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Abstract

Chip multiprocessor (CMP) systems have made the on-chipesaa critical resource shared among
co-scheduled threads. Limited off-chip bandwidth, insme@ on-chip wire delay, destructive inter-thread
interference, and diverse workload characteristics peyedksign challenges. To address these challenge,
we propose CMP cooperative caching (CC), a unified frameweoeficiently organize and manage on-chip
cache resources. By forming a globally managed, sharedasihg cooperative private caches. CC can
effectively support two important caching applicationk) feduction of average memory access latency and

(2) isolation of destructive inter-thread interference.

CC reduces the average memory access latency by balandimgdmecache latency and capacity opti-
mizations. Based private caches, CC naturally exploits #tteess latency benefits. To improve the effective
cache capacity, CC forms a “shared” cache using replicat@mrirol and LRU-based global replacement
policies. Via cooperation throttling, CC provides a spaatiof caching behaviors between the two extremes
of private and shared caches, thus enabling dynamic adaptat suit workload requirements. We show
that CC can achieve a robust performance advantage ovatgend shared cache schemes across different
processor, cache and memory configurations, and a widdisele¢ multithreaded and multiprogrammed

workloads.

To isolate inter-thread caching interference, we add a-8haging aspect on top of spatial cache parti-
tioning. Our approach uses Multiple Time-sharing PargidMTP) to simultaneously improve throughput
and fairness while maintaining QoS over the longer term.hBAGP partition unfairly improves at least
one thread’s throughput, and partitions favoring différdmeads are scheduled in a cooperative, time-
sharing manner to either maintain fairness and QoS, or mmghe priority. We also integrate MTP with
CC's LRU-based capacity sharing policy to combine theirdfiéh The integrated scheme—Cooperative

Caching Partitioning (CCP)—divides the total executionas into those controlled by either MTP or the



baseline CC policy, respectively, according to the fractbthreads that can benefit from each of them. Our
simulation results show that for a wide range of multiprogm@ed workloads, CCP can improve throughput,

fairness and QoS for workloads suffering from destructivterference, while achieving the performance

benefit of the baseline CC policy for other workloads.
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CHAPTER 1

INTRODUCTION

Chip Multiprocessors (CMPs) have been widely adopted anthoercially available [4,54,72,87,148] as
the building blocks for future computer systems. Instealduditling highly complex, power-hungry, single-
threaded processors, CMP designers integrate multipkenpally simpler, processor cores on a single
chip to improve the overall throughput while reducing powensumption and design complexity. As the
number of processor cores increases [73], a key aspect of d&dign is to provide fast data accesses for
on-chip computation resources. Although caching has beermbthe first and most widely used techniques
to improve memory access speed in single-core chips, isfaeeeral challenges when used in multi-core
environments. To address these challenges, this disearttidies the organization and management of
CMP on-chip cache resources and proposes a unified caclaimg\vork to satisfy both performance and

non-performance (e.g., fairness and Quality-of-ServigeS)) requirements of future CMP systems.

1.1 CMP Caching Challenges

Unlike conventional designs with caches dedicated to desipgpcessor core, CMP caches serve multiple
threads running concurrently on physically distributedgassor cores. This change of execution paradigm
both aggravates caching demands and introduces new dedléhat can not be sufficiently addressed by

prior caching proposals.



1.1.1 Limited Off-chip Bandwidth

The main purpose of on-chip cache memory is to streamlinegssmr operation by reducing the number
of long-latency off-chip accesses. Based on a von Neumashitecture, processor computation involves
frequent accesses of the memory system to fetch/storeiatisins and data. Historically, the performance
gap between processor and DRAM has been increasing exjmhefdr more than two decades [118],
which makes memory operations very expensive (costing rieaisdof processor cycles). Even with large
on-chip caches, high-performance processors often spenel tman 50% of the time waiting for memory

operations to complete [111].

Recently, improvement of single processor performancesimsed down as frequency scaling ap-
proaches its limit, but the “memory wall” problem is likelp persist for CMPs due to limited off-chip
bandwidth. Technology trends [51] indicate that off-chip pandwidth will grow at a much lower rate than
the number of processor cores (and thus their aggregate mdrandwidth requirement) on a CMP chip.
Without disruptive technology (e.g., proximity commurtioa [39]), the increasing bandwidth gap has to

be bridged by efficient organization and use of available @siéhe resources.

Emerging software such as “Recognition, Mining and Syn#figRMS) workloads [71] can also stress
the memory bandwidth requirement. Many such programs hawve gata locality, either due to inherent
streaming/scanning behaviors in the workload, or becaatierdocality is only possible when their large
working sets can be simultaneously satisfied by the last-leache [75]. Therefore, both technology and

software trends demand the CMP cache resources to be wigkdtio reduce off-chip accesses.

1.1.2 Growing On-chip Wire Delay

In future technology, on-chip wire delay [63] will increat® a point that cross-chip cache accesses are
far more expensive than local cache accesses. Withoututalah placement, such non-uniform latencies

reduce the benefit of on-chip caches because on average smiglifraction of blocks are located in cache



banks that are close to their consuming processors.

To reduce on-chip cache access latency, single-core desigpioit non-uniform cache architecture
(NUCA) [26, 83] by migrating frequently used data into closed faster cache banks. However, with
multiple distributed cores accessing shared data, magratiay be ineffective because the competition
between different cores often leaves shared data in baaksith farther to all requesters [15]. In contrast,
private cache organization reduces on-chip access latentycally replicating frequently accessed data,
but such replication can waste capacity and incur more estypeff-chip misses. CMP caching thus faces
the conflicting requirements of saving off-chip bandwidtil aeducing on-chip latency, and has to trade off

between techniques that reduce off-chip vs. cross-chiganifl3].

1.1.3 Destructive Inter-thread Interference

The ineffectiveness of shared data migration among CMPsatemonstrates that competition of shared re-
sources can lead to destructive inter-thread interferdhaemultiprogrammed workloads, threads also com-
pete for cache capacity and associativity which can cawsertsl performance (e.g., due to thrashing [35]),
unexpected performance (e.g., due to unfair resourceadiboc[84]), lack of performance QoS [74] (i.e.,
no guarantee in providing certain baseline performancé])l&nd lack of control over the per-thread and
overall performance (e.g., no priority support). Withoatdiware solutions, their remedy can complicate the
task of operating systems (e.g., to improve fairness anai goreority inversion) and server administration

(e.g., to maintain QoS for consolidated server workloads).

Because fairness, QoS and priority support are importantirements for CMP users, and are often
assumed by software running on CMPs, CMP caching schemestbattack the problem of destructive
interference and answer the challenge of simultaneoutkfysag multiple, potentially conflicting, require-

ments such as throughput and fairness improvement.



1.1.4 Diverse Workload Characteristics

With multiple execution contexts available, CMPs can suppoth single-threaded and multithreaded
workloads as well as their multiprogramming combinatiofisese workloads demonstrate different caching
characteristics, therefore prefer different cache omgrins or caching policies. For example, multi-
threaded workloads with large working sets prefer a shaaeties for better effective capacity [75] while
smaller workloads prefer a private cache organization ébtelo on-chip latency [13]. Workloads with little
sharing can benefit from dynamic migration [15], but aggwessharing requires careful tradeoff between
replication and migration. Furthermore, LRU-based cadmpacement performs well for workloads with
good temporal locality, while frequency-based policieg.(eLFU) are more suitable for workloads with

poor locality [142].

Diverse workload preferences suggest that using a singl@r@ascheme with fixed policies is unlikely
to provide robust performance for a wide range of worklo@dsideal CMP caching scheme should be able
to combine the strengths of different cache organizatiorns policies, and dynamically adapt to suitable

behaviors to accomodate individual workload’s cachingir@gnents.

1.2 Prior Caching Proposals

The importance of CMP caching has spurred many researclgatgto answer some of the aforementioned

challenges. Below we provide a brief overview of them.

1.2.1 Private and Shared Caches

Proposals for CMP on-chip memory hierarchy have borrowealihefrom the memory hierarchies of
traditional multiprocessors. Here, each core have prilidtelata and instruction caches tightly coupled

with the processor pipeline. L2 caches are usually privateabse building a shared L2 for processors



on multiple chips requires significant complexity and pimdbaidth (for L1 to L2 cache communication).
Proposals for CMPs also use the private L1 cache structdrgaditional multiprocessors, although the
L1 caches may not use inclusion [9, 12]. The interesting tipredas to do with the organization of large,

last-level cache resources (in this dissertation we foous2ocache design).

Most current CMP designs adopt a logically shared L2 cacgarization [4,72,87,148] to make efficient
use of the overall cache capacity and reduce off-chip aesestowever, the latency of a shared L2 cache is
heavily influenced by the increasing wire delay, and its mst@ined capacity sharing can cause destructive
inter-thread interference. Private L2 caches are moreaiaieof on-chip wire delay, and naturally avoid
inter-thread interference by statically partitioning #ggregate capacity among processor cores. However,
this organization incurs many more off-chip accesses diretbicient use of the aggregate on-chip capacity

(e.g., replication of shared data and static capacity ation).

Because private and shared cache organizations have thgueuadvantages and disadvantages, two
separate lines of research have been launched to combinestiemgths to: (1) reduce average memory

access latency and (2) improve throughput, fairness, ai®lgavisioning via cache partitioning.

1.2.2 Latency Reduction Proposals

As a practical step towards the ideal zero-latency infiogpacity cache, these proposals attempt to reach
the off-chip miss rate of a shared cache with only the latevfcg private cache. Private cache based
optimizations improve capacity utilization by controlirreplication [13, 27, 138] and allowing capacity
sharing between caches [27,156]. Shared cache basedzgitons reduce on-chip latency by cache block
migration [15, 158], replication [159] or limiting the soepf sharing within a small cluster [68]. However
the proposed solutions are either limited in only improvingertain class of workloads [13, 15, 138, 156]
or relying on specific cache or coherence protocol impleatants [15,27, 68, 138,156, 159]. Furthermore,

most of these proposals are unable to deal with workloadsggoor locality and destructive interference



(with the exception of PDAS [156], which provides QoS supgor multiprogrammed embedded work-

loads).

1.2.3 Cache Partitioning Schemes

CMP cache partitioning schemes [68, 74, 84, 96, 121, 123,158} extend a private cache organization’s
static capacity partitioning to isolate inter-thread ifdeence. Specifically, they orchestrate cache alloca-
tion with dynamically adjustable, often heterogeneougheagpartitions to match the perceived capacity
requirements of co-scheduled threads. Despite theirrdiifees in metrics, mechanisms and policies, prior
cache partitioning schemes have two common limitation.Lifhited functionality. None of the current
proposals addresses all CMP caching requirements, imgjutirashing avoidance, fairness improvement,
QoS guarantee and priority support, partially due to thécdity of satisfying multiple, often conflicting,
goals with a single cache partition. (2) Limited scope ofi@ggion. Cache partitioning can only outperform
LRU-based latency-reduction schemes for some multiprograd workloads. An attempt to use cache
partitioning for a wide range of workloads either causes@ptimal performance [141], or requires more

complex partitioning scheme to close this performance ag]|

1.3 Overview of Our Approach

Although prior CMP caching proposals can meet subsets of @€ltfhing requirements, an integrated
scheme is needed not only to answer performance, fairnesQas related challenges, but also support
other optimizations such as power efficiency and relighilithe goal of this dissertation is to: (1) develop a
unified framework to facilitate and integrate CMP cachingroations and (2) demonstrate its effective-

ness in improving both performance and non-performancectifsgs (such as fairness and QoS).

The basic ideas of our CMP Cooperative Caching (CC) are emthad the CC framework, which

consists of the following three layers.



e Mechanisms. This layer lies in the middle of the framework, using threg kemponents to enable
and control cooperative cache resource sharing: (1) prikathe organization that reduces latency,
bandwidth and design complexity while improving fairnessl gpower-efficiency; (2) cooperation
mechanisms that control data placement and replacemeh¢ iaggregate on-chip cache to support
resource sharing among private caches; and (3) coopetttiotiling mechanisms that control the
amount and flow of resource sharing to achieve certain cgdieéhaviors. The combination of these

primitives can render many possible caching behaviors MP@esigners to explore.

e Poalicies. On top of the mechanism layer, this layer includes cooparataching policies to achieve
various optimization goals using the basic mechanisms.cbbperation philosophy is applied at this

layer to resolve conflicts among competing peer caches dawvdifferent caching objectives.

¢ Implementations. The underlying implementation layer realizes cooperati@ehing mechanisms
by either augmenting existing cache designs and coheremtecpls or introducing new designs.
The separation of mechanisms, policies and implementattiows different layers to be extended
independently, so that the framework can be used for differ@ching optimizations, and incorporated

by various CMP implementations.

CC answers CMP caching challenges in the following ways.

e Reducing off-chip accesses.Via cooperation among private caches, CC can form an aggrega
cache having an effective capacity comparable to a shamtecéo reduce costly off-chip misses.
Specifically, three capacity sharing policies are propog@dl The first policy facilitates cache-to-
cache transfers of on-chip “clean” blocks to eliminate wassary off-chip accesses to data that
already reside elsewhere on the chip. (2) The second pdidyces replication to make room for
unique on-chip copies (callesinglety, thereby making better use of the on-chip cache resou(8gs.

The third policy places locally evicted blocks into peertees (calledspill). It lets the private caches



cooperatively identify singlet but inactive blocks, an&geaylobally active data on-chip. By combining
local LRU with global spill/reuse history, this policy apmimates global LRU replacement for

efficient capacity sharing.

Improving on-chip latencies. By using private caches as the baseline organization, C&ctdtdata
locally to reduce remote on-chip accesses, thus loweriagatierage on-chip cache access latency.
When combined with capacity improving policies, CC can aehian off-chip miss rate similar
to that of a shared cache, and a local cache hit rate simil#naibof using private caches. Our
evaluation using full-system simulation shows that CCqrenk robustly over a range of system/cache
sizes and memory latencies. For an 8-core CMP with 1MB L2 egmr core, CC can improve
the performance of multithreaded commercial workloads {31% compared with a shared cache
and 4-38% compared with private caches. For a 4-core CMArmgmnultiprogrammed SPEC2000
workloads, CC is 5-23% faster than a shared cache, and at W& slower than using private
caches. CC also outperforms the victim replication schetb8][by 9% on average over a mixture
of multithreaded, single-threaded and multiprogrammetkigads, while the performance advantage

increases for workloads with large working sets.

Dealing with inter-thread interference. CC extends previous cache partitioning schemes with
Multiple Time-sharing Partitions (MTP), to improve thrdymut and fairness while maintaining QoS.
Specifically, each MTP patrtition improves at least one thiras application’s throughput by tem-
porarily shrinking the capacity of other applications tok@aoom for it. By time sharing cache
resources among multiple unfair partitions that favoratiht applications, the problems of fairness
improvement and priority support are translated into waldied time-sharing resource management
problems. Fairness can thus be improved by giving diffeagmpiications equal opportunity to speed
up, while priority can be supported by allocating differemimbers of time slices to different unfair

partitions. The MTP partitioning algorithm further guatees QoS by using partitions that, on



average, can bound each application’s slowdown againsgtifem partitioning baseline. Comparing
with the best single spatial partition based scheme witliga constraint, MTP can achieve up to

60%, and on average 12%, better performance.

Adapting to workload characteristics. CC can adapt to diverse workload characteristics by provid-
ing a spectrum of caching behaviors and selecting the bdisiygo meet workload preference. In
terms of latency reduction, CC can throttle the amount oflol@plication and capacity sharing to
find the best tradeoff between the two extremes of privatestiaded caches. CC further integrates
latency reduction policies with MTP to combine the benefittRU-based fine-grained sharing with
cache partitioning schemes. The complementary advantfgd3 P and LRU-based optimizations
are achieved by dividing the total execution epochs int@ehcontrolled by MTP and the baseline
CC policies, respectively, according to the fraction oflaggpions that can benefit from each of them.
The integration not only provides the best performance faide range of workloads, but also can
simplify MTP partitioning by focusing only on applicatiomgth large speedup potentials, leading to
a heuristic-based, practical implementation. Our evanaghows that the resulted scheme— Coop-
erative Cache Partitioning (CCP)—achieves comparabl®ipeance as an (impractical) exhaustive
search of MTP partitions for workloads that need cache tianing, which is up to 80%, and on
average 7%, better than the baseline CC policies. For wadklevhere cache partitioning hurts, CCP

usually defaults to the baseline CC and consistently ofdpas all other cache partitioning schemes.

1.4 Thesis Outline

We have motivated CMP cooperative caching with technology software trends in this chapter. Chapter

2 discusses related work in CMP caching. Chapter 3 then miseslee cooperative caching framework,

detailing its mechanism and implementation layers. Chaptend Chapter 5 use latency reduction and

throughput/fairness/QoS improvement as two example egiins to demonstrate the benefits of our ap-
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proach. We conclude in Chapter 6 by summarizing thesis ibotittns and pointing out future research

directions.

The gist of Chapter 3 and Chapter 4 appeared in our ISCA 208&rp23], while we extend the published
work in several aspects: (1) the ideas of CMP cooperativeicg@re now presented in a layered framework,
(2) the mechanisms and implementations are introducegtmstigeneral cache cooperation instead of only
reducing memory latency, (3) a discussion of scalable CCagpaksible implementation are included, and

(4) the evaluation is extended with adaptive throttlinguhess

A modified version of Chapter 5 was published in ICS 2007 [24ich is augmented in this disser-
tation with motivating examples, detailed discussion oplementation options, as well as an extensive

presentation of the evaluation results.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, we discuss the background and previous wmoi&®MP caching. Section 2.1 overviews
the background on caching, with emphasis on the aspectsewuerproposed scheme (CC) differs from
conventional uniprocessor caching: (1) cache placememtraplacement, (2) support for non-uniform
cache latencies, and (3) extensions to manage the sharicaché resources among multiple competing
consumers. Section 2.2 and Section 2.3 survey recent CMitngcgproposals to improve average memory
access latency and mitigate destructive inter-threadf@rence, respectively, and compare them with CC.

Section 2.4 summarizes prior work with a taxonomy of haréw@MP caching schemes.

2.1 Caching

Although CMP caching presents a set of new challenges t@psot cache designers, these challenges are
not new in the history of general caching research and hage lmglividually addressed in other caching
systems such as virtual memory paging, web caching and ptiosal shared-memory multiprocessor

memory designs.

The idea of caching was first documented in the IBM Systemig&gflementation [95] which used
a high-speed buffer to bridge the processor-memory spepdogaexploiting the locality of references
principle [37]. For a given cache size (which is determingdehgineering tradeoffs), the cache’s effi-
cacy is largely determined by its data placement and replane policies. Theoretically, Belady’s MIN
replacement algorithm is optimal by providing a provabl@emplimit for hit ratio [16]. However, because
this algorithm evicts data with farthest reuse distances litmited in: (1) being an offline algorithm that

requires both future knowledge and unbounded lookaheadate meplacement decisions, (2) assuming
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uniform cache hit latencies and miss latencies and (3) noesidering conflicts between multiple cache

resource consumers. Below we discuss extensions in thpsetaseparately.

2.1.1 Cache Replacement and Placement

To attack the first limitation of the MIN algorithm, many pt&al, online replacement policies have been
proposed, among which the least recently used (LRU) and fezgpuently used (LFU) policies are two
typical examples. The two policies are near optimal, respelg, for programs with strong and weak
temporal locality [43}. LRU is arguably the most widely used policy because its @m@ntation is simpler
than LFU and it can quickly adapt to working set changes. Twide good caching performance for a
wide range of workloads, many software policies (e.g., IJ0B]) and hardware designs (e.g., [42,142]) are
proposed to combine the benefits of both LRU and LFU. CC aeki¢éive same goal, but instead by using
cache partitioning to isolate workloads with weak locafitym those with good locality and by integrating

LRU replacement with cache partitioning.

In the context of CMP caching, flexible data placement is atsded to exploit the benefits of advanced
cache replacement policies [57], reduce inter-thread icomflisses [158], provide QoS support via cache
partitioning [81], and keep frequently accessed data dim$ke processor [26]. Highly associative caches
(used by most CMP caching proposals) are thus needed to #égible data placement at the cost of
extra area, latency, power and complexity overhead. Pdgdrogand remapping [130] can reduce conflict
misses with low associativity, but require profile-baseftieare optimization. Across cache banks, distance-
aware placement attempts to keep frequently used data sidbest (and thus fastest) banks. For example,
D-NUCA [83] dynamically migrates “hot” data towards the pessor core, and NuRapid [26] further

decouples data placement from tag placement using forwandgos.

1The notions of strong and weak temporal locality were folyaéated by Coffman and Denning [43] and were later exgldin
by Megiddo and Modha in the context of paging [106]: LRU is ¢iptimal policy if the request stream is drawn from an LRU &tac
Depth Distribution (SDD) which is “useful for treating theustering effect of locality but not the nonuniform of pagdarencing.”
LFU is optimal if the workload can be characterized by theeppehdent Reference Model (IRM), which assumes that eagfrerefe
is drawn in an independent fashion from a fixed distributiverdhe set of all pages in the auxiliary storage.
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CC improves cache associativity through cooperation anpoirgte caches, each with lower associativ-
ity, without extra hardware and software overhead. Theeggie cache is managed by an approximation of
global LRU via a combination of local LRU and global placernigistory, therefore can support fine-grained
sharing for both multithreaded and multiprogrammed wa#k To achieve distance-aware data placement,
CC relaxes the inclusion requirement between L1 and L2 cacred improves data locality using private

caches that keep frequently used data close to the reqg@stinessors.

2.1.2 Non-uniform Latencies

In web caches that buffer files from multiple servers, caclgses have non-uniform latencies. Because
Belady’'s MIN algorithm can only support uniform cache latgnnew cache replacement policies are
needed to prioritize data with variable costs and providehthst average access latency [157]. Similarly,
processor caches can also exploit the cost difference batwasses having non-uniform memory-level

parallelism [52], as shown by proposals for cost-sens#ive MLP-aware uniprocessor caches [76, 122].

Distributed web and file caches can also cooperate to forngiaedity shared, global cache with non-
uniform hit latencies [32,46,50]. By exploiting a high-sgenetwork that makes inter-cache communication
much faster than accessing remote servers, physicallyaiedacaches work closely together to improve the
effective cache capacity without significantly hurtingdbdit rates. The situation is analogous to CMP
caching, where private caches can exchange informationdatal over a high-bandwidth, low-latency,
on-chip interconnect to reduce expensive off-chip misg@ar research is directly inspired by the above

observation, and borrows from existing cooperative filehaeg policies.

The most related research to CMP caching, in terms of hagdtm-uniform access latencies, focuses on
the memory organization of shared memory multiprocesSarémprove scalability of small-scale Uniform
Memory Access (UMA) machines (SMP systems [25]), Non-unifdMemory Access (NUMA) systems

statically partition the memory space among processorfomgmodes [91, 93]. Because local memory
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DSM Memory CMP Cache Common Features

UMA [25] Shared cache (UCA) High capacity, uniformly long latency
NUMA [91, 93] Shared, banked, cache (S-NUCA) [83]| High capacity, non-uniform latencies
COMA[56,129] | Private caches [67] Lowered capacity, low latency

RC-NUMA [160] | Adaptive private/shared NUCA [40] Partition between private/shared space
VC-NUMA [108] | VC-CMP [115], Victim replication [159]| Victim caching

R-NUMA [45] CMP-NuRapid [27] Counter-based hints for relocation
AS-COMA [88] | CMP cooperative caching [23] Biased replacement
OS support [150]| ASR [14] Selective replication

Table 2.1: Corresponding Proposals for Organizing DSM Mgmaod CMP Caches

accesses can be several times faster than remote access@$UNA system, a significant amount of
research was done to improve data locality via a Cache-Ommnbdty Architecture (COMA) that uses local
memory to attract frequently used data [56, 129], NUMA augteé with remote data caches or victim
caches [108, 160], adaptation between COMA and CC-NUMA 88%,according to perceived memory

pressure, and software techniques for page migration gtidagon [137, 150].

Due to similar latency/capacity tradeoffs, techniquesnm@rove the average memory latency of dis-
tributed shared memory (DSM) systems can also be used tmw®pEMP caching. To illustrate this,
Table 2.1 lists some of the corresponding proposals in DShaomg organization and CMP caching and
their common features. CMP caching faces similar issueBaiisdounterparts in DSM page caching such
as cache coherence, replacement policies, control otegjaih/migration and scalability, although different

tradeoffs and implementations are needed for DSM vs. CMRitactures.

2.1.3 Shared Resource Management

The third limitation of the MIN algorithm, its inability to ekl with competition among multiple cache
consumers, has been addressed by paging techniquesdgleing at the memory level). Sharing physical
memory among competing threads, and specifically avoidasgrdctive interference such as thrashing [35],
is a classic problem for virtual memory management [36].sTroblem is solved in software by proac-

tively co-scheduling programs whose aggregate workingaetbe contained by available resources (e.g.,
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balanced-set schedulers [48]), or reactively reducinglélel of multiprogramming (i.e., the number of
in-memory programs) to fit resource constraints. Simildgdorova studied CMP-aware operating system
schedulers [47] to avoid cache thrashing [49] and maintaindache usage by adjusting the CPU time

guantum allocated to different threads.

Memory partitioning is another mechanism to avoid intenfee. As an example, local memory man-
agement policies (such as the WS policy used in Windows tiparaystems) ensure that each thread has
enough pages to hold its working set [34] and only replaceepdpm a thread’s local page pool. The
concept of working set and local replacement is also exgadity CMP caching partitioning schemes (e.g.,
[40,123,144,156]). On the other hand, global replacemeilitips allow different threads to share space in
a fine-grained manner, but are prone to inter-thread polutiwSClock [22] achieves the benefits of both
schemes by integrating working set based partitioning glithal LRU replacement. In a similar vein, we

integrate cache partitioning and LRU-based latency réglugtolicies to combine their strengths.

Verghese et al. [151] recognized the need for performaratatisn in a central server environment, and
proposed mechanisms to provide isolation under heavy |dal@ &llowing sharing under light load. Later,
the notion of performance isolation was extended to profliedéble QoS [145], including QoS guarantee,
fairness and differentiated services. Waldspurger [1&2pduced several novel policies for virtual machine
servers, which: (1) identify and reclaim least valuablegzmd?2) eliminate redundancy overhead and (3)
support performance isolation. This dissertation attheksame problems for processor caching via: (1)
global replacement of inactive blocks, (2) replicationaagreplacement and (3) cache partitioning support.
To simultaneously improve throughput, fairness and QoSalse extend spatial partitioning with time-

sharing, which has been well studied and implemented byatipgrsystems [62, 153].

2.2 CMP Caching Optimizations for Latency Reduction

Besides studies in CMP cache organizations [67, 113, 14&hyrhybrid caching schemes have been pro-

posed to reduce the average memory access latency for CMPS[27,59, 68,94, 115,138,158, 159].
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2.2.1 Shared Cache Based Proposals

Oi and Ranganathan [115] made the analogy between CMP cpahith CC-NUMA memory organiza-
tion, and evaluated the benefit of using part of the shareddche as fix-sized victim caches. They
discovered that aggressive replication (using largemiciaches) can hurt performance, and for SPLASH?2
workloads [155], suggested using 1/8 of total L2 capacityviotim caching. Zhang and Asanovic [159]
proposed a dynamically adaptable form of victim cachindiedaVvictim Replication (VR), in a tile-based
CMP. Their scheme allows an L1 victim to be cached in the Ib@dbank, potentially evicting data without
replicas. A random replacement policy and a directory-thasgherence protocol are required by their
implementation to simplify replication control and re@licentification. Because VR keeps replicas in both
the home node cache and all consumer caches, it can wastgtgaglaen little data sharing exists (e.g., in
multiprogrammed workloads). This issue was resolved byraimigration [158] via home block migration,

implemented with extra shadow tags to keep track of the rr@grdata.

Beckmann and Wood [15] studied CMP-NUCA schemes to mitifaempacts of increasing on-chip
wire delay. Their results showed that, different from sengbre caching, dynamic migration (D-NUCA) in a
CMP is ineffective for widely shared data. They also ideetifihe issues with CMP-NUCA implementation
and power consumption, and proposed using LC transmisgies to reduce wire delay. Li et al. [94]
extended their work with 3D die-stacking and network-inaneey, and demonstrated better performance.
The techniques proposed in this dissertation are orthddorthese new technologies and can potentially

exploit fast wires and 3D caches to improve latency and dgpac

Chishti et al. proposed CMP-NuRapid [27] to optimize reglicn and capacity in CMP caches. Their
design, like CMP-NUCA, uses individual algorithms to optimnspecial sharing patterns (i.e., controlled
replication for read-only sharingn-situ communication for read-write sharing, and capacity stgafor
non-sharing). In contrast, CC aims to achieve these omitioizs through a unified technique: cooperative

cache placement/replacement, which can be implementedhier & centralized or distributed manner.
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CMP-NuRapid implements a distributed directory/routiegvice by maintaining forward and reverse point-
ers between the private tag arrays and the shared data.aftagsmplementation requires extra tag entries
that may limit its scalability, and increases the compiegit the coherence protocol (e.g., the protocol has
to avoid creating dangling pointers). CC tries to avoid sisslies by using a simple, centralized directory

engine with less space overhead.

Based on NUCA, Huh et al. [68] introduced a cache organimatt support a spectrum of sharing
degrees, which denote the number of processors sharing afptbeir local L2 banks. The average access
latency can be optimized by partitioning the aggregatelop-cache into disjoint pools, to fit the running
application’s capacity requirement and sharing patteiftseir study showed that static mappings with a
sharing degree of 2 or 4 can provide the best latency, anchaigmaapping can improve performance at the
cost of complexity and power consumption. CC is similar yirng to support a spectrum of sharing points,

but achieves it through cooperation among private cache@sdaptive cooperation throttling.

Cho and Jin [28] recently proposed an OS-level page allmcaipproach to address CMP caching’s
locality, capacity and isolation issues. Based on sharetiecarganization, their proposal maps physi-
cal pages into cache slices to exploit locality and usegu&irmulti-cores” to provide isolation between
multiprogrammed threads. However, this approach requiots hardware page mapping support [78],
and significant modifications in the operating systems ,(dogation-aware page allocation, locality and
capacity aware OS scheduling). Comparatively, CC answilii8 €aching challenges with simple hardware
extensions, while being amenable to software-based sphuthy providing capacity sharing and isolation

mechanisms.

2.2.2 Private Cache Based Proposals

Harris proposed synergistic caching [59] for large scaleRSMn which neighboring cores and their private

L1 caches are grouped into clusters to allow fast accessavédidata. Synergistic caching offers three
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duplication modes (i.e., beg, borrow and steal), corregdipgnto replication, use without replication and
migration. Because no single duplication mode performsodst across all benchmarks, reconfiguration

was suggested, although not evaluated, to statically cumjeally choose the best mode.

Speight et al. [138] studied adaptive mechanisms in prvatde based designs to reduce off-chip traffic.
They used an L2 snarf table to identify locally evicted bletkat might be reused soon. Upon local eviction,
such blocks are kept on-chip via write-backs to peer cachies.host cache will replace either invalidated
or shared clean blocks to make room for them, potentiallucit) expensive off-chip misses when they are
reused later. This scheme is limited by only supporting ituéaded workloads, and differs from CC in its

write-back and global replacement policies.

Motivated by the need for dynamic adaptation, Beckmann. §14] proposed Adaptive Selective Repli-
cation (ASR) for multithreaded workloads. ASR uses privedehes and dynamically seeks an optimal
degree of replication for each individual thread. The cost ldenefit of current and future replication levels
are estimated using on-chip counters, which are consideheth determining whether a thread can benefit
from more aggressive replication. Their cost/benefit ediiom mechanisms can be used to throttle CC’s
replacement-aware cache replacement. Although ASR wa®ged to control replication in multithreaded
workloads, its per-thread threshold and counters do stippterogeneous workloads and can potentially be

extended and used in a multiprogramming environment.

2.3 CMP Cache Partitioning

Below we survey CMP cache partitioning proposals that predestructive inter-thread interference via

resource isolation, according to their different optintia purposes.

Miss reduction. Stone et al. [141] studied the problem of partitioning cachpacity between different
reference streams, and identified LRU as the near-optimaypir their workloads. They also showed

empirically that LRU can swiftly adapt to working set chasgeithout explicit repartitioning support. Liu
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et al. [96] proposed Shared Processor-based Split L2 cheligartitions the shared L2 space in units of
“split.” Their scheme can be configured to suit for both irdpplication and intra-application non-uniform
caching requirements, but involves both profiling suppad aperating system modification to determine
and enforce cache partitioning. Suh et al. [143, 144] agpliay partitioning to shared CMP caches. Using
in-cache monitoring mechanism, their partitioning algor assumes convex miss rate curves and allocates
extra capacity to threads having the best marginal missreahection. Qureshi and Patt [123] proposed
UMON sampling mechanism to provide more precise measurgraet lookahead partitioning algorithm to
handle workloads with non-convex miss rate curves. Dybdaal. [41] extended way partitioning [144] by
overbooking cache capacity to account for non-uniformgstrequirements, and evaluated its effectiveness
using private L1/L2 caches with a shared L3 cache. Dybdatll @tenstrom [40] further extended CC
with an adaptive shared/private partitioning scheme tadaider-thread interference. Their partitioning
algorithm is essentially the same as Suh’s proposal, bteadsof in-cache monitors, “shadow tags” are

used to measure the benefit of having one extra cache way.

Fairness improvement. Kim et al. [84] emphasized the importance of fair CMP cachisigcussed the
implication of unfairness (such as priority inversion) grdposed a set of fairness metrics as their goal of
optimization. They evaluated both static and dynamic paning (both requiring profiling information),
and discovered that, under heavy caching pressure, fdiirgpoften improves overall throughput. Yeh and
Reinman [156] proposed fast and fair partitioning, based MUCA cache consisted of ring-connected
distributed banks. Their scheme ensures the “baselinessf by guaranteeing QoS for all co-scheduled
threads. To enforce partitioning decision, each NUCA bantlivided between portions used by the local
thread and remote threads. Such partitioning is dynamiealjustable based on program requirements and
phase changes. Instead of cache partitioning, Kondo e8@].gpplied dynamic voltage and frequency
scaling (DVFS) to maintain CMP fair caching. Using the sansrios and policies as Kim et al., they also

observed throughput improvement over shared cache for masgs and energy saving due to decreased
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voltage and frequency.

QoS provisioning. lyer [74] motivated the importance of QoS guarantee andriigation, not only
between different users but also different types of accasaras (e.g., demand vs. prefetch requests)
generated by the same thread. He also proposed the CQoSnuaknthat defines and implements QoS
via priority classification, assignment and enforcemenéh dnd Reinman [156] focused on throughput
improvement on top of data QoS guarantee. Kannan et al. [8ifjesl CMP resource management to
support flexible QoS. Their work demonstrated the feagybdf QoS-aware hardware and software using
prototypes and showed predictable performance in mulifmmming and virtualization environments.
Vardarajan et al. [149] proposed molecular caches to acdataahe diverse requirements of multipro-
grammed workloads. By varying the number of allocated {iti@anolecules) and the per-tile management
policies, molecular caches can provide varied cache liressiassociativities and cache sizes for different
co-scheduled threads. Molecular caches achieve poweieafficvia private tile based organization, and
provides software-defined QoS (specified as target miss)rate dynamically adjusting per-application

capacity.

Generic support. Rafique et al. [125] and Petoumenos et al. [121] proposedatipdine-grained parti-
tioning support, which can be used by various partitioniatigees (such as miss rate reduction, fair caching
and QoS provision). Hsu et al. [66] studied various paritig metrics and policies. Their study focused
on three caching paradigms (communist caching for faigng#igarian caching for overall throughput and
uncontrolled capitalist caching), and recognized the aliffies to improve both overall throughput and

fairness using a single partitioning scheme.



| Goals | Target Workloads

Baseline| Schemes

Adaptive L2 snarfing [138]
IS5 Multithreaded Private | ASR[14]
é Synergistic cache [59]
2 Ineffective for shared data Shared CMP-DNUCA [15]
> Ineffective for multiprogrammed are Victim replication [159]
5 Victim migration [158]
® . . CMP-NuRapid [27]
-
Multithreaded and multiprogrammed| Shared NUCA substrate [68]
OS-level page mapping [28]
E Multithreaded and multiprogrammed| Shared | Profile-based partitioning [96]
é Multiprogrammed Shared | Dynamic partitioning [144]
2 Multiprogrammed Shared | Utility-based partitioning [123]
o) @ Multiprogrammed Shared | Overbooked partitioning [41]
T | S | Multiprogrammed Private | Share/private partitioning [40]
(@]
213 Shared | Fair caching [84]
§ ~ Shared | Fair caching via DVFS [86]
S|« . Shared | CQoS [74]
@ | Multiprogrammed
Ll e prog Shared | QoS prototypes [81]
E g Private | Fast and fair (QoS) [156]
s Private | Molecular caches [149]
&
2 STATSHARE [121]
f_—i Multiprogrammed Shared | OS-driven partitioning [125]
% Hsu et al. [66]

| Al | Multithreaded and multiprogrammed| Private | CC/CCP (this dissertation)

Table 2.2: A Taxonomy of Hardware CMP Caching Schemes

2.4 A Taxonomy of CMP Caching Techniques

Table 2.2 provides a taxonomy of related hardware CMP cgghioposals. These schemes are classified
along three dimensions: (1) goals (latency reductionrfietence isolation, or their combinations), (2) target

workloads (multithreaded or multiprogrammed) and (3) basecache organizations (shared or private).
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A desirable CMP caching scheme should be able to simultaheachieve multiple optimization goals,

perform robustly for a wide range of workloads, while beingemable to simple and modular hardware

implementations.
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The first group of proposals in Table 2.2 aim at memory latenechuction, but 5 out of 9 of them are
limited in only supporting multithreaded workloads or kgeineffective for workloads with significant data
sharing. The schemes that do support both multithreadedhatighrogrammed workloads are all based on a
shared cache design, and they either rely on specific haedwmatementations (e.g., victim migration [158]
requires a directory protocol and CMP-NuRapid [27] depemda snooping bus) or have to cooperate with

software for cache management (e.g., NUCA substrate [GB{>#rlevel page mapping [28]).

The schemes in the second group use cache partitioning tevackome of the interference isolation
goals. Among them, the first 5 schemes only minimize off-ahips rate to improve overall throughput.
Except for profile-based partitioning [96], these schenresoaly applicable to multiprogrammed work-
loads. Share/private partitioning [40] is the only propdbat combines cache partitioning with latency
reduction techniques (it uses CC as the baseline desigrer @ache partitioning schemes either focus
only on fairness or QoS improvement, or only provide genpaditioning mechanisms. Except for fast
and fair [156] which improves throughput while maintainiggS, none of these proposals support multiple

optimization goals.

Finally, CC is the only hardware CMP caching scheme thates$ats all aspects of latency reduction
and interference isolation optimizations, supports botittithreaded and multiprogrammed workloads and

exploits the latency, power, and design modularity benefifwivate caches.
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CHAPTER 3

CMP COOPERATIVE CACHING FRAMEWORK

Consider the task of building a CMP cache hierarchy that niytleas high capacity and low latency, but
also is fair, reliable, power-efficient, and easy to desigd eerify. Each of these requirement may prefer a
different way to organize the available resources and ardifft policy to strike the balance between resource
sharing and isolation, while all optimizations have to fithe same design. As shown in previous chapters,
existing proposals do address some of the key challengedviéf €aching. However, without a unified
solution, these schemes can not satisfy all of these impiprgat potentially conflicting, requirements for

workloads with diverse caching characteristics.

We need a holistic approach to address the challenges of @Gding, which can integrate and trade
off among available optimizations, preferably based on ifiathsupporting framework. The guestions
are whether such a framework exists and, if so, how to use dctmmodate conflicting requirements.
This chapter answers the first question with the cooperathahing framework for efficient organization
and management of CMP cache resources, while the followitogchapters will demonstrate its uses in
latency reduction and interference isolation, respelgtiv8elow, we introduce the three-layer model of
CC framework in Section 3.1. The mechanism and implememtdéiyers are covered by Section 3.2 and
Section 3.3, while example policies will be detailed in Cleagl and 5. Section 3.4 discusses the extension

of CC for large-scale CMPs.

3.1 CMP Cooperative Caching Framework

The basic idea of CC is to form a globally-managed, aggregatehip cache via cooperative resource

sharing among private caches. CC is inspired by softwarperative caching algorithms [32], which have
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Figure 3.1: Cooperative Caching (The shaded area repsedentggregate cache formed via cooperative
private caches.)

been proposed and shown to be effective in the context ofrideveeb caching [32,46]. The key principle
of CC is to support a wide spectrum of sharing behaviors \@acttmbination of private cache’s resource
isolation with various forms of cooperative capacity shgfthrottling. Such capabilities will be exploited

by high-level cache cooperation policies to satisfy ddfdrsets of optimization goals.

Figure 3.1 shows a picture of the CC concept for a CMP with foanes. To simplify discussion in
this dissertation, we assume a CMP memory hierarchy witlagiL 1 instruction and data caches for each
processing core. We focus on using L2 cache as the last levehip cache, although the ideas of CC
are equally applicable if there are more levels of cachesherchip (e.g., Dybdahl and Stenstrom [40]
evaluated CC with L3 caches). Each processor core’s locaache banks are physically close to it, and
privately owned by it such that only the processor itself dmactly access them. Local L2 cache misses can
possibly be served by remote on-chip caches via cacheettedsansfers as in a traditional cache coherence
protocol. The key difference between CC and conventionabf@ caches is that here the private caches
are not isolated from each other, instead they act as paattogically shared cache by sharing information
and resources. Such sharing activities are enabled by @Bjsecation and throttling mechanisms, and

orchestrated by cooperation policies to achieve speciticvigation goals.

Before elaborating on why we choose a private cache basethiaagion and how to support inter-

cache sharing in the CC framework, we now introduce the &structure of CC framework. As depicted
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Figure 3.2: The CMP Cooperative Caching (CC) Framework

in Figure 3.2, the idea of cooperative caching is supportedhkee layers focusing on implementation,
mechanism and policy, respectively. This separation @rsyot only allows their independent extension,
but also simplifies the design and analysis of CMP cache talgyaby isolating and addressing system

properties at appropriate levels of abstraction.

Implementation layer. At the lowest level, the layer contains various implemeatet of cooperative

cache structures and resource sharing/isolation mechanighis layer encapsulates the implementation
details such as cache sub-banking, chip layout, interatimmenetworks and coherence protocols, so that
the key mechanisms can be supported by different designsec@ioess and scalability are the main system-

level properties maintained at this layer.

Mechanism layer. In the center of the framework, the mechanisms layer prevatestractions of cache
organization and resource management to support cooperadching policies. This layer consists of
three key componentgl) private cache based organizatiorthat provides on-chip locality and resource

isolation;(2) cooperation mechanismsised by co-scheduled threads to explicitly share the agtgegche
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resources; an(B) cooperation throttling mechanismsused to control and orchestrate cooperative resource
sharing. These components can each be populated with temiezhanisms, and the key property of this
layer is composability. When these mechanisms are comhbigechching policies, a wide spectrum of

sharing behaviors should be available to suit the needsagifspworkloads and cache optimizations.

Policy layer. This layer optimizes the cache hierarchy’s high-level prtips such as performance, fair-
ness, QoS, and reliability, to fit for its intended use. A #iepolicy can optimize for one property such as
fairness, and potentially impact the other properties sitp@ or negative ways. CMP caching optimizations
(e.g., power or reliability optimization) or applicatioesg., QoS provision) can further select from available

policies according to their strengths and shortcomings.

3.2 CC Mechanisms

Below we describe the key components in CC’s mechanism.|ayes layer plays a similar role as the IP
layer in the Internet protocol suite [29, 30] because thdit bon to support diverse higher level applications

with a small set of abstractions that are open to many p@ssiiplementations.

3.2.1 Private Cache Organization

Compared with many shared cache based CMP caching sche@asg€ a private cache based organization

because it has the following advantages that are likely tof lirecreasing importance for future CMPs.

1. Latency. Private caches reduce on-chip access latency by keepiggeindy referenced data locally

for fast later reuse.

2. Bandwidth. Locally cached data can filter out accesses to remote casigasjcantly lowering the
bandwidth requirement on the cross-chip interconnectetmork. This can translate into a simpler

and potentially faster network, while the saved area andeptwdget can be used for other purposes.
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3. Associativity. Instead of building a highly-associative shared cache tdainter-thread conflict
misses, the same set-associativity is available for aneggtg cache formed by private caches each

with much lower associativity, thus reducing power, comijpjeand latency overhead.

4. Modularity. Compared with a shared cache whose directory informati@toied with cache tags
and distributed across all banks, a private cache is mofeaefained and thus serves as a natural

unit for resource management (e.g., power off to save ehergy

5. Encapsulation. Because private caches interact only through exchangeacbieccoherence mes-
sages, the internal organization and operation of indalidaches are encapsulated and thus hidden
from other caches and processors. Encapsulation enabl@dabhes to have different sizes, asso-
ciativities, caching policies, voltage/frequency confajions and reliability characteristics to either
support heterogeneous processors, or accomodate waoskidgdu diverse performance, power, and

reliability requirements.

6. Explicit sharing. Because encapsulation forces inter-cache resource gharle explicit, cooper-
ation throttling is thus easy to implement. Because a dusteooperative private caches can be
viewed as one larger private cache, explicit sharing basegearation mechanisms and policies are
reusable at the granularity of cache-clusters, thus siyimdj the task of composing a large-scale

CMP from small-scale clusters of cores and caches.

7. Adoption of existing hardware optimizations. Because many microarchitectural optimizations
assume a uniprocessor with an exclusively owned cachertingtgrivate cache based designs allow

a smooth adoption of such techniques into CMP systems.

8. Software portability. Existing parallel software (in particular the operatingsteyn) is written for
processors with private caches, and thus directly portidrigrivate cache based CMP systems.

On the other hand, breaking the assumption of an exclusexehed cache could cause unexpected
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problems (e.g., fairness and security issues [120]).

But partaking of these potential advantages first requireslation to the major, and predominant,
drawback of private cache designs: the larger number ofhiff-cache misses compared to shared cache
designs. CC attempts to make the ensemble of private L2 sqthe shaded area in Figure 3.1) appear
like a collective shared cache via cooperative resourcernghalFor example, cooperative caching will use
remote L2 caches to hold (and thus serve) data that would-@éneaot fit in the local L2 cache, if there
is spare space available in a remote L2 cache. To supportcsyeltity sharing, CC extends conventional
private caches in two ways. It relaxes multi-level inclusi@etween L1 and L2 caches to enable flexible data

placement, and it supports sharing of on-chip clean datave snnecessary off-chip misses.

Non-inclusive Caches

Capacity sharing among private caches requires decouptd placement in the L1 caches and their
companion L2 caches. Conventionally, multi-level cacherdnichies often employ inclusion, where the
lower level caches (which are closer to the processors ded sfmaller) can only maintain copies of data
in their companion higher level caches. Cache inclusionigaphat a block will have to be invalidated in
an L1 cache when it is evicted from or invalidated in the coniga L2 cache. This can greatly simplify the
implementation of the coherence protocol because inwaidaequests can be filtered by the higher level
on-chip caches. However with CC, since the objective is ¢ater a global L2 cache from the individual
private L2 caches, maintaining inclusion with only a singkecache bank unnecessarily restricts the ability
of an L1 cache to buffer a variety of data that reside in op-dtf2 caches. An arbitrary L1 cache needs
to be able to cache any block from the aggregate L2 cache, @nohiy a block from the companion L2
cache bank. Thus, for CC to be effective, the L1 caches have &ithemon-inclusive (where a block may
be present in either the L1 or companion L2 cache, or botlexolusive(where a block can be present in

either the L1 or companion L2 cache, but not both), i.e., be tibcache a block that may not reside in the
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associated L2 cache bank.

Sharing Clean Data Among Private Caches

With private L2 caches, memory access can be avoided on amdt®aniss if the data can be obtained
from another on-chip cache. Such inter-cache data shaviagc@che-to-cache transfers) can be viewed
as a simple form of cooperation, usually implemented by #ehe coherence protocol to ensure correct
operation. Except for a few protocols that have the notiom 6€lean owner modern multiprocessors
employ variants of invalidate-based coherence prototlsdnly allow cache-to-cache transfers of “dirty”
data (meaning that the data was written by a processor anddtdseen written back to the higher level
storage). If there is a miss on a block that only has cleanesopi other caches, the higher-level storage
(usually the main memory) has to respond with the block, &weagh it is unnecessary for correct operation

and can be more expensive than a cache-to-cache transfam aiCMP.

There are two main reasons why coherence protocols employacditional multiprocessors do not
support such sharing of clean copies. First, cache-toeca@nsfer requires one and only one cache
to respond to the miss request to ensure correctness, amdaimaig a unique clean-owner is not as
straightforward as a dirty-owner (i.e., the last writer)ec8nd, in traditional multiprocessors, off-chip
communication is required whether to source the clean capy finother cache or from the main memory,
and the latency savings of the first option is often not bigugiioto justify the complexity it adds to the
coherence protocol. In fact, in many cases obtaining th& flain memory can be faster than obtaining it

from another cache.

However, CMPs have made off-chip accesses significantlyengostly than on-chip cache-to-cache
transfers; currently there is an order of magnitude difieeain the latencies of the two operations. Moreover,
unlike traditional multiprocessors, (on-chip) cachezéhe transfers do not need off-chip communication.

Furthermore, a high percentage of misses in commerciallaaxlk can be satisfied by sharing clean data,

IFor example, the lllinois protocol [116], EDWP protocol Exjd Token Coherence [101].
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due to frequent misses to (mostly) read-only data (espgdiatructions) [11, 13,97]. These factors make

it more appealing to let caches share clean®data

3.2.2 Cooperation Mechanisms

By sharing on-chip clean/dirty data and relaxing multidiegache inclusion, an aggregate cache is formed
by the collection of on-chip private caches. This aggregatehe differs from the baseline private cache
organization in that, through cache cooperation, its euntan be controlled to offer different capacities

and latencies for different processor cores.

Cache cooperation, for example to share the aggregate caglhaeity, is a new hardware caching op-
portunity afforded by CMPs. As we shall see, cooperationvbeh caches will require the exchange of
information and data between different caches, under tineraoof cooperation and throttling policies.
Such an exchange of information and data, over and aboveitipog of a basic cache coherence protocol,
was not considered practical, or fruitful, in multiprocass built with multiple chips. For example, for a
variety of reasons, when a data block is evicted from the Icheaf one processor, it would not be placed in
the L2 cache of another processor. The complexity of detengiwhich L2 cache to place the evicted block
into, and transferring the block to its new L2 cache home,|ld/t»e significant. Moreover, this additional
complexity would provide little benefit, since the latendygetting a block from memory would typically
be lower than getting it from another L2 cache. But, the sidmafor CMP on-chip caches is very different:
the transfer of information and data between on-chip cachasbe done relatively easily and efficiently,

while the benefit of cooperation (e.g., avoiding costly affp misses) can be significant.

The CC framework provides cache placement and replacerasatiitooperation mechanisms to exploit

the aforementioned opportunities. These mechanisms a&adl éatensions to each cache in two aspects:

2IBM Power4 [148] and Power5 systems add two states (SL andl fFgir MESI-based coherence protocol to select and transfe
clean ownership. The first module that fetches a clean datmatly becomes its owner, and the ownership transferseméxt
requester when the data is forwarded to a different cachtéelflata is replaced before requested, the ownership isBaswith
the help of highly associative (8-way) L2 caches, this sthdnaippen only infrequently.
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Figure 3.3: Examples of Cache Placement Based Cooperdébartied lines represent data paths introduced
by placement based cooperations, while solid lines inditiz original data paths.)

(1) what blocks are placed into it and (2) what blocks areaegyd (or displaced) from it. CC policies can
combine these mechanisms to determine what data are kéywt aggregate on-chip cache, and specifically,

in which individual caches.

Cache Placement Based Cooperation

Cache placement based cooperation treats each L2 cachelask#@bx: without changing the internal
caching operation, it affects cache content by modifyingindata can be placed into the cache. This is

achieved by modifying an L2 cache’s local and remote regstesams, as illustrated in Figure 3.3.

An L2 cache’s local request stream consists of demand mésgkprefetches generated by its associated
L1 caches. Placement based cooperation can filter suchstsguweavoid L2 cache pollution. One such
example is cache bypassing [80]: by using compiler-geadraints or runtime statistics to predict data
locality in large chunks, it only insert data with good termgddocality in the cache. Similarly, CMP-
NuRapid [27] reduces unnecessary data replication by olalging data in a local L2 when it has been
recently reused (thus is likely to be reused in the futur@thBxamples selectively bypass L2 placement to

improve the effective cache capacity.

CC also introduces a remote request stream by placing (dlirigp) locally evicted blocks into remote

on-chip caches (labeled apill streams in Figure 3.3). Spill allows capacity sharing ampeer caches,
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making all on-chip storage resources available for oneqgasar core to use. Through spill, each cache can
observe the reference and reuse streams from both locaéarate computation threads. Such information
can be used to devise approximate global cache managemai¢p@such as global LRU replacement)

without paying the overhead of global coordination and kyogization.

The spill mechanism can be tailored in different ways. Faneple, cooperation policies can vary
in deciding (1) what data can be spilled, (2) which cache tst ltioe spilled data, (3) what data should
be replaced to make room for the spilled data, (4) whethéledpilata can trigger further spills, and (5)
how to balance the competition between local and remote é&ta We leave policy decisions for later
discussion, but make two mechanism-level decisions herst, By default, we choose to randomly pick a
host cache while giving higher probabilities to close nbmis. The random algorithm requires no global
coordination, and allows one cache’s victims to reach dléobn-chip caches without requiring “rippled
spilling”. Keeping spilled blocks close to their previouacbes can reduce both spilling time and access
latency for later reuse. Second, because one of the purpbsgdl! is to extend the on-chip life cycle of
local victims, the host cache should handle a newly-arrsggtied block in the same way as a demand miss.
This implies that for LRU-based replacement policies, hi#exl block is initially set as the most recently

used (MRU) entry in the host cache.

Cache Replacement Based Cooperation

Through placement based cooperation, each on-chip caoheegaotentially shared by many computation
threads generating heterogeneous memory access stredmavamg different locality, communication and
sharing properties. Consequently, conventional cachHagement policies (e.g., LRU, random or pseudo-
LRU) that treat all references equally can cause poor QoSababptimal performance. To recognize and
exploit data heterogeneity, cache replacement based @impecombines the default cache replacement

with data priority.
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This mechanism augments each cache block with a few bitsafiar dassification, which can represent
compiler generated locality hints [154] or dynamic sharamgl communication properties [23, 159]. The
cache replacement logic is extended to use such informatidralways evict blocks with the lowest priority.
For example, giving lower priority to data with on-chip riggls can quickly yield space for unique data
copies, thus increasing the aggregate cache’s effectpacds. If multiple candidates exist in the lowest
priority, the default cache replacement policy is used &akreven. Because replacement based cooperation
only changes how victim blocks are selected, it has no coress implication and allows more flexible

implementations (e.g., trading accuracy or even correstf@ simplicity).

Replacement based cooperation basically allows the cigdtion of individual caches to prefer different
types of data. This mechanism can be combined with spill moua ways to manage the content of the
aggregate on-chip cache as well as individual on-chip caclBzlow we discuss three examples. First,
caches with the same priority setting can be composed Miamgptio collectively replace undesirable data.
Consider a 2-core CMP where one core’s L2 cache contains hagly priority data while the other L2
cache only has low priority data. When isolated, each iddigi cache has only one class of data, so the
prioritized replacement policy falls back to the defauftleeement policy. However, with the help of spill,
the two caches can be glued together as an aggregate cabhevavilata classes. High priority data spilled
from its original cache will cause global eviction of low qrity data, leading to better utilization of the
aggregate cache. Second, caches with opposite priortiggetan be connected via spilling as producer-
consumer pairs, where the cache blocks updated by a prodacke are evicted and spilled directly into
its consumer cache. Such capability can be exploited by atatipn with task-level pipeline parallelism
for streamlined data communication [53]. Lastly, cacheth wifferent performance, reliability and power
characteristics can potentially be configured with différpriority settings, so that heterogeneous cache

resources can be matched to data classes with differentipiegp[69].

On the other hand, priority-based replacement should be wssely to avoid cache resources being
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entirely occupied by high priority data, potentially leaglito a Denial-of-Service (DoS) attack for low

priority data. In this dissertation, DoS is not an issue beeawe use priority-based replacement only in
L2 caches, and only to reduce the amount of data replicaBection 4.2.1). Other uses of priority-based
replacement can avoid the DoS problem with a probabiligtisléementation, where high priority data have

a small chance of being evicted while low priority blockssexi

3.2.3 Cooperation Throttling Mechanisms

Because CC’s cooperation is based on modifications of cagilacement and placement logic, it simpli-
fies cooperation throttling to a small set of control poinBelow we consider two classes of throttling

mechanisms.

Probability Based Throttling

To adjust the amount of cooperation, cooperation prolissiican be specified at the following three control
points: (1) local L1 to L2 data path, (2) L2 replacement logind (3) L2 spill logic. These probabilities
are used to decide how often to apply cooperation insteadkaid the default action. Probability based
throttling allows CC to provide a wide spectrum of sharinggdeors. If all three probabilities are set to 0,
CC defaults to private caches (albeit with support for caoheache transfer of clean data). CC’s behavior

moves towards more aggressive resource sharing as thdsbjitees increase.

Probability based throttling can be used for different vimekis. For homogeneous workloads where
all threads have similar caching behavior, only one set sfesy-wide probabilities is needed. However,
heterogeneous workloads demand thread-specific prafedtld suit the caching requirements of individual
threads. For example, programs with larger working setsheae higher probability for spill and cooper-
ative replacement, while smaller programs can have highargbilities on L2 bypassing. This way the

smaller programs can save space in their local caches fmrlarograms, and the aggregate cache resource
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are more efficiently shared.

Quota Based Throttling

CC also supports quota based throttling: each thread’stmariresource consumption can be specified and
CC will make sure these quotas are honored. Resource quotsecaither coarse-grained or fine-grained.
Many cache partitioning schemes allocate capacity in lahymks, based on way partitioning [144]. Fine-

grained quota, on the other hand, can be an arbitrary nunflseche blocks.

CC maintains quota by tracking each thread’s resource ogpison and replaces data from over-quota
threads with data from other threads. CC throttles a thsedata placement decisions based on whether
the thread has used up its capacity quota. Specifically, €&lldivs a thread to spill locally evicted data to
other caches if the thread’s current capacity exceeds dtaquAs data spilled by another thread replaces
data stored in its local cache, an over-quota thread’s dgpasage will be decreased. On the other hand,
CC avoids selecting a under-quota thread’s private cacleresipient of spilled data, so that this thread’s

capacity usage will only gradually increase.

3.3 CC Implementations

In this section, we present the implementation of the CC énmork. Section 3.3.1 enumerates CC's
functional requirements, and Section 3.3.2 proposes ap@ssiplementation that exploits a CMP’s high-

bandwidth, low-latency, on-chip communication networkl 8exible topology to reduce space, latency and
complexity overhead. Other CC implementations are pasdiblextending various existing implementa-

tions, which are discussed in Section 3.3.3.

3.3.1 General Requirements

The functional requirements for CC are described beforesantmarized below.
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e Cache coherence extensionsBeyond a conventional cache coherence protocol for ndnsive
caches (e.g., implemented by Piranha [12]), CC also regjsupport for cache-to-cache transfer of
clean blocks and block spill. As part of the coherence pualtabis support has to be implemented

correctly.

e Cache replacement extensions.Data classification information needs to be created, exgdthn
and maintained, while L2 cache replacement logic uses stfommation to support priority-based
replacement. Because these modifications only affect thetim of eviction candidates, an incorrect

or slow implementation should only cause performance digi@n rather than correctness problems.

e Extensions to support throttling. To allow L2 cache bypassing, L1 caches need to directly waite
the L2 write-back buffer (assuming write-back caches),clwhs straightforward to implement. CC
also adds (1) extra states to track the amount of capacitylmseach core (which can be imprecise)
and (2) extra logic to decide whether to use cooperation dretiver/where to spill. Such extensions

do not affect correctness, thus can be imprecise or slow.

3.3.2 Cluster-based CMP Organization

In this section we detail our proposed implementation of Gihal a specialized, on-chip, centralized
directory, which will be used to evaluate the performancdath private cache organization and CC in
Chapters 4 and 5. We focus on the implementation of cache&ote extensions because they are critical
for correctness. It should be noted that this design can é&e fas other CMP systems while CC can also be

implemented in various other ways.

Centralized On-chip Directory

Our design is based on a directory protocol, which has twamtdges over a snooping protocol. (1) Latency.

In a snooping protocol, every L2 miss incurs long-latendyiteation overhead to gather responses from all
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Figure 3.4: Private Caches with a Centralized Directory

on-chip caches. A directory protocol can reduce such oeerhieto a request transfer and a directory
lookup. The reduced network switching activities can aBeesactive power. (2) Bandwidth. Compared
with snooping, a directory protocol can significantly reeliice number of broadcast requests and network
bandwidth requirement. However, implementing a direcfwgtocol has to solve two challenges: directory

storage overhead and protocol design complexity.

The proposed implementation is based on a MOSI directoripopobto maintain cache coherence, but
improves over a traditional directory-based system in rs¢wgays: (1) To reduce storage requirements,
the directory memory for private caches is implemented bylidating the tag structures of all private
caches, requiring only 3% extra cache space (Table 3.1)TH&)directory is centralized to serve as the
only serializing point for cache coherence, which can dyesamplify the implementation of the directory
protocol; (3) Located at the center of the chip, the dirgcttan provide fast access to all caches; (4) The
directory is connected to individual cores using a speahtpto-point ordered request network, separate

from the network connecting peer caches for data transfers.

Figure 3.4 illustrates the major on-chip structures for azo& CMP. The Central Coherence Engine
(CCE) embodies the directory memory and coherence engimesenvinternal structure and directory mem-
ory organization is shown in Figure 3.5. The CCE consistspdfirsg buffers and the directory memory

connected with router queues for incoming and outgoing agess The spilling buffer is organized as a
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Figure 3.5: CCE and Directory Memory Structure (8-core CM&hw-way associative L2 caches)

circular buffer, where each valid entry stores an in-flighiii;ig block (data and state) and its host cache ID.
The lookup, insertion and deletion of spilling buffer eegriwill be discussed later (in Section 3.3.2). The
CCE’s directory memory is organized as a duplication of &lfgie caches’ tag arrays, similar to [112]'s
remote cache shadow directory. Because CC requires thegdaches to be non-inclusive, the CCE has to
duplicate the tags for all cache levels. The tags are indiexexiactly the same way as in an individual core.

A tag entry consists of both the tag bits and state bits.

In our implementation, the directory memory is multi-batikesing low-order tag bits to provide high
throughput. Incoming coherence requests trigger lookapbkoih the spilling buffer and the directory
memory. A directory lookup will be directed to the corresgimig bank, and to search the related cache

sets in all cores’ tag arrays in parallel. The results frohtag) arrays are gathered to form a state/presence
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vector as in a conventional directory implementation. Adividual block’s state may be updated according
to the request type and current coherence state. The caeeesigine will finish processing the request
by generating requests for invalidation, data forwardorgeplies with data or acknowledgment messages.
The latency of a directory lookup is expected to be almosté#me as a private L2 cache tag lookup, since

the extra gather step should only marginally increase teads.

The coherence engine maintains each processor’s duplazptarays to reflect what blocks are stored in
its corresponding local caches and what their states arandfeinclusive caches, a cache block can remain
in a processor core’s private cache hierarchy (L1 and L2eas)clvhile moving frequently between local
caches. CCE only keeps track of block installation and mriclrom one processor’s entire private cache
hierarchy, because its correct operation only requiresvledge on whether a processor’s private cache
hierarchy has a block, but not its precise location withim ierarchy. However, lack of such information
requires the CCE to carefully manage its tag arrays to avamdlicts. Specifically, when allocating a new
block in the directory, the CCE first attempts to allocateh@ L2 tag array before filling the L1 tags. This
is because for large L2 caches, blocks from multiple L2 satslie mapped to the same L1 cache set and
potentially cause an overflow in the L1 cache set. Filling ltRetags first will guarantee the directory
can find a free L1 tag when it is needed. Conversely, when CGffsex block from an L2 tag array, it
also checks whether any L1 tags can be mapped and immedmateigd to the corresponding L2 set. By

keeping the L2 tag arrays as full as possible, the CCE enshaeso overflow occurs in its L1 tag arrays.

Table 3.1 lists the storage overhead for an 8-core CMP withvaylassociative 1MB per-core L2 cache,
2-way 32K split L1 instruction/data caches, and 8-entry-qme spilling buffers. The tag bits storage
overhead is estimated assuming a system having 4 Teralfydhgsacal memory, and a 128-byte block size.
The total storage needed for extra tag bits (recording imé&bion used for cache cooperation), processor
ID (used for quota-based cooperation throttling), dupiiceag arrays and spilling buffers is 271.5KB,

increasing the on-chip cache capacity by 3.12% (or 6.10% ft-byte block size). This ratio is similar to
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Component | Location | Size (KB)

Tag extension (2-bit] Caches 17.0
Processor ID (3-bit) Caches 25.5
Tag duplication| Directory 221.0
Spilling buffers CCE 8.0
Total (3.12%) 271.5

Table 3.1: CCE Storage Overhead for an 8-core CMP with 1MBag-Rer-core L2 Cache

Piranha [12] and lower than CMP-NuRapid [27]. Table 3.2 sh@LE's relative space overhead for several
different CMP configurations. Although the absolute sterage increases with the number of cores and
per-core cache size, the relative overhead remains stafilacdually slightly decreases. We do not model
the area of the separate point-to-point network as it requhie consideration of many physical constraints,
which is not the focus of this dissertation. However, wedwaliit should be comparable to that of existing

CMP’s on-chip networks.

Configuration Variable Parameter Value (Overhead)
8-core, 4-way (varied L2 size)| 512KB (3.30%)| 1MB (3.12%) | 2MB (2.98%)
1MB, 4-way (varied CMP size) 4-core (3.20%)| 8-core (3.12%)| 16-core (3.07%)

Table 3.2: CCE Storage Overhead under Different CMP Cordtpirs

Cache Coherence Extensions

Besides maintaining cache coherence, the CCE also needgppors cooperation-related on-chip data
transfers — (1) cache-to-cache transfers of clean datarapills. The implementation of these functions

is discussed below.

Sharing of clean Data. To support cache-to-cache transfers of clean data, the @E#sno select a
clean owner for a miss request. By searching the CCE dineat@mory, the CCE can simply choose any
cache with a clean copy as the owner and forward the requistviaich will in turn forward its clean block
to the requester. This implementation requires no extrarmoite state or arbitration among the private

caches. On the other hand, the CCE has to be notified whengdaahes replace clean blocks, in order
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to keep the directory state updated. This requirement ishyetxtending the baseline cache coherence
protocol with a “PUTS” (or PUT-Shared) transaction, whidiifies the CCE about the eviction of a clean

block. On receiving such a request, the CCE will invalidatetilock in the corresponding core’s tag arrays.

Spill. Figure 3.6 illustrates two implementations of spill usingherence messages communicated
among the spilling cache, CCE and host cache. In a pull-bmspkmentation (Figure 3.6 (A)), a local
victim is locally buffered while the evicting cache notifisandomly chosen host cache to fetch the block.
The host cache then issues a special prefetch request tthedllock. In addition to serving the prefetch
request, the spilling cache also transfers the state bitseanoves its local copy (thus migrating the block
to the host cache). The implementation of pull-based spifitiaightforward as most modern processors
support prefetching. As shown in Figure 3.6 (B), push-baseitlconsists of two pairs of data transfer and
acknowledge messages. The first transfer is the same as alnerite-back initiated by the private cache.
Upon receiving a spilled block, the CCE temporarily bufférs data in its spilling buffer and acknowledges
the sender. The second transfer ships the block from the @Gletchosen host cache. The host cache
treats the incoming data similarly as a demand requestaa#ls space for it by possibly replacing another
block, then acknowledges the directory to release thelapifer. Race conditions can occur when the host
cache issues a request for the spilled block during the sedata transfer, in which case the CCE will
receive the request message instead of the acknowledgmeatCCE handles it by searching the spilling
buffer and releasing the entry with both matching block addrand host cache ID. Similar as update-
based coherence protocols, push-based spill can haveodkadsues, which are often solved by using
different virtual channels for different types of commuations. We have implemented push-based spill in
our simulator to prove its feasibility, and avoided deaklby using a dedicated virtual channel for block
spilling.

Data Classification. Because the coherence engine can observe all on-chip dtemmsa it has been

used extensively to detect sharing, communication andrsgnization patterns [31, 70, 82, 89, 90, 92, 93,
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Figure 3.6: Push- and Pull-based Spill

110, 126, 140]. The CCE can classify data according to th@eence states or behaviors, and use such
information for CC'’s prioritized cache replacement. Foample, Chapter 4 presents replication-aware
cache replacement that tries to keep unique data on chip. @& @#€ts unique on-chip copies when a
write-back leaves only one cache holding the data, and corinaies this information to that cache with a

notification message.

3.3.3 Other Implementation Options

This section discusses other possible implementationbeothree key components in CC’s mechanism

layer: the private cache organization, cooperation mashanand throttling mechanisms.

Cache Coherent On-chip Private Caches

Cache coherence among on-chip private caches can be mathtay snooping or directory based protocols,

as well as token coherence [101]. Multiple private caches lma connected via snooping buses as in
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traditional SMPs, and CMPs such as IBM Power4 and Powergmgsf148]. Non-inclusive L1/L2 caches
are also supported by previous CMP designs. For examplantiir[12] uses shadow tags to encode L1
cache states on the shared L2 cache side. Similarly, eaghtepti2 cache can include duplicated L1 tags
(with cache states) to simplify the implementation of cachleerence. Snooping requests can be filtered by
simultaneously looking up both L2 and duplicate L1 tags, famabarded to an L1 cache only if the data is
actually stored in it. A similar implementation can be usedtbken coherence, as demonstrated in [13],
while further optimizations can use soft-state directarfoimation to reduce the number of broadcast

requests.

Implementing private caches with a directory protocol &sletraightforward, because the naive imple-
mentation of on-chip directory memory can incur prohil@tstorage overhead. A concise on-chip directory
can be implemented by duplicating private L1 and L2 cache fag shown in Section 3.3.2), or using a
sparse directory cache [55]. The latter approach works feeNvorkloads with good directory reference
locality, but misses in the directory cache either incuremgive off-chip misses or require eviction of valid

on-chip blocks.

Many options exist to support on-chip sharing of clean datze clean owner can either be encoded in
the protocol as a new state, or selected via arbitration @f pgches in a snooping protocol [148], or chosen

by the directory if it keeps track of clean data write-bacRedtion 3.3.2).

Supporting Cooperation

Spill-based cooperation can be implemented in either ai'pois“pull” strategy, which have been discussed

in Section 3.3.2.

Both placement and replacement based cooperation needdoiate policy-specific information with
individual cache blocks, which can be recorded in the caabenith a few bits. These bits are initialized

upon cache allocation, possibly using information ass$ediavith the newly arrived data block. Updates of



44

Priority bits
Stack Depth Cache Tag P1 P2
MRU 1 A 0 0
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1. Finding the first non-zero membership vector
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2. At each non-leaf node along the search path:

IF (subtrees are both non-zero or both all-zero)
THEN  follow the LRU subtree
ELSE follow the non-zero subtree

(B) Pseudo-LRU replacement

Figure 3.7: Implementing Priority-based Replacement (N#34)

these bits are triggered by external events, which canrdithectively observed by caches in a snooping
protocol or generated by the directory when it detects sthtages. Because these bits are only used to
make caching decisions, and not involved in cache coher@mdeomputation efforts, they are allowed to

be imprecise or out-dated without causing correctnesdgmh

Prioritized replacement can be implemented with extraudirg in the cache replacement logic. Fig-
ure 3.7 illustrates its integration with two represen@atache replacement policies, assunfingasses of

data are prioritized in aNtway associative cache.

e LRU replacement. As shown in Figure 3.7 (A), each cache block is associateld MAtl priority
bits, each bit indicating whether it belongs to a certairaddass between priority andN- 1. A
block belongs to clagd (the highest priority level) if all priority bits are 0. Weralso view the array
of priority bits in a cache set ¢ 1 class membership vectors (each vectorMags corresponding
to theMblocks). In a stack-based implementation [105], a blockisrty bits move along with it to

reflect changes of the block’s position in the LRU stack. Td@acement candidate is selected from



45

the lowest-priority non-zero membership vector, and tleéimi should have the lowest stack position
among the blocks belonging to the selected priority clagss implementation can also be used for

other stack-based replacement algorithm (such as randuatesnent [105]).

e Pseudo-LRU replacement.Figure 3.7 (B) shows a tree-based pseudo-LRU implement§ti86].
To integrate with priority-based replacement, we firstciglee lowest-priority non-zero membership
vector. At each non-leaf node along the binary search pagh, RU-based search logic is augmented
to also consider priority information. Specifically, thegatented logic selects the LRU subtree if the
membership vectors for both subtrees are simultaneousiyzem or all-zero; otherwise, it selects

the subtree with a non-zero membership vector.

The size and complexity of these extra circuits grow witthldevels of priorityNand cache associativity
M We set N, M to be (2, 4) in this dissertation, while expectiNgo be less than 4 andino more than
8, so these changes can only add minimal storage and latereciiead. More aggressive assumptions
are made by other CMP caching proposals because write-laaeksot on the critical path and they have
negligible performance impact. For example, victim reggiicn [159] uses a 4-level prioritized replacement

in a 16-way set-associative shared cache.

Supporting Throttling

To support cooperation throttling, each private cache lshinclude two sets of registers: the "knob"
registers to store specified probabilities or quotas, whige"measurement" registers to save performance
measurements which are fed back to adjust the degree of iadimpethrottling. For quota-based throttling,
every cache block includes a processor-ID field to indicatewfhich core’s data it stores. Each private
cache maintains a set of counters to reflect the number oedalocks used by each thread, as well as the
number of invalidated/unused blocks. By periodically gigsuch information among different cores, CC

can monitor the capacity usage of different cores.
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Cooperation throttling can be either static or dynamictiSgthe throttling knobs statically is straight-
forward and requires no special support. Dynamic thr@tionsists of a feedback loop where current
throttling performance and program behavior changes agd ts adjust the degree of future throttling.
In this dissertation, we assume that throttling decisiamsraade by the hardware, but CC itself has the
flexibility to support software controlled adaptation. Tdwdtware can periodically read the "measurement”
registers, make adaptation decisions and update the "kegisters, while CC is responsible for enforcing

the specified throttling decisions.

3.4 CCfor Large Scale CMPs

The advent of CMPs has changed the scaling trend from bgogquency into increasing the number of
on-chip cores [119]. With Intel announcing its 5-year 80ecG€MP plan [73] and Rapport Inc.’s shipping

of single-chip with 256 mini-cores [128], computer architeare now starting to consider how to build and
use CMPs with 1000 cores in a few technology generationdrthis section, we discuss several directions
in improving the scalability of CC and outline a possible lempentation of CC for large scale CMPs. This
proposal is by no means the best approach, but only serves éissbstep towards the design of many-core

systems.

3.4.1 Directions to Improve CC’s Scalability

We believe that CC's private cache organization is esddntidighly scalable CMPs due to its modularity
and locality benefits. It will be difficult for a shared cacledupport hundreds of threads, because the
L1 miss traffic can saturate the on-chip network, and the esedche associativity to avoid inter-thread
conflict misses may incur prohibitive overhead. CC addresise off-chip bandwidth bottleneck of private
caches through inter-cache cooperation, which may lingitsitalability in two aspects. The first bottleneck
for current CC design is its central-directory based im@atation. As the number of cores managed by

the CCE increases, contention within CCE will delay cachescence operations and cooperation activities.
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Figure 3.8: 128-core CMP with 16 8-core Clusters

Scalability barriers also exist at the policy level even & have a scalable cache coherence protocol. As
the number of cores increases, the average latency for a@ecapacity sharing among all cores (e.g.,
via spilling/reusing) will also grow, eventually hittingpmint where the capacity benefit provided by global
sharing is offset by the growing on-chip communication bead. Cooperative capacity sharing policies
should consider such tradeoffs and limit cooperation withgroup of closely located caches. Other cache

optimizations may also prefer such a scoping policy if tladggorithms cannot scale to hundreds of cores.

A natural way to accomodate these requirements is to builgtiacale CMPs via composition of small-
scale clusters (e.g., 4-8 cores) and reuse the current dgndeghin each cluster. Comparing to a flat
directory protocol possibly embedded in a mesh-base gmekiwork, the hierarchical design can sig-
nificantly improve latency and reduce bandwidth by exphgjtintra-cluster data/communication locality.
This approach provides a smooth transition path for sntallesworkloads because it requires no extra
modifications of cooperation policies and incurs littleraxperformance overhead. Figure 3.8 illustrates
such a hierarchical design for a 128-core CMP with 16 8-ctuwsters. Within each cluster, the CCE is

augmented to maintain cache coherence at two levels. ¢hister coherence is provided by the central
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Figure 3.9: Logical Cooperation Domains (L3 = the aggregatehe within a cluster; L4 = the aggregate
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directory (CCE) as discussed in Section 3.3.2, and intestef coherence is achieved with a directory
organization where, through address space partitioniac) €CE serves as the home node for a fraction
of physical addresses. Multiple memory controllers (M@ ased, each responsible for servicing DRAM

accesses generated by one or more neighboring inter+ctlistetories.

This design mitigates the implementation bottleneck bytiimg the number of cores within each clus-
ters, while encapsulating each cluster as a single core prithte caches to build larger systems. Such
encapsulation not only reduces inter-cluster traffic fandarwarding, block invalidation, and write-back,
but also decouples intra- and inter-cluster coherencayadl flexible combination of coherence protocols

at different levels.

Treating a cluster as a single core (by aggregating referstiteams and cache resources) also allows
the reuse of previously proposed cooperation mechanisthpdalities across multiple clusters. Instead of
using a fixed scope of cooperation defined by the cluster ynihter-cluster cooperation will take place
in “logical domains” (as shown in Figure 3.9), which can batistlly or dynamically formed according

to management domains, communication patterns, or dadditiocWith cooperative caching at different
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levels, a single core can have a deep on-chip cache hieraarigysting of its private L1 and L2 caches, as

well as the L3 and L4 caches formed through intra- and intester cooperation.

3.4.2 AnImplementation of Large-scale CMP

Below we describe a cluster-based implementation of laggde CMP in details. Most the techniques
used here have been evaluated by other researchers forssral@lmultiprocessors (e.g., no more than 16
nodes) [21,101, 103, 104, 109]. We leave their evaluatiateutarge-scale CMPs for future work because

evaluating large-scale CMPs is still an open research iguelst, 65].

Figure 3.10 shows the key components of this implementasismwell as their interaction when servicing
(A) L2 cache misses and (B) inter-cluster coherence reguebhe required components (shaded in the
figure) are (1) intra-cluster directory and (2) inter-ciustoken coherence engine which are collocated in
the CCE, and (3) the memory controller for off-chip DRAM asses. The other components are optional

filters and predictors to improve performance and scatgbili

At a high level, an L2 miss is handled in the following step#stithe CCE receives the miss request,
looks up in the intra-cluster directory and generate iotusster forward or invalidation requests if the miss
can be satisfied by other caches in the local cluster. If theest misses in its local cluster (the L3 cache in
Figure 3.9), it will check the Exclusive Region Cache (ER&3¢e whether the coarse-grain region (that the
block belongs to) is exclusively cached by the local cludfdéhe region is exclusively cached, implying that
the miss cannot be serviced on-chip, the miss request istlglisent to the memory controller for off-chip
memory access. Otherwise, the region is potentially shiayeather on-chip clusters, the token coherence
engine will try to service the miss via inter-cluster comme requests. The token coherence engine predicts
a set of destination clusters (the L4 cache in Figure 3.9),manlti-casts the request. The multicast request
can either be satisfied, or needs to be retried by the Memteyfdice Cache (MIC) if none of the destination

clusters can serve it. Depending on whether the block hashimeopies, the MIC will either generate an
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Figure 3.10: A Possible Implementation for Large-Scale GMP

on-chip broadcast request, or an off-chip memory requegthwhill eventually satisfy the miss request.

Below we describe the operation and implementation of idiffe components. As we have already
discussed the internals of intra-cluster directory and orgroontroller, we only cover the remaining com-

ponents used for large-scale CMPs.

¢ Exclusive Region Cache (ERC)ERC records frequently accessed coarse-grained regionsin(c

uous, aligned, power of 2 sized memory areas) [109] that xckigively cached within the local
cluster. When an L2 miss enters the CCE (Figure 3.10 (A)Ysit fiiggers a lookup in the intra-cluster
directory. If the block hits in the local cluster, the direct will issue intra-cluster request messages;
otherwise, the ERC is checked. The ERC directly sends outffachip request to the memory
controller if the block belongs to a region exclusively stbiin the local cluster, therefore filtering
unnecessary inter-cluster traffic via the early detectibmrechip misses. Previous research has
observed significant coarse-grained exclusive cachingdtn multiprogrammed and multithreaded

workloads [21, 109] and shown that small ERCs (64-entry pdB Icache for 16K regions) are
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sufficient for effective filtering.

Inter-cluster token coherence.We employ token coherence [101,103] to keep inter-clustehe co-
herent (Figure 3.10 (A)) because it allows direct commuincabetween the miss-causing cache and
neighboring sharers without expensive intervention obglardering points (e.g., bus or directory).
A destination-set predictor [100] is used to predict thetidation cluster sets for misses in the local
cluster, which are used to generate multicast requestsvandi laroadcast on the global network. By
sourcing data directly from close-by sharers to the redquestche, this design reduces average cache
latency for workloads having significant sharing among hleaying clusters or between predictable
producer-consumer pairs. For workloads that cannot exfmen coherence, we use the memory
controller as the global ordering points to broadcast retpueWe make two modifications to the
original token coherence [101] for better scalability: @ach cluster is treated as one cache to
reduce the token size and predictor storage; (2) For reatests) (GETS), the multicast request is
implemented as one cruise-control message (as used bynwRifb2)| for on-chip invalidation) which
sequentially visits each cluster in the destination seit itrfinds the first sharer. This optimization

can further reduce latency by fetching data from the clodester.

Memory Interface Cache (MIC). Requests are routed to the memory controller if initial cleas

in their local cluster and predicted destination clusteiis (Figure 3.10 (A)). For correctness and
performance reasons, off-chip DRAM accesses should beledaf on-chip copies exist. We adopt
the memory interface cache proposed by Marty and Hill [L@diniaintain such information, thus
avoiding the complexity and space overhead of using an ekipalevel directory. Here, each memory
block is augmented with an owner bit to indicate whether tlemmry should respond to on-chip
requests. This bit is cleared (as 0) when data is first fetolnechip, and set to 1 upon off-chip write-
back. The MIC records on-chip regions with their block-lese/ner-bit vectors. When a request

misses in the MIC, the memory controller will read the owhi#from memory and fetch the data if
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the memory should respond. Otherwise, a broadcast is igelfed the on-chip copies. To maintain
the owner-bit, replacing a block with partial tokens neemlsnierge its tokens with other on-chip

copies, as did in [104].

e Cached Region Hash (CRH)Figure 3.10 (B) shows the processing of inter-cluster rsguathin
a CCE. We use a Bloom filter [18] called Cached Region Hash (JOR®B] to filters unnecessary
directory lookups to save latency, bandwidth and power. C&idrds a superset of regions cached in
the local cluster using a small bit vector (1LKB per 1MB caci] can filter most unnecessary region
lookups. The intra-cluster directory is only accessedeafrbquest hits in the CRH, which generates

either intra-cluster forwarding requests, or an acknogeent if the data is not cache in the cluster.

From the viewpoint of a processor core, the proposed largke<CC design can effectively support all
levels of on-chip cache hierarchy (L1 to L4 caches as showkigare 3.9) because it avoids higher-level
cache accesses and global communication whenever a missstex@n be serviced by a lower-level cache.
We believe that this design can improve scalability in sgvienportant scenarios: (1) locality is exploited
at the following three cache levels to reduce global comeation: private L2 cache, caches in a cluster
managed by the intra-cluster directory, and neighboringtels glued with token coherence (e.g., logical
domains and stable sharers); (2) with ERC, no coherencéeadris incurred for exclusively owned data;
(3) global ordering points (here the memory controller) areessed only when global communication is

needed; (4) off-chip accesses are reduced through on-objgecation and by the MIC structure.

The drawback of this design is its inefficiency for global eommication, which can at worst involve
both a multicast message generated by the token coherestoegirand a broadcast message generated by
the global ordering point. To support workloads with lestadad communication locality for CMPs with
kilo-cores, future research is needed in understandigglacale parallel workloads, and providing scalable
communication infrastructure (e.g, high-dimensionatiabnnection networks), programming models (e.g.,

hybrid between shared memory in small scopes and messagjegasross clusters) and cache management



53

policies.

3.5 Summary

To meet both performance and non-performance relatednioaite conflicting cache requirements, a wide
spectrum of application/optimization specific cache resegharing behaviors are needed. Because neither
private nor shared cache organization can answer theskeryes, we advocate a unified framework to

manage the aggregate CMP on-chip cache resources.

The proposed CC framework includes three key mechanismg.Pr{tate cache based organization
provides both latency/bandwidth benefits and resourcatisol CC also removes the inclusion restriction
within a processor core’s multi-level private cache hielgrfor flexibility and supports cache-to-cache
transfers of clean data to avoid unnecessary off-chip misé&d) Cache placement and replacement based
cooperation mechanisms enable inter-cache resourcengha8) Probability and quota based throttling

mechanisms can orchestrate and control cooperative rEseharing.

Cooperative policies can thus combine these core mechaimisyarious ways to suit the resource sharing
needs for specific workloads and optimization goals. CC d¢sm lae implemented in different ways. As
an example, we propose a cluster-based CMP organizatiog ason-chip central directory, and discuss
possible extensions to support large-scale CMPs. Chapmed4 will elaborate on how to combine CC
mechanisms with innovative cooperation policies for mgntatency reduction and inter-thread interference

isolation.
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CHAPTER 4

L ATENCY REDUCTION VIA COOPERATIVE CACHING

In this chapter we extend the CC framework with cooperatiolicigs to reduce the average memory
access latency. In Section 4.1 we motivate the problem atlth@wur proposed solution. Section 4.2
describes cooperation policies to reduce the number ofltegcy off-chip misses. An evaluation of our

approach is presented in Section 4.3, and we conclude witiio8et.4.

4.1 Motivation and Proposed Solution
4.1.1 Motivation

An important goal of a cache hierarchy is to improve perfarogaby reducing the average memory access
latency. For CMPs, the average memory access latency carokenbinto cycles spent at different levels
of the memory hierarchy: (1) local L1 caches; (2) local L2tegowvhich can either be a processor core’s
private L2 cache or local L2 banks as part of a shared cacheeif®ote caches, which are on-chip caches
that are not local to the requesting processors; and (Atoff-storage (any external caches and DRAM).
Correspondingly, Equation 4.1 calculates the average melaiency, whereP. denotes the probability that

a memory access hits in cache legehnd L. denotes the (round-trip) hit latency to cache lexeFor a
given workload and processor configuration, memory lateedyction usually correlates to performance
improvement because the number of memory accesses to deraptertain amount of work (measured as

the number of committed instructions or user-defined tretitas) is mostly determinéd

IWorkload variability [2] can change the number of memoryesses per unit of work, usually due to spin locks and idlegoop
However, such effects are largely filtered by private L1 esotommonly used in CMP designs, and we use the same metggdolo
as suggested in [2] to compensate the effects that worklagadbility has on simulation results.
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Latency = (PLl * LLI) + (PLocalLZ * LLocalLQ) + (PRemoteL2 * LRemoteL2) + (Pl\/lem * LJ\/lem) (41)

Several terms in Equation 4.1 can be viewed as constantssadifferent CMP caching schemes. First,
the access latencies of various cache/memory levels atefixieir tag/data array lookup time and network
latencie. Second, the L1 cache hit ratio is constant because L1 carkesimilar across various CMP
caching schemes and usually independent of the orgamizanico management of L2 cache resources. These
factors have left the probability distribution of L1 cachesses (or the relative hit ratios to L2 caches
and memory) as the determining factor of CMP caching perfmoa. These terms are marked bold in

Equation 4.1.

This aspect is exactly where various CMP caching propost&r.dPure private caches make efficient
use of their portion of on-chip cache resources, leadingdcenocal L2 hits (highePr.qir.2) as well as
potentially more off-chip accesses (higiy;.,,.); a shared cache can reduce off-chip misses by storing data
across the chip, but a local bank is only able to satisfy dairaof total L1 misses (lowelP; ,..11.2). Shared
cache based hybrid schemes try to exploit data replicatidm@gration to increase local L2 hit ratio (higher
PrLocair2 and lowerP geote1,2), Without significantly increasing off-chip accesses Pl 94,115,158, 159].
Private cache based hybrid schemes attempt to make use oferem-chip caches (increasi®keoter.2
and decreasinBj,.,.), while retaining higher local L2 hit ratio [14,59,68,13&epending on the aggregate
caching requirement of the workloads, these schemes caemeifferent results: small workloads that can
be cached by a local L2 cache do not need the larger capacithaséd cache; larger workloads prefer

shared cache based or hybrid designs to reduce off-chigsiss

In order to suit the diverse requirements of different woskls, an ideal CMP caching scheme must

2This is only a first-order approximation because congestighe network and memory controller can cause extra delays.
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be able to: (1) provide a spectrum of options between the twemes of private and shared cache
designs, and (2) dynamically adapt to the best sharing pmiatgiven combination of workload and system

configuration.

4.1.2 Proposed Solution

We try to optimize the average latency of memory requestis @& by combining the strengths of private
and shared caches adaptively. This is achieved in three: Way$y using private caches as the baseline
organization, CC attracts data locally to reduce remotelop-accesses, thus lowering the average on-chip
memory latency; (2) via cooperation among private cachasn form an aggregate cache having similar
effective capacity as a shared cache, to reduce costlyhgifroisses; (3) by cooperation throttling, it can
provide a spectrum of choices between the two extremes whtpriand shared caches, to better suit the

dynamic workload behavior.

Our approach attempts to manage the aggregate on-chipscagtiea set of unified heuristics. By
mimicking a shared cache, CC does not distinguish betwdfamatit sharing types (e.qg., private, read-only,
read-write) or treat individual threads separately (agicgy to their different working set sizes and locality
characteristics). The proposed cooperation policies@meaptually simple, only requiring modifications to

the default cache placement and replacement policies,rarehaily supported by the CC framework.

4.2 Policies to Reduce Off-chip Accesses

Because CC'’s baseline organization already uses privatesdo reduce cache latency, we now consider
cooperation policies to efficiently use the aggregate ap-caiche resources and thereby reduce the number
of off-chip accesses. We choose to mimic the caching behaf/eoshared cache with a group of cooperative
private caches. Compared with private caches, a shared ozakes more efficient use of available capacity

in three ways, corresponding to the three cooperation gmlice discuss in this section.
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First, a shared cache uses all on-chip data (both dirty amahylto satisfy processor requests. On
the contrary, traditional private caches only support thariag of on-chip dirty data. As discussed in
Section 3.2.1, CC matches a shared cache by supporting-tacaehe transfer of clean data. Because
unnecessary off-chip accesses are removed when thereeareadpies residing elsewhere on the chip, we

show in Section 4.3 that this baseline CC design can significautperform conventional private caches.

Second, a shared cache eliminates replication by storilygome copy of each unique data, while private
caches may keep multiple copies of the same data on-chipn¥delice a cooperation policy that replaces
replicated data blocks to make room for unique on-chip cfualledsinglets, thereby making better use

of the available cache resources.

Third, a shared cache observes references from all pracesses and chooses replacement victims
globally. Consequently, different cache capacities alecaled to different threads according to their
requestd. On the other hand, cache capacities are statically aldctd different threads in a private
cache organization, and each private cache can only obsuests and select replacement victims locally.
Using CC'’s spill mechanism, the last cooperation policy boras local replacement policies with global
spill/reuse history to approximate a global replacemelitypdhereby keeping potentially more useful data

on the chip.

Because Chapter 3 has described the details of cachetie-tamsfer of clean data, below we will only

discuss the two new cooperation policies and their thngftli

4.2.1 Replication-aware Cache Replacement

The baseline private L2 caches employed by CC allow rejpticatf the same data block in multiple on-
chip caches. When cache capacity can sufficiently satisfptbgram’s working set requirement, replication

reduces cache access latency because more requests céisfieel $1y locally replicated copies. However,

3The model here is that a thread runs on a processor core, wmsests are filtered by L1 private caches and triggers igpac
allocation in the shared cache.
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FORWARD (in response to GETS)

READ MISS
(data forwarded by
an on-chip cache)

OFF-CHIP MISS 0
WRITE MISS (replica)

UPGRADE (to M state)
SINGLET (sent from directory)

Figure 4.1: State Diagram for the Singlet Bit

when cache size is dwarfed by the working set size, repticalecks will compete for the limited capacity
with unique copies. CC uses replication-aware data replanéto optimize capacity, which discriminates
against replicated blocks in the replacement process. gdlisy aims to increase the number of unique

on-chip blocks, thus improving the probability of finding isen block in the aggregate on-chip cache.

We define a cache block in a valid coherence statesiisgget if it is the only on-chip copy, otherwise it
is areplica because multiple on-chip copies exist. We employ a simplieypto trade off between access
latency and capacity: evict singlets only when no replicasaaailable as victims. This can be implemented
by CC using prioritized cache replacement. All on-chip datclassified as either singlets or replicas, and

replicas are first selected when choosing victims.

With CC, a singlet block evicted from a cache can be furthilesiinto another on-chip cache. Using the
aforementioned replacement policy, both invalidated @mpdica blocks in the receiving cache are replaced
first, again reducing the amount of replication. By givingppty to singlets, all private caches cooperate
to replace replicas with unique data that may be used lateth®r caches, further reducing the number of

off-chip accesses.

To indicate whether a block is a singlet, each cache tag imanted with a singlet bit. This bit is
advisory and not needed for correctness. Figure 4.1 descifile state diagram for the singlet bit, which can
be initialized in two ways: (1) it is set to O if the block is fifetched from off-chip memory or as a result of

write miss (assuming an invalidation based coherence @obtar (2) it is set as 1 if the block is forwarded
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from other caches. In the second case, the forwarding cdsbeesets its singlet bit to 0, indicating the
data now has replicas. The singlet information is also comoated from the directory to on-chip caches:
when the directory receives a write back message, or a PUESage which indicates the eviction of a
clean block, it checks the presence vector to see if thismétiaves only one copy of the data on-chip. If so,
an advisory notification message (SINGLET) is sent to théaedmwlding the last copy of the block, which

can set the block’s singlet bit to 1.

4.2.2 Global Replacement of Inactive Data

Spilling a victim into a peer cache both allows and requirkt@ management of cooperative private
caches. The aggregate cache’s effective associativityagmals the aggregate associativity of all caches.
For example, 8 private L2 caches each with a 4-way assadtyagiffectively offers a 32-way set associativity

for CC to exploit.

Similar to replication-aware data replacement, we wantdoperatively identify singlet but inactive
blocks, and keep globally active data on-chip. This is eégfigémportant for multiprogrammed workloads
with heterogeneous access patterns. Because these appticdo not share data and have little operating
system activity, almost all cached blocks are singlets #fie initial warmup stage. However, one program
with poor temporal locality may touch many blocks which st@tome inactive (or dead), while another
program with good temporal locality but large working sell vave to make do with its fixed, private cache

space, frequently evicting active data and incurring nsisse

Implementing a global-LRU policy for CC would be beneficialtlis also difficult because all the
private caches’ local LRU information has to be synchrothiazad communicated globally. Practical global
replacement policies have been proposed to approximabalgge information by maintaining reuse coun-
ters [124] or via epoch-based software probabilistic algors [50]. We modify N-Chance Forwarding [32],

a simple and fast algorithm from cooperative file cachingaesh, to achieve global replacement.
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Figure 4.2: Percentages of Unique Cache Blocks in DiffeBafiemes

N-Chance Forwarding was originally designed with two go#lsies to avoid discarding singlets, and it
tries to dynamically adjust each program’s share of agdesetgche capacity depending on its activity level.
Specifically, each block has a recirculation count. Wheniafa cache selects a singlet victim, it sets the
block’s recirculation count to N, and forwards it to a randpeer cache to host the block. The host cache
receives the data, set it as the most recently used (MRUy anthe chosen cache set and evicts the least
active block in its local cache. The life cycle of the spilleldck is thus extended, giving it new chances
to compete with other cache blocks for on-chip space. If aaglating block is later evicted, its count is
decremented and it is forwarded again unless the count ecpero. If the block is reused, its recirculation
count is reset to 0. To avoid a ripple effect where a spillertklcauses a second spill and so on, a cache

that receives a spilled block is not allowed to trigger a sgoent spill.

The parameter N was set to 2 in the original proposal [32]. ®§yda N gives singlet blocks more
opportunities to recirculate through different privateloas, hence makes it more likely to reduce the amount
of replication and improve the aggregate cache’s effeatygacity. We have studied CC schemes with

different N values, and found that increasing N beyond 1 itthes &dditional benefit for CMP caching. To
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SPILL

LOCAL ACCESS 0
(read or write) (reused)

FORWARD (in response to GETS)
LOCAL ACCESS (read or write)

Figure 4.3: State Diagram for the Spilled Bit

explain this, we compare the percentages of singlet blonkigmuvarious N values in Figure 4.2. It shows
that, for 4 commercial workloads with significant data shgriCC with N=1 can achieve almost the same
level of replication control as CC with N=8, therefore pwinig the same level of performarfcdmigure 4.2

also shows that, even with N=8, N-Chance Forwarding carerabve all replicas in the aggregate cache.
This is because CC can only reduce replication in cache detsensinglets compete space with replicas,

which may not cover all cache sets.

We therefore sets N to 1 in this dissertation, and call theifisadpolicy 1-Fwd. 1-Fwd dynamically
balances each private cache’s allocation between localatatessed by its own processor and global data
stored to improve the aggregate cache usage. The activegsars’ local references will quickly force
global data out of their caches, while inactive processaltsaecumulate global data in their caches for the

benefit of other processors. This way, both capacity shampglobal age-based replacement are achieved.

Implementing 1-Fwd in CC is also simple. Each cache tag nieelds extended with one bit to indicate
whether the block was once spilled but has not been reusgdre.3 illustrates the operation of the spilled
bit with a state diagram. This bit is initialized to O for bkscinstalled due to local accesses. It is set to
1 when a cache receives the spilled block, and reset to 0 iblttek is reused by either local or remote

processors. Similar to the singlet bit, the spilled bit igiadry and not needed for correctness.

“For multiprogrammed workloads with little replication, ®@@th larger N values perform essentially the same as CC with.N
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4.2.3 Cooperation Throttling

At this point, CC can operate in one of two extreme modes: lfhyed cache mode by always using its
cooperative capacity improvement policies, and (2) pe\caiche mode that never uses cooperation policies.
Now we use probability based cooperation throttling to pieva wide spectrum of caching behaviors

between the two extreme modes, and discuss how to dynaynatedbse the best cooperation probabilities.

As discussed in Section 3.2.3, probability based thrgftbontrols how often to apply the cooperation
policies. In the context of memory latency reduction, CCawels more like as a shared cache with higher
cooperation probabilities and more like a group of isolgiedate caches with lower probabilities. Although
cooperation throttling is needed for both multithreaded amultiprogrammed workloads, we focus on
multithreaded workloads in this chapter, and apply quote8dhrottling in Chapter 5 to enforce isolation

among multiprogrammed applications.

Several options exist in choosing the best cooperationgtitittes for a given workload. Static tuning
sets the optimal probability based on profile informationd alynamic tuning adapts by predicting the
costs/benefits of various throttling degrees. Beckmanr. §13 14] examined the tradeoffs in balancing
latency and capacity, and proposed adaptive selectivieatiph (ASR) mechanisms and policies to reach
the best replication level. ASR can be integrated with CQatinwize both homogeneous and heterogeneous

workloads.

Alternatively, we can use dynamic set sampling (DSS) [1@ZJredict the memory latencies experienced
under different cooperation probabilities simultanepudihe key intuition behind DSS is that a caching
scheme’s impact on on the whole cache can be accuratelycrdddy sampling its impact on a small
fraction of cache sets. As shown in Figure 4.4, we divide d#lbache into 5 disjoint cache set groups:
4 small sampling groups (each having 3% of the total cach® seid one large group consisting of all
the remaining cache sets. Each sampling group uses a diffepeperation probability (0%, 30%, 70%

and 100%, respectively), and periodically a global selawith choose the best performing sampling group
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Figure 4.4: DSS-based Adaptive Throttling

(performance measured in average memory latency) and sisedperation probability in the remaining

cache sets.

In this dissertation we compare the average memory latemdiearious throttling options by assuming
strong correlation between memory latency and performasicelar to previous proposals [13,122]. Tech-
niques such as out-of-order processors, prefetching amaonyelevel parallelism optimizations can break
this assumption by partially or totally overlapping cachessas with useful computation or concurrent
memory accesses. More accurate prediction can be made Ipjirsgtie direct performance measurement

such as IPC or user-specified throughput metrics (as sweghesf3]), which is left as future work.

4.3 Performance Evaluation

In this section we evaluate the effectiveness of CC usinigsftdtem simulations. We first describe our
simulation and workload setup in Section 4.3.1, then prgbermperformance, latency and bandwidth results
for multithreaded commercial workloads and multiprograadnSPEC2000 workloads in Sections 4.3.2
and 4.3.3, respectively. In Section 4.3.4, we evaluate @Erformance sensitivity with different system
sizes, memory latencies and directory overheads. CC iscthrapared against the recently proposed Victim
Replication (VR) scheme [159] in Section 4.3.5, using thmesaimulation parameters as in the original VR

proposal. The benefits of adaptive cooperation throttengvaluated in Section 4.3.6.

Table 4.1 summarizes the different setups we use in oura&vaiu We use multiple setups to demonstrate
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Variable | Values
Workloads| Multithreaded commercial workloads (OLTP, Apache, JBR] Zrus)
Multiprogrammed SPEC2000 workloads (heterogeneous ambgeneous)
Multithreaded SPECOMP workloads (for VR comparison)
Single-threaded MinneSPEC benchmarks (for VR comparison)

System sizes 4-core and 8-core CMPs

Processor models 4-way out-of-order, 12 FO4 cycle time [60, 64] (default)
In-order blocking, 12 FO4 cycle time [60, 64] (for sensiiyvstudy and throttling)
In-order blocking, 24 FO4 cycle time [61,139] (for VR comisan)
Cache sizes 1MB per-core L2 (default)
512KB and 2MB per-core L2 (for sensitivity study)
Memory latency| 300 cycles (default)
600 cycles (for sensitivity study)

Table 4.1: Evaluation Scenarios

Component | Parameters
Out-of-order processor pipeline4-wide issue, 10-stages
Instruction window / schedulef 128 / 64 entries
Branch predictorg 12K YAGS + 64-entry RAS
Block size| 128 bytes
L1 I/D caches| 32KB, 2-way, 2-cycle hit latency
L2 caches/banks Sequential tag/data access, 15-cycle hit latency
On-chip network| Point-to-point mesh network, 5-cycle per-hop latency
Main Memory | 300 cycles total, 16 outstanding requests per core

Table 4.2: Processor and Cache/Memory Parameters

that CC achieves a robust performance advantage across diféergnt processor, cache and memory

configurations and a wide selection of workloads.

4.3.1 Simulator and Workload Setup

We use a Simics-based [99] full-system execution-drivenufator. The cache simulator is a modified
version of Ruby from the GEMS toolset [102]. The processodut®ms2simis a timing-directed functional
simulator that models modern out-of-order superscalarga®ors using Simics Microarchitecture Interface

(MAI). Table 4.2 lists the relevant configuration parametesed in our default simulation setting.

For benchmarks, we use a mixture of multithreaded comniexcikloads and multiprogrammed SPEC



65

Multiprogrammed (4-core)

Name Benchmarks

Mix1 apsi, art, equake, mesa

Mix2 ammp, mesa, swim, vortex

Mix3 apsi, gzip, mcf, mesa

Mix4 ammp, gzip, vortex, wupwise

Ratel 4 copies of twolf, small working set (< 1MB)
Rate2 4 copies of art, large working set (> 1MB)

Multithreaded (8-core)

Name | Transactions | Setup

OLTP | 400 IBM DB2 v7.2 EEE, 25000 warehouses, 128 users
Apache| 2500 20000 files (500MB data), 3200 clients, 25ms think time
JBB 12000 Sun HotSpot 1.4.0, 1.5 warehouses per-core, 44MB data
Zeus 2500 Event-driven, other configurations similar to Apache

Table 4.3: Workloads

workloads. Table 4.3 provides more information on the waakll selection and configuration. The commer-
cial multithreaded benchmarks include OLTP (TPC-C), Apafgiatic web content serving using the open
source Apache server), JBB (a Java server benchmark) argl(Zeather static web benchmark running
the commercial Zeus server) [1]. To compensate for worklaaihbility, we measure the performance of
multithreaded workloads using a work-related throughpatrim [1, 3] and run multiple simulations with

random perturbation to achieve statistically valid coemus. The number of transactions simulated for

each benchmark is listed in Table 4.3.

Multiprogrammed workloads are combinations of heterogaeeand homogeneous SPEC CPU2000
benchmarks. We use the same set of heterogeneous workled2g] dor their representative behaviors,
and include two homogeneous workloads with different wagkset sizes to explore extreme cases. The
commercial workloads are simulated with an 8-core CMP, evttile multiprogrammed workloads use a

4-core CMP, as we believe the scale of CMP systems may beadifféor servers vs. desktops.

Our default configuration associates each core with a 1MBj-agsociative unified L2 cache. Inclusion
is not maintained between local L1 and L2 caches for CC (thedaseline private caches) for the reasons

described in section 3.2.1. For the shared cache schemateptil caches are inclusive with the shared
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Table 4.4: Network and Cache Configurations

L2 cache to simplify the protocol design. Because the L1 eampacity is only 6.4% of the L2 cache,
the performance impact of multi-level inclusion/exclusiis negligible. Throughout our evaluation, we
compare a group of private L2 caches with a shared L2 cachiaghéhve same aggregate associativity and
total capacity. We classify L2 hits for a shared cache inttaland remote L2 hits, meaning hits into
a processor’'s local and remote L2 banks, respectively. s$ntoted otherwise, all caches use LRU for
replacement. We view prefetching as a orthogonal appraachgrove performance via latency hiding, so
none of the caching schemes incorporates prefetching pématently, Beckmann [13] has evaluated state-
of-the-art CMP caching schemes with token coherence anilaA8wer4 like prefetcher, and shown CC is

able to perform competitively for both commercial and stifenworkloads.

Table 4.4 reports the cache and network latencies for oauttegimulation setup. These latencies are
modeled similar to those in previous proposals [27,104],J8 consistent with CACTI [132] results. The
default setup assumes a 12-FO4 pipeline delay to model gdd@ghrmance design [60,64], and we scale the
cache and network latencies in Section 4.3.5 to model a 2pt@eline delay based, performance/power
balanced processor design. We use mesh networks for inippadata transfers, modeling the non-uniform
hit latencies for the shared cache. CC and private cachesoainate with the on-chip directory (detailed
in Section 3.3.2) using one-hop point-to-point links, #fere adding extra latencies for local L2 misses
(including the one-hop network latency and the directorgeas latency). The performance impact of

directory overhead will be evaluated in the sensitivitydgt(Section 4.3.4).
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Thousand misses per transactipn L1 Misses breakdown (Private / Shared / CC)

Off-chip (Private / Shared / CC Local L2 Remote L2 Off-chip
OLTP 9.75/3.10/3.80 90% / 15% / 86%| 7% /84% /13%| 3% /1% /1%
Apache 1.60/0.90/0.94 65% /9% /51% | 15% / 77% / 36%| 20% / 14% /[ 13%
JBB 0.13/0.08/0.10 72% 1 10% / 57%| 14% / 80% / 32%| 14% / 10% / 11%
Zeus 0.71/0.46/0.49 67% /9% /45% | 15% / 78% / 41%| 19% / 12% / 13%

Table 4.5: Multithreaded Workload Miss Rate and L1 Miss Bokavn

4.3.2 Multithreaded Workloads

In this section, we compare the performance of CC againgitgrand shared cache schemes, as well as an
“ideal” caching scheme that models a shared cache (for jitaaity advantage) but with only the latency of

a local cache bank (15-cycle).

Table 4.5 shows the off-chip miss rates and L1 miss breakddanvarious workloads and caching
schemes. For each benchmark, we report the off-chip missrraerms of thousand misses per transaction
(column 2), and break down L1 misses into local and remoteits2ds well as off-chip accesses (columns
3-5). The ideal caching scheme (not reported here) showle &a off-chip miss rate as low as the shared
cache, and local L2 hit ratio as high as the private schemeh&3CGnuch lower off-chip miss rates (within
4-25% of a shared cache) than the baseline private cach#:$-@mimes higher local L2 hit ratios than the
shared cache. According to Equation 4.1, these charaateriiggest CC will likely perform better than
both private and shared cache schemes unless off-chip atessare very low (favoring private caches) or

memory latencies are extremely long (favoring a sharedejach

Performance

Figure 4.5 compares the performance of private, shared nd@e “ideal” caching schemes, as transaction
throughput normalized to the shared cache. Four CC schemesduded for each benchmark: from

left to right they use system-wide cooperation probabgitof 0%, 30%, 70% and 100% respectively.
As discussed in Section 3.2.3, the cooperation probabgitysed by L2 caches to decide how often to

apply replication-aware data replacement and spillingrajlst victims. The baseline CC design (without
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Figure 4.5: Multithreaded Workload Performance (The “ltiesaheme models a shared cache with only the
latency of a local bank.)

capacity improvement policies) uses 0% cooperation piitileeh) while the default CC scheme uses 100%
cooperation probabilities to optimize capacity. We chomslg four different probabilities as representative
points along the sharing spectrum, although CC can suppenrtdrained throttling by simply varying the

cooperation probabilities.

For our commercial workloads, the default CC scheme (“CC0QGlways performs better than the
private and shared caches. The best performing coopernatatrability varies with different benchmarks,
which boosts the throughput to be 5-11% better than a shareltecand 4-38% better than with private

caches. CC achieves over half of the performance benefieatidal scheme for all benchmarks.

Memory Latency

The average memory access latencies (normalized to thedsbache) for different schemes are shown in
Figure 4.6. In each case we break down the access latencgyiokes spent in L1 hits, local and remote

L2 hits and off-chip accesses. We calculate the averagedatey assuming no overlap between memory
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Private (P), Shared (S), CC 0% (0), CC 30% (3), CC 70% (7) and@®5 (C))

accesses. Comparing Figures 4.5 and 4.6, we see that, fof-outler processors, lower access latency
does not necessarily result in better performance. For pbarin the case of OLTP, private caches have
a relatively lower access latency but effectively the samgomance as a shared cache. This is because
off-chip accesses have a much smaller contribution to tlkeeage latency for shared caches than they do
for private caches, whereas the contribution of on-chigsses is much larger. An out-of-order processor
can tolerate some of the on-chip latencies, even to remoteacBe banks, but can do little for off-chip
latencies. Because CC's capacity improving policies céectbely reduce the impact of long off-chip
latencies for private caches, it achieves better perfoca#tman both private caches and the CC scheme with

no cooperation (CC 0%).

On the other hand, Apache and Zeus spend over 50% of the tetabny cycles on off-chip accesses,
suggesting these workloads either have large working sgksay locality. The off-chip latency gap between

private and shared cache is essentially removed by CC 0% caithe-to-cache transfer of clean data.
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Figure 4.7: Multithreaded Workload Bandwidth (“#” indieatthe best performing CC scheme.)

Increasing CC'’s cooperation probability has little benafireducing the off-chip latency, but consequently
increases the on-chip latency. For this class of worklo@@swith 0% cooperation probability achieves the

best performance.

Bandwidth

Figure 4.7 compares (A) the amount of on-chip network trafid (B) the number of coherence messages

generated to accomplish the same amount of work (e.g., afP@h&hsaction) for different caching schemes.
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Misses per thousand instructions L1 Misses breakdown (Private / Shared / CC)

Off-chip (Private / Shared / CC Local L2 Remote L2 Off-chip
Mix1 3.1/2.0/2.4 78% /19% / 67%| 3% /73%/22% | 19% /9% /11%
Mix2 3.0/16/1.8 64% / 35% / 75%| 4% /55% /14% | 32% /9% /11%
Mix3 1.2/0.7/0.8 91%/20% /87%| 1% /77% /9% 7% /3% /4%
Mix4 0.6/0.3/0.3 95% / 12% / 90%| 0% / 86% / 8% 4% [ 2% | 2%
Ratel 0.8/0.6/0.8 90% / 20% / 80%| 3% /76% /13% | 7% /4% /6%
Rate2 53/51/41 31% /7% /24% | 11% / 47% / 34%| 58% / 46% / 42%

Table 4.6: Multiprogrammed Workload Miss Rate and L1 Missdkdown

These numbers quantify the requirements for (A) the on-nkigvork bandwidth and (B) cache coherence
engine’s execution bandwidth. The total bandwidth reguerts are broken down into 4 categories: (1)

control messages, (2) data forwarding messages, (3) bldté-backs, and (4) block spills.

The network and coherence bandwidth requirements of CCowfitkooperation (CC 0%) are both
comparable to those of the private caches, which are oftegraletimes lower than a shared cache. As
the cooperation probability increases from 0% to 100%, G@&umes extra bandwidth to exchange control
information (e.g., communicated via PUTS and SINGLET mgsspand data (via block spills) between
the on-chip directory and caches. Cache cooperation atseases the amount of data forwarding between
peer caches because it causes (1) more misses in local L&scaieth (2) more local misses to be satisfied by
a peer L2 cache. However, CC often requires less bandwidthttie shared cache because its use of private
caches can filter most L1-L2 communications. Overall, alfioCC 100% can sometimes require more
bandwidth than a shared cache, the best performing CC sshéaredwidth requirements are usually less
than 50% of a shared cache. The saved bandwidth not only teadduced network power consumption,

but also allows a potentially simpler and faster networkgtes

4.3.3 Multiprogrammed Workloads

In this section, we analyze CC'’s performance for multipamgmed SPEC2000 workloads. We compare
performance using the aggregate IPCs from 1 billion cycfesiraulation. No cooperation throttling is

used because a single system-wide cooperation probabifityt sufficient to accomodate the heterogeneity
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across benchmarks, and we leave the adaptive throttlingefi@rogeneous workloads as future work.

Multiprogrammed SPEC2000 workloads differ from commdraomultithreaded workloads in several
ways: (1) no replication control is needed for private cache little sharing exists among threads; (2)
consequently most L1 cache misses in the private cache scharsatisfied by the local L2 cache, which
often leads to reduced average on-chip cache latency atet petformance than a shared cache; (3) the
aggregate on-chip cache resources still need to be manédgeallg to allow dynamic capacity sharing
among programs with different working set sizes. Becauseports global management of distributed
private caches, we expect CC to retain the advantages aftprdaches while reducing the number of off-

chip misses via cooperation.

Table 4.6 lists the off-chip miss rates and L1 miss breakdofen private, shared and CC schemes. As
with multithreaded workloads, CC can effectively reduce #mount of both off-chip (shown by the low
miss rates in column 2) and cross-chip references (denaw@dtby the high local L2 hit ratios in column
3). The off-chip miss rates are only 0-33% higher than a sheaehe, and the local L2 hit ratios are close

to those using private caches.

Notice the high off-chip miss rates of Rate2 (over 40 missastipousand instructions) are caused by
running four copies ofr t , whose aggregate working set size significantly exceedsthkcache capacity.
Thrashing occurs as the result of overcommiting cache resawsage, causing the shared cache to have an
off-chip miss rate similar to private caches. CC has 20% femnieses because its spill based global capacity
allocation is less intrusive than the shared cache’s reglieen capacity allocation, therefore can mitigate
the negative effect of thrashing. This case is an examplesifalctive inter-thread interference, which will

be addressed in Chapter 5.



73

120% o - B
100%
Q
(&)
C
[
€ 80%[ g
S
$
ho] 60% I 7
Q
N
T
£ 40%f .
>
I Frivate
20% I Shared |
[]cc
[ Jldeal
0%

Mix1 Mix2 Mix3 Mix4 Ratel Rate2

Figure 4.8: Multiprogrammed Workload Performance

Performance and Memory Latency

The aggregate IPCs for the different schemes, normalizédetshared cache scheme, are shown in Fig-
ure 4.8. CC outperforms the private scheme by an average ofr@¥the shared caches by 10%. For
Rate2, CC performs better than the ideal shared schemedgeitdnas lower miss rate than a shared cache.
Figure 4.9 shows the average memory access latency, agsamioverlap between accesses. It illustrates
that private caches run faster than a shared cache for MiixB &hd Mix4 by reducing cross-chip references
(also shown in Table 4.6), while a shared cache improves ®p@rformance by having many fewer off-
chip misses. CC combines their strengths and outperforrtfs foo all heterogeneous workloads. For
homogeneous workloads, Ratel consists of four copi¢swof f , whose working set fits in the 1IMB L2
cache, so private caches are the best choice while CC perfiightly worse. CC reduces the off-chip miss

rate for Rate2, and consequently improves its performapaa/ér 20%.

SFor Mix2, CC’s local L2 hit ratio is higher than the privatensme because one of the benchmagsn(p) experiences much
fewer off-chip misses thus progresses faster and reachéfsredt computation phase during the simulation.



74

100%F o . . o SRR R
> — - ] N
(&) — —
S 80%| . - — -
o
- —
(7)) —
7] — L L L
S 60%| - I -
< — _— — L
()
(o))
g
g 40% |- -
.
20% |:| Local L2 -
[ IRemote L2 1
[ loffchip —| |
i

0% , , , ,
Mix1 Mix2 Mix3 Mix4 Ratel Rate2

Figure 4.9: Multiprogrammed Workload Average Memory Acckatency (from left to right in each group:
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Bandwidth

Figure 4.10 shows the amount of network traffic and coheremegsages generated per committed instruc-
tion, normalized to the shared scheme. Comparing with ficaches, CC incurs extra network traffic
mainly due to block spills and more frequent inter-cacha diatwarding. On the other hand, the coherence
messages generated by CC are mainly due to cooperatioad@dbdrmation communication (e.g., PUTS
and SINGLET) which can be easily combined with other coheganessages. Compared with the shared
cache, CC often filter many more L1 to L2 messages than thedaxtgperation messages. Except for the
pathological case of Rate2, where frequent local L2 ewvisticause CC to generate many spills and more
cross-chip traffic than the shared cache, CC only gener&t€é8% of the network traffic and 28-82% of the

coherence messages of a shared cache.
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Figure 4.10: Multiprogrammed Workload Bandwidth

4.3.4 Sensitivity Study

After showing CC’s benefits with the default simulation paeders, we now evaluate the performance
robustness of CC with a sensitivity study of commercial aaikl performance using in-order, blocking
processors. We choose to use in-order processors mairggtce simulation time, but they also represent
a relevant design choice (e.g., [87]). The main idea here &s$ess the benefit of CC across a spectrum of

memory hierarchy parameters.

Figure 4.11 compares the relative performance (transattimughput normalized to the shared cache
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Figure 4.11: Performance Sensitivity (300 and 600 cyclamarg latencies; from left to right in each group:
4-core and 8-core CMPs with 512KB, 1MB and 2MB per-core caghe

scheme) of private, shared and CC for different system g#zesre vs. 8-core), per-core cache capacities
(512KB, 1MB, and 2MB) and memory latencies (300 cycles v& égles). For a given CMP size (e.g., 4-
core), the normalized throughput of both CC and private masancreases with the per-core cache capacity,

while the performance gap between CC and private schemdaalhadecreases. Overall, CC achieves the
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Extracycles| O +5 +10 | +15
Multithreaded| 7.5% | 4.7% | 3.2% | 0.1%
Multiprogrammed| 11% | 8.0% | 7.0% | 5.9%

Table 4.7: Speedups with Varied CCE Latencies

best performance for most configurations with a 300-cyclenorg latency. When memory latency doubles,
the latency of off-chip accesses dominate, and CC becommisusio a shared cache, having -2.2% to 2.5%

average speedups.

Besides cache and memory parameters, the overhead of C@lamm@antation can also impact its per-
formance. As discussed in Section 3.3.2, our CC implemientatses an on-chip, centralized directory
called CCE. Because every local L2 miss has to be serviceddghrand potentially delayed by the CCE,
we study CC’s performance sensitivity to the CCE overheathlel4.7 shows the speedups of CC over the
baseline shared cache design when the CCE latency (ohigeycles) is doubled, tripled and quadrupled.
Speedups over private caches are not included because BadindCprivate caches are implemented using
the CCE, and increasing CCE latency has a similar effectemtiWe observe that CC can tolerate directory

overhead, and perform better than a shared cache, evenuweitiiupled CCE latency.

4.3.5 Comparison with Victim Replication (VR)

In this section, we compare CC with victim replication [158h example of recently proposed CMP caching
optimizations. We choose to study VR but not other CMP carkithemes (e.qg., [15, 26, 83]) for several
reasons: (1) both VR and CC use cache replacement as thdyimgléechnique to control replication; (2)

both schemes are based on a traditional cache organizatide,other proposals require significant changes
in the cache organization; (3) they both use a directorgthasotocol implementation, rather than requiring

different styles of coherence protocols (e.g., snoopitdgomol or token coherence).

The comparison is conducted using in-order, blocking msoes (12 FO4 cycle time) with the same

L1/L2 cache sizes and on-chip latency parameters as [158peoifically match its evaluation. We also
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Figure 4.12: Latency Comparison with Victim Replicationoth left to right in each group: Private (P),
Shared (S), CC (C), and VR (V))

tried using the set of parameters as in previous experimieotgever, VR performs worse than both shared
and private schemes for 3 out of 4 commercial benchmarksnAB59], we use random replacement for
victim replication, because it's not straightforward td & LRU information for the replica. To create as
realistic a match to the previous paper as possible, we atdade results for 9 SPECOMP benchmarks [8]

and 4 single-threaded SPEC2000 benchmarks with the MirB€3Bduced input set [85], all running on
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Figure 4.13: Performance Comparison with Victim Reploati

8-core CMPs. The single-threaded benchmarks are in comntbrjd89], and the SPECOMP benchmarks

have characteristics similar to the multithreaded worttsoit used.

Same as reported by [159], Figure 4.12 compares the averagwmm latencies of private, shared, CC

and victim replication schemes. We also report the perfaogaaneasurement (either transaction throughput
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or IPC, normalized to the shared scheme) in Figure 4.13. Bypawing the two figures, we can see that,
with in-order processors, the relative ordering of diffarechemes’ latency reduction capabilities correlates
well with their relative performance ordering, howevetelay reduction results cannot directly predict

performance improvement. Therefore we focus on Figure #h. 113 following discussion.

Figure 4.13 (A) includes (1) commercial multithreaded Woakls with large working sets and substantial
inter-thread sharing, and (2) SPEC2000 multiprogrammeukloads, while (3) SPECOMP multithreaded
workloads with little sharing and (4) single-threaded wWoakls are covered by Figure 4.13 (B). Victim
replication outperforms both private and shared schemeSRECOMP and single-threaded workloads,
on average by 5% and 18%. However, victim replication pempoorly for multithreaded commercial
workloads and multiprogrammed workloads, being on avegf#geslower than private caches and 11%

slower than a shared cache.

CC consistently performs better than victim replicatiorcggpt for OLTP). CC provides the best perfor-
mance for 3 out of 4 commercial workloads, 5 out of 6 multipesgmed workloads and all single-threaded
workloads; it is less than 1.4% slower than the best schearesd|fSPECOMP benchmarks. Across all of
these benchmarks, CC is on average 9% better than privatthaneld schemes, and 10% better than victim
replication.

Victim replication is especially ineffective for multipgpammed workloads because it blindly replicate
blocks in both the referencing processor’s local bank amthdme node bank. This can cause significant
waste of on-chip capacity (as indicated by VR'’s higher ‘dfip” bars shown in Figure 4.12), when the

home node does not reference the data but has to keep the owstef the data.

4.3.6 Adaptive Throttling

Previously we have evaluated CC schemes with differente&@dion probabilities for multithreaded work-

loads, now we study the performance of adaptive coopertiarttling which dynamically selects the best
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performing cooperation probability. Our experiments agda on Dynamic Set Sampling (DSS), which was
discussed in Section 4.2.3. Figure 4.14 compares the psafaze of CC schemes with various cooperation
probabilities and CC with adaptive throttling (AdaptiveBesides the commercial workloads, we also

include two SPECOMP benchmar&psi andart to represent multithreaded scientific worklofds

Figure 4.14 (A) shows that, except far t , adaptive throttling achieves the same performance as the

®0ther SPECOMP benchmarks are excluded here because virgingoperation probability has little impact on them.
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best static throttling scheme (at worst 1% lower). For OlAd3ptive throttling even outperforms the best
static scheme because it can dynamically change the cdimpepaobabilities to accomodate program phase
changes. For SPECOMP benchmankt , DSS-based dynamic adaptation performs worse then the best
static scheme because it mispredicts future program behathough this benchmark prefers the capacity
optimizations of CC 100%, it repetitively goes through msathat prefer more replication. Without phase
prediction support, our current adaptation scheme praglgtincreases the amount of replication and evicts
data that will be reused in later phases. This causes extchipf misses, leading to a 3% performance gap
between the adaptive scheme and CC 100%. As a sensitivityRigsire 4.14 (B) reports similar results
using longer memory latency (600-cycle). Due to increagéship miss penalty, the performance gap
between CC 100% and CC adaptive &rt is increased to 7%. For other workloads, adaptive thrgttlin

continues to reduce memory latency and performs within 1aS%he best static throttling scheme.

4.4 Summary

In this chapter we proposed cooperation policies for CC doice processor stalling cycles due to memory
access latency. Our proposed solution is based on the C@&virark for the latency benefit of private
caches. Expensive off-chip misses are reduced by mimidkim¢pehavior of a shared cache: (1) replication
is controlled to keep unique blocks on-chip, and (2) localheareplacement is combined with global
spill/reuse history to approximate a global cache replasgmolicy. Probability based throttling is applied
to trade off between cycles spent on on-chip wire delays dhdhip memory accesses, and adaptively

select the best cooperation option.

Our simulation shows that CC achieves the best performamcelifferent CMP configurations and
workloads. CC can reduce the runtime of simulated workldsd$s-38%, and performs at worst 2.2% slower
than the best of private and shared caches in extreme casesls@ outperforms the victim replication
scheme [159] by 9% on average over a mixture of multithreadedyle-threaded and multiprogrammed

workloads, while the performance advantage increasesddtoads with larger working sets.
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CHAPTER 5

COOPERATIVE CACHE PARTITIONING

With multiple execution contexts simultaneously sharingcbip cache resources, CMPs must accomo-
date multiprogrammed, concurrently running threads witfernt localities and working set sizes. In the
previous chapter, CC is extended with global replaceméiigips to dynamically adjust the cache allocation
in a fine-grained manner. This policy is simple by assumingidreinteraction among different threads
and being oblivious to their caching characteristics. Hmveunder high caching pressure, destructive
inter-thread interference can happen, causing sub-opperéormance, unfair progress and poor Quality-
of-Service (QoS). In this chapter, we further extend the @@hework with policies to mitigate the impacts

of such destructive interference.

In Section 5.1, we illustrate the problems caused by cackmuree contention, discuss previous cache
partitioning proposals for interference isolation andppimt their limitations. We outline our proposed
solution by addressing the limitations of prior cache piarting schemes. Section 5.2 provides background
information on metrics, workloads characteristics anduatéon methods. In Section 5.3 and 5.4, we detail
the two aspects of our approach—time-sharing based cactigopéng and its integration with CC's LRU-
based capacity sharing policy. The evaluation results eesepted in Section 5.5, and we conclude in

Section 5.6.

5.1 Motivation and Proposed Solution

5.1.1 Motivation

To make efficient use of the aggregate on-chip cache capawityoff-chip bandwidth, most CMP caching

designs support dynamic capacity sharing either via adtlgishared cache [12,15,27,58,113,148,159] or
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by adding inter-core capacity sharing policies onto pewveache based designs [23,59, 138, 156]. However,
capacity sharing in a conventional, unconstrained manaercause destructive interference among co-
scheduled threads, leading to sub-optimal overall pedoice and unfair impact on individual threads.
In contrast, a private cache design avoids inter-threaatference by statically partitioning the aggregate
capacity between processor cores. This design is simpiearfd guarantees QoS, but often incurs many

more expensive off-chip misses for thread mixes with noifieam caching requirements.

A Thrashing Example

Figure 5.1 shows an example of destructive inter-threagkfertence, by considering the task of execut-
ing many copies of SPEC2000 benchmarkt on a 4-core CMP with a 4MB 16-way shared L2 cache.
Figure 5.1 (A) shows the capacity allocation among co-saleeldthreads, while Figure 5.1 (B) plots the
corresponding throughput (measured as IPCs). In each Bphgthe 4 bars on the left represent an LRU-
based shared cache with the humber of co-scheduled thraadimg from 1 to 4, and the rightmost bar

represents a cache partitioning scheme with 4 threads oemtly running.

For LRU-based shared cache, the total capacity is evenigativamong co-scheduled threads. The
overall throughput doubles when the number of co-schediliezhds increases from 1 to 2, but starts to
decrease when more (i.e., 3 and 4) threads share the aggoaght resources. This is a typical example of
thrashing [35], where the overall throughput drops afterdfistem is overloaded beyond a certain threshold
(2 copies ofart being co-scheduled in this example). The performance dagjca is actually caused by
cache resource contention among threads with large wosddtsy Herar t 's working set size is 1.75MB,
which can only be satisfied when less than 3 threads sharegtivegate 4MB L2 cache. Adding more

threads will cause significantly more off-chip misses, iegdo lowered system throughput.

To optimize the aggregate throughput, the operating systambe modified to consider cache resource

contention and only schedule 2 copiesoft at atime [49]. On the other hand, hardware cache partitgpnin
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schemes (for example, [123, 144]) can achieve even highenghput without adding software complexity.
As shown by the rightmost bars in Figure 5.1, this is achidwegartitioning the total L2 capacity among
4-copies ofart to: (1) provide the minimum capacity needed by threads 1 atwdsatisfy their working

set requirements and (2) allocate the remaining capacitydas threads 3 and 4.

Cache Partitioning Background

Cache partitioning manages the aggregate cache resouecexplicit allocation to different reference
streams (e.g., generated by different threads), as opposedching policies that treat all requests as
from a single source [144]. By dividing the total capacityamg co-scheduled threads, cache partitioning

can isolate the destructive interference among co-scaddhireads and potentially improve the system
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throughput (as shown in Figure 5.1 and prior proposals [28,144]), fairness [84] or QoS [156].

We can view private caches as an example of static cachdiquartg, where the aggregate cache
resources are divided among processor cores at design tloeever, cache capacity requirements are
non-uniform across threads and across different prograamsgshof a single thread. To accomodate such
dynamic and often heterogeneous capacity requiremegtntreache partitioning proposals [68, 74, 84, 96,
121,123, 144, 156] match the perceived requirements dofréifit threads by orchestrating cache resource

allocation with more flexible, usually heterogeneous parts.

CMP cache partitioning schemes generally work in repetidgochs, each consisting of three steps: (1)
measurement, (2) partitioning, and (3) enforcement. Tlédtep is to measure and estimate each thread’s
performance (in terms of miss rate or IPC) for candidate eazhttitions. This information is then used to
determine the next cache partition to reach a given optimizagjoal. The new partition will be enforced in

the next execution epoch, while new measurement will beegathand used in later epochs.

Cache partitioning proposals can differ in measuremeneafatcement mechanisms, optimization goals
and metrics as well as their partitioning policies. Meamsent information can be gathered via profiling [66,
84], LRU stack hit position counting [156], monitoring [14®r dynamic set sampling [123]. Table 5.1
compares the optimization goals and policies used by pdoemes. The partitioning algorithm has to be
simple by avoiding exhaustive search, thus often usessimgrito prioritize capacity allocation according
to the miss rate and speedup characteristics of co-schitthukads. Both the measurement and partitioning
steps can incur space or execution time overheads, whiteunate information/decisions can lead to sub-

optimal results.

Despite their differences in metrics, mechanisms and igsliprior cache partitioning schemes have two

common characteristics and consequently two limitations.



87

Optimization goals Poalicies (threads with allocation priority)
Liu et al. [96] | Max throughput Static partitioning
Suh et al. [144]| Min miss rate Greedy (app. with best marginal miss reduction)
CQoS [74]| QoS Generic framework, open for various policies

Fair Sharing [84]| Min slowdown difference | Greedy (app. with most extra misses)
Fast and Fair [156] Max Y speedup under QoS| Greedy (app. with best speedup)

OS-managed [74] Open Generic mechanism, open policies
STATSHARE [74] | Open Generic model/mechanism, open policies
Utility-based [123]| Max WS Lookahead (app. with best marginal utility)
MTP (this chapter)] Max FS under QoS Iterative (threads with high speedups)

Table 5.1: Comparing CMP Cache Partitioning Schemes.

Coarse-grained vs. Fine-grained Capacity Allocation

Most current cache partitioning schemes are coarse-glaail®cating large capacity units (e.g., in 64KB
chunks) for long epochs (e.g., 5-million cycles [123]). Aefigrained partitioning scheme needs to (1)
estimate the costs/benefits of capacity allocations inlsmahits (e.g., 128B cache blocks) and (2) using
such information to frequently trigger the partitioning@st both incurring significant overhead [121]. To
reduce such overhead, most prior proposalswesgpartitioning [144] as the basic mechanism to enforce
a cache partitioch Assuming a set-associative cache, way partitioning atkscache resources in units of
cache ways (each way having the same number of cache seism&bhanism can be implemented with a
modified cache replacement policy to ensure that the nunfi@ocks used by a thread at a cache set level

does not exceed its way quota.

On the other hand, the commonly used LRU-based capacityngharfine-grained and can outperform
coarse-grained cache partitioning schemes when littler-thtead interference exists. To illustrate this,
Figure 5.2 plots the amount of cache allocated by (A) an LRSed scheme and (B) a way patrtitioning
scheme that optimizes overall throughput, for workl@ad - art - apsi - apsi (2 copies ofart and

apsi sharing a 4MB L2 cache). The cache patrtitioning scheme isseegrained because it allocates

ISTATSHARE [121] and cache-level-quota enforcement [125pbvide spatially, but not temporally, fine-grained fiotiing
mechanisms, however without specific policies to explaihsmechanisms. STATSHARE [121] also provides an analyticadel
to calculate the cost/benefit of block-based capacity atlon, but evaluating this model for every L2 request is aespe.
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capacity in cache ways and triggers repartitioning at thendary of 10M-cycle epochs. On the other hand,
LRU allocates on average 6.5 ways and 1.5 ways of capaciy toandapsi to better fit their capacity

requirements. LRU also supports temporally fine-graineatish whenapsi enters a phase that needs
more capacity (simulation time 500 to 530 million cyclegjapting to phase changes swiftly without extra

support or overhead.
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Due to spatially fine-grained sharingr t with LRU achieves 34% better speedup than with way par-
titioning. Apsi 's throughput is also slightly better than using cache fpaning because of temporally
fine-grained sharing (even though its average cache cgpacibwer than way partitioning). Similar
observations have been made in [141], which shows that LRiJocavide near-optimal cache allocation

for many workloads.

Fairness and QoS Issues

Another common characteristic of prior cache partitionsegemes is that they are Single Spatial Partition
(SSP) based: they all attempt to reach their optimizatioalggby selecting the best spatial partition and
use a single spatial partition repeatedly for all epochs stahle program phase (as previously shown in
Figure 5.2 (B)). In other words, these scheme consider guéges sharing among threads, but not time
sharing among different spatial partitions. This implibattit may be difficult for prior proposals to
simultaneously improve performance/efficiency and fasnevhile maintaining QoS, as it is intrinsically
hard to satisfy multiple conflicting goals with a single jigoh. We will describe our notions and metrics
for performance/efficiency, fairness and QoS in Sectionl15.But use the following example to briefly

illustrate the related issues.

Figure 5.3 plots the normalized performance of benchmark across a set of 4-thread multipro-
grammed workloads with large working set requirements. (evgrkloadart - ncf - ammp- vpr). The
shared L2 cache is managed by one of 4 caching schemes. (1)H2&Rs a cache partitioning scheme
that equally divides the L2 capacity among co-scheduleebtits. This scheme is fair (in terms of resource
allocation) and maintains QoS (i.e., providing predictapkrformance across different workloads). (2)
LRU (often implemented as pseudo-LRU) is the caching pdiarymost CMP designs, which allocates
cache blocks based on L2 requests. (3) PAR_WS is a cachigquaintj scheme that optimizes the Weighted

Speedup (WS) metric (a speedup/efficiency metric propose8MT architecture [134] and used in prior
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Figure 5.3: Throughput of Benchmawlpr in Different Workloads and Caching Schemes

CMP cache partitioning schemes [123,156]). (4) CCP is cop@sed caching scheme that will be described

in later sections.

Because PAR_Fair provides consistent performance for@lkioad combinatiorfs we use its perfor-
mance as a stable baseline for comparison. The LRU poliepgftrforms worse than PAR_Fair because its
demand-driven capacity allocation favors threads withdent misses and unfairly shrinkgr 's capacity.

Itis also hard to predictpr 's performance as it is dependent on the caching charaatered co-scheduled
threads. Therefore LRU cannot maintains fairness or Qo _RMS improves the performance over both
PAR_Fair and LRU for many workloads by balancing the capaalibcated to different threads, but it can
still unfairly shrink the capacity ofpr to achieve its optimization goal. Same as LRU, PAR_WS doés no

guarantee Qo0S. A better cache partitioning scheme (eggC@P scheme) should be able to achieve both

2Contention in other shared resources, especially the mesystem, can also cause destructive interference. Hereaus bn
the impact of destructive interference occurring in thé-legel CMP caches, assuming a fair memory system (supgomtin-max
fairness [17]) as proposed in [114].
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throughput and fairness/QoS goals.

Summary

We view the sharing of CMP cache resources among threads esoarce management problem. The
properties of a good resource manager have been extenskaatyined by the operating system researchers
(e.g., in [147]), which include (1) abilities to improve oa## performance, (2) maintenance of fairness
and QoS, and (3) suitability for a wide range of workloads borations. Fairness and QoS are especially
important for CMP as it is used in consolidated servers,eshaomputing clusters, embedded systems, and

other platforms where meeting these requirements is asrtangas improving overall throughput.

Previous research in CMP cache management mainly focuseing cache partitioning to achieve
some of these requirements [68,74,84,96,121,123, 14}, HoGvever, none of these proposals is sufficient
to satisfy all CMP cache management requirements becauseodfmitations. (1)Limited function-
ality. Prior proposals cannot address all functional requiremyantluding thrashing avoidance, fairness
improvement, QoS guarantee and priority support, paytéle to the difficulty of satisfying multiple, often
conflicting, goals in a single cache partition. [2nited scope of application. Cache partitioning can only
outperform LRU-based latency-reducing CMP caching scisefoe some multiprogrammed workloads.
An attempt to solely use cache partitioning can cause stibrapperformance for workloads that do not

experience destructive inter-thread interference.

5.1.2 Proposed Solution

Our proposal has two aspects, each addressing one of thantwatibns of cache partitioning: (1) we
introduce a time-sharing based cache partitioning schesienultaneously improve throughput and fairness
while maintaining QoS; (2) our cache partitioning schematisgrated with CC’s LRU-based capacity shar-

ing policy (covered in Chapter 4) to support both worklodus prefer caching partitioning and workloads
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that prefer LRU-based sharing.

To provide multiple functionalities, our Multiple Time-ating Partitions (MTP) scheme makes different
threads cooperatively shrink and expand their capaciogcations across multiple partitions, and schedules
different partitions in a time-sharing manner. Specificaach MTP partition improves at least one thrash-
ing thread’s throughput by temporarily shrinking the caiyaaf other threads to make room for it. By time
sharing cache resources among multiple unfair partitioasfavor different threads, the problems of fairness
improvement and priority support are translated into wsaldied time-sharing based scheduling problems.
Fairness can thus be improved by giving different threadsalegpportunity to speed up, while priority
(or QoS differentiation) can be supported by allocatindedént numbers of time slices to different unfair
partitions. The MTP partitioning algorithm further guatees QoS by using partitions that, on average, can

bound each thread’s slowdown against the even partitiopasgline (PAR_Fair in Figure 5.3).

Depending on whether destructive inter-thread interiegesxists, a workload can either prefer cache
partitioning or LRU-based sharing. In order to combine tlrergyths of cache partitioning and LRU,
we integrate MTP with CC’s baseline capacity sharing pofilcyrwd as discussed in Section 4.2.2). The
complementary benefits of these two approaches are achigvdividing the total execution epochs into
those controlled by either MTP or CC’s baseline policy, adog to the fraction of threads that can benefit
from each of them. The integrated schei@epperative Caching Partitioning (CCP), can achieve robust
performance for both workloads with and without destrietivter-thread interference. Furthermore, having
CC as the default policy can simplify the MTP patrtitioninga@lithm by focusing only on threads with large

speedup potentials, leading to a heuristic-based algotitiat can be practically implemented.

5.2 Metrics and Methodology

In this section, we provide background information on nputigramming metrics and evaluation methods

to simplify later discussion.
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5.2.1 Multiprogramming Metrics for CMP Caching

To compare the effectiveness of CMP caching schemes foipragramming, we first need to find proper
metrics to summarize the overall performance, fairness@o8 results for a thread schedule. A multi-
programmed workload’s throughput can be simply measurddeasum of per-thread throughput (i.e., IPC
for our workloads), but quantifying QoS and fairness can & hand requires an understanding of these

notions in the context of CMP caching.

Our notions of performance, fairness and QoS are based orptinoiples: (1) proportional-share
resource allocation and (2) Pareto efficiency. The firsigipia states that QoS and fairness is achieved when
the shared resource is divided among sharers in propoditiveir priorities or weights [19, 135, 151, 183]
Using proportional-share allocation to maintain the basefairness, the second principle further improve
performance (efficiency) by allowing disproportional shgrif it helps some sharers without hurting the
others. These principles have been used to define min-mapessi [17], which has wide applications in

computer networks and scheduling policies (e.g., Gerre@lProcessor Sharing [117]).

QoS Metric

QoS is the ability to provide a thread with guaranteed basgierformance (corresponding to a specific re-
source partition) regardless of the load placed on the dhvasmurce from other co-scheduled threads [151].
We useequal-share cache allocatiorio define the performance bottom line for QoS, which corredpdo

the special case of proportional-sharing when all threase the same priority. Notice that equal-priority
has been implicitly assumed by previous fair caching prajso66, 84, 156], while our MTP scheme can
also support threads with different priority levels (ref@iSection 5.3.3). This baseline can be implemented
either by uniform-sized private caches or an equal paniitigp of shared cache capacity between on-chip

cores, and it guarantees QoS because all threads get thecspiagity and thus can achieve the same

3Contention in other shared resources, especially the mesystem, can also cause destructive interference. Hereaus bn
the impact of destructive interference occurring in thé-lagel CMP caches, assuming a fair memory system as prdpo$&14].
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performance across different schedules. The equal-shlamtion baseline also provides intuitive QoS

results to multiprocessor users because it correspondsditidnal multiprocessors with private caches. For
similar reasons, Yeh and Reinman [156] use this baselinéemmgnted by private caches. Here we use the
even partitioning of a shared cache as our baseline becaaseeristing cache partitioning schemes assume

a shared cache.

The QoS metric is thus defined as the sum of per-thread slonsl¢as negative percentages) over this
baseline. Same as [114,156], we claim a caching scheme eaargee QoS if this measurement is bounded
within a user-defined threshold (e.g., -5%). Other ways asnang QoS exist (e.g., reporting the maximum
slowdown or the number of threads that violate Qo0S), but veethis total slowdown because it captures the

behavior of the entire workload and thus is a more stringatdr@.

QoS (scheme) = S min (0, %w -1

Fair Speedup Metric

According to the principle of Pareto efficiency, CMP cachsahemes can further improve performance
while maintaining fairness, if uneven resource allocattan speed up some threads over the equal-share
allocation baseline without hurting others. Now we considew to measure the scale of performance
improvement for multiple co-scheduled threads.

Summarizing the overall performance of multiple benchraddo-scheduled threads in our context) has
been an extensively discussed topic [79, 133]. We adopt pisdom and define thEair Speedup (FS)
metric to quantify the overall performance of co-scheduledads. FS is calculated as the harmonic mean

of per-thread speedups over the equal-share allocatiaiites

FS(scheme) = #app/ E?:afp %

Using harmonic mean of speedups, FS measures the exeéoteoretiuction (more accurately, execution
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resource occupation) against a baseline cache configurtita resembles traditional multiprocessors (so
higher FS is better). FS is also a fair metric because usmddimonic mean (instead of the sum as used
by [156]) rewards uniform speedups and penalizes slowdbwrisch corresponds to the principle of Pareto
efficiency.
The notion of fair speedup is similar to the fair slowdown riest proposed by Kim et al. [84], which

is measured against a single-thread execution baselineevdme thread has exclusive use of all cache
resources. Such a baseline is borrowed from SMT proces$8d, [where it corresponds to the single-
thread execution mode that allocates all execution andeces$ources to one thread. However, single-
thread execution in a CMP will waste the majority of exeautiesources. Instead, we choose to use the
equal-share allocation baseline because it has bettaroesotilization by supporting multiple concurrently
running threads and performs similarly as in traditionalltipcocessors. For the same reason, two other
SMT performance metrics using a single-thread executicellree—weighted speedup (or WS, which is

the sum of speedups) [134] and harmonic mean of speedups-f#8]not used.

Metrics Comparison

The choice of optimization metrics has a significant impactCMP caching policies. Below we use two

examples to demonstrate the differences between cachiegnes that optimize for different metrics.

Figure 5.4 shows the per-thread speedups of benchnaarksandvpr using two cache partitioning
schemes (2 threads sharing a 2MB L2 cache). Scheme (A) neesmieighted speedup (WS) by tripling
the performance dar t , however, its fair speedup (FS) measurement is worse tledpetseline (FS = 1) due
to unfair per-thread speedups. On the other hand, the faémse (B) optimizes FS at the cost of a lowered
WS result because the low-speedup thread is given a moreafetire allocation. This example shows that
(1) FS optimization has the side effect of avoiding unfating, (2) a scheme that optimizes FS may hurt

its WS or IPC results, and vice versa.

4According to the power-mean inequality, the harmonic m&amwector is maximized when all elements have the same value.



96

al [ Jart [ Jvpr ——WS - % -FS]|
o 2r a
>
e}
(¢}
[¢]
2 o ]
n T
1 o imemmer S 1
0 | - | -
(A) Unfair (B) Fair
Figure 5.4: FS vs. WS for Two Example Schemes
\ Metrics || Scheme A| <=> | Scheme B \
| Per-thread Speedufs0.76 /0.76 /3.18/3.18 1.97/1.97/1.97/1.97
Throughput (IPC) 052 | == | 052
Weighted Speedup 242 | == | 242
QoS B52% | < | 0%
Fair Speedup 122 < |1.97

Table 5.2: Performance Comparison Using Different Metrics

Table 5.2 compares the performance of two cache partitiosthemes for workloaar t - art -art - art .
Scheme A optimizes WS and throughput without considerisgnifplications on fairness and QoS, while
Scheme B aims to optimize FS while maintaining QoS. If onlgnparing throughput and WS results, the
two schemes have the same performance (showalasin Table 5.2). However, our QoS and FS metrics
(marked a®old in Table 5.2) reveal that Scheme A cannot guarantee QoS ®bileme B can, and Scheme
B achieves better fairness and execution time than A. Thasngke shows that our QoS and fair speedup
metrics are able to distinguish whether a scheme can ma@ias and fairness, but the WS and IPC metrics

cannot.

To summarize, using QoS and FS metrics together, we can neeasaching scheme’s effectiveness in
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improving performance, fairness and QoS. We will reportitssusing the FS and QoS metrics throughout

this chapter, and provide WS and IPC results in the evaluagation for comparison.

5.2.2 Benchmark Selection and Characteristics

CMP caching schemes should be compared using a wide rangeltgfnogrammed workloads to evaluate

their performance robustness. For evaluation purpose, @deha CMP with 4 single-threaded cores and
consider all 4-thread multiprogramming combinations €te&@n allowed) from 7 representative SPEC2000
benchmarks. There are 210 workloads because the numld€rocoimbinations (with repetition) selected

from N objects isCY ™1, so selecting 4-thread combinations from 7 benchmarks easrgteC

(=210) workloads.

Figure 5.5 shows the performance of our benchmarks undeerelit cache allocations. The IPC data
are gathered using a 4MB 16-way total L2 cache. With way tamtng, cache resources are allocated

in 256KB chunks. The equal-share allocation baseline (ethds the vertical line) is for each thread to
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Figure 5.5: IPC Curves
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use 1MB cache. At least 1 way is allocated to each thread. thiitde other cores on-chip, this leaves 13
ways (13=163 * 1), or 3.25MB, as the maximum capacity for one thread to havds figure shows that
our selected benchmarks have a wide variety of working gessiand IPC curve shapes, therefore their

combinations are able to generate a wide range of worklohaviers.

To understand the relationship between capacity allocadiod benchmark performance, Figure 5.6
breaks the IPC curve @fr t into three distinctive regions as more capacity is allatafé) pre-working-set
region (from 1 way to 4 way) represents gradual speedupsddfie program’s working set starts to fit
into cache; (2) in-working-set region (from 5 way to 7 waylicates dramatic throughput increases when
the working set can be partly cached; (3) post-working-egton (starting from 7 way) shows saturated
performance after the working set is fully cached. Excepbfnchmarks whose working sets are beyond
the capacity of the on-chip cache (e.g., streaming bendtehanost benchmarks demonstrate IPC curves

that consist of regions with distinct slopes, albeit witfiedent cache configurations.

According to which region intersects with the equal-shdlaation (which is dependent on both bench-

mark characteristic and cache configuration), we clashiégd benchmarks into 3 categories. This classifi-
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cation will be used to describe our cache partitioning rstigs.

e Supplier benchmarks These benchmarks can supply some or all of their equaéstegracity for
other benchmarks while still achieving the same level ofquarance as using all cache resources.
They include workloads with very small working sets (eapsi andgcc whose working set sizes
are less than 1MB) and streaming benchmarks (swj.mandf acer ec which are not included in

Figure 5.5).

e Sensitive benchmarks vpr andt wol f are benchmarks whose in-working-set regions are divided
by the line of equal-share capacity. The performance of gswograms changes significantly over
the baseline as cache size varies, therefore judiciousqaattitioning is needed when they are co-

scheduled with other benchmarks.

e Thrashing benchmarks art, anmp andncf are benchmarks whose in-working-set regions are
beyond their equal-share capacity. These benchmarkslyslalv down gradually with reduced

capacity, but can speed up dramatically when a certain anud@xtra capacity is allocated.

A similar classification can be found in [123], accordinglte benefit of increased capacity (or utility).
Our classification is different by separating thrashingdhemarks from sensitive benchmarks, both called
high-utility programs in [123] because they can speed uf wibre capacity. We focus on thrashing

benchmarks because they can easily benefit from our propasbe partitioning policy.

5.2.3 Offline Analysis vs. Online Simulation

Because cache partitioning schemes are often coarseedrdirey are amenable to not only the commonly
used online simulation approach, but also offline analys& 84, 96]. To do offline analysis, we first
gather performance profiles for all possible (benchmarfgacity) combinations. Comparing against each

benchmark’s baseline IPC, we can calculate the per-thrpaddsips for all (benchmark, capacity) com-
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binations and use them to calculate metrics such as FS, W®a8d For a given metric, we construct
the candidate cache partition space for each workload ahduskively search in the partition space for
the optimal result. Compared with online simulation, offlianalysis is idealized because (1) it uses
accurate measurement information and (2) it searches lf@oasible partitions, which can be too slow

to be practically implemented.

Due to its idealized nature, offline analysis can be used timate the performance upper bounds
for given cache partitioning policies. We will use this apgech to demonstrate the advantage of our
proposed MTP policy over prior cache partitioning scheraas,avoid the need to compare against realistic
implementations of prior proposals. We will also compare ¢ffline analysis results of MTP with online
simulation results of LRU-based caching schemes to idetti# limitation of cache partitioning schemes.
However, our final scheme CCP, which integrates MTP with Cil be evaluated using a practical imple-

mentation, online measurement information, and execwtioren simulation results.

Our offline analysis method assumes the evaluated exedutienval has stable program phases (which
can be composed by regular interleaving of sub-phases).oloselected benchmarks, this requirement
is satisfied by using sufficiently long execution epochs tuide multiple sub-phases, whose aggregate
behavior is stable enough for cache partitioning. Figureshows the phase behaviors of benchmarnks
andgcc under different epoch sizes (5M, 10M, 20M, and 40M cycleshe Benchmarks are allocated
with either 256KB or 2.56M to demonstrate the caching baravunder both small and large capacities.
For epoch size of 5M-cycle, both benchmarks experiencegutar phase changes especially using small
capacity. Because cache partitioning schemes’ predictidature execution relies on stable phases, such
irregularity can lead to sub-optimal partitioning deciso However, as the epoch size increases, irregular
phase changes gradually disappear (especially beyondc20M}. Based on these data, we set our epoch

size to be 20M cyclés

SNotice 20M-cycle is already the length of normal operatiystem scheduling interval on a 2GHz machine. Due to largetepo
sizes, current cache partitioning schemes cannot adaptdadnt thread-scheduling changes. Software/hardwagecation is
thus needed to support environments with frequent scheglahianges, which we leave as future work.
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5.3 Multiple Time-Sharing Partitions (MTP)

Prior CMP cache patrtitioning policies use a single spatatifion to achieve their optimization goals.
However, it is an intrinsically hard problem to satisfy niple goals (e.g., throughput, fairness and QoS)
with a single partition when conflicts arise between conmggtinreads. In this section we add a time-sharing
aspect on top of multiple spatial partitions, which usestild Time-sharing Partitions (MTP) to resolve
such conflicts over the long term. Below we detail the devalept of MTP as we add support for different

cache management functionalities.

5.3.1 Thrashing Avoidance

We first discuss when cache partitioning is needed by exaginihen destructive interference occurs.
Starting with the equal-share allocation baseline, if tusfiguration can satisfy the caching requirements
of every co-scheduled thread, then cache patrtitioning isieeded because little inter-thread interference
exists. Cache partitioning is needed only if some threagemance thrashing with their current capacity
allocations. These threads will attempt to acquire extcheaesources from each other and from other

threads, which leads to performance, fairness and QoSqimsbl

Thrashing is a classic virtual memory management problésh Ehd can be avoided by reducing the
multiprogramming level: when the number of competing paogs is reduced to a point that their working
sets can be cached simultaneously, they can all run mudr.fasthe context of CMP caching, the number
of co-scheduled threads is determined by the operatingersysbut cache partitioning can intentionally
manage capacity contention by unfairly shrinking the cajgscof some thrashing threads to expand the

capacities of other thrashing threads.

Consider partitioning a 4MB 16-way L2 cache between 4 ceedaled copies ofir t . With the equal-
share allocation of a 1MB L2 cachart has a low IPC of 0.066 due to thrashing (over 50 off-chip nisse

per thousand instructions) as previously shown in FiguBe Bs more cache resources are allocated, its



103

throughput increases quickly and reaches a saturating pbih215 IPC with 1.75MB capacity. At this
point, thrashing can be avoided for 2 threads by unfairlyaexjpeach of their capacity allocate to 1.75MB,
and shrink the capacities of the other threads to 256KB e@lb (PC). This partition doubles the total
throughput .215 * 2+0.05 % 2=0.52, which is two times 0d.066 « 4=0.264), but is unfair to the shrinking

threads.

5.3.2 Fairness Improvement

Cache patrtitioning between 4 copiesaft is an example of the throughput-fairness dilemma. When
the available cache capacity can not simultaneously gatisf working set requirements of multiple large
threads, compromise has to be made within a single spatiiq@a In this example, fair partitions cause
thrashing for all threads, while thrashing avoidance nexpuiinfair partitioning. Existing cache partitioning

schemes all face this dilemma, but differ in the way theydrafl between throughput and fairness.

We resolve this dilemma by learning from a similar examplgame theory [44]. Consider two office-
mates who commute to their workplace, performance is ddublgen they carpool but it is unfair because
the driver invests more effort and money. Not carpooling faiastrategy, but is also inefficient. In real
life, such games are played daily by the same players wha ofiprove both performance and fairness by
“taking turns” to drive when they carpool. We adopt the sao@perative policy to simultaneously improve
throughput and fairness with multiple time-sharing panis (MTP). Instead of using a single partition that
is either low-throughput or unfair, multiple unfair but highroughput partitions are used in a time-sharing

manner to also improve fairness.

Specifically, individual threads are coordinated to shiankl expand their cache allocations in different
cache partitions. Within a partition, the spare capacitiected from shrinking threads is used by expanding
threads, and different threads are expanded in differeriitipas. As a thrashing thread goes through

shrinking and expanding partitions, its average througlopn be much better than its baseline throughput.
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(A) SSP-based fair scheme (B) SSP-based fast scheme (C) MTP-based scheme
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Figure 5.8: Cache Partitioning Options for a Co-schedulé Gbpies ofar t

This is because a thrashing thread’s baseline performanakeady low by definition, and shrinking its
capacity usually only causes insignificant slowdown. Haveit can achieve dramatic speedup in one
expanding partition (when the allocated cache can holdadtkiwg set) and, on average, the speedup in one
expanding partition is often more than what is needed to emsgte the slowdowns in multiple shrinking
partitions. Overall, the multiprogrammed workload’s fageedup measurement is improved because all

expandable threads get a fair chance to speedup.

Figure 5.8 compares three cache partitioning schemes fopié ofar t . Single spatial partition based

schemes A and B provide the most fair and fast partitionpes/ely. Based on MTP, scheme C can both
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maintain the same level of fairness as scheme A (by equglf@én-thread speedups) and achieve the same
high throughput (IPC=0.52) and weighted speedup (WS=2#&heme B. Such improvement is reflected
by its high FS result (97% and 61% higher than scheme A anddpgatively), but can be overlooked by

only comparing IPC or WS results.

5.3.3 Priority Support

MTP extends the option of cache partitioning from the sinljbeension of space-sharing into two-dimensional
time-sharing between spatial partitions. The time-slgaoptimization can be applied to any proportional-
sharing resource partition baseline, thus supportingipyiid the priority levels of co-scheduled threads are

reflected in the baseline.

Priority can also be supported through time-sharing. &tstef giving different threads equal oppor-
tunity to speedup, different time-sharing priorities candssigned to different unfair partitions to deliver
differentiated levels of performance. Because time-sigaoased priority support has been well understood
and implemented by operating systems [62,153], MTP caresss\the cache management primitive to the

high-level software by focusing on the determination andeement of multiple unfair partitions.

As priority specification and interpretation are usuallpdocted by end-users and operating systems, we
leave the development and evaluation of priority algorghiior future work and assume the co-scheduled

threads have the same priority for the rest of the dissertati

5.3.4 QoS Guarantee

QoS can be guaranteed either in a real-time manner or ovdorigeterm to meet different application’s
timing requirements. Real-time QoS is needed only by aedpplications (e.g., real-time video playback
or transaction processing systems), and is not needed foy atlher programs. For example, users of SPEC

benchmarks, batching systems and scientific applicatimnsnastly concerned about total execution time,
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and thus long-term QoS, often measured over hundreds abnslbf cycles.

To guarantee real-time QoS, fast and fair partitioning [¥88erves for each threadgaaranteed par-
tition, which is the minimum amount of cache space required to aetilee same level of performance as
using the equal-share cache allocation. Further speedupe@abtained by intelligently partitioning the
remaining space. However, because only supplier benclen{deined in Section 5.2.2) can have their
guaranteed partitions smaller than the equal-share d¢gp#we cache partitioning algorithm is often left
with limited amount of space to optimize, which results iw lperformance cache partitions compared with

schemes under no QoS constraints.

Single spatial partition (SSP) based cache patrtitionirigeises experience the same problem even for
threads that require only long-term QoS. Because the saome grartition is used repeatedly throughout a
stable program phase, these schemes have to guaranteeedon@oS by guaranteeing QoS within every
cache patrtition. In contrast, MTP’s cooperative shringgmd model can be used to guarantee long-term
QoS with little loss of performance. To meet the QoS requarinthe MTP partitioning algorithm now
uses multiple partitions to maximize FS, under the constirthiat each thread’s average throughput across

multiple partitions is no worse than the equal-share basdliroughput.

To demonstrate MTP’s advantage in guaranteeing long-teo®, Gigure 5.9 and Figure 5.10 compare
SSP vs. MTP based cache partitioning schemes that optin8zenEer different types of QoS require-
ments: no QoS (SSRy.s and MTR,,q,s), real-time QoS (SSk,s and MTR.g,s), and long-term QoS
(MTPy00s)- These results are obtained from offline analysis (desdrib Section 5.2.3) to demonstrate the
performance potential of MTR),s implementation. In Sections 5.4 and 5.5, we will develop evaluate

its practical implementation.

For each scheme, we plot the percentage of workloads thaaa@ave various metric values. These
curves are essentially Cumulative Distribution Functig8®F) being transposed, so that a higher curve

indicates a better performing scheme. For example in Fi§u@egeach point (X%, Y) on the MTR),s
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Figure 5.9: FS Comparison of SSP and MTP Under Different Qe§uRements

curve indicates that, X% of workloads have FS measuremenisl ¢o or large thanX) value Y. Notice
that for the same type of QoS guarantee, the ideal SSP sclemme¢eer outperform the ideal MTP because

single spatial partitioning is a special case in the MTP rhomdkich is also empirically shown in the figure.

Figure 5.9 shows 4 distinct curves for 5 schemes because;ikPand MTR,,g.s have almost the
same FS results. Similarly, the curves of the QoS guarargemhemes overlap in Figure 5.10. The two
figures together show that (1) S§B,s and MTR,,g,s can not bound per-thread slowdown within the
user-specified threshold (-5% here); (2) 95£and MTR.,s are the worst performing policies (their
curves overlap for workloads with smaller FS values), iatiig that real-time QoS guarantee can restrict
performance optimization; and (3) M7;B,s can maintain long-term QoS while achieving almost the same
performance as the best performing scheme M HPs.

For its performance and QoS benefits, we now use MR as the representative MTP policy, and
denote it directly as MTP. MTP can be extended to supporitiea QoS by reserving guaranteed partitions

for real-time applications and optimizing the rest of peogs with the remaining capacity.
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5.3.5 Summary

MTP is a high-level cache partitioning policy that extendssting proposals with time-sharing multiple
cache partitions. MTP addresses four cache partitioniggirements: (1) thrashing is avoided with unfair
allocation within a partition; (2) fairness is improved lvifair time-sharing between unfair partitions that
each favors a different subset of co-scheduled threadpri8jty can be supported with unfair time-sharing;
and (4) different types of QoS can be guaranteed by boundingiegram slowdown within each partition

or across multiple partitions.

MTP can be implemented in various ways. A hardware-only temiuis transparent to software but
less flexible, especially considering priority support. oferation between hardware and software allows
hardware to collect measurement and enforce partitiongastbns, and software to schedule partitions

based on high-level requirements.

Our offline analysis results show that MTP can significantiitperform the best SSP based cache

partitioning scheme while maintaining long-term QoS. Heerein order to realize MTP’s benefits, we still
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need to answer two challenges. First, with both spatialtfmaring and time-sharing of spatial partitions,
the number of possible MTP partitions is many times more ®8R based partitions. We need to come up
with an MTP partitioning algorithm that can quickly prunestlarge partition space and is simple enough
for hardware implementation. Second, same as other cactigoping schemes, MTP is only needed for
some workloads, and not needed for workloads without detsteuinterference. We need to combine the
strength of MTP with LRU-based sharing and dynamically cothe best policy for a given workload. In
the next section, these issues are addressed by the otleet agpur proposal—integration of MTP with

CC’s LRU-based policies.

5.4 Integrating MTP with CMP Cooperative Caching

This section addresses another limitation of existing egmrtitioning proposals—inadequacy for work-
loads that are well supported by LRU-based latency-regucacthing schemes, where cache partitioning
can hurt. We propose a new hybrid scheme, Cooperative Caaftiéidhing (CCP), that combines the
advantages of MTP and CC’s latency optimizations. Below,mativate the need for the integration by
showing the complementary advantages of MTP and CC on eliffevorkloads. We then develop a simple
online heuristic to select MTP partitions based on the dffi€ characteristics of MTP and CC, and extend

the CC design to implement the hybrid scheme.

5.4.1 Motivation

Figure 5.11 compares the fair speedup and QoS results of MifRwo LRU-based caching schemes: CC
and shared cache, using the same aggregate cache size eridtady. We use scatter plots to reveal the
correlation between the best performing schemes and vaitldbaracteristics. To show the advantages of
MTP and CC over shared cache, we normalize performancesébi@) against the better results provided

by MTP and CC (i.e.Max[FS(MTP), FS(CC)]). To compare between MTP and CC, we cluster the 210
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combinations of benchmarks into two groups according tothdreMTP outperforms CC (i.e., whether
FS(MTP) > FS(CC)).

Several observations can be made from Figure 5.11. Firgur&i5.11 (A) shows that only a small
number of dots (10%) are over 1 and fewer (3%) are over 1.icatidg that a shared cache only outperforms
both MTP and CC infrequently and insignificantly. Second, AMdnly provides better performance than
CC for 32% of the workloads (67 out of 210 workloads), inditgtthe limited effectiveness of cache

partitioning over CC for many workloads. Third, for workttsthat benefit less from MTP, CC is almost
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always the best performing scheme (Figure 5.11 (A)) and caragtee QoS (Figure 5.11 (B)), showing the

complementary strengths of MTP and CC.

These observations imply that we can choose the best penigrscheme (in both FS and QoS) for a
given workload according to whethES(MTP) > FS(CC). if MTP provides better FS result than CC, then
MTP is almost always the best scheme; otherwise, CC is thtechege. Therefore, a hybrid scheme that
integrates MTP and CC can potentially provide the best padace for all workloads by simply choosing
the better scheme for any given workload. Below we analyeadhsons for CC and MTP’s performance

advantages, in order to achieve such an integration.

Advantages of CC

Two major reasons contribute to CC’s performance advantege MTP: (1) latency optimization over
shared cache and (2) LRU-based fine-grained cache sharimg firft reason is unique to CC—it is the
only proposed private cache based CMP caching optimiz#iianapproximates global LRU replacement

for multiprogrammed workloads; the second is supporteddtly £C and a shared cache.

CC reduces average cache access latency by keeping a piogiata set locally in the processor’s
private L2 cache. Due to on-chip wire delay, local cache s&tatencies are much lower than remote access
latencies. Comparing with a shared cache where data arédistl evenly across all banks and a large
fraction of L2 accesses are to remote banks, CC has the adpanf servicing most L2 accesses locally.
For threads whose working sets can be mostly satisfied bywatertache, such reduced L2 cache latencies

often translate into higher performance.

Similar to a shared cache, CC supports LRU-based capadaitynghby (1) allowing a local cache’s
victim block to be placed in a randomly picked peer cache, (sgill), and (2) approximating global
LRU replacement for multiprogrammed workloads via the coation of local LRU and global spill/reuse

history. CC differs from a shared cache in that it allocatagacity according to the local thread’s L2
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reference stream and the remote threads’ L2 miss streantd) a#te first filtered by their local L2 caches.

As discussed in Section 5.1.1, an LRU-based policy allecatehe resources in both spatially and
temporally fine-grained manner, and can often outperforarsesgrained cache partitioning schemes. Pro-
grams with highly non-uniform demands across differenheasets [124] can also benefit from fine-grained
sharing. For example, althougirmp has a working set size of 1.5MB (or 6 cache ways), it can furthe

speed up by 2X when the associativity requirements of ¢ehiai sets are satisfied by a 16-way allocation.

Heuristics for MTP to Outperform CC

We now try to discover the characteristics of the worklodmg tan achieve better performance with MTP

than with CC. Such characteristics will be used to develamale heuristic to integrate MTP with CC.

For brevity, we use expanding and shrinking partitions toode spatial partitions in which a given
thread’s capacity is above and below its equal-share aitwcarespectively. To simplify discussion, we
assume that within one group of MTP partitions, a thread ydweses the same capacty,,.q in all of
its expanding partitions and the same capa€liy,.;,» in all shrinking partitions, thus achieving the same
speedupSp and slowdownSd repeatedly. Offline analysis results show that this assimmptas almost
no performance impact on MTP. We further filter out suppliendhmarks by allocating their guaranteed

partitions to them, and allocate the remaining space betwteer threads.

To guarantee QoS and improve performance using MTP, eaeldisrtotal speedup has to exceed its total
slowdown, and at least one thread should have a much lar@rsfieedup. This can be achieved in two
ways. The first way is to have a thrashing benchmark whoseatr@p can compensate the total slowdown
in multiple shrinking partitions. The other way for a threadachieve speedup using MTP, without a large
Sp, is to have a modedip, but a steep speedup curve and a gradual slowdown curveatsthéhspeedups
accumulated in multiple expanding partitions exceed thevdbwn in one shrinking partition. However,

achieving a modestp along with a steep speedup curve requires only a small anod@xtra capacity, in
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which case CC is likely to achieve the same effect becauseRhkpolicy is better at fine-turning cache

allocation to achieve speedups (example shown in Figuje 5.2

The above analysis suggests that the common case for MTRpertarm CC is to have at least one
thrashing benchmark, determined by whether its speétiuim one expanding partition is larger than the
total slowdown accumulated in shrinking partitions. Héve.$p andSd values are dependent on both the
thread’s IPC curve and the available capacity (which furtleends on capacity allocated to co-scheduled

threads). The test of a thrashing benchmark will be usedeagdttitioning heuristic for MTP.

The common case also explains why CC can guarantee QoS whaehidtves better fair speedup than
MTP (Figure 5.11 (B)). A QoS violation occurs in CC only whetheead’s private cache is overly used by
blocks replaced from other threads (i.e., spilled blocB®cause CC's private cache has the same capacity
as the equal-share baseline used to define thrashing, thesayg spilling implies the existence of high
miss rate, and thus thrashing benchmarks. Therefore, foddeans that prefer CC, the spilling should not

be too invasive to affect QoS, otherwise thrashing will sccausing MTP to be preferred.

5.4.2 Cooperative Cache Partitioning (CCP)

We now develop cooperative cache partitioning (CCP), aisiesbased hybrid cache allocation scheme that
integrates MTP with CC. CCP consists of three componenjsa fteuristic-based partitioning algorithm to
determine MTP partitions; (2) a weight-based integratiolicy to decide when to use MTP or CC’s LRU-
based capacity sharing policy (1-Fwd, discussed in Sedtid12); and (3) modifications to the baseline CC

design to enforce fine-grained cache partitioning decssion

CCP Partitioning and Weighting Heuristics

Before MTP partitioning, CCP first gathers each thread’s &éhe miss rates under candidate cache allo-

cations, and uses them to estimate the IPC curve. Miss regesolected in our simulator in dedicated,
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online sampling epochs where each thread takes turns tohesmaximum amount of cache. We use
LRU stack hit counters to estimate miss rates under all plessiache associativities to reduce sampling
overhead. Although such overhead can be avoided with thentigcproposed UMON online sampling

mechanism [123], we include it in our evaluation results.

Using IPC estimations, each thread’s guaranteed pariffarreal-time QoS guarantee) can be calcu-
lated. CCP also initializes each thread’s,,,,q to the minimum capacity needed to achieve the highest
speedup, and’y,i,, to the minimum capacity that can ensure long-term QoS whaperating with

Cexpana- Athread is a supplier benchmark if it&,,.4,,; is the same as its guaranteed partition.

The CCP patrtitioning algorithm (shown in Table 5.3) themmnes$ a set of MTP partitions that are likely
to outperform CC, using the test of a thrashing benchmark simple heuristic. This algorithm has the
following three steps: (1) filtering out supplier benchnsawikhich will not benefit from any partitioning
schemes; (2) determine MTP patrtitions that each favorstoastiing benchmark by starving other thrashing
benchmarks with thei€y,,.;,,. capacity; (3) for MTP partitions where one expanding thread not use all
the remaining space, expand other threads to further iserg@eedup. We will describe steps (2) and (3) in

detail because step (1) is rather straightforward.

Step (2) determines the set of thrashing benchmarks by iegntweads whose speedups are not large
enough to guarantee long-term QoS. Each candidate threéastésl by the functiothrashing_testto see
whether its speedup in one expanding partition can compefmathe total slowdown accumulated in other
(shrinking) partitions. The threads that fail ttieashing_testare assigned with their guaranteed partitions
and removed from the candidate set, which will reduce thebmurof candidate partitions, the amount of
remaining capacity and possibly remaining candidatgs;,..q and speedups. Such tests are repeated until
one of the two termination conditions is satisfied: (1) thedidate set is empty, or (2) all candidate threads
pass the test. This step is guaranteed to terminate becaciseaind of tests either reduces the candidate

set size which leads to condition (1) in a finite number of step satisfies condition (2).
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Inputs: capacity C, thread set TS, sample results (IPCJi][c], gnteed partitions g[i]);
Outputs: expanded]i], MTP partitions MTP[p][i]; /*Thread i’s capacity in partition p */
[* Step 1: Filter out supplier benchmarks*/

Identify supplier benchmarks SupplierTS, subtract thg]rfigom C;

[* Step 2: Determine the set of thrashing benchmarks ThrashT&/
* init stable = false; ThrashTS=TS-SupplierTS; */
while (ThrashTS is non-empty and !stable)
stable=true;
foreachthread EThrashTS
Ceapandll]=’s capacity usage when other threads use tO&jf;.;x[j];
stable &= thrashing_test(i, size(ThrashT6&),,analil: Cshrinklil);

[* Step 3: Merge multiple expanding threadst/
[* init p = 0; expanded]i] = false; MTP[P][j]1€ snrinkll]; */
foreach thread EThrashTsS, p++
foreachthread j, start from i, in circular order
MTPI[p][j] += minimal remaining capacity for j to achieve itest speedup;
if (MTP[p][j] >Cezpanalil) €xpanded[j]=true; /*Expandedin MTP */
thrashing_test(i, nump, expand, shrink) /Key heuristic */
if (IPC[i][expand]-IPC][i][base])>(nump-1)*(IPCJi][ba$ePCJi][shrink])
return true; [* large speedup */
Cshrinkli]=g[i]; C=C-g][i]; remove i from ThrashTsS;
return false;

Table 5.3: CCP Partitioning Algorithm

After step (2), it is possible that in an MTP partition, thgparding thread does not need all the spare
space provided by other shrinking threads. Step (3) mergdigoie expandable threads in such a partition
to further increase speedup. To be fair, the algorithm giterto expand different sets of threads in different

partitions.

This algorithm also returns a vectetpanded. A thread: benefits from MTP if it is allocated with
Cezpand Capacity in at least one partitioma(panded[i] is true), otherwise it is likely to benefit from CC.
This observation leads to the CCP integration heuristie:etkecution time is broken into epochs managed
by either MTP or CC’'s LRU-based capacity sharing policy (dl, weighted by how many threads can
benefit from them respectively. F&f concurrently running threads, M of them can be expanded by MTP

partitions, then CCP will use MTP for evefiy out of N epochs and use CC for other epochs. A special case
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is when no thread is expanded because step (2) cannot find &Ryphttitions, in which case CC should be

used throughout the execution.

Extending CC to Enforce Capacity Quota

CCP uses the quota-based throttling to enforce MTP parsitiocCompared with way partitioning, CC’s

fine-grained cache-level quota enforcement can supp@adsrwith non-uniform capacity demands across
different cache sets. For MTP partitions based on way pariitg miss rates, such threads only use part
of its capacity quota in their expanding partitions whil#l sichieving large speedups. CCP detects such
cases and triggers the partitioning algorithm with newlNembed capacity usage, which often leads to better

results.

5.5 Evaluation and Results

We evaluate the effectiveness of different cache allona@hemes using the same Simics-based full system
simulator as described in Chapter 4. Here the same set aéftaemory/interconnect configuration param-
eters as in the default setup, but execution is driven bygesissue, in-order processor model. The simpler
processor model allows us to simulate all 210 multiprograuhiworkloads in a manageable time frame.
We choose this methodology because, under the same siomudiatie, simulating a wide range of workload
combinations allows us to recognize the limitations ofatiint approaches on different workloads, which

could have been missed by simulating a few combinations avitiore aggressive processor model.

The same total 4MB L2 cache capacity and 16-way associatvé used for shared cache (both with and
without way partitioning) and CC. Except far t which uses the train input, we use the reference input sets
for other selected SPEC benchm@rkall benchmarks are fast forwarded by 800M instructions ypdss

program initialization, and simulated for 700M cycles.

BArt with reference input is a streaming (thus supplier) benckm@/e do not include streaming benchmarks because cache
partitioning for them is very simple: their IPCs don’t changith L2 cache allocations, so we can simply allocate theinmah
capacity (e.g., 1 cache way) to them.



117

We compare the online simulation results of realistic CCplé@mentation with offline analysis results of
ideal cache partitioning policies (e.g., MTP). Becauseadieal MTP implementation results were shown to
be the performance upper bound of existing cache partitipechemes in Section 5.3, we do not compare

CCP with realistic implementations of prior cache pantitiy proposals.

We first compare CCP with its two baseline schemes CC and MTeérins of fair speedup, followed
by comparison between CCP with idealized offline analysssilte on two other metrics—throughput and
weighted speedup. We then evaluate the robustness of CCBNapdhthe total cache size. Lastly, we

compare the results of using in-order vs. out-of-order @ssor models with a subset of workloads.

5.5.1 Effectiveness of CCP

In Section 5.4, MTP was shown to be better than CC for only asetubf workloads. Since the ideal MTP
implementation represents the best cache partitioningdtsesve now refer to workloads that prefer CC over
MTP as workloads where cache partitioning could hurt pentorce, and the other workloads as workloads
that need the help of cache patrtitioning. Figure 5.12 coeyptire performance of CCP (realistic) with MTP
(ideal) and CC (realistic) on both classes of workloads.y®8 results are reported because both CCP and
MTP can guarantee Qo0S. Same as in Figure 5.9, we use tradspogecurves to show the percentage of
workloads that can achieve various levels of performancereHa higher curve indicates a better scheme
because it achieves better FS measurements across diffaions of the workloads, and the gaps between

curves correspond to their performance differences.

Figure 5.12 (A) shows that when cache partitioning is nee@€tP achieves comparable performance
as MTP (the gap between CCP and MTP curves is small), and meitér B-S values than CC (the gap
between CCP and CC is relatively large). The performanderdiice between CCP and MTP reflects the
difference between our practical partitioning heuristid a less realistic, offline, exhaustive search of MTP

partitions. For workloads where cache partitioning hufigure 5.12 (B) shows that CCP performs almost
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Figure 5.12: Comparing MTP, CC and CCP’s FS Results

the same as CC and significantly better than MTP. Togethgrdmonstrate that CCP effectively combines

the strengths of both MTP and CC.

5.5.2 Results of Different Metrics

Besides FS, CMP caching performance can also be evaluateglateer metrics. We use transposed CDF
plots to compare CCP (realistic) and MTP (ideal) againstsimgle spatial partition (SSP) based schemes
IPC,,: and WS, which optimize offline for throughput and weighted speedegpectively. Focusing on
workloads that need cache partitioning, Figure 5.13 coagl?C,;, WS,,;, MTP and CCP over 4 different
metrics: (A) fair speedup, (B) QoS, (C) throughput, and ([2jgited speedup.

For the first two metrics (fair speedup and QoS), MTP and C@math significantly better than IRg;
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and WS,;. This is because the SSP based schemes, when their goalgtoaiti fairness and QoS

requirements, often optimize by favoring only a subset tddlds while sacrificing the performance of other
threads. For IPC and WS metrics, both |[RCand WS, are better, although the gap between different
schemes are much smaller than in Figure 5.13 (A) and (B) ldstiited in the metrics comparison examples
(Section 5.2.1), this is because schemes optimizing for WS,and FS have different tradeoffs between

performance vs. fairness.
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Figure 5.13: Results for Workloads that Need Cache Partitgp(4MB cache, 32% of total workloads)

Figure 5.14 summarizes the average improvement of, W®C,,;, shared cache, CC and CCP over the

equal-share baseline for different metrics.
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Figure 5.14: Average Improvement for 4MB L2 cache

The average improvements are calculated as geometric noégres-workload improvements The

QoS results are summarized using the arithmetic mean betaeQoS measurements of many workloads are zero, which
causes the average results to be the same (zero) when usimgtgie mean.
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results are summarized over three groups of workloads: " “fgquaresents workloads that prefer cache
partitioning, “LRU” groups other workloads, while “All" ogers all workload combinations. This figure
shows that for workloads preferring cache partitioning’YRaCP performs much better than a shared cache
and CC, while achieving similar or much better results thertivo cache partitioning schemes. Considering
workloads that prefer LRU-based sharing (LRU) and all woakls (All), CCP provides the best average

results on all reported metrics.

5.5.3 Results for a 2MB L2 Cache

Now we evaluate the robustness of CCP when the total L2 cagbecity is reduced to 2MB. The reduction
of cache size not only increases capacity contention betweeads, but also causes some benchmarks to
switch their categories (e.g., from supplier benchmarksetusitive benchmarks, or from sensitive bench-

marks to thrashing benchmarks) so the performance of CCBetested under new scenarios.

Figure 5.15 uses transposed CDF plots to compare 4 cacheopary schemes (IPG;, WS,,;, MTP
and CCP) on workloads that need cache patrtitioning. CChagdiieves comparable FS and QoS results
as the ideal MTP implementation and outperforms the two B&fed partitioning schemes. This shows the
robustness of CCP’s heuristic-based partitioning algoritin terms of fairness and throughput tradeoff, the
weighted speedup results of MTP and CCP are similar toJP&hd WS, while their throughput results
are 10% lower. Again, QoS constraint and fair speedup opéititn are the two reasons that cause MTP
and CCP’s lower throughput, while IR and WS,,; can achieve better throughput without satisfying such

constraints.
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Figure 5.16 compares the average improvements of varidusnses over the equal-share baseline.
Because smaller cache size causes more capacity contanboaworkloads now prefer cache partitioning
(increased from 32% to 40%). As partitioning becomes moedepable, the performance of the shared
cache also drops significantly and comes close to the egaat$aseline performance. In contrast, CCP
still consistently outperforms other schemes for workiadere cache partitioning can hurt. However,
the gap between cache partitioning schemes and CCP (assv@lChis reduced because, due to capacity
pressure, latency optimizations contribute less to theativepeedup. Averaged over all 210 workloads,
CCP achieves the best results on almost all metrics (excephifoughput, where CCP is 1% lower than

IPCopt)-

5.5.4 Out-of-order Processor Results

The robustness of CCP can also be evaluated using a moressiggrerocessor model. Here we use the
same out-of-order processor modeled in Chapter 4, but amallpiate a representative subset of workloads
to shorten the simulation time. The workloads for the oubafer processor are selected as follows. First
we choose three benchmarks to represent each of the threlenbark categories discussed in Section 5.2.2:
gcc for supplier benchmarks;pr for sensitive benchmarks, ama t for thrashing benchmarks. A total

of 15 workloads can be generated by all 4-thread combimatidrihese benchmarks, and we only report

results for these 15 workloads.
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Figure 5.17: Comparison of FS Results with In-order vs. Qfutrder Processor Models

Figure 5.17 compares the FS results achieved by CC, MTP afiv@¢@n simulated using (A) in-order
vs. (B) out-of-order processor models. The key point shawigure 5.17 is that, across all workloads, the
relative ordering of different schemes for in-order and-@ubrder processors are the same. Specifically,

CCP performs the best for all workloads with both processodets.

The two sets of results differ mainly in the performance gapeng different schemes. Comparing with
in-order processor results, using the out-of-order pmmemodel increases the performance advantage of
CC and CCP over the shared cache (thus MTP). The reason foovetbbenefits is because, for the three
selected SPEC benchmarks, the out-of-order processomntemate some of the local L2 hit latency (15-
cycles) but not the local L2 miss latencies (more than 30es)cl Because CC can significantly increase

the number of local L2 hits than a shared cache, its perfocmavantage is magnified when using the
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out-of-order processor model.

1.7 - - - 0

16 ........................ _005 B | | |

15 ..................... _._ _01 B | SR

14 ............ Ko I o _015 B | T [
% 3

13 ........... O _02 B | [

12 ........... _025 T

11 L _03 I

1 | | | | | L] . . .
Par LRU All Par LRU All
(A) Fair Speedup (B) QoS

I \vSopt [ \PCopt [ shared [ JCC [ JccP

1.6 - - - 1.6 —

15 ........................ 15 T R I

14 PR ] 14 ....... _ 4444444 ]
g 13 R I =1 . g 13 ...........

12 B | [ I R B | N I o 12 o | R

1.1¢ 1.1¢

1
Par LRU All Par LRU All
(C) Throughput (D) Weighted Speedup

Figure 5.18: Average Improvement with Out-of-order PreocedModels

Generally speaking, depending on a benchmark’s cacheclateferance capabilities under different
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processor models, switching from the in-order to the oubrolier processor can either increase or decrease
the benefits of CC and CCP over a shared cache. But as showgureF.17, switching to a different
processor model does not change the advantage of CCP otpitsaseline schemes (CC and MTP) for

our evaluated workloads.

Figure 5.18 summarizes the average improvements of vasoiemes over the equal-share baseline
when using the out-of-order processor model. Same as usinig-torder processor, CCP achieves the best
FS and QoS results for both PAR and LRU workloads. Differeminf previous results, CCP even achieves
the best WS and IPC results, due to the increase performamedits of CC and CCP with the out-of-order

processor. For our evaluated workloads, CCP provides thterésults in all evaluation metrics.

5.6 Conclusion

Current cache partitioning schemes have limited functignand applicability because they can only
support a subset of CMP caching requirements, and they ¢aronmpete with LRU-based latency-reducing
caching schemes (e.g., CC) for many workloads. To answeettieallenges, we introduce Multiple Time-
sharing Partitions (MTP) to simultaneously improve thimogt and fairness while guaranteeing long-term

QoS. MTP is further integrated with CMP cooperative cacli@g) to exploit its latency optimizations.

The resulted CCP scheme is evaluated and shown to providbesteoverall performance over 210
combinations of 7 representative SPEC2000 benchmarksr uwdedifferent cache sizes. For a 4-core
CMP with 4MB L2 cache, CCP not only maintains QoS, but alsorowps performance (measured by fair
speedup) by 12% and throughput by 4.5% over the best statitiggsing schemes optimizing fair speedup

and throughput, respectively.

CCP takes a first step in balancing partitioning-based agpaptimizations and LRU-based latency
optimizations for multiprogrammed workloads. Future egsh is needed to extend CCP to better adapt

to phase/scheduling changes, as well as to support lagge-8dMPs and CMPs with SMT cores. For
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applications with real-time or response time requiremeduntsire research can extend CCP to guarantee the
minimum performance needed for such workloads while efiplpithe benefits of MTP and CC for the
remaining, best-effort, applications. For environmetiat forefer higher throughput over execution time
reduction, fairness, and QoS guarantee, CCP can also bdiedagi use a single spatial partition that only

optimizes throughput, which is left as future work.
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CHAPTER 6

CONCLUSION

As CMPs become the mainstream processors, designs of preatie hierarchy will play an important
role to provide fast and fair data accesses for multiple, meting processor cores. To offset the negative
impact of limited off-chip bandwidth, on-chip wire delayndhardware/software design complexity, this
dissertation contributes to two important goals of CMP gagh-latency reduction and shared resource

management—with a unified supporting framework and twoaeteoperation policies.

6.1 Key Contributions

The first contribution of the dissertation is a unified Coapige Caching (CC) framework for efficient
organization and use of the aggregate on-chip cache resourbis framework includes the following three

key components.

e Private cache based designCC uses private cache organization to reduce remote omukges and
cross-chip communication requirements (thus active p@ssociated with remote cache accesses).
The reduction of cache associativity, network bandwidtid eoherence traffic also leads to poten-
tially simpler designs. To enable resource sharing, CC med®mthe base private design with two
features: (1) non-inclusion between multiple levels oftemcto enable flexible data placement and
(2) support of cache-to-cache transfers of clean data to asrmecessary off-chip misses. Among
many CMP caching proposals [13, 15, 23, 27, 59, 68, 96, 138,150], CC is the only proposed
design that exploits the advantages of private cache bassidndto optimize for both multhreaded

and multiprogrammed workloads.
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e Cooperation and throttling mechanisms.By viewing a CMP’s use of the aggregate cache resources
as a shared resource management problem, we have idenwflesiets of commonly used mech-
anisms to support a wide range of resource sharing behaviexglicit resource sharing between
peer caches is carried out via placement and replacemeat lwa®peration mechanisms, which
together determine what data are kept on-chip, and spdlsificavhich cache. To control the amount
of sharing, probability based throttling can cover the wehgbectrum between the baseline design
and unconstrained resource sharing. By controlling whithe can use the capacity of peer on-
chip caches, guota-based throttling can enforce poliegifip capacity allocations for all individual
cores. The combination of private cache organization,uesosharing mechanisms and throttling

mechanisms thus provides a vast space of sharing behawidtefcooperation policies to explore.

e Decoupling of policies, mechanisms and implementationaVith a set of commonly used mecha-
nisms, the CC framework is extensible on both policy and @m@ntation sides. At the implementa-
tion level, CC’s cooperation and throttling mechanismsiadependent of specific cache algorithms
or coherence protocols, and can be adopted by variousrexistiplementations. In contrast, most
current CMP caching proposals assume or rely on particupleimentations (e.g., NUCA caches [15,
68, 156], snooping protocols [27, 138], or tile-based itisted directory protocols [159]). With
CC'’s basic mechanisms, researchers can focus on the hghtlesks of understanding caching

requirements and devising innovative caching policies.

The dissertation also proposes and evaluates cache sipatinigs for reducing off-chip accesses and

mitigating destructive inter-thread interference.

e Capacity improving policies. To achieve robust performance, the disadvantage of proatbe
designs—high off-chip miss rate—is mitigated using coapien policies. These policies reduce off-
chip accesses by mimicking the behavior of a shared cachsid®eache-to-cache transferring of

clean data, two policies are introduced to control replicaaind allow an LRU-like global sharing of
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cache space. The two policies improve capacity utilizabbmultithreaded and multiprogrammed
workloads respectively, making CC more versatile than CMEhing designs that only optimize
for one class of workloads [13, 15, 138, 156]. Our evaluasbaws that the combination of private
cache design and such cooperative resource sharing leaaisust performance for a wide range of

processor, cache/memory and system configurations.

Cache partitioning policies. We use Multiple Time-sharing Partitions (MTP) to achieveradoler
sense of performance isolation in a multiprogramming emritent. Compared with single spatial
partitioning (SSP) based policies, MTP introduces a tilmarisg aspect to spatial cache partition-
ing and has the advantage of simultaneously satisfyingipieiltonflicting requirements. Each
MTP partition is an unfair partition that intentionally &sves” a subset of concurrent threads to
avoid thrashing; throughput and fairness can be simulisigamproved by executing multiple
MTP partitions in a round-robin manner, giving differentethds fair opportunities to speedup; and
QoS is guaranteed by orchestrating capacity shrinkingsigigp in different MTP partitions so that
every thread’'s average slowdown is bounded. The timesshpdehavior introduced by MTP is a
familiar concept to operating system schedulers, and cahte simple implementations of priority

scheduling.

Palicy integration. Motivated by the complementary benefits of the two sets oicigs on two

different problems, CC integrates these policies with dtéyel adaptation policy. The integrated
scheme—Cooperative Cache Partitioning (CCP)—dividesdta execution time into epochs man-
aged by either CC’s LRU-based policies or the MTP cachetfmanitng policy, proportionally to the

number of threads that can benefit from each of them respéctivsing CC’s LRU-based sharing as
the default policy simplifies MTP partitioning and allowsunistic-based, practical implementations.
Our evaluation of CCP implementation shows that it effedyivcombines the benefits of MTP and

CC: it can significantly improve the performance of worklsatiat need cache partitioning while
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maintaining fairness and QoS, and it achieves the same teakfiRU-based latency optimizations

for workloads that do not need cache partitioning.

6.2 Future Directions

We have demonstrated the effectiveness of the CC framewithikwo important CMP caching applications,
and we believe the cooperative sharing mechanisms and tlesqbhy of using cooperation for conflict
resolution can be applied to other problems. Below we dssosne of the directions in extending the CC

framework and its applications.

6.2.1 Better Latency Reduction and Cache Partitioning

One promising direction for latency reduction is to intégnaith caching algorithms that can adapt between
a recency-based replacement policy (e.g., LRU) and a frexydleased policy (e.g., LFU). Such algorithms
have already been used by software caches to dynamicaflirdisate data streams with weak locality.
Extending CC with an adaptive policy for the processor cagdre narrow the performance gap between

LRU and ideal cache algorithms.

New ways of characterizing and adapting to the caching rements of individual threads are also
needed to further improve cooperative cache partitionif@urrently we use epoch-based sampling to
estimate such requirements, which may not adapt to phaselisiing changes swiftly. Future research can
attack this problem with program phase tracking techni¢@®sl31], on-line sampling mechanisms [122],
and analytical models. We believe that a timely and bettdetstanding of program requirements (in terms
of capacity, associativity [124], locality [56, 150], etowill lead to better assignment of cache resources
among co-scheduled threads, and thus more efficient uses# tksources. Such techniques can be applied

to optimize not only performance, but also power, thermal @ther metrics.

CC can be further extended to adaptively choose betweantiateduction policies and cache partition-



134

ing policies, not only for multiprogrammed workloads as dastrated by CCP, but also for multithreaded
workloads and their multiprogramming combinations. Theg f@ this policy selection is to determine
whether a group of co-scheduled threads shares data, wiichdstrigger the replication control policy.
Such information can be provided either by the schedulgwsoé, or a hardware monitor of data sharing

messages.

6.2.2 Heterogeneous Processor and Cache Designs

Because private caches are interfaced in CC only via therenbe protocol, their internal organizations are
encapsulated and thus can be different. This property caxfleited to support statically or dynamically
created heterogeneous private caches, with different auoftsets, associativities, threshold voltages, cell

sizes, or even replacement and write-back policies.

One application of heterogeneous caches is to provide ingtatache resources for heterogeneous
processor designs without global synchronization. Thdlehge is to define fairness and QoS for such
heterogeneous architectures with core-specific cachegewafions. Future research should explore the
benefits of heterogeneous cache designs and understantplisation to parallel applications, operating

systems, and end-users [10].

6.2.3 Power and Reliability Optimizations

CC can be extended to support other cache optimizationh, asiteakage power reduction and reliability
improvement. At the architectural level, better power éficy and reliability can be achieved by making
some cache resources slow or sacrificing some capacity.xaorme, power can be saved by "turning off”
selected portions of the aggregate on-chip cache, or usjighthreshold voltage [20] (leading to slower
accesses), while reliability can be improved via spatidureglancy (e.g., ECC, which can slow down tag

accesses), or using larger transistors or higher threstodtigige [33].
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However, to maintain high performance, not all L2 cacheslkmamade slow [6] or turned off, and cache
management policies are needed to trade off between penfmenand power/reliability enhancements.
CC can be extended to manage a set of cache resources wilediffcapacity and speed characteris-
tics (thus different power and reliability parameters)d amatch them with threads having heterogeneous
power/reliability/performance requirements. Similaetasting cooperative policies, CC will need to iden-
tify what portion of the cache (e.g., at cache blocks, cachmsays, or private cache level) is not used
efficiently and can thus be turned off or made slow, and for kavg, and how to manage the remaining
cache resources to minimize the consequent performanse Taseliminate the over-provisioning ineffi-
ciency based on worse-case power/reliability requiresg27], chip-level management policies can be
explored to share available power budget or reliable ban#iseact to over-quota emergencies. CC can also
exploit data criticality information (e.g., dirty blocks blocks touched by kernel code) to place important

data into caches with matching characteristics [107].

6.2.4 Software/Hardware Cooperative Caching

Cooperation can be beneficial not only between private cadhg also between software and hardware
cache management schemes. CC can be easily augmented etithlngassing [80] or prioritized evic-

tion [154], and use compiler generated hints to control tlegment and replacement of cache blocks.
Future work can also consider software controlled cachitipaing, where MTPs, instead of thread-mixes,

are explicitly scheduled to satisfy specific software regmients (e.g., throughput, fairness, or priority).

For embedded [69] or streaming applications [53], compi@n partition the computation into spe-
cialized components executed on dedicated cores, andstrateedata communication among producer-
consumer cores. Compared with conventional private antedhaache organization, CC provides better
support for such orchestrated data usage and movementideeds its private cache organization can keep a

computation task’s data set close to it, and (2) its prizedi replacement and spill mechanisms together can
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streamline producer-consumer communications. Simjlatjual machine monitors that migrate threads

around can also benefit from CC when collocating computatibim data.
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