
JBCDL: An Object-Oriented Component Description Language*

Wu Qiong, Chang Jichuan, Mei Hong, Yang Fuqing
(Department of Computer Science & Technology, Peking University, Beijing 100871)

Abstract
This paper introduces Jade Bird Component Description Language (JBCDL) which is a part of

Jade Bird Component Library (JBCL). JBCDL is based on Jade Bird Component Model
(JBCOM). JBCOM is a 3C-based hierarchic component model that is composed of specification
and implementation layers and with uniformity and self-contained composition. The main purpose
of JBCDL is to describe component interface. It mainly applies to component composition under
the help of (semi-) automatic tools. JBCDL has the following features: 1) code-wares and design-
wares that adopt object-oriented paradigm as the description objects; 2) adopting object-oriented
paradigm itself; 3) uniformly describing components of different forms (such as class, framework,
and etc.); 4) integrating well with Jade Bird Component Library.

1. Introduction

The research on component description and composition can be traced back to the ‘module’
proposed by Parnas in 1970’s [14]. Early research efforts mainly focused on module
interconnection languages (MILs), such as MIL75 [4], Intercol [15], and etc. In 1980’s, the
research direction turned to component description languages (CDLs). The most representative
works included OBJ [6] and LIL [7] developed by Gougen, ACT TWO[11 developed by “Berlin
approach,” Meld [111, and etc. Litvintchouk and Mastsumoto argued that the difference between
these two kinds of languages mainly lies in that the MIL level description is declarative, while that
of CDL is imperative [12]. In 1990’s, most efforts are spent on how to introduce the virtues of
MILs into CDLs, which means to enable CDLs to describe component as well as component
sub-system. Main works include I7 [3] , CDL [5], CIDER [18], LILEANNA [17], RESOLVE
[2], OOMIL [8], and etc.

JBCDL is a part of Jade Bird Component Library (JBCL). JBCL saves all kinds of software
development results -- from different development phrases, with different forms and
representations -- into component library, and provides tools to help end-users to find the needed
components. The development of JBCL is a part of National Key Project ”Industrialization
software production technology and its supporting system.”

The main purpose of JBCDL is to describe component interface. It can be applied in the
following three directions: 1) component composition under the help of (semi-) automatic tools; 2)
component verification based on the formal information in component interface; 3) component
retrieval based on specification matching techniques. The objective of JBCDL is to fulfil the
above three directions at the same time, but the current version of JBCDL is mainly designed and
implemented to fulfil the first direction. However, we have considered about the potentiality of
future extensions. JBCDL has the following features: 1) code-wares and design-wares that adopt
object-oriented paradigm as the objects of description; 2) adopting object-oriented paradigm itself;
3) uniformly describing components of different forms (such as class, framework, and etc.); 4)

* This work is sponsored by the national key project in State gth Five-Year Plan and National 863 High-
Technology Project.

198 0-8186-8551-4/98 $10.00 0 1998 IEEE

199

integrating well with Jade Bird Component Library.
This paper introduces the main ideas of JBCDL, including Jade Bird Component Model and

the syntax structure of JBCDL. More details of JBCOM and JBCDL can be found in [JadeBird
Project Group 97A, JadeBird Project Group 97Bl. JBCOM, as the foundation of JBCDL, mainly
elucidates what kind of components can be described and what kind of attributes they should have.
JBCOM will be discussed in section 2. Section 3 presents the syntax structure of JBCDL and two
examples.

2. Jade Bird Component Model

Jade Bird Component Model (JBCOM) is the foundation of JBCDL, and the kernel of the
conceptual model of component library. In this section, we first define what kind of components
JBCOM can describe. Then several important design rules of JBCOM are discussed. In the last
part of this section, JBCOM itself is introduced.

2.1 Objects of description

Software reuse can be divided into direct reuse and indirect reuse due to different component

Indirect reuse refers to the reuse of components that contain documented knowledges, such
as requirement specifications, design documents, patterns, test plans, and etc. Till now, there
is not any formal mechanism that can facilitate the direct compositions of such components.
Usually, they are composited manually into target system by adopting following two-step
process: a) Developers thoroughly understand the knowledges contained; b) They use these
knowledges in the development of the target system. Although the reuse of such non-code
components can not benefit software development process by producing an executable
application, it will be conducive to the efficiency and quality of software development.
Direct reuse refers to the reuse of components that can be represented by some kinds of
programming language. This kind of components can be composited (semi-) automatically in
order to produce an executable application directly.

JBCL saves all kinds of software development results -- from different development phrases
(such as analysis, design, coding, test, and etc.), with different forms (such as class, framework,
pattern, and etc.) and different representations (such as graph, pseudo-code, programming
language, and etc.) -- into component library. JBCOM is a model mainly for those direct-reusable
components in the component library, i.e., code-wares and design-wares of classes and
frameworks. A framework is a sub-system composed of a group of cooperating classes or
abstract classes (and their sub-classes). Compositions of classes and frameworks, or frameworks
and frameworks, can also produce frameworks of larger granularity.

2.2 Design rules

attributes:
1.

2.

We deem that JB-COM must have following features:
1. Enough expressive ability: In order to obtain enough expressive ability, JBCOM must

comply with 3C model. 3C model [I61 is a prescriptive component model that was proposed
by Will Tracz on the “Reuse in Practice Workshop” in 1989. In 3C model, a component
consists of at least the following three parts: concept, content, and context. The concept is
the abstract description of what a component does. The content is the implementation of the
concept, and it describes how the component implements the functions that are given in the

200

2.

3.

concept. The context depicts the dependencies between the component and its environment
on different levels, and it can be further divided into three parts: I) conceptual context,
which depicts the dependencies between the concepts of different components; 2)
operational context, which depicts the characteristics of the manipulated data; 3)
implementation context, which describes how the component depends on other components
for its implementation. In addition, we have examined some representative CDLs (such as
RESOLVE [2], LILEANNA [17], OOMIL [8], CDL [5], and etc), and require JBCOM to
have at least the same expressive ability.
Self-contained composition: To attain the maximum reusability, the component
composition should be self-contained, i.e., a composition of components is also a
compositable component.
Uniformity: Components of different forms must have uniform interface, structure, and
composition mechanism.

2.3 Model Design

implementat ion
+ specializ ation-of
-=+ instantiation-of , ' ,

% \ \

Figure 1. The macro-model of JBCOM

In JBCOM, a component is divided into two parts: specification, including concept, conceptual
context and operational context, and implementation, including implementational context and
content. Each implementation must correspond to a specification, while a specification may
correspond with several implementations. There are some specifications that do not correspond to
any implementations. These specifications can be used as simplified components to describe
design-wares. The separation of specification and implementation can be viewed as a kind of
abstraction that can be used on similar specifications. In general, they are two kinds of
similarities among specifications: 1. The functions are same except for the operated data object,
such as stack of integer and stack of float; 2. Most functions are same except for a few. For the
first case, we can use parameterization to get a more general specification that is called
specification template, and instantiates this template to get the specification that operates on
special data object. For the second case, we can get a more general specification by only keeping
common functions, and create the specialization of this specification by inheritance. Till now, we
have educed the macro-model of JBCOM that is illustrated in figure 1. This macro-model i s
composed of two layers: specification layer and implementation layer. The specification layer i s
composed of several trees of specifications that are linked by specialization and instantiation
relation. Each specification of it can correspond with several implementations.

201

1 .

2.

3.

4.

5.

6.

7 .

In JBCOM, a component consists of seven parts as illustrated in figure 2:
Template parameters, which lists the parameters needed when this component is a
specification template;
Provided functions, which depicts the signatures and semantics of the provided
functions. It corresponds to the concept in 3C model;
Requirements, which depicts the required functions of the co-operators using
specifications. In the following, we name these specifications as requirement
specifications. In JBCOM, the interface of a component is defined as the combination of
Template parameters, Provided functions, and requirements parts. Requirement
specifications do not refer to concrete components, but only virtual images of co-
operators. To reuse this component correctly, reusers must connect these virtual
images to existing components that conform with their requirement specifications.
Traditional MILS can only perform composition at source code level, which limits the
range of the behaviours that can be obtained from composited components [13]. While
the introduction of requirement specifications can solve this problem. They depict the
required behaviour specifications of the co-operators of a component, and all the
implementations that conform with these requirement specifications can composite with
this component, which increases the flexibility of composition and enlarges the range of
behaviours that can be obtained from composited components;
members, which lists all the member components that fulfil the provided functions of
the component by co-operation;
connections, which properly connects the components listed in the above two parts to
make each component connected to all its co-operators;
imported specifications, which declares all the imported specifications in the
component. It corresponds to the conceptual context in 3C model;
implementation, which describes how the provided functions are implemented. It
corresponds to the implementational context and content in 3C model.

I template parameters

implementation
B
E. ' members connections B 2

2 E! 5' 2 imported specifications

J2

2

Figure 2. Component structure in JBCOM

In JBCOM, a class is described in the following ways: 1. The provided functions part
describes the signatures and semantics of its methods; 2,. The members part describes its
attributes; 3. The requirements part converts the co-operators that are deeply buried in the
implementation into virtual images that are depicted by requirement specifications. To reuse this
class correctly, reusers must connect these virtual images with the existing components that
conform with their requirement specifications. This conversion enables class implementations not
to depend on other components; 4. The connections part is empty.

A framework is a sub-system composed of a group of cooperating classes or abstract classes
(and their sub-classes). In JBCOM, these classes or abstract classes can be described by using

202

specifications, and their sub-classes by using specializations of these specifications. Therefore, a
framework can be described as a component sub-system composed of several co-operating
components. In JBCOM, a component sub-system is still a compositable component, as
illustrated in figure 3: Its provided functions part depicts the provided functions of this sub-
system; Its members part lists out the internal components in this sub-system; Its requirements
part depicts the required interfaces of the external components that co-operate with this sub-
system; Its connections part properly connects the components listed in members and
requirements.

template parameters
................................

'i ((

i i)
.

implementation { {

I)
!

i :

!.. 1 ..: 7

mported specifications

requirements

...

I template parameters

Figure 3. The micro-model of JBCOM

In conclusion, JBCOM is a 3C-based hierarchic component model that is composed of
specification and implementation layers and with uniformity and self-contained composition.

3. Jade Bird Component Description Language (JBCDL)

The objective of JBCDL is to fulfil the following three aspects at same time: 1) component
composition under the help of (semi-) automatic tools; 2) component verification based on the
formal information in component interface; 3) component retrieval based on specification
matching techniques. Current version of JBCDL i s mainly designed and implemented to fulfil the
first aspect. However, we have considered the possible requirements of the following two aspects
to keep JBCDL extendable.

JBCDL should be understood as easily as possible. Because, component description is a clue
that reusers use to judge whether the component is reusable. The more intelligible the component
description is, the higher the possibility is for the component to be correctly reused. So JBCDL
adopts natural-langauge-lke syntax structure. However, the relation between intelligibility and
concision i s often a kind of trade-off, i.e., intelligibility of a CDL is often at the cost of its

203

specification Stack
parameters

Item;
provides

push(ltem) returns none;
pop returns Item;
depth returns integer;

end specification

concision, which makes the developing of components more burden-some. In JBCL system, we
solve this problem by providing corresponding tools, such as JBCDL editor.

The syntax structure of JBCDL complies with JBCOM. It describes a specification in 6 parts:
parameters, provides, requires, contains, connections and imports, corresponding to template
parameters, provided functions, requirements, members, connections, and imported
specifications in JBCOM. implementations are described by using specific programming
languages.

in most CDLs, such as RESOLVE [2] , CDL [5] , and etc., inheritance of component interface
is realised implicitly by re-exporting the interface of super-component from the interface of sub-
component. Implicit realization of inheritance is flexible, because it does not require
implementation language to support inheritance mechanism. However, we consider that
inheritance is very important to component understanding, and what’s more, most popular
OOPLs (such as C++ and Smalltalk) support inheritance. As a result, we decide to realize
inheritance of specification explicitly in JBCDL, but we also recognize that un-limited inheritance
may cause trouble. In JBCDL, inheritance is restricted to subtype, i.e., sub-specification can only
rename the provided functions of its super-specification, or add new functions. Furthermore,
JBCDL only support single inheritance. Because in the component library, sub-specification need
to inherit all the description information of its super-specification (such as terms and keywords),
which means that multi-inheritance may cause the inconsistency of semantics.

Imports part declares all the imported specifications in a component, which is conductive to the
intelligibility of component specification. In JBCDL, the instantiation of a specification template
is also described by using inheritance. Example 1 illustrates specification template Stack and its
instantiation S tack-Of-Integer:

specification Stack-Of-integer inherits

end specification
- - -
specification Stack-Of-Integer
provides

push(1nteger) returns none;
pop returns Integer;
depth returns integer;

Stack[Integer]

end specification

I specification device I specification controller inherits triggerable-device
provides

on returns none;
off returns none:

end specification

specification heater inherits device
provides

state returns integer;

imports

requires
sensor, device;

sens is a sensor;
dev is a device;

renames trigger as clock;
read-control-value returns float;

provides

204

end specification

specification sensor
provides

read returns float;
end specification

specification thermometer inherits
sensor

provides
renames read as readtemp;

end specification

specification triggerable-device
provides

trigger returns none;
end specification

specification clock
imports

requires

provides

triggerable-device;

tri-dev is a triggerable-device;

set-beat (float) returns none;
end specification

set-control-value (float) returns none;
end specification

specification home-heating
imports

contains
clock, controller, thermometer,heater;

control-clock is a clock;
temp-controller is a controller;
temp-gauge is a thermometer;
space-heater is a heater;

control-clock . tri-dev = temp-controller;
temp-controller . sens = temp-gauge;
temp-controller . dev = space-heater;

read-temperature returns float;
set-temperature (float) returns none;
set-beat (float) returns none;

connection

provides

end specification

Example 2

4. Conclusion

Currently, most CDLs (such as LILIEANNA [17], RESOLVE [2] , CDL [5] , and etc) are
designed to support the reuse of ADA program. Compared with these CDLs, JBCDL is more
appropriate to describe components that adopt object-oriented paradigm. Furthermore, the
uniformity and self-contained composition of JBCOM enable JBCDL to support composition at
different levels, which makes JBCDL more flexible.

In the future, we will continue our research in the following directions: 1) developing JBCDL
reverse-engineering, editing and composition tools; 2) adding formal information to JBCDL; 3)
discussing how to fulfil component verification based on the above formal information; 4)
discussing how to fulfil component retrieval based on specification matching techniques.

Reference
[l] Blum, H. Ehrig, and F. Parisi-Presicce, Algebraic specification of modules and their basic interconnections,

Journal of Computer and System Sciences, 34:293-339,1987.

[2] Paolo Bucci, Stephen H. Edwards, etc., Special Feature: Component-Based Software Using RESOLVE,
ACM SIGSOFT. Software Engineering Notes, Vol. 19, No. 4, pp.21-67, October 1994.

[3] Cramer, W. Fey, M . Goedicke, and M. Grode-Rhode, Towards a formally based component description
language - a foundation for reuse, Structured Programming, 1291-1 10, 1991.

[4] Deremer and H. Kron, Programming in the large versus programming in the small, E E E Transaction on
Software Engineering, pp. 321 -327, June 1976.

[51 Robert J. Gautier, Huw E. Oliver, Mark Ratcliffe, and Benjamin R. Whittle, CDL--A Component Description
Language for Reuse, International Journal of Software Engineering and Knowledge Engineering, Vol. 3, No. 4, pp.

205

499-518, 1993.

[61 Gougen, Parameterized programming, lEEE Transactions on Software Engineering, SE-10(5):528-543, 1983.

[7] Gougen, Reusing and interconnecting software component, lEEE Computer, pp, 16-28, Februray 1986.

[8] Pat Hall and Ray Weedon, Object Oriented Module Interconnection Languages, in Advances in Software
Reuse, Selected Papers from the Second International Workshop on Software Reusability, R. Prieto-Diaz and W. B.
Frakes eds., pp. 29-38, Lucca, Italy, March 24-26, 1993.

[91 JadeBird Project Group, JadeBird Component Description Language - JBCDL, Technical report, Department
of Computer Science and Technology, Peking University, 1997.

[IO] JadeBird Project Group, JadeBird Component Model, Technical report, Department of Computer Science
and Technology, Peking University, 1997.

[ll] Kaiser and D. Garlan, Melding sofwtare systems from reusable building blocks, lEEE Software, 4(4):17-24,
July 1987.

[I21 Litvintchouk and A. Mastsumoto, Design of Ada systems yieldinl: reusable components: An approach using
structured algebraic specification, lEEE Transaction on Software Engineering, SE-10(5):544-551, 1984.

[13] Hafedh Mili, Fatma Mili, and Ali Mili, Reusing Software: Issues and Research Directions, IEEE

[I41 Parnas, On the criteria to be used in decomposing systems into modules, Communication of the ACM, pp.
Transactions on Software Engineering, Vol. 21, No. 6, pp. 528-562, June 1995.

1053-1058, December 1972.

[15] Tichy, Software Development Control Based on System State Descriptions, PhD Thesis, Carnegie-Mellon
University, January 1980.

[16] Tracz W., Implementation working group summary, In James Baldo, ed., Reuse in Practice Workshop,
Pittsburgh, Pennsylvania, July 1989

[17] Will Tracz, LILEANNA A Parameterized Programming Languages, in Advances in Software Reuse,
Selected Papers from the Second International Workshop on Software Reusability, R. Prieto-Diu and W. B. Frakes
eds., pp. 66-78, Lucca, Italy, March 24-26, 1993.

[18] Whittle and M. Ratcliffe, Software component interface description for reuse, lEE BCS Software
Engineering Journal, 8(6), November 1993.

