F . This suggests setting ∆← 2ω, so

∑
r≤z

J(r)ξ2
r −2ω ∑

r≤z
µ(r)ξr = ∑

r≤z
J(r)

{

ξ2
r −

2ωµ(r)ξr

J(r)

}

= ∑
r≤z

J(r)

{

ξ2
r −

2ωµ(r)ξr

J(r)
+

(

ωµ(r)
J(r)

)2}

−∑
r≤z

ω2µ(r)2

J(r)

= ∑
r≤z

J(r)

{

ξr−
ωµ(r)
J(r)

}2

−ω2 ∑
r≤z

µ2(r)
J(r)

.

Thus at the minimum value of F we should have ξr = ωµ(r)
J(r) , and the minimum value of F would be−ω2 ∑r≤z

µ2(r)
J(r) . To

find the value of ω, we can substitute ξr into the constraint ∑r≤z µ(r)ξr = 1, and this gives us immediately that

ω =
1

∑r≤z
µ(r)2

J(r)

.

So

min ∑
r≤z

J(r)ξ2
r = ∑

r≤z
ω2 µ(r)2

J(r)

= ω2 ∑
r≤z

µ(r)2

J(r)

=
ω2

ω
= ω

=
1

∑r≤z
µ(r)2

J(r)

.

By our definition of the function g(d) we have g(r) = 1
J(r) , so

∑
r≤z

µ(r)2

J(r)
= ∑

r≤z
µ(r)2g(r).

Set

G(z) = ∑
r≤z

µ2(r)g(r).

Then the minimum value of Σ1 is x
G(z) .

Evaluation of Σ2: To estimate the remainder term Σ2, we need an estimate on the size of the λd . We had earlier used
Möbius inversion to extract λ1 from a combination of the ξr, and we can repeat the process to get λδ for any δ.
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Now by definition

ξr = ∑
r\d
d≤z

λd f (d).

Let r = γδ, so that

ξγδ = ∑
γδ\d
d≤z

λd f (d)

= ∑
γ\ d

δ
d≤z

λd f (d)

= ∑
γ\v,v≤ d

δ
gcd(v,δ)=1

λδv f (δv).

Since we want to extract the term with γ = 1, we calculate:

∑
γ≤ z

δ
γ⊥δ

µ(γ)ξγδ = ∑
γ≤ z

δ
γ⊥δ

µ(γ) ∑
γ\v,v≤ z

δ
v⊥δ

λδv f (δv)

= ∑
v≤ z

δ ,v⊥δ
λδv f (δv)

{

∑
γ\v

µ(k)

}

= λδ f (δ).

Thus

λδ =
1

f (δ) ∑
γ≤ z

δ
γ⊥δ

µ(γ)ξγδ,

and substituting for ξγδ gives

λδ =
ω

f (δ) ∑
γ≤ z

δ
γ⊥δ

µ(γδ)µ(γ)
J(γδ)

=
ωµ(δ)

f (δ)J(δ) ∑
γ≤ z

δ
γ⊥δ

µ(γ)2

J(δ)
.

Let

Gd(y) = ∑
δ<y,δ⊥d

µ2(δ)g(δ).

Then

λδ =
ωµ(δ)

f (δ)J(δ)
Gδ

(

z
δ

)

.(3.22)
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We will show that |λd| ≤ 1. Observe that

G(z) = ∑
l\d

∑
m≤z

gcd(m,d)=l

µ(m)2g(m)

= ∑
l\d

∑
h< z

l
gcd(h,l)=1
gcd(h, d

l )=1

µ(lh)2h(lh)

= ∑
l\d

µ(l)2g(l)Gd

(

z
l

)

≥
(

∑
l\d

µ(l)2g(l)

)

Gd

(

z
d

)

and

∑
l\d

µ(l)2g(l) = ∏
p\d

(

1+g(p)
)

= ∏
p\d

p
p−ω(p)

=
1

∏p\d
(

1− ω(p)
p

)

,

and so

Gd

(

z
d

)

≤∏
p\d

(

1− ω(p)

p

)

G(z).(3.23)

Now substituting for J(δ) in (3.22), we get:

λd =
µ(d)

∏p\d
(

1− ω(p)
p

)

Gd(z/d)

G(z)
.(3.24)

Thus by (3.23) and (3.24), we have |λd| ≤ 1.

Now

Σ2 ≤ ∑
di<z
di\Pz

∣

∣

∣

∣

Rlcm(d1,d2)

∣

∣

∣

∣

.

Fix a d; we can estimate the number of integers d1,d2 for which d = lcm(d1,d2) . Now d as well as d1 and d2 are

squarefree. If d1 = ∏i pei
i and d2 = ∏i p fi

i , then d = ∏i pmax{ei, fi}
i . Suppose p\d, then p\d1 or p\d2 or p divides both

of them. So the number of integers which can give rise to d as their lcm is exactly 3ν(d).
Using this and the fact that d < z2, we get

Σ2 ≤ ∑
d<z2

3ν(d)|Rd |.

If we also have the remainder condition |Rd| ≤ ω(d), then we can simplify further:
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∑
d<z2

3ν(d)|Rd | ≤ ∑
d<z2

d\Pz

3ν(d)ω(d)

≤ z2 ∑
d\Pz

3ν(d)ω(d)

d

= z2 ∏
p<z,p∈P

(

1+
3ω(p)

p

)

≤ z2 ∏
p<z

(

1+
ω(p)

p

)3

≤ z2

W 3(z)
.

Thus we have proved:

THEOREM 3.1.1. If |Rd| ≤ ω(d), then

S(A ;Pz,x)≤ x
G(z)

+
z2

W 3(z)
,

where

G(z) = ∑
r≤z

µ2(r)g(r).

The second term can also be upper bounded by

∑
d<z2

d\Pz

3ν(d)|Rd|,

which is also upper bounded by

∑
d<z2

Γ(d)⊆P

µ2(d)3ν(d)|Rd|.

Here Γ(d) stands for the set of prime divisors of d.

We will apply the Selberg method to the simple but important case where ω(d) = 1 and |Rd| ≤ 1.

THEOREM 3.1.2. Suppose ω(d) = 1 and |Rd | ≤ 1. If d is squarefree and p /∈ P⇒ p⊥ d then

S(A ;P,z)≤ x

∏p<z
p/∈P

(

1− 1
p

)

logz
+ z2.

Proof : Recall that

g(d) =
ω(d)

d ∏p\d

(

1− ω(p)
p

)

where d\Pz. In this case we have ω(d) = 1, so we have

g(d) =
1

ϕ(d)
.

Let k = ∏p<z
p/∈P

p. Then by definition of G(z) in this case we get

G(z) = ∑
d<z
d⊥k

µ2(d)

ϕ(d)
.
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Let

Sk(z) = ∑
d<z
d⊥k

µ2(d)

ϕ(d)
.

Then

S1(z) = ∑
d<z

µ2(d)

ϕ(d)

= ∑
l\k

∑
d<z

gcd(d,k)=l

µ2(d)

ϕ(d)

= ∑
l\k

∑
h< z

l
gcd(h,k/l)=1
gcd(h,l)=1

µ2(lh)

ϕ(lh)

= ∑
l\k

µ2(l)
ϕ(l) ∑

h< z
l

h⊥k

µ2(h)

ϕ(h)

= ∑
l\k

µ2(l)
ϕ(l)

Sk

(

z
l

)

≤∑
l\k

µ2(l)
ϕ(l)

Sk(z),

because Sk(z) is an increasing function of z.

Now

∑
l\k

µ2(l)
ϕ(l)

= ∏
p\k

(

1+
1

p−1

)

=
1

∏p\k
(

1− 1
p

)

=
k

ϕ(k)
,

and so

Sk(z)≥
ϕ(k)

k
S1(z).

To apply Theorem 3.1.1 we need a good lower bound on G(z). Since G(z) = Sk(z), the above derivation says that we
can translate a lower bound on S1(z) to a lower bound on Sk(z).
We have

S1(z) = ∑
d<z

µ2(d)

d
1

∏p\d

(

1− 1
p

)

= ∑
d<x

µ2(d)

d ∏
p\d

(

1+
1
p

+
1
p2 + · · ·

)

.
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If we set � (n) to be the largest squarefree divisor of n, then

S1(z) = ∑�
(n)<z

1
n

≥ ∑
n<z

1
n

≥ logz.

So Sk(z) ≥ ϕ(k)
k logz. We know from the proof of Theorem (3.1.1) that the remainder term is at most

∑
di\Pz
di<z

|Rlcm(d1,d2)| ≤
(

∑
d<z

µ2(d)

)2

< z2.

Thus

S(A ;Pz,x)≤ 1

∏p<z
p/∈P

(

1− 1
p

)

logz
x+ z2.

�

3.2. The Brun-Titchmarsh Theorem

The prime number theorem for arithmetic progressions states that

π(x; l,k) =
lix

ϕ(k)
+O

(

xe−A
√

logx
)

uniformly for k ≤ (logx)B, where B is any positive constant and A is a positive constant depending only on B. This is
a very narrow range of values of k. It turns out that if we assume the Extended Riemann Hypothesis, then

π(x; l,k) =
lix

ϕ(k)
+O

(√
x logx

)

uniformly for k≤
√

x
log2 x

. By a careful analysis of the Selberg sieve (especially the remainder term) van Lint and Richert

[vLR65] showed a good upper bound for π(x; l,k) valid for any k < x. In this section we shall look at the proof of this
result (see Theorem 3.2.5). In a later chapter we shall improve on this result using the so called Large sieve.

Let k, l > 0 be relatively prime integers, and let x,y > 1 be reals with y≤ x. We will concentrate on the sequence

A = {n | x− y < n≤ x, n≡ l mod k}.
For K a multiple of k, we take as the sifting primes

PK = {p | p 6 \K}.
First we shall prove a form of the Selberg sieve, where we have a better estimate of the remainder term. We define

SK(z) = ∑
1≤n≤z
n⊥K

µ2(n)

ϕ(n)

as in the proof of Theorem (3.1.2), and

HK(z) = ∑
1≤n≤x

n⊥K

µ2(n)
σ(n)

ϕ(n)

with σ(n) = ∑d\n d.
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LEMMA 3.2.1.

S(A ;Pz
K ,x,y)≤ y

kSK(z)
+

H2
K(z)

S2
K(z)

.

Proof : The cardinality of the set

AD = {n | x− y < n≤ x,n≡ l mod k,n≡ 0 mod D}

is y
kD +RD. Following the proof of the Selberg sieve and using the analysis in Theorem (3.1.2) we get the first term to

be
y

kSK(z)
.

Now the remainder term is (using |Rd | ≤ 1) at most

∑
di\PK
i=1,2

|λd1λd2 |=
(

∑
d\PK

|λd |
)2

.

In the notation of this proof we have

λd = µ(d)
d

ϕ(d)

SKd
(

z
d

)

SK(z)

so

∑
d\PK

|λd|= ∑
1≤d≤z
d⊥K

µ2(d)d
ϕ(d)

1
SK(z) ∑

1≤m≤z/d
m⊥Kd

µ2(m)

ϕ(m)

=
1

SK(z) ∑
1≤d≤z
d⊥K

µ2(d)

ϕ(d)

(

∑
1≤m≤z/d

m⊥kd

µ2(m)

ϕ(m)

)

=
1

SK(z) ∑
1≤d≤z
d⊥K

∑
1≤m≤z/d

m⊥kd

µ2(md)

ϕ(md)
d

=
1

SK(z) ∑
1≤n≤z
n⊥K

µ2(n)

ϕ(n) ∑
d\n

d

=
HK(z)
SK(z)

.

Hence the remainder term is at most H2
K (z)

S2
K(z)

, and the lemma follows.
�

Our aim now is to find a good upper bound on H2
K(z). One idea is to use Cauchy’s inequality on this sum, and this

suggests that we first find a concrete upper bound for the sum ∑n≤x,n⊥K 1, which we have seen in the last chapter.
Using Theorem (3.1.2) we have

THEOREM 3.2.2. If 1≤ k < y≤ x and P is a set of primes p with k ⊥ p, then we have for any z≥ 2 that
∣

∣{n | x− y < n≤ x,n≡ l mod k,n⊥ Pz}
∣

∣≤ y

∏p<z
p/∈P

k logz
+ z2.

LEMMA 3.2.3. Let p(k) be the largest prime divisor of k. For x≥ e6 and p(k)≤ x we have

∑
n≤x
n⊥K

1 <
7ϕ(k)

k
x.
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Proof : Take k = 1,y = x and P = {p | p 6 \k} in Theorem (3.2.2). For z≤ x we have

ΦK(x) =
∣

∣{n : n≤ x,gcd(n, ∏
p<z,p⊥K

p) = 1}
∣

∣≤ x

∏p<z
p\K

(

1− 1
p

)

logz
+ z2.

Thus

k
ϕ(k)

ΦK(x)
x
≤ 1

∏p≤x

(

1− 1
p

)

(

1
logz

+
z2

x

)

,

and using

∏
p≤x

(

1− 1
p

)−1

≤ eγ logx

{

1+
1

2log2 x

}

and setting z = x
1
3 , we get

k
ϕ(k)

ΦK(x)
x
≤ eγ logx

(

1+
1

2log2 x

)(

3
logx

+
1

x
1
3

)

.

The right hand side is decreasing, and for x = e6 is < 7.
�

LEMMA 3.2.4. For z > 103, h even,

H2
h (z)

S2
h(z)

< 22.5
h

ϕ(h)

z2

log2 z
.

Proof : Let

Jh(z) = ∑
1≤n≤z

n⊥h

µ2(n)
σ2(n)

ϕ2(n)
,

and as above let Φh(z) = ∑1≤n≤z
n⊥h

1. Now

Hk(z) = ∑
1≤n≤z

n⊥k

µ2(n)
σ(n)

ϕ(n)
.

Cauchy’s inequality states that

(

∑
1≤n≤N

anbn

)2

≤
(

∑
1≤n≤N

a2
n

)(

∑
1≤n≤N

b2
n

)

.

Using this with bn = 1, an = µ2(n)σ(n)
ϕ(n) and observing that µ4(n) = µ2(n), we have

H2
h (z)≤Φh(z)Jh(z).

Let n be an integer and p⊥ n; then

σ(np) = ∑
d\np

d

= ∑
d\n

d + p ∑
d\n

d

= σ(n)(1+ p),
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and also ϕ(np) = ϕ(n)ϕ(p). If n is squarefree, then

σ2(np)

ϕ2(np)
=

σ2(n)

ϕ2(n)

(

(1+ p)2

ϕ2(p)

)

=
σ2(n)

ϕ2(n)

{

ϕ2(p)+4p
ϕ2(p)

}

=
σ2(n)

ϕ2(n)

{

1+
4p

ϕ2(p)

}

.

By induction we have

σ2(n)

ϕ2(n)
= ∏

p\n

(

1+
4p

ϕ2(p)

)

= ∑
d\n

4ν(d)d
ϕ2(d)

,µ2(n) = 1.

Since 2\h we have Jh(z)≤ J2(z) and

J2(z) = ∑
1≤n≤z

n⊥2

µ2(n)∑
d\n

4ν(d)d
ϕ2(d)

= ∑
1≤d≤z

d⊥2

µ2(d)
4ν(d)d
ϕ2(d) ∑

1≤m≤z/d
m⊥2d

µ2(m)

≤ z ∑
1≤d≤z

d⊥2

µ2(d)4ν(d)

ϕ2(d)

≤ z ∏
p>2

(

1+
4

(p−1)2

)

<
16
5

z.

In the proof of Theorem (3.1.2) we had proved Sh(x)≥ ϕ(h)
h logx; now using this and Lemma (3.2.3) we have:

H2
h (z)

S2
h(z)

≤ 7 ϕ(h)
h z 16

5 z
ϕ2(h)

h2 log2 z

= 22.5
z2

log2 z

h
ϕ(h)

.

�

THEOREM 3.2.5. If x and y are real numbers and k and l are integers satisfying 1≤ k < y≤ x with k ⊥ l, then

π(x;k, l)−π(x− y;k, l) <
3y

ϕ(k) log
( y

k

)(3.25)

and

π(x;k, l)−π(x− y;k, l) <
y

ϕ(k) log
√

y
k

(

1+
4

log
√

y
k

)

.(3.26)

Proof : Let ∆(x,y,k, l) = π(x;k, l)−π(x−y;k, l) and h = 2k
gcd(2,k) . Then there is an l1 such that ∆(x,y,k, l)≤∆(x,y,h, l1)+

1. For if k is even, then h = k, and we can take l1 = l. If k is odd, then the parity of mk + l changes alternately. In this
case, we can set l1 to be the solution to l1 ≡ 1 mod 2 and l1 ≡ l mod k. So at worst we miss one prime in the even
subsequence.
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By what we have proved so far, the sifting of the sequence A by Pz yields the following upper bound:

∆(x,y,k, l) ≤ ∆(x,y,h, l1)+1(3.27)

≤ y
ϕ(h)S1(z)

+
H2

h (z)

S2
h(z)

+π(z,h, l1)+1(3.28)

≤ y
ϕ(k)S1(z)

+
H2

h (z)

S2
h(z)

+π(z,h, l1)+1 for any z > 1.(3.29)

We begin with a trivial estimate

∆(x,y,h, l1)≤ ∑
x−y<n≤x
n≡l1 modh

1

≤ y
h

+1.

So ∆(x,y,k, l) ≤ y
h +2. Let u =

√

y
k . Since ϕ(k) = ϕ(h)≤ 1

2 h, we have

∆(x,y,k, l)
y

≤ 1
k

+
2
y
.

Using y = u2k we obtain

ϕ(k)∆(x,y,k, l)
y

≤ ϕ(k)
k

+
2ϕ(k)

y
≤ 1

2
+

2ϕ(k)
u2k

≤ 1
2

+
2
u2 .

Thus

Q =
log
√

y
k ϕ(k)

y
∆(x,y,k, l) ≤ logu

(

1
2

+
2
u2

)

<
3
2

for 1 < u≤ e2.9.

Now

π(z,h, l1)+1≤ ∑
1≤n≤z,k⊥2

µ2(k) ≤ z−1
2

for z≥ 9.

The remainder term is at most
(

∑
d<z

gcd(d,h)=1

µ2(d)

)2

≤
(

∑
d<z

gcd(d,2)=1

µ2(d)

)2

, since 2\h

≤
(

z−1
2

)2

if z≥ 9.

By (3.27), and the above bounds we have:

Q≤ logu

{

1
logz

+
1
u2

((

z−1
2

)2

+
z−1

2

)}

< logu

{

1
logz

+
z2

4u2

}

if z≥ 9.

Define ω by

u =
ω√

2
eω,
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and set z = eω so that

Q≤
log
( ω√

2

)

+ω

ω

{

1+
1

2ω

}

for ω≥ log9.

For ω≥
√

2e > log9 this function is decreasing, and for ω =
√

2e it is < 3
2 . This proves (3.25).

Now (3.26) is a consequence of (3.25) for u≤ e8. If e8 < u < e10, then using the above bound for Q, we obtain

Q≤
log
( ω√

2

)

+ω

ω

{

1+
1

2ω

}

.

If u > e8, then ω < 6.4 and this gives Q < 1.4 < 1+ 4
logu . This shows (3.26) for u < e10.

Now using (3.27) and setting logz = logu−2, we get

log

√

y
k
(Q−1)≤ logu

{

logu
logz

−1+48
logu
u2

z2

log2 z
+

logu
u2 z

}

, = logu

{

2
logu−2

+
48
e4

logu
(logu−2)2 +

logu
e2u

}

,

which is a decreasing function in u. In particular it is < 4 if u≥ e10. This proves (3.26).
�

3.3. Prelude to a theorem of Hooley

In this section we will look at a variation of a problem of Chebyschev that we shall see in the next section. The problem
is to prove a lower bound on the largest prime divisor of

∏
p≤x

(p2−1) = ∏
p≤x

(p+1)∏
p≤x

(p−1).

We will prove the following theorem of Motohashi [Mot70].

THEOREM 3.3.1. Let Px be the largest prime divisor of

∏
p≤x

(p2−1).

Then Px > xθ for any θ < 1− 1

2e
1
4

.

Proof : In this proof q will also stand for primes, and sums or products over q will represent sums or products over
primes in the range.

Consider the product Ξ = ∏p≤x(p2−1). Taking log on both sides, we have

logΞ = log ∏
p≤x

p2
(

1− 1
p2

)

= 2 ∑
p≤x

log p−O

(

∑
p≤x

1
p2

)

= 2x+O(xe−c
√

logx)−O(1).

Let π(x,k) be the number of primes below x such that p2−1 ≡ 0 mod k. We have that p2−1 = (p+1)(p−1) and
for p > 2 we have gcd(p+1, p−1) = 2. If k = qa, q 6= 2, then p2−1≡ 0 mod k implies that either p+1≡ 0 mod k
or p− 1 ≡ 0 mod k. In this case we have π(x,qa) = π(x;−1,qa) + π(x;+1,qa). Furthermore, π(x,2) = π(x), and
π(x,4) = π(x). For a > 2, we have π(x,2a) = π(x;−1,2a−1)+π(x;+1,2a−1).
Using the function π(x,qa), we can write Ξ as

∏
qa<x

qπ(x,qa).

For if qa divides Ξ, then it is counted exactly a times in this product. Taking logarithms we have

∑
qa<x

π(x,qa) logq = 2x+O(xe−c
√

logx).
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We split up the sum as follows:

∑
qa<x

π(x,qa) logq = ∑
q≤

√
x

logB x
a=1

+ ∑√
x

logB x
<q≤xθ

a=1

+ ∑
xθ<q<x

a=1

+ ∑
qa<x
a≥2

= Σ1 +Σ2 +Σ3 +Σ4,

where B is a positive real number. We wish to show that Σ3 is non-zero for the value of θ claimed. Since we already
have an asymptotic formula for the sum, to obtain a lower bound for Σ3 we need upper bounds for the remaining sums.
We have π(x,k)∼ 2lix

ϕ(k) .
(

Σ1
)

Bombieri’s Theorem— which we shall prove in Chapter 4, can be used directly to bound this sum we get:

Σ1 =
2x

logx ∑
q≤

√
x

logB x

logq
(q−1)

+O

(

x
logx

)

= x+O

(

x loglogx
logx

)

.

(

Σ2
)

We have from the Brun-Titchmarsh Theorem (3.2.5) that

π(x,q)≤ 4
x

(q−1) log
(

x
q

)

{

1+
8

log
(

x
q

)

}

.

Hence

Σ2 ≤ 4x

{

∑√
x

logB x
<q≤xθ

logq

(q−1) log
(

x
q

) +O

(

1

(log2 x)
∑
q≤x

logq
q

)

}

,

and using ∑p≤x
log p

p ∼ logx, we have

Σ2 = 4x

{

∑√
x

logB x
<q≤xθ

logq

q log
(

x
q

)

}

+O

(

x
logx

)

.

Writing ϑ(x) for ∑p≤x log p, we have by partial summation:

∑
y<p≤z

log p

q log
(

x
q

) = ∑
y<k≤z

ϑ(k)−ϑ(k−1)

k log
(

x
k

)

= ∑
y<k≤z

ϑ(k)

{

1

k log
(

x
k

) − 1

(k +1) log
(

x
k+1

)

}

.

This sum boils down to

∑
y<k≤z

ϑ(k)

k(k +1) log
(

x
k

) ,

and using ϑ(x) < x
(

1+ 1
2logx

)

, we get

∑
y<p≤z

log p

q log
(

x
q

) ≤ ∑
y<k≤z

1

k log
(

x
k

) .

Now we can bound this sum using integration to get

∑
y<p≤z

log p

q log
(

x
q

) = log

(

log
x
z

)

− log

(

log
x
y

)

+o(1).

Thus

∑√
x

logB x
<q≤xθ

logq

q log
(

x
q

) =− log2(1−θ)+o(1),



3.4. A THEOREM OF HOOLEY 71

and so

Σ2 ≤−4log2(1−θ)x+o(x).
(

Σ4
)

We split up Σ4 into two parts,

Σ4 = ∑
qa≤x

2
3

a≥2

+ ∑
x

2
3 <qa<x

a≥2

= Σ41 +Σ42, say.

Using the Brun-Titchmarsh theorem:

Σ41 = O

{

∑
q≤√x

logq
x

logx ∑
a≥2

1
ϕ(qa)

}

= O

{

x
logx ∑

q≤√x

logq
q2

}

= O

(

x
logx

)

and

Σ42 = O

{

∑
q≤√x

logq ∑
x

2
3 <qa<x

x
qa

}

= O

{

x
1
3 ∑

q≤√x

logq
logx
logq

}

= O(x
5
6 ).

Thus

Σ4 = O

(

x
logx

)

.

From the bounds we have derived we get:

Σ3 > (1+4log2(1−θ))x+o(x).

Hence if 1+4log2(1−θ) > 0 i.e., if

1− 1

2e
1
4

> θ,

then there is a prime factor exceeding xθ.
�

Among known improvements to this result, the best one is that the largest prime factor exceeds xθ for θ = 0.677 (see
[BakHar95], [BakHar98], and also [Ho73]).

3.4. A theorem of Hooley

Chebyhev proved that if Px is the largest prime factor of ∏n≤x(n
2 +1), then Px

x →∞. Hooley [Ho67] (see also [Ho76])
improved the previous best known result of

Px

x
> (logx)A1 loglog logx

by Erdős [Erd52] to Px > x
11
10 using the Selberg sieve. In this section we shall outline the proof given by Hooley in

[Ho76]. The exponent 11
10 has since been improved to θ < 1.202 · · · , where θ is the solution to 2−θ−2log(2−θ) = 5

4 ,
by Deshouillers and Iwaniec [DI83] (see also [Dar96]).
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THEOREM 3.4.1 ([Ho76]). The largest prime factor of

∏
n≤x

(n2 +1)

exceeds x
11
10 for all large enough values of x.

Proof : Let Px be the largest prime factor of ∏n≤x(n
2 +1), and set Nx(l) =

∣

∣{n≤ x | n2 ≡−1 mod l}
∣

∣. We begin by
finding a lower bound for ∑x≤p≤Px Nx(p) log p, as in the proof of Theorem (3.3.1). We have

∏
n≤x

(n2 +1) = ∏
p≤Px

pα<x2+1

pNx(pα).

Taking logs,

log∏
n≤x

(n2 +1) = log∏
n≤x

n2
(

1+
1
n2

)

> log
(

bxc!
)2

= 2x logx+O(x)

by Stirling’s theorem, and so

∑
p≤Px

pα<x2+1

Nx(pα) log p > 2x logx+O(x).

Now

∑
p≤Px

pα<x2+1

Nx(pα) log p = ∑
x≤p≤Px

Nx(p) log p+ ∑
p≤x

Nx(p) log p+ ∑
p≤Px
α>1

Nx(pα) log p

= ΣA +ΣB +ΣC.

As before we proceed to upper-bound ΣB and ΣC, thereby obtaining a lower bound for ΣA. Now

Nx(l) = ∑
n2+1≡0 mod l

n≤x

1

= ∑
v2+1≡0 mod l

0<v≤l

∑
n≡v mod l

n≤x

1.

Let ρ(l) be the number of solution to the congruence v2 +1≡ 0 mod l. Then since

∑
n≡v mod l

n≤x

1− x
l

= O(1),

we have

Nx(l) =
xρ(l)

l
+O(ρ(l)).

Now ρ(2) = 1, and since the congruence
(−1

p

)

≡ (−1)
p−1

2 mod p has no solutions for p≡ 3 mod 4, and has exactly
two solutions for p≡ 1 mod 4. We conclude

ρ(p) =

{

2 if p≡ 1 mod 4,

0 if p≡ 1 mod 4.
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The needed bounds are given by:

ΣB = x ∑
p≤x

ρ(p) log p
p

+O
(

∑
p≤x

ρ(p) log p
)

= 2x ∑
p≤x

p≡1 mod 4

log p
p

+O(x)+O(∑
p≤x

log p),

= x logx+O(x).

using ∑ p≤x
p≡l mod k

log p
p = 1

ϕ(k) logx+O(1),

ΣC = O

(

∑
p≤
√

x2+1

log p ∑
2≤α

{

x
pα +1

})

= O

(

x∑
p

log p

p
(

1− 1
p

)

)

= O

(

x∑
p

log p
p(p−1)

)

= O(x)

since the sum converges.
Thus we get ΣA > x logx + O(x). Our next task is to upper-bound the sum Tx(y) = ∑x<p≤y Nx(p) log p, which in
conjunction with the above lower bound will yield a lower bound for y. It turns out that to estimate Tx(y) effectively,

we need to split up the sum into two parts and evaluate each of them separately. To this end let X = x
1
11 , and assume

that x
12
11 < y < x2. Then

Tx(y) = ∑
x<p≤xX

Nx(p) log p+ ∑
xX<p≤y

Nx(p) log p

= Tx(xX)+T ′x (y).

To evaluate Tx(xX), we let Vx(v) = ∑v<p≤ev Nx(p). Then

Tx(xX) = ∑
0≤α<logX

∑
xeα<p≤xeα+1

Nx(p) log p

≤ ∑
0≤α<logX

log(xeα+1)Vx(xeα).

Now for the sum T ′x (y), using the definition of Nx(l), we have:

T ′x (y) = ∑
xX<p≤y
pm=n2+1

n≤x

log p

= ∑
m> x2

y log8 x

log p+ ∑
m≤ x2

y log8 x

log p

= T ′′x (y)+T ′′′x (y)(say).
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Now the conditions of the summation T ′′′x (y) yield m≤ x2

y log8 x
, and so n <

√

(pm)≤
√

( yx2

y log8 x

)

= x
log4 x

. Since m≤ n,

we have m≤ x
log4 x

. Using this we have

T ′′′x (y) = 2logx ∑
lm=n2+1

m,n≤ x
log4 x

1

= 2logx ∑
m≤ x

log4 x

N x
log4 x

(m).

Now if m = ∏i phi
i , then ρ(m) = ∏i ρ(phi), and each of the individual terms is a constant. So ρ(m) ≤ 2ν(m), and this

itself is upper bounded by d(m), i.e. the number of divisors of m. Therefore:

T ′′′x (y)≤ 2x

log3 x
∑

m≤ x
log4 x

ρ(m)

m
+O

(

logx ∑
m≤ x

log4 x

ρ(m)
)

= O

{

x

log3 x
∑

m≤ x
log4 x

ρ(m)

m

}

= O

{

x

log3 x
∑

m≤x

d(m)

m

}

.

Now consider
(

∑
1≤n≤x

1
n

)(

∑
1≤m≤x

1
m

)

= ∑
1≤n≤x2

n is x−smooth

1
n

(

∑
u,v≤x
uv=n

1

)

≥
(

∑
1≤n≤x

d(n)

n

)

.

This yields ∑1≤n≤x
d(n)

n = O(log2 x), and so

T ′′′x (y) = O

(

x
logx

)

.

In T ′′x (y), we have m > x2

y log8 x
and pm≤ x2 +1, so m≤ x2+1

p . Furthermore p > xX , and so m≤ x
X

(

1+ 1
x2

)

≤ ex
X . Thus

we have

T ′′x (y)≤ ∑
x2

y log8 x
<m≤ ex

X

pm=n2+1
n≤x,p≥xX

log
ex2

m
.

Let

Wx(w) = ∑
w<m≤ew
pm=n2+1
n≤x,p≥x

1.

Then

T ′′x (y)≤ ∑
0≤α<logY

log
(

xXeα+1)Wx

(

xe−α

X

)

,

where Y = ey log8 x
xX . Finally,

T ′x (y)≤ ∑
0≤α<logY

log(xXeα+1)Wx

(

xe−α

x

)

+O

(

x
logx

)

.
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We will format the sums involved for application of the Selberg sieve. Let λ be a squarefree number, and define

ϒ(u;λ) = ∑
u<λk≤eu

Nx(λk).

We impose the conditions x
4
5 < u < x

4
3 and λ < min

{

u
5
4
x , x

u
3
4

}

. By a rather ingenious and elaborate argument Hooley

showed that

ϒ(u;λ) =
3xρ(λ)

2πλ
1

∏p\λ
(

1+ 1
p

) +O
(

x
1
2 +εu

3
8 λ−

1
2
)

(see [Ho76] §2.3 - §2.6). Since the argument is not central to our application of the sieve, we exclude the derivation of
this bound here.

Application of the Sieve: Let x≤ v < x
12
11 , so that v satisfies the conditions on u imposed by our bounds on ϒ(u;λ).

Let d denote a squarefree number, and let λd be the Selberg coefficients. Then

Vx(v)≤ ∑
v<l≤ev

Nx(l)

(

∑
d\l

λ2
d

)

= ∑
d1,d2≤z

λd1λd2 ∑
v<l≤ev

l≡0 mod lcm(d1,d2)

Nx(l)

= ∑
d1,d2≤z

λd1λd2ϒ(v; lcm(d1,d2) )

(since lcm(d1,d2) < xv−
3
4 )

≤ 3x
2π ∑

d1,d2≤z

λd1λd2ω(lcm(d1,d2))

lcm(d1,d2)
+O

(

x
1
2 +εv

3
8 ∑

d1,d2≤z

|λd1 ||λd2 |
√

lcm(d1,d2)

)

.

Here

ω(d) =
ρ(d)

∏p\d
(

1+ 1
p

) ,

which is clearly multiplicative. So we can apply Selberg’s sieve without modification, except that the remainder term
is more clearly specified in this case. Thus by Theorem (3.1.1), we have

Vx(v)≤
3x

2πG(z)
+R,

where R is the remainder term. Now

G(z) = ∑
d<z

µ2(d)g(d),

and

g(p) =
ω(p)

p
(

1− ω(p)
p

)

=
2
(

1+ 1
p

)−1

p
(

1− 2
p

(

1+ 1
p

)−1)

=
2

p
(

1− 1
p

) .
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Thus

g(d) =
ρ(d)

d ∏ p\d
p6=2,p≡1 mod 4

(

1− 1
p

)

= ∑
d′

ρ(dd′)
dd′

,

where d′ indicates any number whose prime factors divide d. Also ρ(2α) = 0, if α > 1, and we have

∑
d≤z

µ2(d)g(d) = ∑
d≤z

∑
d′

ρ(dd′)
dd′

≥ ∑
m≤z

ρ(m)

m

≥ 3(1−η1)

2π
logz,

where η1 < 1 can be chosen very small.
Here we have used

∑
m≤z

ρ(m) =
3z
2π

+O(z
3
4 )

(which is proved in [Ho76] p. 32) and partial summation.
Also the remainder term can be bounded as follows:

R = O

{

x
1
2 +εv

3
8 ∑

d1,d2≤z

1
√

lcm(d1,d2)

}

= O

(

x
1
2 +εv

3
8 ∑

d≤z
∑

l1,l2≤ z
d

l1⊥l2

1√
dl1l2

)

= O

(

x
1
2 +εv

3
8 ∑

d≤z

z√
d

∑
l1,l2≤z/d

l1⊥l2

1√
l1l2

)

= O

(

x
1
2 +εv

3
8 ∑

d≤z

z

d
3
2

)

= O
(

x
1
2 +εv

3
8 z
)

.

Selecting z = x
1
2−ηv−

3
8 , we get

Vx(v) <
(1+η2)x

log
√

xv−
3
8

,

where η2 can be made arbitrarily small.
Similarly

Wx(w)≤ ∑
w<m≤ew

(

∑
d\l

λd

)2

= ∑
d1,d2≤z

λd1λd2 ∑
w<m≤ew

mr×lcm(d1,d2)=n2+1
n≤x

1

= ∑
d1,d2≤z

λd1λd2ϒ
(

lcm(d1,d2) w; lcm(d1,d2)
)

.
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Carrying through the sieve estimate, we get with z = x
2
7−ηw−

3
14 that

Wx(w) <
(1+η2)x

logx
2
7 w−

3
14

.

Let y = x
11
10 and γ = logx. Using the above estimates, we find that

Tx(xX) < x(1+η2) ∑
0≤α<logx

α+ γ+1
1
8 γ− 3

8 α
< 0.8902x logx,

where we have used integration to upper-bound the sum. Similarly we find

T ′x(y) < 0.1081x logx

for large enough x. Thus we get

Tx(x
11
10 ) < 0.9983x logx,

and so the largest prime factor of ∏n≤x(n
2 +1) exceeds x

11
10 , for all large enough values of x.

�
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CHAPTER 4

The Large Sieve

The Selberg sieve does not give good bounds if we sieve out a large number of residue classes modulo each prime in
the sifting set. The large sieve was designed to handle this problem, (hence the name). The bounds are derived by
relating the properties of the integer sequence to the behavior of certain exponential sums.

4.1. Bounds on exponential sums

Define e(t) = e2πit . We have e
(

n
q

)

= e
(

m
q

)

if n ≡ m mod q. The following property of the exponential function
resembles that of the Möbius function, and is useful to study the distribution of a sequence of integers in residue
classes modulo some number.

PROPOSITION 4.1.1.

∑
1≤a≤q

e

(

an
q

)

=

{

q, if n≡ 0 mod q

0, otherwise.

Proof : If n≡ 0 mod q, then e

(

an
q

)

= 1 for each a. So ∑1≤a≤q e
(

an
q

)

= q. If n 6≡ 0 mod q, then

∑
1≤a≤q

e

(

an
q

)

= ∑
0≤a≤q−1

e

(

an
q

)

=
e
( qn

q

)

−1

e
(

n
q

)

−1

= 0.
�

Let a1, · · · ,az be a sequence of integers, and define

Z(q,h) =
∣

∣{i | 1≤ i≤ z,ai ≡ h mod q}
∣

∣

and

S(x) = ∑
1≤i≤z

e(aix).

Now for all integers a we have

S

(

a
q

)

= ∑
1≤h≤q

Z(q,h)e

(

ah
q

)

.(4.30)

Suppose all the integers in the sequence are distributed evenly among the residue classes modulo q; then using Propo-
sition 4.1.1 we have

S

(

a
q

)

= Z(q,h) ∑
1≤h≤q

e

(

ah
q

)

= 0, if a 6≡ 0 mod q.

If on the other hand all the integers ai belong to a single residue class modulo q, then
∣

∣S
(

a
q

)∣

∣ = z for all integers a.

Hence the distribution of the integers among the residue classes is related to |S
(

a
q

)

|. In fact, we can express Z(q,h) in

79
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terms of S
(

a
q

)

as follows:

S

(

a
q

)

e

(−h′a
q

)

= ∑
1≤h≤q

Z(q,h)e

(

ah
q

)

e

(−h′a
q

)

,

and therefore

∑
1≤a≤q

S

(

a
q

)

e

(−h′a
q

)

= ∑
1≤a≤q

Z(q,h) ∑
1≤h≤q

e

(

a(h−h′)
q

)

= Z(q,h′)q.

Hence

qZ(q,h) = ∑
1≤a≤q

S

(

a
q

)

e

(−h′a
q

)

.(4.31)

It turns out that useful upper bounds can be obtained for the sum

∑
p≤x

∑
1≤a≤p−1

∣

∣

∣

∣

S

(

a
p

)∣

∣

∣

∣

that are largely independent of the integer sequence used to define S(x).

We first prove a result that shows how the above sums are related to the distribution of the integer sequence in the
residue classes.

LEMMA 4.1.2. For all integers q≥ 2,

∑
1≤a≤q−1

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

= q ∑
1≤h≤q

(

Z(q,h)− z
q

)2

.

Proof :

∑
1≤a≤q−1

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

= ∑
1≤a≤q−1

(

∑
1≤h≤q

Z(q,h)e

(

ah
q

)

)(

∑
1≤k≤q

Z(q,h)e

(

ka
q

)

)

= ∑
1≤a≤q−1

∑
1≤h,k≤q

Z(q,h)Z(q,k)e

(

a(h− k)
q

)

= ∑
1≤h,k≤q

Z(q,h)Z(q,k)

(

∑
1≤a≤q−1

e

(

a(h− k)
q

)

)

.

It is easy to see that

∑
1≤a≤q−1

e

(

a(h− k)
q

)

=

{

q−1, if h≡ k mod q

−1, otherwise.
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Thus

∑
1≤a≤q−1

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

= q ∑
1≤h≤q

Z(q,h)2− ∑
1≤h,k≤q

Z(q,h)Z(q,k)

= q ∑
1≤h≤q

Z(q,h)2−
(

∑
1≤h≤q

Z(q,h)

)2

= q

(

∑
1≤h≤q

Z(q,h)2
)

− z2

= q ∑
1≤h≤q

(

Z(q,h)2− 2zZ(q,h)

q
+

z2

q2

)

= q ∑
1≤h≤q

(

Z(q,h)− z
q

)2

.

�

We will look at exponential sums of the form

S(x) = ∑
−K≤n≤K

ane(nx),

where K is a positive integer and an ∈ � .
Notation : We write ‖t‖ to mean the distance from t to the nearest integer, i.e., ‖t‖= minn |t−n|=

∣

∣

⌊

t + 1
2

⌋

− t
∣

∣.

THEOREM 4.1.3 ([Gal67]). If S(x) = ∑−K≤n≤K ane(nx) and x1, · · · ,xR are real numbers such that

‖xr− xs‖ ≥ δ > 0 for r 6= s,

then

∑
1≤r≤R

|S(xr)|2 ≤ (δ−1 +2πK) ∑
−K≤n≤K

|an|2.

Proof : For any u we can write

S2(xr) = S2(u)+2
� xr

u
S′(t)S(t)dt.

Using this we have

|S2(xr)| ≤ |S2(u)|+2

∣

∣

∣

∣

� xr

u
|S′(t)S(t)|dt

∣

∣

∣

∣

.

We now integrate over the interval It =
(

xr− δ
2 ,xr + δ

2

)

, to get

δ|S(xr)|2 ≤
�

Ir
|S(u)|2du+2

�
Ir

∣

∣

∣

∣

� xr

u
|S′(t)S(t)|dt

∣

∣

∣

∣

du.

Then
�

Ir

∣

∣

∣

∣

� xr

u
|S′(t)S(t)|dt

∣

∣

∣

∣

du =

� xr+
δ
2

xr

( � u

xr

|S′(t)S(t)|dt

)

du+

� xr

xr− δ
2

( � xr

u
|S′(t)S(t)|dt

)

du

=

� xr+
δ
2

xr

|S′(t)S(t)|
(

xr +
δ
2
− t

)

dt +

� xr

xr− δ
2

|S′(t)S(t)|
(

t− xr +
δ
2

)

dt

≤ δ
2

�
Ir
|S′(t)S(t)|dt.

Thus

δ|S(xr)|2 ≤
�

Ir
|S(u)|2du+δ

�
Ir
|S′(t)S(t)|dt.
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By our condition on the numbers xr the intervals Ir are disjoint modulo 1 meaning that if r 6= s, then no point of Ir

differs by an integer from another point in Is. Since S is periodic with period 1 and is non-negative, the value of its
integral overl Ir is upper bounded by its integral over [0,1]. Thus summing over r:

δ ∑
1≤r≤R

|S(xr)|2 ≤
� 1

0
|S(t)|2dt +δ

� 1

0
|S′(t)S(t)|dt.

Let us analyze the first integral. The exponential function satisfies

� 1

0
e(nx)dx =

{

1 if n = 0,

0 otherwise.

We have � 1

0
|S(x)|2dx =

� 1

0
S(x)S(x)dx

=

� 1

0
∑

−K≤m,n≤K
aname((n−m)x)dx

= ∑
−K≤n≤K

|an|2.

Thus the first integral is ∑−K≤n≤K |an|2. The second satisfies:

� 1

0
|S′(t)S(t)|dt ≤

( � 1

0
|S(t)|2dt

) 1
2
( � 1

0
|S′(t)|2dt

) 1
2

and on substituting S′(t) by ∑−K≤n≤K 2πianne(nt), the right-hand side becomes

=

(

∑
−K≤n≤K

|an|2
) 1

2
(

∑
−K≤n≤K

|2πnan|2
)

≤ 2πK ∑
−K≤n≤K

|an|2.

Thus

δ ∑
1≤r≤R

|S(xr)|2 ≤ (1+δ2πK) ∑
−K≤n≤K

|a2
n|.

�

There is a stronger bound on the sum ∑1≤r≤R |S(xr)|2 due to Montgomery. To prove this we require the following
result.

THEOREM 4.1.4. Let Φ1, · · · ,ΦR and ξ be arbitrary vectors in an inner product space V over the complex numbers.
Then

∑
1≤r≤R

|(ξ,Φr)|2 ≤ A‖ξ‖2,

where

A = max
r ∑

1≤s≤R

|(Φr,Φs)|.

THEOREM 4.1.5. Let S(x) be as above, and x1, · · · ,xr be real numbers with

‖xr− xs‖ ≥ δ > 0 for r 6= s.

Then

∑
1≤r≤R

|S(xr)|2 ≤ (2K +3δ−1) ∑
−K≤k≤K

|ak|2.
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Proof : If R = 1 we have

|S(x)|2 ≤ N ∑
M+1≤n≤M+N

|an|2

by Cauchy’s inequality. Hence we may assume R ≥ 2 so δ ≤ 1
2 . We apply Theorem (4.1.4) with the inner product

defined to be (φ,ψ) = ∑k φkψk.

Take ξ = {akb
− 1

2
k }−K≤k≤K and φr = {b

1
2
k e(−kxr)}−∞<k<∞, where bk will be defined later to be positive for−K≤ k≤K,

and non-negative for other k.
Using Theorem (4.1.4) we have

∑
1≤r≤R

|S(xr)|2 ≤ A ∑
−K≤k≤K

|ak|2b−1
k ,

where A = maxr ∑1≤s≤1 |B(xr− xs| and B(x) = ∑−∞<k<∞ bke(kx). To finish the proof it suffices to pick bk such that
bk ≥ 1 for−K ≤ k ≤ K such that

∑
1≤s≤R

|B(xr− xs)| ≤ 2K +3δ−1 for all r.

If we took bk = 1 for−K ≤ k ≤ K and bk = 0 otherwise, we would get the inferior estimate

∑
1≤s≤R

|B(xr− xs)| ≤ 2K +O(δ−1 logδ−1).

Instead, take bk to be

bk =











1 if |k| ≤ K,

1− (|k|−K)
L if K ≤ |k| ≤ K +L,

0 if |k| ≥ K +L,

where L will be selected later.
Using the indentity

∑
| j|≤J

(J−| j|)e( jx) =

∣

∣

∣

∣

∑
1≤ j≤J

e( jx)

∣

∣

∣

∣

2

=

(

sinπJx
sinπx

)2

,

we can write

B(x) =
1

Lsin2 πx

(

(sinπ(K +L)x)2− (sinπKx)2).

Hence B(0) = 2K +L, and

|B(x)| ≤ 1
L(sin2πx)

≤ 1
4L‖α‖2 ,

so that

∑
1≤s≤R

|B(xr− xs)| ≤ 2K +L+2 ∑
1≤h

1
4Lh2δ2 .

Since ∑1≤h
1
h2 = π2

6 < 2, we have

∑
1≤s≤R

|B(xr− xs)| ≤ 2K +L+
1

Lδ2

≤ 2K +
3
δ
.

upon taking L to be the least integer≥ δ−1.
�
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Consider the sum S(x) = ∑M+1≤N≤M+N ane(nx). The value of M is irrelevant to the magnitude of this sum since for
any K we can set

T (x) = ∑
K+1≤n≤K+N

aM−K+ne(nx)

= e
(

(K−M)x
)

S(x)

and then |T (x)|= |S(x)|. Thus the above theorem can be rephrased as follows.

THEOREM 4.1.6. Let

S(x) = ∑
M+1≤n≤M+N

ane(nx)

where M and N are integers, N > 0. Let x1, · · · ,xR be distinct real numbers modulo 1 and δ > 0 is such that

‖xr− xs‖ ≥ δ, for r 6= s.

Then for arbitrary an

∑
1≤r≤R

|S(xr)|2 ≤ (N +3δ−1) ∑
M+1≤n≤M+N

|an|2.

We state (without proof) another version of the large sieve inequalities due to Montgomery and Vaughan [MV73]
(Theorem 1).

THEOREM 4.1.7 ([MV73]). Let

S(x) = ∑
M+1≤n≤M+N

ane(nx),

let x1, · · · ,xR be real numbers, and set

δ = min
r 6=s
‖xr− xs‖.

Then

∑
1≤r≤R

|S(xr)|2 ≤ (N +δ−1) ∑
M+1≤n≤M+N

|an|2.

Moreover, if

δr = min
s

s6=r

‖xr− xs‖

for all r, then

∑
1≤r≤R

(N +
3
2

δ−1
r )−1|S(xr)|2 ≤ ∑

M+1≤n≤M+N

|an|2.

4.2. The Large Sieve

In this section we will use the bounds derived in the previous section to study the distribution of integer sequences in
residue classes modulo primes.

Let an be a sequence of complex numbers defined for M +1≤ n≤M +N (where M,N are integers and N > 0). Define

Z(q,h) = ∑
M+1≤n≤M+N

n≡h mod q

an

and

Z(1,1) = Z = ∑
M+1≤n≤M+N

an.
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LEMMA 4.2.1. Let

S(x) = ∑
M+1≤n≤M+N

ane(nx).

If q is a positive integer, then

∑
1≤a≤q

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

= q ∑
1≤h≤q

∣

∣

∣

∣

∑
d\q

µ(d)

d
Z

(

q
d

,h

)∣

∣

∣

∣

2

.

Proof : For an integer a we have (using (4.30))

S

(

a
q

)

= ∑
1≤h≤q

Z(q,h)e

(

ah
q

)

.

By (4.31)

qZ(q,h) = ∑
1≤a≤q

S

(

a
q

)

e

(−ah
q

)

= ∑
d\q

∑
1≤b≤ q

d
gcd(b, q

d )=1

S

(

bd
q

)

e

(−bdh
q

)

.

Let

T (q,h) = ∑
1≤a≤q

a⊥q

S

(

a
q

)

e

(

−ah
q

)

,

so that

qZ(q,h) = ∑
d\q

T

(

q
d

,h

)

.

Applying Möbius inversion to this we get

T (q,h) = d ∑
d\q

µ(d)

d
Z

(

q
d

,h

)

.

Hence

|T (q,h)|2 = q2

∣

∣

∣

∣

∑
d\q

µ(d)

d
Z

(

q
d

,h

)∣

∣

∣

∣

2

,

and therefore

1
q ∑

1≤h≤q

|T (q,h)|2 = q ∑
1≤h≤q

∣

∣

∣

∣

∑
d\q

µ(d)

d
Z

(

q
d

,h

)∣

∣

∣

∣

2

.

Now

q ∑
1≤h≤q

∣

∣

∣

∣

∑
d\q

µ(d)

d
Z

(

q
d

,h

)∣

∣

∣

∣

2

=
1
q ∑

1≤h≤q

|T (q,h)|2

=
1
q ∑

1≤h≤q
∑

1≤a,b≤q
a⊥q,b⊥q

S

(

a
q

)

S

(

b
q

)

e

(

(b−a)h
q

)

=
1
q ∑

1≤a,b≤q
a⊥q,b⊥q

S

(

a
q

)

S

(

b
q

)

∑
1≤h≤q

e

(

(b−a)h
q

)

= ∑
1≤a≤q

a⊥q

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

.
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�

THEOREM 4.2.2. [Mon68] Let Z(q,h) and Z be defined as before, and let x ≥ 1. For each prime p ≤ x let H(p) be
the union of ω(p) distinct residue classes modulo p. Let an be complex numbers that satisfy

an = 0 if n ∈ H(p) for some p≤ x.

Then for each q≤ x,

µ2(q)|Z|2 ∏
p\q

ω(p)

p−ω(p)
≤ q ∑

1≤h≤q

∣

∣

∣

∣

∑
d\q

µ(d)

d
Z

(

q
d

,h

)∣

∣

∣

∣

2

.

Proof : This is clearly true if µ(q) = 0, so we may assume q≤ x is a fixed squarefree integer. If d\q, we define

K(d) =

{

h | 1≤ h≤ q and if p\d, then h ∈ H(p), while if p\ q
d
, then h /∈ H(p)

}

.

Defining h1 ≡ h2 if there is a d such that {h1,h2} ⊆ K(d) yields an equivalence relation. Thus K(d) when going
through all the divisors of q gives a partition of {1, · · · ,q}. Now for each h we can write q uniquely as

q =

(

∏
p:h∈H(p)

p\q

p

)(

∏
p:h/∈H(p)

p\q

p

)

.

Thus we can write any sum of the form

∑
1≤h≤q

f (h)

as

∑
d\q

∑
h∈K(d)

f (h).

Fix a,δ where δ\q. Observe that
∣

∣

∣

∣

∑
d\q

µ

(

q
d

)

d ∑
h∈K(δ)

Z(d,h)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∑
d\q

µ(d)q
d ∑

h∈K(δ)

Z

(

q
d

,h

)∣

∣

∣

∣

2

(4.32)

=

∣

∣

∣

∣

∑
h∈K(δ)∑d\q

µ(d)d
q

Z

(

q
d

,h

)∣

∣

∣

∣

2

(4.33)

by changing the variable of summation from d to q
d .

Using the Cauchy-Schwarz inequality

∣

∣

∣

∣

∑
h∈K(δ)∑d\q

µ(d)d
q

Z

(

q
d

,h

)∣

∣

∣

∣

2

≤
(

∑
h∈K(δ)

1

)(

∑
h∈K(δ)

∣

∣

∣

∣

∑
d\q

µ(d)d
q

Z

(

q
d

,h

)∣

∣

∣

∣

2)

.(4.34)

Now consider
∣

∣

∣

∣

∑
d\q

µ

(

q
d

)

d ∑
h∈K(δ)

Z(d,h)

∣

∣

∣

∣

2

.

Supposing gcd(δ,d) > 1, we can select a prime p such that p\gcd(δ,d). Then Z(d,h) is a sum of an with n ≡ h
mod d, since p\d we also have n≡ h mod p. But p\δ and h ∈ K(δ) implies that n ∈ H(p) by the definition of K(δ).
Thus by hypothesis an = 0 whenever n≡ h mod d and h ∈ K(δ). Hence the inner sum of

∣

∣

∣

∣

∑
d\q

µ

(

q
d

)

d ∑
h∈K(δ)

Z(d,h)

∣

∣

∣

∣

2
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vanishes when gcd(δ,d) > 1. Thus we obtain,

∑
d\q

µ

(

q
d

)

d ∑
h∈K(δ)

Z(d,h) = ∑
d\
(

q
δ

)

µ

(

q
d

)

d ∑
h∈K(δ)

Z(d,h).

Fix d with d\(q/δ). If k ∈ H(p), then Z(d,k) = 0, and hence

∑
h∈K(δ)

Z(d,h) = ∑
1≤k≤d

∀p\d:k/∈H(p)

Z(d,k)
∣

∣{h | h ∈ K(δ),h≡ k mod d.}
∣

∣.

Let S(δ,d,k) =
∣

∣{h | h ∈ K(δ),h≡ k mod d}
∣

∣ for k such that k ∈ H(p) for all primes p that divide d. By the Chinese
Remainder Theorem h≡ k mod d is equivalent to h≡ k mod p for all prime p dividing d. Also h∈ K(δ) implies that
h ∈ H(p) for all primes p dividing δ, and that h /∈ H(p) for all primes p dividing q/δ. Summarizing, we have shown
that h ∈ K(δ) iff the following are satisfied:

1. p\d⇒ h≡ k mod p,h /∈ H(p)
2. p\δ⇒ h ∈ H(p) and
3. p\

(

q/dδ
)

⇒ h /∈ H(p).

Since we have k such that k /∈ H(p) for all primes p dividing d, the second condition in (1) is satisfied whenever the
first is satisfied. We have that if p\d, then there are exactly one solution of (1) modulo p, ω(p) solutions of (2) modulo
p, while if p\

(

q/dδ
)

, then there are p−ω(p) solutions to (3) modulo p.

Applying the Chinese Remainder Theorem, we have

S(δ,d,k) =
∣

∣{h | 1≤ h≤ q,h satisfies conditions (1),(2)&(3)}
∣

∣

= ∏
p\δ

ω(p) ∏
p\(q/dδ)

(p−ω(p)).

This number is independent of k, and so

∑
h∈K(δ)

Z(d,h) = ∑
1≤k≤d

∀p\d : k/∈H(p)

Z(d,k)∏
p\δ

ω(p) ∏
p\q/dδ

(p−ω(p))

= ∑
1≤k≤d

Z(d,k)∏
p\δ

ω(p) ∏
p\q/dδ

(p−ω(p))

= Z ∏
p\δ

f (p) ∏
p\q/dδ

(p−ω(p)).

From this we get

∑
d\q

µ

(

q
d

)

d ∑
h∈K(δ)

Z(d,h) = ∑
d\q/δ

µ

(

q
d

)

dZ ∏
p\δ

ω(p) ∏
p\q/dδ

(p−ω(p))(4.35)

= µ(q)Z ∏
p\δ

ω(p) ∏
p\q/δ

(p−ω(p)) ∑
d\q/δ

µ(d)d ∏
p\d

(p−ω(p))−1(4.36)

= µ(q)Z ∏
p\δ

f (p) ∏
d\q/δ

(p−ω(p)) ∏
p\q/δ

(

1− p
p−ω(p)

)

(4.37)

= µ(δ)Z ∏
p\δ

ω(p) ∏
p\q/δ

ω(p)(4.38)

= µ(δ)Z ∏
p\q

ω(p).(4.39)

Now

∑
h∈K(δ)

1 = S(δ,1,1)

= ∏
p\δ

ω(p) ∏
p\q/δ

(p−ω(p)).
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Dividing (4.32) by the above factor and using (4.35)− (4.39) we find that

|Z|2 ∏
p\q

ω(p)2 ∏
p\δ

ω(p)−1 ∏
p\q/δ

(p−ω(p))−1 ≤ ∑
h∈K(δ)

∣

∣

∣

∣

∑
d\q

µ(d)q
d

Z

(

q
d
,h

)∣

∣

∣

∣

2

.

Summing over all δ\q, the right hand side yields

∑
1≤h≤q

∣

∣

∣

∣

∑
d\q

µ(d)q
d

Z

(

q
d

,h

)∣

∣

∣

∣

2

.

Since the K(δ) partition {1, · · · ,q}, summing the left hand side yields

|Z|2
(

∏
p\d

)2

∑
δ\q

(

∏
p\δ

ω(p)

)−1(

∏
p\q/δ

(p−ω(p))

)−1

= |Z|2 ∏
p\q

ω(p)∑
δ\q

∏
p\q/δ

ω(p) ∏
p\q/δ

(p−ω(p))−1

= |Z|2 ∏
p\q

ω(p)∏
p\q

(

1+
ω(p)

p−ω(p)

)

= q|Z|2 ∏
p\q

ω(p)

p−ω(p)
.

�

THEOREM 4.2.3. [MV73] Let N be a set of Z integers in an interval [M + 1,M + N]. For each prime p let ω(p)
denote the number of residue classes modulo p that contain no element of N . Then

Z ≤ L−1,

where

L = ∑
q≤z

(

N +
3
2

qz

)−1

µ2(q) ∏
p≤q

ω(p)

p−ω(p)

and z is an arbitrary positive real number.

Proof : Let xr be the numbers a
q where 1≤ a≤ q, a⊥ q and q≤ z. If a′

q′ 6= a
q , then

∥

∥

∥

∥

a
q
− a′

q′

∥

∥

∥

∥

≥ 1
qq′
≥ 1

qz
.

By Theorem (4.1.7) we have

∑
q≤z

(

N +
3
2

qz

)−1

∑
1≤a≤q

a⊥q

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

≤ ∑
M+1≤n≤M+N

|an|2.

Set an = 1 or 0 according as n ∈N or n /∈N . Then by Theorem (4.2.2) we get

Z2µ2(q)∏
p\q

ω(p)

p−ω(p)
≤ ∑

1≤a≤q
a⊥q

∣

∣

∣

∣

S

(

a
q

)∣

∣

∣

∣

2

.

The right hand side equals Z and this proves the theorem.
�

4.3. The Brun-Titchmarsh Theorem revisited

The large sieve can be used to strengthen the Brun-Titchmarsh theorem (Theorem 3.2.5). We require the following
lemma.
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LEMMA 4.3.1. Let u and v be any positive real numbers. Then

∑
q≤n
q⊥k

(1+ vq)−1 µ2(q)

ϕ(q)
≥ ϕ(k)

k ∑
q≤u

(1+ vq)−1 µ2(q)

ϕ(q)
.

Proof : Note that

k
ϕ(k)

= ∑
r\k

µ2(r)
ϕ(r)

.

Multiplying the sum on the left by this we get

∑
q≤n
q⊥k

(1+ vq)−1∑
r\k

µ2(qk)
ϕ(qk)

,

which includes all the terms of the sum on the right.
�

THEOREM 4.3.2 ([MV73]). Let x and y be positive real numbers, and let k and l be relatively prime positive integers.
Then

π(x+ y;k, l)−π(x;k, l) <
2y

ϕ(k)
( 5

6 + log
( y

k

)) .

Proof : We take

M =

⌊

x− l
k

⌋

and

N =

⌊

x+ y− k
k

⌋

−M.

Let N be the set of those integers n for which M < n ≤ M + N, kn + l is prime, and kn + l > z. Then ω(p) = 1
whenever p≤ z and p 6 \k. Thus by Theorem (4.2.3) we have

π(x+ y;k, l)−π(x;k, l)≤ L−1 +π(z),

where

L = ∑
q≤z
q⊥k

(N +
3
2

qz)−1 µ2(q)

ϕ(q)
.

Taking z =
√

2
3 N and using Lemma (4.3.1), we have

π(x+ y;k, l)−π(x;k, l) <
kN

ϕ(k)J
+
√

(N),

where

J = ∑
q≤z

(1+qz−1)−1 µ2(q)

ϕ(q)
.

From [War27] we have

∑
q≤v

µ2(q)

ϕ(q)
= logv+ γ+∑

p

log p
p(p−1)

+o(1)

as v→ ∞.
By partial summation we find that

J = logz+ γ+∑
p

log p
p(p−1)

= log2+o(1)
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as z→ ∞. Setting z =
√

2
3 N we get

J =
1
2

logN + γ+∑
p

log p
p(p−1)

− 1
2

log
3
2
− log2+o(1)

as N→ ∞. Since γ > 0.577,

∑
p

log p
p(p−1)

> 0.737,

filling in log2 < 0.694 and 1
2 log 3

2 < 0.203, we finally obtain

J >
1
2

logN +0.417,

for large enough N.
�

4.4. Bombieri’s Theorem

The large sieve inequalities imply that if a sequence of integers is distributed rather densely in an interval, then it cannot
be very unevenly distributed modulo the primes. In this section we will prove an important theorem that quantifies the
above statement for the primes themselves.
Define

ψ(x) = ∑
n≤x

Λ(n),

where Λ(n) is von-Mangoldt’s function

Λ(n) =

{

log p if n = pk,

0 otherwise.

Also define

ψ(x;q,a) = ∑
n≤x

n≡a mod q

Λ(n).

Let

E(x;q,a) = ψ(x;q,a)− x
ϕ(q)

for a⊥ q, and

E∗(x,q) = max
y≤x

E(y,q).

We will prove Bombieri’s Theorem in the following form:

THEOREM 4.4.1 ([Dav80]). Let A > 0 be fixed, and suppose x
1
2 (logx)−A ≤ Q≤ x

1
2 . Then

∑
q≤Q

E∗(x,q)� x
1
2 Q(logx)5.

Proof : If χ is a multiplicative character modulo q, and define

ψ(y,χ) = ∑
n≤y

χ(n)Λ(n).

We begin with the identity

ψ(y;q,a) =
1

ϕ(q) ∑
χ

χ(a)ψ(y,χ),

where the sum is over all the characters modulo q. Let χ0 be the principal character we then define

ψ′(y,χ) =

{

ψ(y,χ) if χ 6= χ0,

ψ(y,χ0)− y if χ = χ0.
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Then we have

ψ(y;q,a)− y
ϕ(q)

=
1

ϕ(q) ∑
χ

χ(a)ψ′(y,χ),

and so

|E(y;q,a)| ≤ 1
ϕ(q) ∑

χ
|ψ′(y,χ)|

since |χ(a)| ≤ 1. This estimate is independent of a, so that

E∗(y;q)≤ 1
ϕ(q) ∑

χ
|ψ′(y,χ)|.

If χ mod q is a character (possibly imprimitive) that is induced by χ1 mod q1, where χ1 is primitive, then ψ′(y,χ)
and ψ′(y,χ1) do not differ very much:

ψ(y,χ1)−ψ′(y,χ) = ∑
pk≤y
p\q

χ1(pk) log p

�∑
p\q

⌊

logy
log p

⌋

log p

� (logy) ∑
p\q

log p

� (logqy)2.

Hence we can replace the sum over all characters by one over the primitive characters only. Thus

E(x,q)� (logqx)2 +
1

ϕ(q) ∑
χ

∣

∣ψ′(y,χ1)
∣

∣,

and

E∗(x,q)� (logqx)2 +
1

ϕ(q) ∑
χ

max
y≤x

∣

∣ψ′(y,χ1)
∣

∣.

We can combine the contributions from each of the primitive characters. Since a primitive character induces characters
to moduli that are multiples of q, we have

E∗(x,q)� (logqx)2 + ∑
q≤Q

∗
∑
χ

max
y≤x
|ψ′(y,χ)|

(

∑
k≤Q/q

1
ϕ(kq)

)

,

where ∑∗ means the sum is over primitive characters modulo q.
Since ϕ(kq)≥ ϕ(k)ϕ(q) we have

∑
k≤z

1
ϕ(kq)

≤ 1
ϕ(q) ∑

k≤z

1
ϕ(k)

.

Now

∑
k≤z

1
ϕ(k)

≤∏
p≤z

(

1+
1

(p−1)
+

1
p(p−1)

+
1

p2(p−1)
+ · · ·

)

.

Note that
1

(p−1)

1
(

1− 1
p

) =
1

p−1

(

1+
1
p

+
1
p2 + · · ·

)

.

Thus
(

1+
1

(p−1)
+

1
p(p−1)

+
1

p2(p−1)
+ · · ·

)

= 1+
1

(p−1)

1
(

1− 1
p

)

=

(

1+
1

p(p−1)

)

1
(

1− 1
p

) .
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Using this we have

∑
k≤z

1
ϕ(k)

≤∏
p≤z

(

1− 1
p

)−1(

1+
1

p(p−1)

)

� logz,

and so

∑
q≤Q

∗
∑
χ

max
y≤x
|ψ′(y,χ)|

(

∑
k≤Q/q

1
ϕ(kq)

)

� logx ∑
q≤Q

1
ϕ(q)

∗
∑
χ

max
y≤x

∣

∣ψ′(y,χ)
∣

∣.

Thus it suffices to show that

∑
q≤Q

1
ϕ(q)

∗
∑
χ

max
y≤x
|ψ′(y,χ)| � x

1
2 Q(logx)4(4.40)

for x
1
2 (logx)−A ≤ Q≤ x

1
2 .

Using the large sieve we will show that

∑
q≤Q

q
ϕ(q)

∗
∑
χ

max
y≤x
|ψ(y,χ)| �

(

x+ x
5
6 Q+ x

1
2 Q2)(logQx)4(4.41)

for all x≥ 1 and Q≥ 1.

Now observe that

∑
U<q≤2U

q
ϕ(q)

∗
∑
χ

max
y≤x
|ψ(y,χ)| ≥U ∑

U<q≤2U

1
ϕ(q)

∗
∑
χ

max
y≤x
|ψ(y,χ)|,

and so

∑
U≤q≤2U

1
ϕ(q)

∗
∑
χ

max
y≤x
|ψ(y,χ)| �

(

x
U

+ x
5
6 + x

1
2 U

)

(logUx)4

by (4.41).
Summing over U = 2k for k≤ logQ, we have

∑
Q1<q≤Q

1
ϕ(q)

∗
∑
χ

max
y≤x
|ψ(y,χ)| ≤

(

x
Q1

+ x
5
6 logQ+ x

1
2 Q

)

(logQx)4.

We have used the fact that for χ = χ0 we have |ψ′(y,χ0)| ≤ |ψ(y,χ0)|, and ψ′(y,χ) = ψ(y,χ) if χ 6= χ0.

This shows (4.40) for Q1 = logA x. By the Siegel-Walfisz theorem, if χ is a primitive character modulo q, q≤ (logx)A,
and y≤ x, then

|ψ′(y,χ)| � x(logx)−2A.

Thus the theorem follows from (4.41).

We will now sketch the proof of (4.41) (for details see [Dav80]). Using the large sieve we can derive the following:

∑
q≤Q

q
ϕ(q)

∗
∑
χ

max
u

∣

∣

∣

∣

∑
1≤m≤M

∑
1≤n≤N
mn≤u

ambnχ(mn)

∣

∣

∣

∣

(4.42)

� (M +Q2)
1
2 (N +Q2)

1
2

(

∑
1≤m≤M

|am|2
) 1

2
(

∑
1≤n≤N

|bn|2
) 1

2

log2MN.(4.43)

If Q2 > x then (4.41) follows from above with M = 1, a1 = 1, bn = Λ(n), N = x. Thus we may assume Q2 ≤ x. It turns
out that we can write

ψ(y,χ) = S1 +S2 +S3 +S4,
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where

S1 = ∑
n≤U

Λ(n)χ(n)�U,

S2 =− ∑
t≤UV

(

∑
t=md
m≤U
d≤V

µ(d)Λ(m)

)

∑
r≤y/t

χ(rt),

S3� (logy) ∑
d≤V

max
w

∣

∣

∣

∣

∑
w≤h≤y/d

χ(h)

∣

∣

∣

∣

, and

S4 = ∑
U<m≤y/V

Λ(m) ∑
V<k≤y/m

(

∑
d\k

d≤V

µ(d)

)

χ(mk).

Using (4.42) and the Pólya-Vinogradov inequality (see [Dav80]), we can show that

∑
q≤Q

q
ϕ(q)

∗
∑
χ

max
y≤x
|S4| �

(

Q2x
1
2 +QxU−

1
2 +QxV−

1
2 + x

)

(logx)4.

The sum S2 can be split into S2 = ∑t≤UV = ∑t≤U +∑U<t<UV = S′2 +S′′2, and it can be shown that

∑
q≤Q

∗
∑
χ

max
y≤x
|S′′2 | � (Q2x

1
2 +QxU−

1
2 +Qx

1
2 U

1
2 V

1
2 + x)(logx)2

and

∑
q≤Q

q
ϕ(q)

∗
∑
χ

max
y≤x
|S′2| � (Q

5
2 U + x)(logUx)2.

Also

∑
q≤Q

q
ϕ(q)

∗
∑
χ

max
y≤x
|S3| � (Q

5
2 V + x)(logVx)2.

On combining these estimates and taking U =V = x
2
3 Q−1 for x

1
3 ≤Q≤ x

1
2 , we obtain (4.41) in this range. For Q≤ x

1
3 ,

we can take U = x
1
3 to complete the proof of (4.41).

�

The Bombieri result can be formulated as follows:

THEOREM 4.4.2. Let E(x;q,a) = π(x;q,a)− lix
ϕ(q) for a⊥ q, E(x;q) = maxa,a⊥q

∣

∣E(x;q,a)
∣

∣, and E∗(x,q) = maxy≤x E(y,q).
Then for all A > 0 there exists B > 0 such that

∑
q≤x

1
2 (logx)−B

E∗(x,q)� x

log1+A x
.

4.5. Prime and Squarefree pairs

We can pose the following variation of the twin prime problem: “Are there infinitely many primes p such that p+2 is
squarefree?” The answer to the question is yes, and this is an almost immediate consequence of the powerful result
we have proved.

THEOREM 4.5.1. Let

Ξ(x) =
∣

∣{p≤ x | µ2(p+2) = 1}
∣

∣.

Then

Ξ(x) = Li (x)

{

∏
p>2

(

1− 1
p(p−1)

)

+O

(

lnx√
x

)}

+O

(

x

ln1+U (x)

)

+O(x
3
4 lnC(x))

for some constants U > 0 and C > 0.
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Proof : Let A = {p+2 | p≤ x}. We have

Ξ(x) = ∑
d2≤x

µ(d)

(

∑
n∈A
d2\n

1

)

.

Let Ad2 = {p+2 | p≤ x, p+2≡ 0 mod d2}. Thus by definition |Ad2 |= π(x;d2,−2). Define

Rd2 = π(x;d2,−2)− Li (x)
ϕ(d2)

.

Then we have

Ξ(x) = Li (x) ∑
d2≤x

µ(d)

ϕ(d2)
+ ∑

d2≤x

µ(d)|Rd2 |

= Σ1 +Σ2

Σ1 = Li (x)

(

∑
d

µ(d)

ϕ(d2)
− ∑

d>
√

x

µ(d)

ϕ(d2)

)

= Li (x)

(

∏
p>2

(

1− 1
p(p−1)

)

− ∑
d>
√

x

µ(d)

ϕ(d2)

)

,

since |A4|= 0 allows omitting the prime 2.

The second sum can be upper-bounded by:

∑
d>
√

x

1
ϕ(d2)

≤ ∑
d>
√

x

2lnd
d2

= O

(

lnx√
x

)

.

The remainder term is bounded by:

Σ2 ≤ ∑
d2≤x

|Rd2 |

= ∑
d2≤

√
x

lnC x

|Rd2 |+ ∑√
x

lnC x
<d2<x

|Rd2 |

= O

(

x

ln1+U x

)

+ ∑√
x

lnC x
<d2<x

|Rd2 |

using Bombieri’s result to bound the first sum.

For the second sum, since |Rd2 | ≤ b x
d2 c ≤ x

d2 , we have

∑√
x

lnC x
<d2<x

|Rd2 | ≤ x ∑√
x

lnC x
<d2

1
d2

= O

(

xlnCx

x
1
4

)

= O

(

x
3
4 lnC x

)

.
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The theorem follows from the estimates for Σ1 and Σ2.
�

Let Ψ(x) = ∑n≤x Λ′(n), where

Λ′(n) =

{

log p if n = pk and µ2(n+2) = 1,

0 otherwise.

Let

Ψ(x;q,a) = ∑
n≤x

n≡a mod q

Λ′(n),

and further let E(x;q,a) = Ψ(x;q,a)− Cx
ϕ(q) , E(x;q) = maxa,a⊥q |E(x;q,a)|, and E∗(x,q) = maxy≤x E(y,q), where

C = ∏p

(

1− 1
p(p−1)

)

.

Using partial summation and the above theorem we can show that for any U > 0,

Ψ(x) = Cx+O

(

x

log1+U x

)

and

Ψ(x;q,a) =
Cx

ϕ(q)
+O

(

x

log1+U x

)

, for a⊥ q.

THEOREM 4.5.2. Let A > 0 be fixed. Then

∑
(logx)A<q≤Q

E∗(x,q)� x
1
2 Q(logx)5,

provided x
1
2 (logx)−A ≤ Q≤ x

1
2 .

The proof is a careful verification that the proof of the Bombieri Theorem goes through except for q < (logx)A. But
in this range the maximum error possible is O

(

x
log1+U x

)

so selecting U large enough we have:

THEOREM 4.5.3. Let A > 0 be fixed. Then

∑
q≤Q

E∗(x,q)� x
1
2 Q(logx)5,

provided x
1
2 (logx)−A ≤ Q≤ x

1
2 .

There is a version of Brun’s sieve that makes use of the result on the average behaviour of error terms to yield a better
estimate. In particular we have ([HR74] Theorem 2.1′ p. 65)

THEOREM 4.5.4. Let the following conditions hold on the sequence A:

1.

1≤ 1

1− ω(p)
p

≤ A1;

2.

∑
w≤p≤z

ω(p) log p
p

≤ κ log
z
w

+A2, if 2≤ w≤ z;

3. There is a constant A′0 such that

|Rd | ≤ L

(

x logx
d

+1

)

A
′ν(d)
0 ;

4. For every postive constant U ≥ 1 there is a C0 such that

∑
d<xα log−c0 x

µ2(d)|Rd |= O

(

x

logκ+U x

)

.
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Let b be a positive integer, let λ be a real number satisfying λe1+λ < 1, let

c1 =
A2

2

(

1+A1κ+
A1A2

log2

)

,

and let u = logx
logz .

Then

S(A ;P,z)≥ xW (z)

{

1−2

(

λbeλ)2

1−
(

λe1+λ
)2 exp

(

(2b+2)
c1

λ logz

)

+O
(

Lz
−αu+2b−1+ 2.01

(e2λ/κ−1) uC0+1 logC0+κ+1 z
)

+O(u−κ log−U X)

}

,

where the O-constants may depend on A′0,A1,A2,κ,α and U, but not on λ or b.

Using this theorem with A = {p+2 | p≤ x,µ2(p+2) = 1}, and taking the sifting primes to be P = {p : p > 2}, we
find that the lower bound is positive (and diverges) for u < 9. Following the same analysis as in [HR74] (p.67), we
can also take u < 8 with a slightly better treatment of the principal and secondary terms involved in the proof of the
above theorem. This allows us to conclude that the lower bound diverges even with z = x

1
7 , and thus we have:

THEOREM 4.5.5. There are infinitely many primes p such that p + 2 is a squarefree number with at most 7 prime
factors.

The above result is different from earlier ones because of the extra condition that p + 2 be made up only of distinct
primes.
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