Decoupled Architecture for Data Prefetching

CS/ECE 752 Project Report

Decoupled Architecture for Data Prefetching
 Kai Xu

Jichuan Chang
<xuk@cs.wisc.edu>

<chang@cs.wisc.edu>

Abstract

Although data prefetching is a useful technique in tolerating memory access latency, its implementation introduces overhead and complications to modern processor. As the chip area becomes more plentiful, it is possible having a decoupled coprocessor to unload the burden of the main processor. In this paper, we investigate the issues in designing a Prefetching Co-Processor (PCP), and evaluate this technique using detailed simulation. The results demonstrate that PCP is feasible: it simplifies the main processor’s design and improves performance. Delay tolerance and prefetching scheme integration are also investigated as two important aspects of PCP. Finally we discuss the limitations of PCP, and compare it with other related techniques.

1. Introduction

The gap between processor and memory performance has been widening in the past decade. It is thus becoming more important to look at techniques for hiding the latency of memory accesses. Data prefetching is one of the techniques for hiding the access latency. Rather than waiting for a cache miss to initiate a memory fetch, data prefetching anticipates such misses according to memory access patterns and issues a fetch to the memory system in advance of the actual memory reference. However, data prefetching can incur additional overhead for processors, such as access pattern computation, prefetching address computation and information bookkeeping.

With ever-increasing numbers of transistors available on a single chip, recent years has seen a growing interest in decoupled architectures, where more than one processor are put on one chip and in charge of handling different functionalities to improve overall performance. The idea of architectural decoupling can also be used in hiding memory latency [2].

In this project, we investigate the issue of reducing the overhead of data prefetching by using a decoupled architecture. A dedicated prefetching coprocessor (PCP) monitors the memory access patterns of the main processor (MP), which itself does not have prefetching unit. Based on the observations, the PCP issues prefetching requests and helps to hide the main processor's memory access latency. In the course of this project, we design and evaluate this decoupled data prefetching architecture with different prefetching techniques. Based on detailed execution-driven simulations, the data prefetching performance of this decoupled architecture is evaluated and analyzed.

The rest of this report is organized as follows. In Section 2 we give a survey for some commonly used hardware-based data prefetching schemes. Details of the design and implementation of the prefetching coprocessor are described in Section 3. We present our experimental methodology and the analysis of experiment results in Section 4. Related works are introduced in Section 5. We conclude in Section 6 with ideas for future works.
2. Data Prefetching Techniques

A number of techniques have been proposed in the literature to implement data prefetching in both hardware and software [9]. In software implementations, the compiler inserts special prefetch instructions that prefetch data many cycles ahead of their use by other instructions. These techniques are simple to implement, but involve the overhead of additional instructions in the pipeline. On the other hand, hardware implementations are complex to implement. But due to the transparency and availability of runtime information, hardware-based data prefetching schemes can significantly improve the effectiveness of prefetching. In this section, we briefly introduce several hardware-based data prefetching techniques, which target different memory access patterns.

2.1 Tagged Next-Block-Lookahead

The tagged prefetch algorithm [1] takes advantage of spatial locality of the sequential access patterns. Every cache block is associated with a tag bit. When a block is demanded-fetched or a prefetched block is referenced for the first time this tag bit is detected. In either of these cases, the next sequential block(s) is fetched.

2.2 Stride Prefetching

Baer and Chen introduced the stride prefetching technique [4] by monitoring the processor's address referencing pattern to detect constant stride array references originating from looping structures. This is accomplished by the construction of a reference prediction table (RPT) for each load or store instruction. An entry in the RPT consists of the address of the memory instruction, the previous address accessed by this instruction, a stride value, which is the difference between the last two referenced data addresses. In addition, a RPT entry contains a state field that provides the information about the success of previous prefetches for this entry. Data prefetching is triggered when the program counter reaches an instruction that has a corresponding entry in the RPT. If the state of the entry indicates that data accesses can be predicted, the data at address (current address + stride) is prefetched to cache. The state field of an RPT entry is updated on any memory reference by the instruction whose address is stored in that entry.

2.3 Stream Buffer

This scheme is a variation of the tagged prefetching scheme. Jouppi suggested bringing prefetched data blocks into FIFO stream buffers [3]. As each buffer entry is referenced, it is brought into the data cache while the remaining blocks are moved up in the queue and new sequential blocks are prefetched into the tail positions based on the tagged prefetching algorithm. Since prefetched data are not placed directly into the data cache, this scheme avoids possible cache pollution.

2.4 Other Schemes

Roth et. al, studied a Dependence-Based Prefetching scheme [6
], which dynamically identifies the access patterns of linked data structures. The dependence relationships existing between loads that produce addresses and loads that consume these addresses are identified and stored in a correlation table (CT). A small prefetch engine traverses these producer-consumer pairs and speculatively executes the load instructions ahead of the original program’s execution.

In [8
], the authors proposed a trace-based Dead-Block Correlating Prefetching scheme that accurately identifies when a L1 data cache block becomes evictable. It also uses address correlation to predict which subsequent block to prefetch when an evictable block is identified. Details of this scheme can be found in [8].
3. Prefetching Coprocessor

In this project, we propose to put a prefetching coprocessor on the same chip as the main processor and help the main processor to issue prefetching requests based on the observation of main processor's memory access patterns. The advantage of this decoupled data prefetching architecture is twofold. First, this implementation simplifies the design of main processor. PCP will handle the prefetch-related computation overhead, such as pattern computation and address computation. In such a way, we can hide the memory access latency without incurring any prefetching overhead for main processor. Second, the dedicated coprocessor is powerful and flexible on conducting data prefetching. Complicated prefetching algorithms can be exploited given enough computation power on PCP. Further, different algorithms can be implemented and even integrated on PCP to adapt to different memory access patterns.

On designing the data prefetching mechanism, there are three basic questions to be concerned: (1) What to prefetch, (2) when to initiate the prefetches, and (3) where to place the prefetched data? To answer these questions we show the high level view of our decoupled architecture in Figure 3.1, and describe the design of each functional block and more design considerations in the rest of this section.

[image: image1.wmf]PCP

Main Processor

Cache

Info Flow

Bus

Prefetch Requests

Data

Stream

Buffer

Tables

RPT, PPW,

CT, History, …

ALU

Figure 3.1 Decoupled Architecture for Data Prefetching (Block Diagram).

3.1 Information Sharing

In order to make decisions on what to prefetch, the PCP monitors the memory access behaviors of the main processor or L1 D-cache. Based on different prefetching schemes, the PCP could interest in the states of Load/Store Queue or Reorder Buffer in main processor, or just the cache miss events in L1 D-cache. These memory behavior information are stored into some internal tables, whose detail structures are determined by the implemented prefetching schemes, in PCP. There could be several cycles of delay for this information flow. We will discuss the delay tolerance issue in Section 3.5. According to the information stored in the tables, PCP can identify or compute memory access patterns the corresponding prefetching scheme targeting, and calculate the proper prefetching addresses.

3.2 Prefetch Request Queue

After calculating the prefetching addresses, PCP puts the data prefetching requests into a Prefetch Queue, which is implemented as a circular buffer. To decide when to issue these prefetching requests, PCP monitors the bus between the L1 cache and next level memory system. Whenever the bus is free, PCP will issue a prefetching request from the Prefetch Queue.

The advantage we implement the Prefetch Queue as a circular buffer is that when the queue is full, newly inserted requests will overwrite the outdated entries. In such a way, we can avoid cache pollution due to outdated prefetch information, which can be caused by information delay between main processor and PCP.

3.3 Stream Buffer

When prefetched data returns from next level memory system, a simple solution is placing them directly into L1 D-cache. But this will cause cache pollution, where useful cache blocks are prematurely replaced by prefetched data. To solve this problem, we build stream buffers to place prefetched data blocks. If a requested data block is present in the stream buffers, the original cache request is canceled. And the block is read from the stream buffer.

3.4 Integrating prefetching schemes

In this project, we implement tagged prefetching, stride prefetching and stream buffer schemes in the prefetching coprocessor to evaluate the performance of the decoupled architecture under different prefetching schemes. We also investigate the possibility to integrate different schemes, since the PCP has more computation power and ability on bookkeeping more prefetching information. To explore the PCP design space, we consider more aggressive prefetching policies, such as dynamically switching prefetching schemes to adapt to different applications.

3.5 Delay Tolerance
To be effective, data prefetching must be implemented in such a way that prefetches are timely and useful so that the prefetched data comes into the cache before a load issues a request for it, otherwise the prefetching can only induce unnecessary memory bandwidth and bus contention. So, in the decoupled architecture design, how many cycles of information delay can the PCP tolerates becomes a very important issue. More information delay from the main processor to the PCP means less useful prefetches, more cache pollution and less number of prefetches due to outdated information and bus contention.

In our design, two approaches are presented to reduce information delay. First, placing the PCP close to the information source. For instance, in the stride prefetching, the PCP should be placed near the Load/Store Queue of the main processor, so the accessed addresses in the load or store instructions can be obtained and calculated quickly in the RPT. Second, as mentioned in Section 3.2, we implement the Prefetch Queue in PCP as a circular buffer and expect to overwrite outdated prefetching requests early when the queue is full and new requests comes in. We evaluate the PCP’s delay tolerance ability and the above two approaches in Section 4.

4. Results

4.1 Simulator and Benchmarks

We use SimpleScalar v3.0 to simulate an out-of-order processor with 2-level cache hierarchy. The target machine uses PISA instruction set and little-endian format. Table 4.1 lists some key parameters of this processor.

	Parameter Name
	Parameter Value

	Instruction Issue/Commit Width
	4/4

	RUU (Register Update Unit) Size
	16

	LSQ (Load/Store Queue) Size
	8

	L1 Data Cache
	4KB, 32B line, 4-way associative

	Unified L1 Cache
	64KB, 64B line, 4-way associative

	Cache Hit Latency (in cycle)
	L1 = 1 L2 = 12 Mem = 70 2

	Memory Bus Width (in byte)
	8

	L1/L2 Bus
	Pipelined, give priority to demand references

	Others
	Default as set by SimpleScalar v3.0b

Table 4.1 System Configurations

	Parameter Name
	Option
	Parameter Value

	Prefetch Request Queue
	-pre:q_size
	16-entry FIFO, implemented as circular buffer.

	Stream Buffer
	-pre:buffer
	8 entries, fully associative, LRU, 1 cycle hit
.

	Prefetch Distance (in block)
	-pre:distance
	Default is 2.

	Reference Prediction Table
	-pre:RPT
	64 entries, 4-way associative, LRU.

	Prefetching Scheme
	-pre:algo
	Default is none, can be tag/stride/both.

	Info. Delay (in cycle)
	-pre:wait
	Default is 1.

	Others
	N/A
	No MSHR, 1 port per cache.

Table 4.2 Prefetching Coprocessor Configurations

In order to evaluate the design and performance of Prefetching Coprocessor, we made several modifications to the original simulator, including (1) augmenting sim-outorder to share information between the main processor and PCP; (2) implementing prefetching schemes (tagged NBL, stride prefetching and their combination) in cache module; (3) adding the Prefetch Request Queue to hold the prefetching requests, it will snoop the L1/L2 bus and issue prefetches when the bus is free; (4) augmenting the cache module with stream buffer to prevent cache pollution. For stride prefetching, we organize the Reference Prediction Table (RPT) as a 4-way associative cache. Table 4.2 lists some of the prefetching related parameters.

We selected a set of memory-intensive benchmarks from SPEC95 benchmark suite, which are compress and gcc in CINT95, tomcatv and swim in CFP95. We ran these benchmarks using their reference inputs, except for tomcatv (due to the slow simulation speed of sim-outorder on large input dataset, we used the training input for tomcatv).

In order to evaluate the performance of PCP under different memory access patterns, we also implemented two synthetic benchmarks. The first one is a matrix multiplication application (matrix) that accesses the memory in stride pattern. We multiply two 128 X 128 double precision arrays in this benchmark and store the result into the third matrix. Another benchmark is a binary tree transverse application, in which we build the binary tree with 1 million integer nodes, sum all the integers up by traversing the tree in depth first order, and delete the nodes. It is similar to treeadd benchmark in the Olden benchmark suite [10], and demonstrates high degree of data dependence through memory in linked data structure.

4.2 Prefetching Performance

Speedup
In this section, we compare the performance of different prefetching schemes, namely (1) TAG: tagged NBL prefetching without stream buffer, (2) BUF: tagged NBL with stream buffer, (3) STD: stride prefetching with stream buffer; (4) BOTH: the combination of BUF and STD, which issues prefetching request generated by both tagged NBL and stride scheme (but no duplication).

Figure 4.1 compares the performance of these prefetching schemes with a processor without prefetching (NONE). As prefetching does not introduce extra instructions but changes the execution time, the speedup is represented as normalized IPC number. For almost all of the benchmarks (expect for treeadd), prefetching improves the performance at least by 3%, and on average by 10%. Floating point applications (swim in particular) benefits more from prefetching than integer benchmarks, because (1) they demonstrate more regular and thus more predictable access patterns (see Figure 4.3), and (2) their cache behavior without prefetching are worse enough so that prefetching has more significant effect on them.

[image: image2.wmf]Normailized IPC

90%

95%

100%

105%

110%

115%

120%

125%

130%

compress

gcc

swim

tomcatv

matrix

treeadd

none

tag

buf

std

both

Figure 4.1 Speedup of Prefetching Schemes against Non-Prefetching Scheme

Comparing different prefetching schemes, using stream buffer (BUF) always leads to better performance than not using it (TAG). In the worst case, for the treeadd benchmark, TAG introduces too much cache pollution compared with useful prefetching, and actually slows down the application. Stride prefetching (STD) improves performance on all SPEC95 benchmarks, although not as much as BUF. On the other hand, STD achieves much better speedup on matrix and minor speedup on treeadd than tagged scheme. These observations suggest that none of these schemes works well for both sequential access and stride access. Not surprisingly, the combination of STD and BUF (BOTH) recognizes both two patterns, showing the best speedup on all six benchmarks.

Cache Miss Ratio

Prefetching helps performance in two ways: reducing cache miss ratio and hiding miss latency. It reduces cache miss ratio by bringing data into cache before its usage. Even this can not be done in time, it can still overlap the cache miss with execution, or with preceding misses. If considering 2-level cache, it can also bring data from memory into L2 cache before it is needed, which can reduce L1 miss latency into L2 hit latency instead of L2 miss latency (which is 6-8 times larger). In the later case, prefetching hides miss latency. This requires non-blocking cache support (and more specifically the MSHR mechanism), which is not modeled by SimpleScalar. So in our study, reducing cache miss ratio (particularly the L1 cache miss ratio) is the major way of shortening execution time.

[image: image3.wmf]L1 D-Cache Miss Rate Reduction

0%

20%

40%

60%

80%

100%

120%

compress

gcc

swim

tomcatv

matrix

treeadd

none

tag

buf

std

both

Figure 4.2 L1 Data Cache Miss Ratio Reductions

Figure 4.2 shows the effectiveness of different prefetching schemes on L1 cache miss rate reduction. Although different schemes have different impact on different benchmarks, it is clear that in most cases, prefetching significantly reduces cache miss ratio, which explains why they can improve performance. It is worth noting that the percentage of reduction doesn’t always correspond to the percentage of speedup (as in Figure 4.1). For example, using BUF scheme reduces swim’s L1 miss rate by 16%, which is smaller than that of gcc (about 27%), but the speedup of swim is 32%, which is much larger than gcc (about 3%). This again attributes to swim’s worse cache behavior (see Table 4.3), which emphasizes the importance of prefetching on memory-intensive applications.

	
	Compress
	Gcc
	Swim
	Tomcatv
	Matrix
	Treeadd

	None
	4.47%
	1.61%
	17.63%
	3.09%
	4.88%
	5.35%

	Tagged
	4.53%
	1.27%
	19.48%
	3.13%
	4.89%
	5.72%

	Tagged w/ buffer
	4.26%
	1.08%
	15.16%
	2.18%
	4.86%
	5.72%

	Stride w/buffer
	4.41%
	1.57%
	16.33%
	2.18%
	0.12%
	5.33%

	Both
	4.25%
	1.07%
	14.83%
	2.18%
	0.12%
	5.32%

Table 4.3 L1 Data Cache Miss Ratio

Prefetch Accuracy

Figure 4.3 compares the accuracy of different prefetching schemes. Accuracy is defined as the percentage of useful prefetched blocks, which are the blocks being accessed before replaced. This figure shows that stride prefetching has much higher accuracy (more than 90%) than the other schemes. Tagged without stream buffer has the worst accuracy due to cache pollution, which can be avoided by using stream buffer (BUF). BOTH scheme’s accuracy is lower than STD and higher than BUF, which can be approximated as the weighted average of these two. The weights are the prefetching requests generated by two components.

[image: image4.wmf]Prefetch Accuracy

0%

20%

40%

60%

80%

100%

compress

gcc

swim

tomcatv

matrix

treeadd

tag

buf

std

both

Figure 4.3 Percentage of Useful Prefetched Blocks

L2 Traffic Increase

Figure 4.4 demonstrates the traffic increase caused by prefetching, against the L2 reference number without prefetching. The number also varies with different schemes and benchmarks. Stride introduces the least traffic for all benchmarks. BUF and TAG both introduces 10% to 70% extra L1 traffic. BUF generates less traffic than TAG, which suggests that stream buffer also helps to reduce L2 traffic. Gcc and tomcatv suffer less from traffic increase than the other four benchmarks, which can be partly attributed to their original lower L1 miss ratios.

[image: image5.wmf]% of L2 Traffic Increased

0

0.2

0.4

0.6

0.8

1

tag

buf

std

both

compress

gcc

swim

tomcatv

matrix

treeadd

Figure 4.4 L1 Cache Traffic Increased Using Different Schemes

	
	Compress
	Gcc
	Swim
	Tomcatv
	Matrix
	Treeadd

	None
	1071175
	119141627
	64690156
	256657474
	50565326
	61142730

	Tagged
	662055
	9623862
	48633868
	28669740
	33727874
	40929142

	Tagged w/ buffer
	522824
	7516804
	15284143
	7899332
	31895440
	38246057

	Stride w/buffer
	9686
	232295
	3458695
	2437592
	16480302
	200028

	Both
	523943
	7570828
	16173830
	7903295
	48331088
	38484967

	% of Traffic +
	1 – 66%
	< 1%
	5 - 74%
	1 - 12%
	31 - 97%
	1 - 75 %

Table 4.4 Numbers and Percentages of Extra L2 References

Table 4.4 gives the absolute number of extra references. BOTH generates the most extra traffic among all 4 schemes. The reference number of BOTH can be a bit larger than the maximum of those of BUF and STD (when their predictions overlap), or in the worst case, the sum of these two (when their predictions differ).

4.3 PCP Delay Tolerance

In order to issue prefetch early and correctly enough, PCP should be informed as promptly as possible. On the other hand, the physical layout determines that there will be certain cycles of delay between PCP and the source of information (either MP or L1 cache). PCP itself also needs time to match history data and generate requests, which can further add one or more cycles of delay. We need to understand the performance impact of this delay.

Fortunately, our simulation shows that for all the benchmarks and all the prefetching schemes we studied, PCP can tolerate up to 8 cycles of delay without sacrificing too much performance. Figure 4.5 uses compress as an example to show the impact of delay on performance. The decrease of speedup is negligible from 0 cycle of delay up to 8 cycles of delay. The other benchmarks demonstrate similar behavior. For our purpose of prefetching, tolerating 8 cycles is sufficient.

After adding a prefetching request into the Prefetch Request Queue, it could be delayed by bus contention and become useless after the demand block is available, or it can be overwritten by later requests. We classify the removal of requests into (1) removed by limited queue size, and (2) delayed and removed by bus contention. Our simulation shows that most of the removals are due to bus contention, and the queue size only becomes a limitation when information delay gets longer. Table 4.5 gives the breakdown numbers for swim with delays of 1 cycle and 8 cycles.

[image: image6.wmf]Delay Tolerance (compress95)

1.6

1.61

1.62

1.63

1.64

0

1

2

3

4

8

Cycles of delay

tag

buf

std

both

Figure 4.5 IPC with Different Degree of Information Delay

	Algo.
	delay = 1
	delay = 8

	
	by size
	by contention
	by size
	by contention

	tag
	8176
	5436
	27616
	784850

	buf
	8163
	50729973
	280139
	50399157

	std
	0
	6706580
	0
	6706178

	both
	54529
	56569461
	363368
	56239045

Table 4.5 Breakdown of Prefetch Request Removal Numbers

4.4 Integrating Different Schemes

Because PCP is a dedicated, general purpose processor, it has the potential of integrating different schemes or adapting to suitable schemes to get the best from all. For this project, we investigated the effectiveness BOTH scheme, which is a brute force combination of STD and TAG. The simulation shows this approach achieves good speedup, but introduces much more traffic in some cases.

The problem with scheme integration is that their prefetching decisions rely on different kinds of information. For TAG and BUF, it’s L1 cache miss address; for STD, it’s load/store PC and data address; for other schemes, it can be data value or even history miss pattern. This information will be stored in cache-like data structures, with different cache organizations. As application access pattern can be obtained at runtime, also caches can be reconfigured dynamically, it seems natural to implement different schemes by sharing the same cache or table, and reconfigure the cache when access pattern is discovered. This approach saves hardware, but needs to reconfigure and flush tables whenever context switches, which is not acceptable for multitasking environment.

Another way of adapting prefetching policy dynamically is to use separate tables for different schemes, and select the best prediction from all. This approach requires more hardware, but have the potential of dynamic adaptation. The implementation will be similar to tournament branch predictor. It would be interesting to see whether this idea works or not, but due to the limited time of our project, we decide to leave it as part of our future work.

5. Related Work

Two branches of research work are related to our project: data prefetching and decoupled architecture. Recent studies of data prefetching have been focusing on how to deal with non-regular access patterns [6][8]. More aggressive approaches are even trying to generate and maintain jump pointers to facilitate the pointer based object prefetching [13]. As most of the related techniques can be found in section 2, we will focus more on decoupled architecture.

The original concept of decoupled architecture comes from [2] where a program can be separated into different slices for different functional units. In [2], an address slice and an execute slice are identified. The address slice slips ahead of the execute slice at runtime and this results in a larger effective instruction window. This idea focuses more on dynamic instruction scheduling, but opens a wide research area to be explored.

Recent work by Zilles and Sohi [11] combines the running ahead idea with backward slicing techniques, in which they dynamically identify the performance critical instructions (those tend to cause performance degrading events such as cache misses and branch miss-predictions) and try to pre-execute them. Corporative Multithreading (or Supportive Multithreading) [12] extends multithreading techniques with the similar idea by using a separate (idle) thread contexts in a multithreaded architecture to improve performance of single-threaded applications.

6. Conclusions and Future Work

In the paper, we evaluate a decouple architecture for data prefetching using detailed simulation. The results suggest that this approach is both feasible and helpful: the prefetching coprocessor can be implemented using existing technique, it can tolerate sufficient amount of delays, and improves performance by 3-32% without disturbing the execution of main processor.

There are still some limitations on our design: (1) PCP is not fully utilized because prefetching involves only simple and independent arithmetic and logical operations. Many of the complicated mechanisms (like reservation station, reorder buffer, and branch predictors) of modern processor will not be exploited; (2) PCP can not improve performance by itself, it relies on tables (or caches) to store history information and match it with current information. Also, to avoid cache pollution, we need to drag stream buffer out of PCP and place it close to L1 cache and the main processor, although it is logically part of PCP. (3) Delay is still critical to prefetching performance. It limits the complexity of PCP’s prefetch schemes, and determines PCP’s degree of coupling with respect to the main processor.

Future work can be done in both evaluating more prefetching algorithms (such as Dependence Based Prefetching [6], Jump Pointer Prefetching [13], or DBCP [8]) for PCP, and extending the decoupled idea to other areas. We can also extend our design to support speculative multithreading, to validate the Backward Slicing related techniques.

One possible extension is to use a single PCP to serve multiple main processors in a bus-based Shared Memory Multiprocessor. The suitable prefetching scheme will be Next-Block-Lookahead since the cache miss event can be easily snooped by PCP. Another extension would be to use the coprocessor as not only a prefetching engine, but also a versatile hardware for branch prediction, power management, and more.

Reference

[1] Alan J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, 982.

[2] James E. Smith. Decoupled access/execute computer architecture. In Proceedings of the 9th Annual International Symposium on Computer Architecture, 1982.

[3] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual International Symposium on Computer Architecture, pages 364-373, May 1990.

[4] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking and prefetching caches. In Proceedings of the Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS V), pages 51-61, October 1992.

[5] D. Burger and T. M. Austin, "The SimpleScalar tool set, version 2.0," Tech. Rep. 1342, University of Wisconsin Madison, CS Department, June 1997.

[6] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetching for linked data structures. In Proceedings of the Eighth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS VIII), October 1998.

[7] T. C. Mowry. Tolerating latency in multiprocessors through compiler-inserted prefetching. ACM Transactions on Computer Systems, vol. 16, no. 1, pp. 55--92, 1998.

[8] An-Chow Lai, Cem Fide, and Babak Falsafi., Dead-block Prediction and Dead-block Correlating Prefetchers. In Proceedings of the 28th International Symposium on Computer Architecture, July 2001.

[9] Steven P. Vanderwiel and David J. Lilja. Data Prefetch Mechanisms. ACM Computing surveys. Vol.32, No.2, June 2000.

[10] A. Rogers, M.Carlisle, J.Reppy, and L. Hendren. Supporting dynamic data structures on distributed memory machines. ACM Transactions on Programming Languages and Systems, March. 1995.

[11] C. Zilles and G. Sohi. Understanding the backward slices of performance degrading instructions. In 27th Annual International Symposium on Computer Architecture, pages 172--181, June 2000.

[12] Collins , Hong Wang , Dean M. Tullsen , Christopher Hughes , Yong-Fong Lee , Dan Lavery, Speculative Precomputation: Long-range Prefetching of Delinquent Loads. In Proceedings of the 28th International Symposium on Computer Architecture, July 2001.

[13] Amir Roth and Gurindar S. Sohi. Effective Jump-Pointer Prefetching for Linked Data Structures. In Proceedings of the 26th International Symposium on Computer Architecture, 1999.

PAGE
14
December 17, 2001

_1069932675.xls
Chart6

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

Normailized IPC

1

1.0203504805

1.0265686829

1.0057785315

1.0272595942

1

1.0086502367

1.0073445406

1.000326424

1.0073445406

1

1.2626209508

1.3236222129

1.144615061

1.3388725284

1

1.0475184794

1.0562679137

1.0165937547

1.0562679137

1

1.0021481354

1.0012888813

1.1855129747

1.1853411239

1

0.9889954853

0.9991534989

1.0019751693

1.0008465011

Sheet1

		IPC

				none		1.5921		0.6127		0.9508		0.6629		1.1638		0.3544		none		1		1		1		1		1		1

				tag		1.6245		0.618		1.2005		0.6944		1.1663		0.3505		tag		1.0203504805		1.0086502367		1.2626209508		1.0475184794		1.0021481354		0.9889954853

				buf		1.6344		0.6172		1.2585		0.7002		1.1653		0.3541		buf		1.0265686829		1.0073445406		1.3236222129		1.0562679137		1.0012888813		0.9991534989

				std		1.6013		0.6129		1.0883		0.6739		1.3797		0.3551		std		1.0057785315		1.000326424		1.144615061		1.0165937547		1.1855129747		1.0019751693

				both		1.6355		0.6172		1.273		0.7002		1.3795		0.3547		both		1.0272595942		1.0073445406		1.3388725284		1.0562679137		1.1853411239		1.0008465011

																				compress		gcc		swim		tomcatv		matrix		treeadd

						compress		gcc		swim		tomcatv		matrix		treeadd

		Dl1.miss

				none		0.0447		0.0161		0.1763		0.0309		0.0488		0.0535		none		1		1		1		1		1		1

				tag		0.0453		0.0127		0.1948		0.0313		0.0489		0.0572		tag		1.0134228188		0.7888198758		1.1049347703		1.0129449838		1.0020491803		1.0691588785

				buf		0.0426		0.0108		0.1516		0.0218		0.0486		0.0572		buf		0.9530201342		0.6708074534		0.8598979013		0.7055016181		0.9959016393		1.0691588785

				std		0.0441		0.0157		0.1633		0.0218		0.0012		0.0533		std		0.9865771812		0.9751552795		0.9262620533		0.7055016181		0.0245901639		0.9962616822

				both		0.0425		0.0107		0.1483		0.0218		0.0012		0.0532		both		0.9507829978		0.6645962733		0.8411798071		0.7055016181		0.0245901639		0.9943925234

						compress		gcc		swim		tomcatv		matrix		treeadd

		Accuracy		tag		0.1131		0.4073		0.0156		0.1033		0.0025		0.0038

				buf		0.0553		0.3896		0.4389		0.9971		0.0024		0.0038

				std		0.907		0.956		0.9994		0.9998		0.9994		0.3716

				both		0.0572		0.3898		0.4676		0.9971		0.3408		0.0038

						compress		gcc		swim		tomcatv		matrix		treeadd

		Traffic

						compress		gcc		swim		tomcatv		matrix		treeadd

				none		1071175		119141627		64690156		256657474		50565326		22896356				compress		gcc		swim		tomcatv		matrix		treeadd

				tag		662055		9623862		48633868		28669740		33727874				tag		0.6180642752		0.0807766542		0.7517970431		0.1117042865		0.6670158519		0

				buf		522824		7516804		15284143		7899332		31895440				buf		0.48808458		0.0630913325		0.2362669059		0.0307777205		0.6307769083		0

				std		9686		232295		3458695		2437592		16480302		200028		std		0.0090424067		0.0019497384		0.0534655536		0.0094974518		0.3259210076		0

				both		523943		7570828		16173830		7903295		48331088		38484967		both		0.4891292273		0.063544776		0.2500199567		0.0307931613		0.9558148206		0.0087362373

				Traffic +		1% - 66%		<1%		5% - 74%		3% - 12%		31% - 97%

		Queue Size

						Default = 16				Never been a problem

						Almost squashed prefetch are due to bus contention

		Accuracy

				tag		0.1131		0.4073						0.0024

				buf		0.0553		0.3896				0.1033		0.0025						tag		buf		std		both

				std		0.907		0.956		0.9994		0.9971		0.9994		0.3716		0		0.6182		0.6172		0.6129		0.6172

				both		0.0572		0.3898		0.4676				0.3408				1		0.618		0.6172		0.6129		0.6172

																		2		0.6179		0.6171		0.6129		0.6172

						compress		gcc		swim		tomcatv		matrix		treeadd		3		0.6178		0.6171		0.6129		0.6171

																		4		0.6178		0.6171		0.6129		0.6171

																		8		0.6177		0.617		0.6129		0.617

		Lag impact

				Compress				tag		buf		std		both						tag		buf		std		both

						0		1.6245		1.6344		1.6042		1.6355				0		1.1663		1.1653		1.3797		1.3795

						1		1.6245		1.6344		1.6013		1.6355				1		1.1663		1.1653		1.3797		1.3795

						2		1.6242		1.6343		1.6012		1.6354				2		1.1663		1.1653		1.3797		1.3795

						3		1.6239		1.634		1.6019		1.6351				3		1.1663		1.1653		1.3797		1.3795

						4		1.624		1.634		1.6019		1.6351				4		1.1663		1.1653		1.3796		1.3794

						8		1.624		1.6338		1.6016		1.6349				8		1.1663		1.1653		1.3793		1.3791

						16		1.624		1.6335		1.6015		1.6345

						none		1.5921		1.5921		1.5921		1.5921

				Swim				tag		buf		std		both

						0				1.2585		1.0883		1.273

						1				1.2585		1.0883		1.273

						2				1.2585		1.0883		1.273

						3				1.2585		1.0882		1.273

						4				1.2585		1.0882		1.2729

						8		1.2069		1.2585		1.0881		1.2727

						16

						none		0.9508		0.9508		0.9508		0.9508

				matrix				tag		buf		std		both

						0		1.1663		1.1653		1.3797		1.3795				1		420657				1		1.3797

						1		1.1663		1.1653		1.3797		1.3795				2		420657				2		1.3797

						2		1.1663		1.1653		1.3797		1.3795				4		428578				4		1.3796

						3		1.1663		1.1653		1.3797		1.3795				8		428570				8		1.3796

						4		1.1663		1.1653		1.3796		1.3794				16		428570				16		1.3793

						8		1.1663		1.1653		1.3793		1.3791				32		428570				32		1.3786

						16		1.1663		1.1653		1.3786						64		5931364				64		1.3774

						none		1.1638		1.1638		1.1638		1.1638				128		16213389				128		1.2963

				gcc				tag		buf		std		both				256		16891217				256		1.1708

						0		0.6182		0.6172		0.6129		0.6172				None		16891566				None		1.1635

						1		0.618		0.6172		0.6129		0.6172

						2		0.6179		0.6171		0.6129		0.6172

						3		0.6178		0.6171		0.6129		0.6171

						4		0.6178		0.6171		0.6129		0.6171				1		16480302				1		0.9994

						8		0.6177		0.617		0.6129		0.617				2		16472380				2		0.9994

						16		0.617		0.6166		0.6129		0.6166				4		16472380				4		0.9994

						none		0.6127		0.6127		0.6127		0.6127				8		16472380				8		0.9994

				tomcatv				tag		buf		std		both				16		16472380				16		0.9994

						0				0.7002								32		16471111				32		0.9994

						1		0.6944		0.7002				0.7002				64		10969285				64		0.9992

						2				0.7002				0.7002				128		686285				128		0.9882

						3												256		1365				256		0.2557

						4												None		0				None		0

						8

						16

						none		0.6629		0.6629		0.6629		0.6629

				treeadd				tag		buf		std		both

						0		0.3505		0.3541		0.3551		0.3547

						1		0.3505		0.3541		0.3551		0.3547

						2		0.3505		0.3541		0.3551		0.3547

						3		0.3505		0.3541		0.3551		0.3547

						4				0.3541				0.3547

						8		0.3504		0.3541				0.3547

						16		0.3504		0.3541

						none		0.3544

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

tag

buf

std

both

Cycles of delay

Delay Tolerance (compress95)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet2

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

Normailized IPC

1

1.0203504805

1.0265686829

1.0057785315

1.0272595942

1

1.0086502367

1.0073445406

1.000326424

1.0073445406

1

1.2626209508

1.3236222129

1.144615061

1.3388725284

1

1.0475184794

1.0562679137

1.0165937547

1.0562679137

1

1.0021481354

1.0012888813

1.1855129747

1.1853411239

1

0.9889954853

0.9991534989

1.0019751693

1.0008465011

Sheet3

		

Sheet3

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

L1 D-Cache Miss Rate Reduction

1

1.0134228188

0.9530201342

0.9865771812

0.9507829978

1

0.7888198758

0.6708074534

0.9751552795

0.6645962733

1

1.1049347703

0.8598979013

0.9262620533

0.8411798071

1

1.0129449838

0.7055016181

0.7055016181

0.7055016181

1

1.0020491803

0.9959016393

0.0245901639

0.0245901639

1

1.0691588785

1.0691588785

0.9962616822

0.9943925234

		compress		compress		compress		compress

		gcc		gcc		gcc		gcc

		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd

tag

buf

std

both

% Useful Prefetches

0.1131

0.0553

0.907

0.0572

0.4073

0.3896

0.956

0.3898

0.0156

0.4389

0.9994

0.4676

0.1033

0.9971

0.9998

0.9971

0.0025

0.0024

0.9994

0.3408

0.0038

0.0038

0.3716

0.0038

		tag		tag		tag		tag		tag		tag

		buf		buf		buf		buf		buf		buf

		std		std		std		std		std		std

		both		both		both		both		both		both

compress

gcc

swim

tomcatv

matrix

treeadd

L2 Cache Traffic Increase

0.6180642752

0.0807766542

0.7517970431

0.1117042865

0.6670158519

0

0.48808458

0.0630913325

0.2362669059

0.0307777205

0.6307769083

0

0.0090424067

0.0019497384

0.0534655536

0.0094974518

0.3259210076

0

0.4891292273

0.063544776

0.2500199567

0.0307931613

0.9558148206

0.0087362373

_1069933170.xls
Chart8

		compress		compress		compress		compress

		gcc		gcc		gcc		gcc

		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd

tag

buf

std

both

Prefetch Accuracy

0.1131

0.0553

0.907

0.0572

0.4073

0.3896

0.956

0.3898

0.0156

0.4389

0.9994

0.4676

0.1033

0.9971

0.9998

0.9971

0.0025

0.0024

0.9994

0.3408

0.0038

0.0038

0.3716

0.0038

Sheet1

		IPC

				none		1.5921		0.6127		0.9508		0.6629		1.1638		0.3544		none		1		1		1		1		1		1

				tag		1.6245		0.618		1.2005		0.6944		1.1663		0.3505		tag		1.0203504805		1.0086502367		1.2626209508		1.0475184794		1.0021481354		0.9889954853

				buf		1.6344		0.6172		1.2585		0.7002		1.1653		0.3541		buf		1.0265686829		1.0073445406		1.3236222129		1.0562679137		1.0012888813		0.9991534989

				std		1.6013		0.6129		1.0883		0.6739		1.3797		0.3551		std		1.0057785315		1.000326424		1.144615061		1.0165937547		1.1855129747		1.0019751693

				both		1.6355		0.6172		1.273		0.7002		1.3795		0.3547		both		1.0272595942		1.0073445406		1.3388725284		1.0562679137		1.1853411239		1.0008465011

																				compress		gcc		swim		tomcatv		matrix		treeadd

						compress		gcc		swim		tomcatv		matrix		treeadd

		Dl1.miss

				none		0.0447		0.0161		0.1763		0.0309		0.0488		0.0535		none		1		1		1		1		1		1

				tag		0.0453		0.0127		0.1948		0.0313		0.0489		0.0572		tag		1.0134228188		0.7888198758		1.1049347703		1.0129449838		1.0020491803		1.0691588785

				buf		0.0426		0.0108		0.1516		0.0218		0.0486		0.0572		buf		0.9530201342		0.6708074534		0.8598979013		0.7055016181		0.9959016393		1.0691588785

				std		0.0441		0.0157		0.1633		0.0218		0.0012		0.0533		std		0.9865771812		0.9751552795		0.9262620533		0.7055016181		0.0245901639		0.9962616822

				both		0.0425		0.0107		0.1483		0.0218		0.0012		0.0532		both		0.9507829978		0.6645962733		0.8411798071		0.7055016181		0.0245901639		0.9943925234

						compress		gcc		swim		tomcatv		matrix		treeadd

		Accuracy		tag		0.1131		0.4073		0.0156		0.1033		0.0025		0.0038

				buf		0.0553		0.3896		0.4389		0.9971		0.0024		0.0038

				std		0.907		0.956		0.9994		0.9998		0.9994		0.3716

				both		0.0572		0.3898		0.4676		0.9971		0.3408		0.0038

						compress		gcc		swim		tomcatv		matrix		treeadd

		Traffic

						compress		gcc		swim		tomcatv		matrix		treeadd

				none		1071175		119141627		64690156		256657474		50565326		22896356				compress		gcc		swim		tomcatv		matrix		treeadd

				tag		662055		9623862		48633868		28669740		33727874				tag		0.6180642752		0.0807766542		0.7517970431		0.1117042865		0.6670158519		0

				buf		522824		7516804		15284143		7899332		31895440				buf		0.48808458		0.0630913325		0.2362669059		0.0307777205		0.6307769083		0

				std		9686		232295		3458695		2437592		16480302		200028		std		0.0090424067		0.0019497384		0.0534655536		0.0094974518		0.3259210076		0

				both		523943		7570828		16173830		7903295		48331088		38484967		both		0.4891292273		0.063544776		0.2500199567		0.0307931613		0.9558148206		0.0087362373

				Traffic +		1% - 66%		<1%		5% - 74%		3% - 12%		31% - 97%

		Queue Size

						Default = 16				Never been a problem

						Almost squashed prefetch are due to bus contention

		Accuracy

				tag		0.1131		0.4073						0.0024

				buf		0.0553		0.3896				0.1033		0.0025						tag		buf		std		both

				std		0.907		0.956		0.9994		0.9971		0.9994		0.3716		0		0.6182		0.6172		0.6129		0.6172

				both		0.0572		0.3898		0.4676				0.3408				1		0.618		0.6172		0.6129		0.6172

																		2		0.6179		0.6171		0.6129		0.6172

						compress		gcc		swim		tomcatv		matrix		treeadd		3		0.6178		0.6171		0.6129		0.6171

																		4		0.6178		0.6171		0.6129		0.6171

																		8		0.6177		0.617		0.6129		0.617

		Lag impact

				Compress				tag		buf		std		both						tag		buf		std		both

						0		1.6245		1.6344		1.6042		1.6355				0		1.1663		1.1653		1.3797		1.3795

						1		1.6245		1.6344		1.6013		1.6355				1		1.1663		1.1653		1.3797		1.3795

						2		1.6242		1.6343		1.6012		1.6354				2		1.1663		1.1653		1.3797		1.3795

						3		1.6239		1.634		1.6019		1.6351				3		1.1663		1.1653		1.3797		1.3795

						4		1.624		1.634		1.6019		1.6351				4		1.1663		1.1653		1.3796		1.3794

						8		1.624		1.6338		1.6016		1.6349				8		1.1663		1.1653		1.3793		1.3791

						16		1.624		1.6335		1.6015		1.6345

						none		1.5921		1.5921		1.5921		1.5921

				Swim				tag		buf		std		both

						0				1.2585		1.0883		1.273

						1				1.2585		1.0883		1.273

						2				1.2585		1.0883		1.273

						3				1.2585		1.0882		1.273

						4				1.2585		1.0882		1.2729

						8		1.2069		1.2585		1.0881		1.2727

						16

						none		0.9508		0.9508		0.9508		0.9508

				matrix				tag		buf		std		both

						0		1.1663		1.1653		1.3797		1.3795				1		420657				1		1.3797

						1		1.1663		1.1653		1.3797		1.3795				2		420657				2		1.3797

						2		1.1663		1.1653		1.3797		1.3795				4		428578				4		1.3796

						3		1.1663		1.1653		1.3797		1.3795				8		428570				8		1.3796

						4		1.1663		1.1653		1.3796		1.3794				16		428570				16		1.3793

						8		1.1663		1.1653		1.3793		1.3791				32		428570				32		1.3786

						16		1.1663		1.1653		1.3786						64		5931364				64		1.3774

						none		1.1638		1.1638		1.1638		1.1638				128		16213389				128		1.2963

				gcc				tag		buf		std		both				256		16891217				256		1.1708

						0		0.6182		0.6172		0.6129		0.6172				None		16891566				None		1.1635

						1		0.618		0.6172		0.6129		0.6172

						2		0.6179		0.6171		0.6129		0.6172

						3		0.6178		0.6171		0.6129		0.6171

						4		0.6178		0.6171		0.6129		0.6171				1		16480302				1		0.9994

						8		0.6177		0.617		0.6129		0.617				2		16472380				2		0.9994

						16		0.617		0.6166		0.6129		0.6166				4		16472380				4		0.9994

						none		0.6127		0.6127		0.6127		0.6127				8		16472380				8		0.9994

				tomcatv				tag		buf		std		both				16		16472380				16		0.9994

						0				0.7002								32		16471111				32		0.9994

						1		0.6944		0.7002				0.7002				64		10969285				64		0.9992

						2				0.7002				0.7002				128		686285				128		0.9882

						3												256		1365				256		0.2557

						4												None		0				None		0

						8

						16

						none		0.6629		0.6629		0.6629		0.6629

				treeadd				tag		buf		std		both

						0		0.3505		0.3541		0.3551		0.3547

						1		0.3505		0.3541		0.3551		0.3547

						2		0.3505		0.3541		0.3551		0.3547

						3		0.3505		0.3541		0.3551		0.3547

						4				0.3541				0.3547

						8		0.3504		0.3541				0.3547

						16		0.3504		0.3541

						none		0.3544

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

tag

buf

std

both

Cycles of delay

Delay Tolerance (compress95)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet2

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

Normailized IPC

1

1.0203504805

1.0265686829

1.0057785315

1.0272595942

1

1.0086502367

1.0073445406

1.000326424

1.0073445406

1

1.2626209508

1.3236222129

1.144615061

1.3388725284

1

1.0475184794

1.0562679137

1.0165937547

1.0562679137

1

1.0021481354

1.0012888813

1.1855129747

1.1853411239

1

0.9889954853

0.9991534989

1.0019751693

1.0008465011

Sheet3

		

Sheet3

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

L1 D-Cache Miss Rate Reduction

1

1.0134228188

0.9530201342

0.9865771812

0.9507829978

1

0.7888198758

0.6708074534

0.9751552795

0.6645962733

1

1.1049347703

0.8598979013

0.9262620533

0.8411798071

1

1.0129449838

0.7055016181

0.7055016181

0.7055016181

1

1.0020491803

0.9959016393

0.0245901639

0.0245901639

1

1.0691588785

1.0691588785

0.9962616822

0.9943925234

		compress		compress		compress		compress

		gcc		gcc		gcc		gcc

		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd

tag

buf

std

both

% Useful Prefetches

0.1131

0.0553

0.907

0.0572

0.4073

0.3896

0.956

0.3898

0.0156

0.4389

0.9994

0.4676

0.1033

0.9971

0.9998

0.9971

0.0025

0.0024

0.9994

0.3408

0.0038

0.0038

0.3716

0.0038

		tag		tag		tag		tag		tag		tag

		buf		buf		buf		buf		buf		buf

		std		std		std		std		std		std

		both		both		both		both		both		both

compress

gcc

swim

tomcatv

matrix

treeadd

L2 Cache Traffic Increase

0.6180642752

0.0807766542

0.7517970431

0.1117042865

0.6670158519

0

0.48808458

0.0630913325

0.2362669059

0.0307777205

0.6307769083

0

0.0090424067

0.0019497384

0.0534655536

0.0094974518

0.3259210076

0

0.4891292273

0.063544776

0.2500199567

0.0307931613

0.9558148206

0.0087362373

_1069933220.xls
Chart1

		tag		tag		tag		tag		tag		tag

		buf		buf		buf		buf		buf		buf

		std		std		std		std		std		std

		both		both		both		both		both		both

compress

gcc

swim

tomcatv

matrix

treeadd

% of L2 Traffic Increased

0.6180642752

0.0807766542

0.7517970431

0.1117042865

0.6670158519

0.6694032471

0.48808458

0.0630913325

0.2362669059

0.0307777205

0.6307769083

0.6255209246

0.0090424067

0.0019497384

0.0534655536

0.0094974518

0.3259210076

0.0032714928

0.4891292273

0.063544776

0.2500199567

0.0307931613

0.9558148206

0.6294283392

Sheet1

		IPC

				none		1.5921		0.6127		0.9508		0.6629		1.1638		0.3544		none		1		1		1		1		1		1

				tag		1.6245		0.618		1.2005		0.6944		1.1663		0.3505		tag		1.0203504805		1.0086502367		1.2626209508		1.0475184794		1.0021481354		0.9889954853

				buf		1.6344		0.6172		1.2585		0.7002		1.1653		0.3541		buf		1.0265686829		1.0073445406		1.3236222129		1.0562679137		1.0012888813		0.9991534989

				std		1.6013		0.6129		1.0883		0.6739		1.3797		0.3551		std		1.0057785315		1.000326424		1.144615061		1.0165937547		1.1855129747		1.0019751693

				both		1.6355		0.6172		1.273		0.7002		1.3795		0.3547		both		1.0272595942		1.0073445406		1.3388725284		1.0562679137		1.1853411239		1.0008465011

																				compress		gcc		swim		tomcatv		matrix		treeadd

						compress		gcc		swim		tomcatv		matrix		treeadd

		Dl1.miss				compress		gcc		swim		tomcatv		matrix		treeadd

				none		4.47%		1.61%		17.63%		3.09%		4.88%		5.35%		none		1		1		1		1		1		1

				tag		4.53%		1.27%		19.48%		3.13%		4.89%		5.72%		tag		1.0134228188		0.7888198758		1.1049347703		1.0129449838		1.0020491803		1.0691588785

				buf		4.26%		1.08%		15.16%		2.18%		4.86%		5.72%		buf		0.9530201342		0.6708074534		0.8598979013		0.7055016181		0.9959016393		1.0691588785

				std		4.41%		1.57%		16.33%		2.18%		0.12%		5.33%		std		0.9865771812		0.9751552795		0.9262620533		0.7055016181		0.0245901639		0.9962616822

				both		4.25%		1.07%		14.83%		2.18%		0.12%		5.32%		both		0.9507829978		0.6645962733		0.8411798071		0.7055016181		0.0245901639		0.9943925234

		Accuracy		tag		0.1131		0.4073		0.0156		0.1033		0.0025		0.0038

				buf		0.0553		0.3896		0.4389		0.9971		0.0024		0.0038

				std		0.907		0.956		0.9994		0.9998		0.9994		0.3716

				both		0.0572		0.3898		0.4676		0.9971		0.3408		0.0038

						compress		gcc		swim		tomcatv		matrix		treeadd

		Traffic

						compress		gcc		swim		tomcatv		matrix		treeadd

				none		1071175		119141627		64690156		256657474		50565326		61142730				compress		gcc		swim		tomcatv		matrix		treeadd

				tag		662055		9623862		48633868		28669740		33727874		40929142		tag		0.6180642752		0.0807766542		0.7517970431		0.1117042865		0.6670158519		0.6694032471

				buf		522824		7516804		15284143		7899332		31895440		38246057		buf		0.48808458		0.0630913325		0.2362669059		0.0307777205		0.6307769083		0.6255209246

				std		9686		232295		3458695		2437592		16480302		200028		std		0.0090424067		0.0019497384		0.0534655536		0.0094974518		0.3259210076		0.0032714928

				both		523943		7570828		16173830		7903295		48331088		38484967		both		0.4891292273		0.063544776		0.2500199567		0.0307931613		0.9558148206		0.6294283392

				Traffic +		1% - 66%		<1%		5% - 74%		3% - 12%		31% - 97%

		Queue Size

						Default = 16				Never been a problem

						Almost squashed prefetch are due to bus contention

		Accuracy

				tag		0.1131		0.4073						0.0024

				buf		0.0553		0.3896				0.1033		0.0025						tag		buf		std		both

				std		0.907		0.956		0.9994		0.9971		0.9994		0.3716		0		0.6182		0.6172		0.6129		0.6172

				both		0.0572		0.3898		0.4676				0.3408				1		0.618		0.6172		0.6129		0.6172

																		2		0.6179		0.6171		0.6129		0.6172

						compress		gcc		swim		tomcatv		matrix		treeadd		3		0.6178		0.6171		0.6129		0.6171

																		4		0.6178		0.6171		0.6129		0.6171

																		8		0.6177		0.617		0.6129		0.617

		Lag impact

				Compress				tag		buf		std		both						tag		buf		std		both

						0		1.6245		1.6344		1.6042		1.6355				0		1.1663		1.1653		1.3797		1.3795

						1		1.6245		1.6344		1.6013		1.6355				1		1.1663		1.1653		1.3797		1.3795

						2		1.6242		1.6343		1.6012		1.6354				2		1.1663		1.1653		1.3797		1.3795

						3		1.6239		1.634		1.6019		1.6351				3		1.1663		1.1653		1.3797		1.3795

						4		1.624		1.634		1.6019		1.6351				4		1.1663		1.1653		1.3796		1.3794

						8		1.624		1.6338		1.6016		1.6349				8		1.1663		1.1653		1.3793		1.3791

						16		1.624		1.6335		1.6015		1.6345

						none		1.5921		1.5921		1.5921		1.5921

				Swim				tag		buf		std		both

						0				1.2585		1.0883		1.273

						1				1.2585		1.0883		1.273

						2				1.2585		1.0883		1.273

						3				1.2585		1.0882		1.273

						4				1.2585		1.0882		1.2729

						8		1.2069		1.2585		1.0881		1.2727

						16

						none		0.9508		0.9508		0.9508		0.9508

				matrix				tag		buf		std		both

						0		1.1663		1.1653		1.3797		1.3795				1		420657				1		1.3797

						1		1.1663		1.1653		1.3797		1.3795				2		420657				2		1.3797

						2		1.1663		1.1653		1.3797		1.3795				4		428578				4		1.3796

						3		1.1663		1.1653		1.3797		1.3795				8		428570				8		1.3796

						4		1.1663		1.1653		1.3796		1.3794				16		428570				16		1.3793

						8		1.1663		1.1653		1.3793		1.3791				32		428570				32		1.3786

						16		1.1663		1.1653		1.3786						64		5931364				64		1.3774

						none		1.1638		1.1638		1.1638		1.1638				128		16213389				128		1.2963

				gcc				tag		buf		std		both				256		16891217				256		1.1708

						0		0.6182		0.6172		0.6129		0.6172				None		16891566				None		1.1635

						1		0.618		0.6172		0.6129		0.6172

						2		0.6179		0.6171		0.6129		0.6172

						3		0.6178		0.6171		0.6129		0.6171

						4		0.6178		0.6171		0.6129		0.6171				1		16480302				1		0.9994

						8		0.6177		0.617		0.6129		0.617				2		16472380				2		0.9994

						16		0.617		0.6166		0.6129		0.6166				4		16472380				4		0.9994

						none		0.6127		0.6127		0.6127		0.6127				8		16472380				8		0.9994

				tomcatv				tag		buf		std		both				16		16472380				16		0.9994

						0				0.7002								32		16471111				32		0.9994

						1		0.6944		0.7002				0.7002				64		10969285				64		0.9992

						2				0.7002				0.7002				128		686285				128		0.9882

						3												256		1365				256		0.2557

						4												None		0				None		0

						8

						16

						none		0.6629		0.6629		0.6629		0.6629

				treeadd				tag		buf		std		both

						0		0.3505		0.3541		0.3551		0.3547

						1		0.3505		0.3541		0.3551		0.3547

						2		0.3505		0.3541		0.3551		0.3547

						3		0.3505		0.3541		0.3551		0.3547

						4				0.3541				0.3547

						8		0.3504		0.3541				0.3547

						16		0.3504		0.3541

						none		0.3544

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

tag

buf

std

both

Cycles of delay

Delay Tolerance (compress95)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

compress

gcc

swim

tomcatv

matrix

treeadd

% of L2 Traffic Increased

Sheet3

		

Sheet3

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

Normailized IPC

1

1.0203504805

1.0265686829

1.0057785315

1.0272595942

1

1.0086502367

1.0073445406

1.000326424

1.0073445406

1

1.2626209508

1.3236222129

1.144615061

1.3388725284

1

1.0475184794

1.0562679137

1.0165937547

1.0562679137

1

1.0021481354

1.0012888813

1.1855129747

1.1853411239

1

0.9889954853

0.9991534989

1.0019751693

1.0008465011

		

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

L1 D-Cache Miss Rate Reduction

1

1.0134228188

0.9530201342

0.9865771812

0.9507829978

1

0.7888198758

0.6708074534

0.9751552795

0.6645962733

1

1.1049347703

0.8598979013

0.9262620533

0.8411798071

1

1.0129449838

0.7055016181

0.7055016181

0.7055016181

1

1.0020491803

0.9959016393

0.0245901639

0.0245901639

1

1.0691588785

1.0691588785

0.9962616822

0.9943925234

		compress		compress		compress		compress

		gcc		gcc		gcc		gcc

		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd

tag

buf

std

both

% Useful Prefetches

0.1131

0.0553

0.907

0.0572

0.4073

0.3896

0.956

0.3898

0.0156

0.4389

0.9994

0.4676

0.1033

0.9971

0.9998

0.9971

0.0025

0.0024

0.9994

0.3408

0.0038

0.0038

0.3716

0.0038

		tag		tag		tag		tag		tag		tag

		buf		buf		buf		buf		buf		buf

		std		std		std		std		std		std

		both		both		both		both		both		both

compress

gcc

swim

tomcatv

matrix

treeadd

L2 Cache Traffic Increase

0.6180642752

0.0807766542

0.7517970431

0.1117042865

0.6670158519

0

0.48808458

0.0630913325

0.2362669059

0.0307777205

0.6307769083

0

0.0090424067

0.0019497384

0.0534655536

0.0094974518

0.3259210076

0

0.4891292273

0.063544776

0.2500199567

0.0307931613

0.9558148206

0.0087362373

_1069933403.xls
Chart11

		0		0		0		0

		1		1		1		1

		2		2		2		2

		3		3		3		3

		4		4		4		4

		8		8		8		8

tag

buf

std

both

Cycles of delay

Delay Tolerance (compress95)

1.6245

1.6344

1.6042

1.6355

1.6245

1.6344

1.6013

1.6355

1.6242

1.6343

1.6012

1.6354

1.6239

1.634

1.6019

1.6351

1.624

1.634

1.6019

1.6351

1.624

1.6338

1.6016

1.6349

Sheet1

		IPC

				none		1.5921		0.6127		0.9508		0.6629		1.1638		0.3544		none		1		1		1		1		1		1

				tag		1.6245		0.618		1.2005		0.6944		1.1663		0.3505		tag		1.0203504805		1.0086502367		1.2626209508		1.0475184794		1.0021481354		0.9889954853

				buf		1.6344		0.6172		1.2585		0.7002		1.1653		0.3541		buf		1.0265686829		1.0073445406		1.3236222129		1.0562679137		1.0012888813		0.9991534989

				std		1.6013		0.6129		1.0883		0.6739		1.3797		0.3551		std		1.0057785315		1.000326424		1.144615061		1.0165937547		1.1855129747		1.0019751693

				both		1.6355		0.6172		1.273		0.7002		1.3795		0.3547		both		1.0272595942		1.0073445406		1.3388725284		1.0562679137		1.1853411239		1.0008465011

																				compress		gcc		swim		tomcatv		matrix		treeadd

						compress		gcc		swim		tomcatv		matrix		treeadd

		Dl1.miss

				none		0.0447		0.0161		0.1763		0.0309		0.0488		0.0535		none		1		1		1		1		1		1

				tag		0.0453		0.0127		0.1948		0.0313		0.0489		0.0572		tag		1.0134228188		0.7888198758		1.1049347703		1.0129449838		1.0020491803		1.0691588785

				buf		0.0426		0.0108		0.1516		0.0218		0.0486		0.0572		buf		0.9530201342		0.6708074534		0.8598979013		0.7055016181		0.9959016393		1.0691588785

				std		0.0441		0.0157		0.1633		0.0218		0.0012		0.0533		std		0.9865771812		0.9751552795		0.9262620533		0.7055016181		0.0245901639		0.9962616822

				both		0.0425		0.0107		0.1483		0.0218		0.0012		0.0532		both		0.9507829978		0.6645962733		0.8411798071		0.7055016181		0.0245901639		0.9943925234

						compress		gcc		swim		tomcatv		matrix		treeadd

		Accuracy		tag		0.1131		0.4073		0.0156		0.1033		0.0025		0.0038

				buf		0.0553		0.3896		0.4389		0.9971		0.0024		0.0038

				std		0.907		0.956		0.9994		0.9998		0.9994		0.3716

				both		0.0572		0.3898		0.4676		0.9971		0.3408		0.0038

						compress		gcc		swim		tomcatv		matrix		treeadd

		Traffic

						compress		gcc		swim		tomcatv		matrix		treeadd

				none		1071175		119141627		64690156		256657474		50565326		22896356				compress		gcc		swim		tomcatv		matrix		treeadd

				tag		662055		9623862		48633868		28669740		33727874				tag		0.6180642752		0.0807766542		0.7517970431		0.1117042865		0.6670158519		0

				buf		522824		7516804		15284143		7899332		31895440				buf		0.48808458		0.0630913325		0.2362669059		0.0307777205		0.6307769083		0

				std		9686		232295		3458695		2437592		16480302		200028		std		0.0090424067		0.0019497384		0.0534655536		0.0094974518		0.3259210076		0

				both		523943		7570828		16173830		7903295		48331088		38484967		both		0.4891292273		0.063544776		0.2500199567		0.0307931613		0.9558148206		0.0087362373

				Traffic +		1% - 66%		<1%		5% - 74%		3% - 12%		31% - 97%

		Queue Size

						Default = 16				Never been a problem

						Almost squashed prefetch are due to bus contention

		Accuracy

				tag		0.1131		0.4073						0.0024

				buf		0.0553		0.3896				0.1033		0.0025						tag		buf		std		both

				std		0.907		0.956		0.9994		0.9971		0.9994		0.3716		0		0.6182		0.6172		0.6129		0.6172

				both		0.0572		0.3898		0.4676				0.3408				1		0.618		0.6172		0.6129		0.6172

																		2		0.6179		0.6171		0.6129		0.6172

						compress		gcc		swim		tomcatv		matrix		treeadd		3		0.6178		0.6171		0.6129		0.6171

																		4		0.6178		0.6171		0.6129		0.6171

																		8		0.6177		0.617		0.6129		0.617

		Lag impact

				Compress				tag		buf		std		both						tag		buf		std		both

						0		1.6245		1.6344		1.6042		1.6355				0		1.1663		1.1653		1.3797		1.3795

						1		1.6245		1.6344		1.6013		1.6355				1		1.1663		1.1653		1.3797		1.3795

						2		1.6242		1.6343		1.6012		1.6354				2		1.1663		1.1653		1.3797		1.3795

						3		1.6239		1.634		1.6019		1.6351				3		1.1663		1.1653		1.3797		1.3795

						4		1.624		1.634		1.6019		1.6351				4		1.1663		1.1653		1.3796		1.3794

						8		1.624		1.6338		1.6016		1.6349				8		1.1663		1.1653		1.3793		1.3791

						16		1.624		1.6335		1.6015		1.6345

						none		1.5921		1.5921		1.5921		1.5921

				Swim				tag		buf		std		both

						0				1.2585		1.0883		1.273

						1				1.2585		1.0883		1.273

						2				1.2585		1.0883		1.273

						3				1.2585		1.0882		1.273

						4				1.2585		1.0882		1.2729

						8		1.2069		1.2585		1.0881		1.2727

						16

						none		0.9508		0.9508		0.9508		0.9508

				matrix				tag		buf		std		both

						0		1.1663		1.1653		1.3797		1.3795				1		420657				1		1.3797

						1		1.1663		1.1653		1.3797		1.3795				2		420657				2		1.3797

						2		1.1663		1.1653		1.3797		1.3795				4		428578				4		1.3796

						3		1.1663		1.1653		1.3797		1.3795				8		428570				8		1.3796

						4		1.1663		1.1653		1.3796		1.3794				16		428570				16		1.3793

						8		1.1663		1.1653		1.3793		1.3791				32		428570				32		1.3786

						16		1.1663		1.1653		1.3786						64		5931364				64		1.3774

						none		1.1638		1.1638		1.1638		1.1638				128		16213389				128		1.2963

				gcc				tag		buf		std		both				256		16891217				256		1.1708

						0		0.6182		0.6172		0.6129		0.6172				None		16891566				None		1.1635

						1		0.618		0.6172		0.6129		0.6172

						2		0.6179		0.6171		0.6129		0.6172

						3		0.6178		0.6171		0.6129		0.6171

						4		0.6178		0.6171		0.6129		0.6171				1		16480302				1		0.9994

						8		0.6177		0.617		0.6129		0.617				2		16472380				2		0.9994

						16		0.617		0.6166		0.6129		0.6166				4		16472380				4		0.9994

						none		0.6127		0.6127		0.6127		0.6127				8		16472380				8		0.9994

				tomcatv				tag		buf		std		both				16		16472380				16		0.9994

						0				0.7002								32		16471111				32		0.9994

						1		0.6944		0.7002				0.7002				64		10969285				64		0.9992

						2				0.7002				0.7002				128		686285				128		0.9882

						3												256		1365				256		0.2557

						4												None		0				None		0

						8

						16

						none		0.6629		0.6629		0.6629		0.6629

				treeadd				tag		buf		std		both

						0		0.3505		0.3541		0.3551		0.3547

						1		0.3505		0.3541		0.3551		0.3547

						2		0.3505		0.3541		0.3551		0.3547

						3		0.3505		0.3541		0.3551		0.3547

						4				0.3541				0.3547

						8		0.3504		0.3541				0.3547

						16		0.3504		0.3541

						none		0.3544

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

tag

buf

std

both

Cycles of delay

Delay Tolerance (compress95)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet2

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

Normailized IPC

1

1.0203504805

1.0265686829

1.0057785315

1.0272595942

1

1.0086502367

1.0073445406

1.000326424

1.0073445406

1

1.2626209508

1.3236222129

1.144615061

1.3388725284

1

1.0475184794

1.0562679137

1.0165937547

1.0562679137

1

1.0021481354

1.0012888813

1.1855129747

1.1853411239

1

0.9889954853

0.9991534989

1.0019751693

1.0008465011

Sheet3

		

Sheet3

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

L1 D-Cache Miss Rate Reduction

1

1.0134228188

0.9530201342

0.9865771812

0.9507829978

1

0.7888198758

0.6708074534

0.9751552795

0.6645962733

1

1.1049347703

0.8598979013

0.9262620533

0.8411798071

1

1.0129449838

0.7055016181

0.7055016181

0.7055016181

1

1.0020491803

0.9959016393

0.0245901639

0.0245901639

1

1.0691588785

1.0691588785

0.9962616822

0.9943925234

		compress		compress		compress		compress

		gcc		gcc		gcc		gcc

		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd

tag

buf

std

both

% Useful Prefetches

0.1131

0.0553

0.907

0.0572

0.4073

0.3896

0.956

0.3898

0.0156

0.4389

0.9994

0.4676

0.1033

0.9971

0.9998

0.9971

0.0025

0.0024

0.9994

0.3408

0.0038

0.0038

0.3716

0.0038

		tag		tag		tag		tag		tag		tag

		buf		buf		buf		buf		buf		buf

		std		std		std		std		std		std

		both		both		both		both		both		both

compress

gcc

swim

tomcatv

matrix

treeadd

L2 Cache Traffic Increase

0.6180642752

0.0807766542

0.7517970431

0.1117042865

0.6670158519

0

0.48808458

0.0630913325

0.2362669059

0.0307777205

0.6307769083

0

0.0090424067

0.0019497384

0.0534655536

0.0094974518

0.3259210076

0

0.4891292273

0.063544776

0.2500199567

0.0307931613

0.9558148206

0.0087362373

_1069932840.xls
Chart7

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

L1 D-Cache Miss Rate Reduction

1

1.0134228188

0.9530201342

0.9865771812

0.9507829978

1

0.7888198758

0.6708074534

0.9751552795

0.6645962733

1

1.1049347703

0.8598979013

0.9262620533

0.8411798071

1

1.0129449838

0.7055016181

0.7055016181

0.7055016181

1

1.0020491803

0.9959016393

0.0245901639

0.0245901639

1

1.0691588785

1.0691588785

0.9962616822

0.9943925234

Sheet1

		IPC

				none		1.5921		0.6127		0.9508		0.6629		1.1638		0.3544		none		1		1		1		1		1		1

				tag		1.6245		0.618		1.2005		0.6944		1.1663		0.3505		tag		1.0203504805		1.0086502367		1.2626209508		1.0475184794		1.0021481354		0.9889954853

				buf		1.6344		0.6172		1.2585		0.7002		1.1653		0.3541		buf		1.0265686829		1.0073445406		1.3236222129		1.0562679137		1.0012888813		0.9991534989

				std		1.6013		0.6129		1.0883		0.6739		1.3797		0.3551		std		1.0057785315		1.000326424		1.144615061		1.0165937547		1.1855129747		1.0019751693

				both		1.6355		0.6172		1.273		0.7002		1.3795		0.3547		both		1.0272595942		1.0073445406		1.3388725284		1.0562679137		1.1853411239		1.0008465011

																				compress		gcc		swim		tomcatv		matrix		treeadd

						compress		gcc		swim		tomcatv		matrix		treeadd

		Dl1.miss

				none		0.0447		0.0161		0.1763		0.0309		0.0488		0.0535		none		1		1		1		1		1		1

				tag		0.0453		0.0127		0.1948		0.0313		0.0489		0.0572		tag		1.0134228188		0.7888198758		1.1049347703		1.0129449838		1.0020491803		1.0691588785

				buf		0.0426		0.0108		0.1516		0.0218		0.0486		0.0572		buf		0.9530201342		0.6708074534		0.8598979013		0.7055016181		0.9959016393		1.0691588785

				std		0.0441		0.0157		0.1633		0.0218		0.0012		0.0533		std		0.9865771812		0.9751552795		0.9262620533		0.7055016181		0.0245901639		0.9962616822

				both		0.0425		0.0107		0.1483		0.0218		0.0012		0.0532		both		0.9507829978		0.6645962733		0.8411798071		0.7055016181		0.0245901639		0.9943925234

						compress		gcc		swim		tomcatv		matrix		treeadd

		Accuracy		tag		0.1131		0.4073		0.0156		0.1033		0.0025		0.0038

				buf		0.0553		0.3896		0.4389		0.9971		0.0024		0.0038

				std		0.907		0.956		0.9994		0.9998		0.9994		0.3716

				both		0.0572		0.3898		0.4676		0.9971		0.3408		0.0038

						compress		gcc		swim		tomcatv		matrix		treeadd

		Traffic

						compress		gcc		swim		tomcatv		matrix		treeadd

				none		1071175		119141627		64690156		256657474		50565326		22896356				compress		gcc		swim		tomcatv		matrix		treeadd

				tag		662055		9623862		48633868		28669740		33727874				tag		0.6180642752		0.0807766542		0.7517970431		0.1117042865		0.6670158519		0

				buf		522824		7516804		15284143		7899332		31895440				buf		0.48808458		0.0630913325		0.2362669059		0.0307777205		0.6307769083		0

				std		9686		232295		3458695		2437592		16480302		200028		std		0.0090424067		0.0019497384		0.0534655536		0.0094974518		0.3259210076		0

				both		523943		7570828		16173830		7903295		48331088		38484967		both		0.4891292273		0.063544776		0.2500199567		0.0307931613		0.9558148206		0.0087362373

				Traffic +		1% - 66%		<1%		5% - 74%		3% - 12%		31% - 97%

		Queue Size

						Default = 16				Never been a problem

						Almost squashed prefetch are due to bus contention

		Accuracy

				tag		0.1131		0.4073						0.0024

				buf		0.0553		0.3896				0.1033		0.0025						tag		buf		std		both

				std		0.907		0.956		0.9994		0.9971		0.9994		0.3716		0		0.6182		0.6172		0.6129		0.6172

				both		0.0572		0.3898		0.4676				0.3408				1		0.618		0.6172		0.6129		0.6172

																		2		0.6179		0.6171		0.6129		0.6172

						compress		gcc		swim		tomcatv		matrix		treeadd		3		0.6178		0.6171		0.6129		0.6171

																		4		0.6178		0.6171		0.6129		0.6171

																		8		0.6177		0.617		0.6129		0.617

		Lag impact

				Compress				tag		buf		std		both						tag		buf		std		both

						0		1.6245		1.6344		1.6042		1.6355				0		1.1663		1.1653		1.3797		1.3795

						1		1.6245		1.6344		1.6013		1.6355				1		1.1663		1.1653		1.3797		1.3795

						2		1.6242		1.6343		1.6012		1.6354				2		1.1663		1.1653		1.3797		1.3795

						3		1.6239		1.634		1.6019		1.6351				3		1.1663		1.1653		1.3797		1.3795

						4		1.624		1.634		1.6019		1.6351				4		1.1663		1.1653		1.3796		1.3794

						8		1.624		1.6338		1.6016		1.6349				8		1.1663		1.1653		1.3793		1.3791

						16		1.624		1.6335		1.6015		1.6345

						none		1.5921		1.5921		1.5921		1.5921

				Swim				tag		buf		std		both

						0				1.2585		1.0883		1.273

						1				1.2585		1.0883		1.273

						2				1.2585		1.0883		1.273

						3				1.2585		1.0882		1.273

						4				1.2585		1.0882		1.2729

						8		1.2069		1.2585		1.0881		1.2727

						16

						none		0.9508		0.9508		0.9508		0.9508

				matrix				tag		buf		std		both

						0		1.1663		1.1653		1.3797		1.3795				1		420657				1		1.3797

						1		1.1663		1.1653		1.3797		1.3795				2		420657				2		1.3797

						2		1.1663		1.1653		1.3797		1.3795				4		428578				4		1.3796

						3		1.1663		1.1653		1.3797		1.3795				8		428570				8		1.3796

						4		1.1663		1.1653		1.3796		1.3794				16		428570				16		1.3793

						8		1.1663		1.1653		1.3793		1.3791				32		428570				32		1.3786

						16		1.1663		1.1653		1.3786						64		5931364				64		1.3774

						none		1.1638		1.1638		1.1638		1.1638				128		16213389				128		1.2963

				gcc				tag		buf		std		both				256		16891217				256		1.1708

						0		0.6182		0.6172		0.6129		0.6172				None		16891566				None		1.1635

						1		0.618		0.6172		0.6129		0.6172

						2		0.6179		0.6171		0.6129		0.6172

						3		0.6178		0.6171		0.6129		0.6171

						4		0.6178		0.6171		0.6129		0.6171				1		16480302				1		0.9994

						8		0.6177		0.617		0.6129		0.617				2		16472380				2		0.9994

						16		0.617		0.6166		0.6129		0.6166				4		16472380				4		0.9994

						none		0.6127		0.6127		0.6127		0.6127				8		16472380				8		0.9994

				tomcatv				tag		buf		std		both				16		16472380				16		0.9994

						0				0.7002								32		16471111				32		0.9994

						1		0.6944		0.7002				0.7002				64		10969285				64		0.9992

						2				0.7002				0.7002				128		686285				128		0.9882

						3												256		1365				256		0.2557

						4												None		0				None		0

						8

						16

						none		0.6629		0.6629		0.6629		0.6629

				treeadd				tag		buf		std		both

						0		0.3505		0.3541		0.3551		0.3547

						1		0.3505		0.3541		0.3551		0.3547

						2		0.3505		0.3541		0.3551		0.3547

						3		0.3505		0.3541		0.3551		0.3547

						4				0.3541				0.3547

						8		0.3504		0.3541				0.3547

						16		0.3504		0.3541

						none		0.3544

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

tag

buf

std

both

Cycles of delay

Delay Tolerance (compress95)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet2

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

Normailized IPC

1

1.0203504805

1.0265686829

1.0057785315

1.0272595942

1

1.0086502367

1.0073445406

1.000326424

1.0073445406

1

1.2626209508

1.3236222129

1.144615061

1.3388725284

1

1.0475184794

1.0562679137

1.0165937547

1.0562679137

1

1.0021481354

1.0012888813

1.1855129747

1.1853411239

1

0.9889954853

0.9991534989

1.0019751693

1.0008465011

Sheet3

		

Sheet3

		compress		compress		compress		compress		compress

		gcc		gcc		gcc		gcc		gcc

		swim		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd		treeadd

none

tag

buf

std

both

L1 D-Cache Miss Rate Reduction

1

1.0134228188

0.9530201342

0.9865771812

0.9507829978

1

0.7888198758

0.6708074534

0.9751552795

0.6645962733

1

1.1049347703

0.8598979013

0.9262620533

0.8411798071

1

1.0129449838

0.7055016181

0.7055016181

0.7055016181

1

1.0020491803

0.9959016393

0.0245901639

0.0245901639

1

1.0691588785

1.0691588785

0.9962616822

0.9943925234

		compress		compress		compress		compress

		gcc		gcc		gcc		gcc

		swim		swim		swim		swim

		tomcatv		tomcatv		tomcatv		tomcatv

		matrix		matrix		matrix		matrix

		treeadd		treeadd		treeadd		treeadd

tag

buf

std

both

% Useful Prefetches

0.1131

0.0553

0.907

0.0572

0.4073

0.3896

0.956

0.3898

0.0156

0.4389

0.9994

0.4676

0.1033

0.9971

0.9998

0.9971

0.0025

0.0024

0.9994

0.3408

0.0038

0.0038

0.3716

0.0038

		tag		tag		tag		tag		tag		tag

		buf		buf		buf		buf		buf		buf

		std		std		std		std		std		std

		both		both		both		both		both		both

compress

gcc

swim

tomcatv

matrix

treeadd

L2 Cache Traffic Increase

0.6180642752

0.0807766542

0.7517970431

0.1117042865

0.6670158519

0

0.48808458

0.0630913325

0.2362669059

0.0307777205

0.6307769083

0

0.0090424067

0.0019497384

0.0534655536

0.0094974518

0.3259210076

0

0.4891292273

0.063544776

0.2500199567

0.0307931613

0.9558148206

0.0087362373

_1069856005.ppt
PCP

Main Processor

Cache

Info Flow

Bus

Prefetch Requests

Data

ALU

Stream

Buffer

Tables

RPT, PPW,

CT, History, …

0

100

200

300

400

500

600

700

800

0

10

20

30

40

50

60

70

80

90

100

File Size (M)

Elapse Time (s)

C

Java

0

50

100

150

200

250

300

350

400

read

write

etc.cpu

other

Time (s)

C

Java

0

50

100

150

200

250

1

2

3

4

5

6

7

8

9

10

File Size (M)

Elapse Time (s)

C

Java

0

10

20

30

40

50

60

70

read

write

seek

other cpu

waiting

Time (s)

C

Java

0

100

200

300

400

500

600

700

800

Total

Seq Write

Seq Read

No Buffer

Buffered Stream

Direct Buffer

0

20

40

60

80

100

120

140

160

buffer.read

 buffer.write

 read

 write

 arraycopy

Time (s)

BufferedStream

Direct Buffer

0

100

200

300

400

500

600

700

800

0

2

4

6

8

10

12

Buffer Size (2^x Bytes)

Elapse Time (s)

C

Java

0

50

100

150

200

250

300

350

400

450

500

16B

32B

64B

128B

256B

512B

1K

2K

4K

1M

10M

Buffer Size

Time (s)

other

etc. CPU

memcpy

read

write

0

20

40

60

80

100

120

16B

32B

64B

128B

256B

512B

1K

2K

4K

1M

10M

Time (s)

Buffer Size

wait

etc. CPU

memcpy

read

write

0

100

200

300

400

500

600

700

800

900

0

2

4

6

8

10

12

Buffer Size (2^x Bytes)

Elapse Time (s)

C

Java

0

100

200

300

400

500

600

700

800

900

16B

32B

64B

128

256B

512B

1K

2K

4K

10M

Buffer Size

Tiem (s)

Other

etc. CPU

Seek

Write

Read

0

50

100

150

200

250

300

350

400

450

16B

32B

64B

128B

256B

512B

1K

2K

4K

10M

Buffer Size

Time (s)

idle

etc.CPU

seek

read

write

0

100

200

300

400

500

600

700

800

0

2

4

6

8

10

12

Operation Size (2^x Bytes)

Elapse Time (s)

C

Java

0

50

100

150

200

250

0

2

4

6

8

10

Operation Size (2^x Byte)

Elapse Time (s)

C

Java

0

50

100

150

200

250

300

350

0

2

4

6

8

10

Operation Size (2^x Bytes)

Elapse Time (s)

JNI

Direct Buffer

C

0

50

100

150

200

250

300

1B

4B

16B

64B

256B

1K

Operation Size

Elapse Time (s)

idle

etc.CPU

jniwrite

jniread

