
tPAKE: Typo-Tolerant Password-Authenticated
Key Exchange

Thitikorn Pongmorrakot and Rahul Chatterjee

University of Wisconsin–Madison
{pongmorrakot,rahul.chatterjee}@wisc.edu

Abstract. Password-authenticated key exchange (PAKE) enables a user
to authenticate to a server by proving the knowledge of the password
without actually revealing their password to the server. PAKE protects
user passwords from being revealed to an adversary who compromises
the server (or a disgruntled employee). Existing PAKE protocols, how-
ever, do not allow even a small typographical mistake in the submitted
password, such as accidentally adding a character at the beginning or at
the end of the password. Logins are rejected for such password submis-
sions; the user has to retype their password and reengage in the PAKE
protocol with the server. Prior works have shown that users often make
typographical mistakes while typing their passwords. Allowing users to
log in with small typographical mistakes would improve the usability
of passwords and help users log in faster. Towards this, we introduce
tPAKE: a typo-tolerant PAKE, that allows users to authenticate (or ex-
change high-entropy keys) using a password while tolerating small typo-
graphical mistakes. tPAKE allows edit-distance-based errors, but only
those that are frequently made by users. This benefits security, while
still improving usability. We discuss the security considerations and chal-
lenges in designing tPAKE. We implement tPAKE and show that it is
computationally feasible to be used in place of traditional PAKEs while
providing improved usability. We also provide an extension to tPAKE,
called adaptive-tPAKE, that will enable the server to allow a user to log
in with their frequent mistakes (without ever learning those mistakes).

Keywords: passwords · authentication · password-authenticated key
exchange (PAKE) · typo-tolerant password checking

1 Introduction

Authenticating users on the Internet is still primarily done using passwords.
Passwords are user-chosen short secrets. A user picks a password during regis-
tering an account with a service, and then the user has to reproduce the same
secret exactly during the login process to get access to their account.

Passwords, ideally, should not be stored in plaintext on the server; they are
hashed using a slow cryptographic hash function, such as scrpyt [30], bcrypt [32],
Argon2 [9]. The communication channel between the server and the user device
is normally secured from network adversaries using SSL/HTTPS. Nevertheless,



2 Thitikorn Pongmorrakot and Rahul Chatterjee

Fig. 1. Overview of how tPAKE operates. σ is a pseudo-random function that obscure
the password. See Section 4 for more details.

user passwords are still exposed to the server in plaintext format every time a
user tries to log in. Therefore, an attacker with persistent access to the login
server can learn users’ plaintext passwords as they log in. Such persistent adver-
sarial (or sometime accidental) access to the login server is not a rare incident.
For example, due to poor security practices, certain Facebook server-side appli-
cations stored plaintext user passwords on disk for several years (between 2012
and 2019), and Facebook employees could view those stored passwords [24]. In
2018, Twitter had to ask its users to change their passwords after an incident
that revealed millions of user passwords in the error log [4]. Therefore, in our
current setting, an adversary with persistent access to the server can learn the
passwords of the users who log in during the period when the adversary has
access to the login server.

Password-authenticated key exchange (PAKE) [8] is proposed to protect user
passwords from getting exposed to the service during login.1 PAKE allows a user
to prove their knowledge of the password without revealing it to the server during
login. Thereby, an adversary that compromises the server would not learn the
user passwords even if the user logs in during the time adversary controls the
server: The adversary has to crack the stored computationally expensive hash
digests of the passwords.

Several PAKE protocols [8,7,6,11] have been proposed over the years. How-
ever, none of them allows even small typographical errors in the entered password
by the user. A PAKE protocol will result in an error if the user, for example,
accidentally switches the case of the first character of their password. Previous
studies [12,13] have shown that users often make mistakes while typing their
passwords, especially while typing long and complex passwords. A key challenge
in encouraging users to use long and complex passwords is their usability. And

1 It was originally designed for exchanging secret keys between two parties with knowl-
edge of the same password over an untrusted network connection. Nonetheless, the
same protocol can be used to protect passwords from being exposed to persistent ad-
versaries who compromised the server as well. The later usage gained more interest
over the years, especially as TLS can be used to exchange secrets.



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 3

if PAKE is going to be used as a de-facto protocol for future authentication,
it must overcome this usability challenge and allow users to complete a PAKE
protocol despite making small typographical mistakes.

To enable small error tolerance in PAKE protocols, prior work [17] has pro-
posed a modified PAKE protocol, called Fuzzy-PAKE, that draws from some
ideas of secure sketches [16]. However, Fuzzy-PAKE tolerates Hamming errors
— the protocol succeeds if the password entered by the user is withing a small
Hamming distance from the registered password. However, this error model is
not realistic as typographical mistakes are better represented as edit-distance
errors — the protocol should succeed if the entered password is within some
small edit-distance from the registered password. There is no straight forward
way to extend Fuzzy-PAKE to allow edit distance-based errors. Also, allowing
any error within certain Hamming or edit distance could degrade security [12].

In this paper, we propose a new protocol, called tPAKE (short for typo-
tolerant password-authenticated key exchange), that can tolerate a fixed (con-
figurable) number of typos that are frequently made by users while typing their
passwords. The core idea behind the protocol for tPAKE is simple and elegant,
allowing us to provide a simple argument for its security. Intuitively, the server
stores a fixed number of possible variations of the password submitted during
registration. During login, the client and the server engage in a private set inter-
section (PSI) protocol. (The variations to allow the user to log in can be chosen
by the user or the server during registration.)

Although, simple, this basic protocol has some key limitations in terms of
security and efficiency. A secure PAKE must protect the user passwords from
phishing attacks2 or typo-squatting attacks3. That is to say, even if an adversary
tricks the user into running the PAKE protocol with them, the adversary should
not learn the user passwords. Similarly, the adversary also should not be able
to impersonate the user as long as they don’t know the user passwords (or
any of the typos of that password). Therefore, the client and the server in our
setting can act maliciously in the protocol (during login)4 A schematic diagram
of the functionality and threats of tPAKE is shown in Figure 1. To protect
the confidentiality of the user passwords, we have to use malicious-secure PSI
protocols, which are yet to be efficient (see for example [31]). For designing
tPAKE, we show how to extend a known PAKE protocol to enable typo-tolerance
without degrading security.

We provide two protocols for allowing typo-tolerance. In the first case, the
protocol picks the set of variations to tolerate during the registration process.
In the second protocol, the server adaptively learns about the mistakes that a
particular user frequently makes and let the user login with those passwords,
without ever learning user password or typos. The two modes of typo-tolerance
are motivated by the two variations proposed in [12] and [13], respectively.

2 https://en.wikipedia.org/wiki/Phishing
3 https://en.wikipedia.org/wiki/Typosquatting
4 We assume the registration process is done in a secure manner.

https://en.wikipedia.org/wiki/Phishing
https://en.wikipedia.org/wiki/Typosquatting


4 Thitikorn Pongmorrakot and Rahul Chatterjee

The protocol tPAKE utilizes oblivious pseudo-random functions (OPRF) to
hide the user-entered passwords from the server. Along with the OPRF proto-
col, tPAKE ensures an implicit authentication so that at the end of the protocol,
the server and the client learns the legitimacy of each other. During (trusted)
registration, the server obtains the OPRF output of the user’s password and
its variations. During (untrusted) login procedure, the server only obtains proof
that the user has the knowledge of the password, without obtaining the password
in plaintext. We describe this protocol in Section 4. Adaptive-tPAKE extends
on this protocol to enable secure storage of user’s typos and other password
submissions (some of which might not qualify as a typo) using a public key en-
cryptions scheme. We describe this protocol and its security in Section 5. We
prototype these protocols and measure their efficacy and computational perfor-
mance in Section 6.

The main contributions of this work are the following:

(1) We design tPAKE, a PAKE protocol that allows a user to log in despite
making small typographical mistakes.

(2) We analyze the security of tPAKE. We implement tPAKE, and show that
the computational overhead of tPAKE is acceptable.

(3) We provide another variants of tPAKE, which we call adaptive-tPAKE, that
can learn a user’s typos over time (without ever seeing the typos themselves)
and allow the user to log in with frequent but safe typos.

2 Background and Related Works

Despite several usability challenges, passwords are still used as the primary
method for user authentication. The key challenges with passwords are: (a) they
are easy to guess — low entropy secrets; and (b) hard to remember or type. In
this section we discuss some background on password usability, tolerating pass-
word typos, and how to protect passwords from being revealed to a malicious
server that tries to steal user passwords.

Usability challenge in password-based authentication. Users are more inclined to
use simple, easily guessable passwords [10,19,29]. Mazurek et al. [28] hypothesize
that one of the reasons for that is due to the increased difficulty in memoriz-
ing and typing more complex passwords. These simple passwords make these
systems susceptible to various forms of guessing attacks, thus, greatly impact-
ing the security of said systems. The increased effort required to type a more
complex password can be one of the many factors that persuade users to resort
to using more vulnerable passwords, especially when users mistype their pass-
words and redo the authentication process again. Moreover, a research [33] has
found a correlation between the length of a password and the rate in which typo
would occur, suggesting that longer passwords might lead to reduced usability
due to mistyped passwords. Studies by Keith et al [22,23] showed that up to
2.2% of entries of user-chosen passwords had a typo (dened by thresholding via
Levenshtein distance), and the rate of typos roughly doubles for more complex



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 5

passwords (at least length 7, one upper-case, one lower-case, one non-letter). A
study found that up to 10% of failed login attempts fail due to a handful of
simple, easily correctable typos [12]. The study also shows that out of all the
typos made by users, a significant proportion of the typos are simple mistakes
that can be fixed through simple operations, and fixing these typos can help
reduce the frustration of mistyping their password for a significant fraction of
users.

Typo-tolerant password checking. Users often make mistakes while typing their
passwords. Previous studies [12,13] have shown that this causes a huge usability
burden on users. Allowing legitimate users to login with small mistakes improves
user experience with a platform and saves unnecessary time wasted in retyping
the password. Chatterjee et al. [12] employed typo correction functions by at-
tempting to correct a typo using a number of preset functions (e.g., changing
the capitalization of the first character, removing tailing character) when the
first attempt at login fails. It is stated that by just correcting a handful of easily
correctable typos, it allows a significant portion of users to achieve successful
login. The TypTop system [13] is a personalized password checking protocol
that allows the authentication system to learns over time the typos made by a
specific user from failed login attempts. The TypTop system is able to provide
an authentication system with minimal security loss that benefits 45% of users
as a result of personalization. tPAKE works by having the server generate a
set of typos from the password during registration. Different from traditional
PAKE, the key exchange procedure would be performed multiple times during
each round of communication to find the value that matches the user’s input.
If a match is found, a shared key will be established between the client and the
server. Timestamp is also used during the authentication process for verification
purposes. The server would be able to customize the set of accepted typos by
adjusting the typo generation function used during registration.

Password-authenticated key exchange (PAKE) [6,11] is a key exchange protocol
that allows a user to convince a server that the user possesses the password
without revealing the password to the server. This prevents unnecessary expo-
sure of the password and prevents server compromise. PAKE is a cryptographic
method that allows two or more parties to safely establish a shared key through
the knowledge of a shared secret, in this case, a password, such that an unautho-
rized party would not be able to participate. The protocol only reveals whether
or not the shared secret matches and not the secret itself. PAKE is also safe
against interception as plain text password is not sent during login. Boyko et
al. implement PAKE protocol using Diffie-Hellman, which are secure against
both passive and active adversaries. PAKE works by obscuring the shared se-
cret through exponentiation and modulo operation, in which an attacker would
not be able to extract any extra information from the communication after the
one-way operation.



6 Thitikorn Pongmorrakot and Rahul Chatterjee

Fuzzy PAKE [17] is a protocol based on PAKE that share a similar motivation
with tPAKE. fPAKE aims to allow 2 parties to agree on a high-entropy cryp-
tographic key without leaking information to man-in-the-middle attack. The le-
niency built into this protocol allows authentication to be done using a mistyped
password. One of the fPAKE protocol is constructed using PAKE and Robust
Secret Sharing (RSS) to allow agreement on similar passwords. However, this
fPAKE protocol is limited in terms of how similarity is defined. This construction
of fPAKE only allows comparison using hamming distances, which severely lim-
its the options in how passwords can be compared as hamming distances requires
two strings to be equal in length, making it impossible for fPAKE to account
for password typos resulting from accidentally inserting or deleting a character.
Hamming distance cannot be calculated between ‘asdf1234’ and ‘asdf123’, even
though the 2 strings may very well be a typo of one another. Moreover, fPAKE
is not modeled after user behavior. Typos with the same hamming distances
might not have the same likelihood to happen in real-world usage as any char-
acter is more likely to be mistyped as only a certain few characters and not
others, which is not a distinction that can be made using hamming distance. For
instance, ‘asdc1234’ and ‘asdp1234’ would both be 1 hamming distance away
from ‘asdf1234’, however, ‘asdc1234’ would be a more likely typo of ‘asdf1234’
assuming the user uses a QWERTY keyboard. Using Hamming distance as the
metric does not account for the difference in the likelihood of one typo over
another. We believe a more flexible protocol that allows the fine-tuning of typo
acceptance could be helpful in modeling typo-tolerant password checking after
real-world usage.

2.1 Threat model

In PAKE (and tPAKE), the user stores information about their passwords and
typos during registration, which we will refer to as server state. The registration
process is secure and free from adversarial interference. However, it might be pos-
sible that the user passwords are exposed during registration (or password reset)
on a compromised server, but for this paper, we will ignore that threat. This is
because registration (and password reset) is a rare event compared to password
login events. We will discuss in Section 4 how we can modify the protocol to
protect against such attacks as well.

A secure PAKE protocol must protect the user passwords from a compro-
mised server. The goal of the attacker is to learn user passwords. There are two
kinds of compromise we will consider. In the first setting, a legitimate server is
compromised, and the attacker has persistent access to the server. In this case,
the attacker learns all the state stored on the server as well as all the tran-
scripts of the login protocols ran during the malicious access. The attacker can
also deviate arbitrarily from the protocol. Note the attacker can do an offline
brute-force attack to uncover user passwords by simulating the login protocol
with the stored state. Ideally, we would like to have this as the best attack for
an adversary.



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 7

The second type of compromise is where the user accidentally engages in a
PAKE protocol with the adversary — due to being a victim of phishing attack
or typo-squatting attack. In this case, the attacker does not have access to the
server state. Therefore, the attacker should not learn anything about the user
password despite actively manipulating the protocol.

Given this threat model, the passwords of the registered users should not be
stored in plaintext. Currently, without a PAKE protocol, the user’s password is
sent to the server in plaintext. (TLS protects the password in transit, but the
server has plaintext access to the password.) That means an attacker would learn
the password of the user when they try to log in to the compromised server.

Another threat model we have to consider is that if a malicious user tries to
learn the password of another user. A malicious user can try to use an offline
dictionary-based attack on the values shared by the server across multiple ses-
sions to learn the user password. In a secure PAKE, the attacker should not be
able to do any better than online password guessing (against the server).

3 The Problem Setting and Naive Solutions

Preliminaries. Let S be set of all strings from alphabet Σ (e.g., printable ASCII
characters) of size no more than l (e.g., 50). Though Σ is typically printable
ASCII characters, in modern authentication systems, users can pick any UTF-8
characters in their passwords. Let W ⊆ S be the set of strings that are chosen
as passwords by users; we associate a probability distribution p to W, such that
p(w) denotes the probability that a random password w is chosen by a user.

Users often mistype while typing their passwords. We assume τw(w̃) denotes
the probability that a user whose real password is w ∈ W types w̃ ∈ S. Of course,
τw(·) is a probability distribution over S, and

∑
w̃∈S τw(w̃) = 1. Note, following

the prior work [12], we assume that mistyping a password solely depends on
the password, and not on the user who is typing. Our solution, however, can be
extended to other scenarios where the typo-distributions τ also depends on the
user who types the password. We only require a way to enumerate the points in
the distribution in decreasing probabilities in an efficient manner. Let T l(w) be
an enumerator of τw that outputs l + 1 most probable typos of w, including w.

For our construction, we will use a prime-order group G of size q where the
discrete log problem is hard. We will also assume that there exists a crypto-
graphic hash function HG : {0, 1}∗ 7→ G that can hash an arbitrary string onto
the group. See [18,21] for details on how to do so.

Let Hsl and Hfa are two cryptographic hash functions that are oneway and
collision-resistant. Moreover, Hsl is a slow and computationally expensive hash
function (such as Bcrypt [32] or Scrypt [30]) ideal to be used for hashing pass-
word. The parameter for the computational overhead of this hash function can
be tuned as necessary by the system engineers who deploy tPAKE. The hash
function Hfa is a fast hash function such as SHA-256 or SHA-512. Also, we have
a semantically secure and robust symmetric encryption scheme SE = (E,D). Let



8 Thitikorn Pongmorrakot and Rahul Chatterjee

the security parameter be `. For simplicity, we will assume the ranges of both
Hsl and Hfa are {0, 1}`, and the domain of keys required for SE is also {0, 1}`.

3.1 Naive Proposals for making PAKE typo-tolerant

Typos are typically modeled using edit distance, also known as Levenshtein dis-
tance [26]. Therefore, to tolerate typos, one could envision accepting any varia-
tions of passwords within a certain edit distance. There are multiple issues with
this approach. Firstly, any mechanism for computing edit distance coupled with
PAKE will not work as the server learns nothing about the user password ex-
cept it being equal to the one used during registration or not; the client obscures
the original value of the password before sending to the server, making it im-
possible for calculating correct edit distance between the submitted password
and the stored password. To overcome this challenge, we could employ secure
multiparty computation technique to allow for computation of edit distance dur-
ing key exchange protocol without each party revealing their secrets. However,
implementation of this scheme would compromise security as it requires both
parties to have the password in its plaintext form in order for the computation
to be possible, which violates our security requirements. Moreover, SMC proto-
cols secure against malicious adversaries — as required in our threat model —
are slow and computationally expensive.

Besides the technical challenges, as shown in [12], allowing any typo within
certain edit distance (such as ≥ 2) can degrade the security of the scheme signif-
icantly; a malicious client can try to impersonate a legitimate user by guessing
their password or a variant within the given edit distance threshold. Chatterjee
et al. proposed using a fixed set of variations instead of any typos within an
edit-distance. The variations can be chosen based on population-wide or per-
sonal statistics and allow those that degrade security minimally. The method of
finding such a list is empirical, and we refer the reader to [12] for more details.

Given a fixed number of possible variations of the user password, we could
enable typo-tolerance by running multiple copies of an existing PAKE protocol
— one for each variations (or corrections, as called in [12]) — albeit in parallel.
However, this is not secure if the client picks the variations during login. Because
in PAKE there is no way for the server to learn anything about the submitted
password, a malicious client can send multiple password guesses, instead of vari-
ations of the same password. This will effectively give an attacker lx more online
guesses if the protocol allows l variations of the user password. Therefore, the
password variations that will be accepted must be picked by the server, and it
has to be during the registration.

Finally, private set intersection (PSI) protocols can be used for building typo-
tolerant PAKE (or PAKE in general): The server has a list of password variations
for a user, and the user has a singleton set of the input password. The protocol
attempts to determine if the intersection between the two sets is non-empty
without revealing anything beyond that.5 The biggest challenge in using off-the-

5 This problem is more formally known as cardinality private set intersection (PSI-
CA) [15].



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 9

Register:

Client Server

w ←p W w−−−−−→ {w0, . . . , wl} ← T l(w)
ku←$ Zq

For i← 0 to l do gi ← Hsl(w,HG(wi)
ku)

Store (g0, . . . , gl), ku

Login:

Client Server

Input: w̃ Input: (g0, . . . , gl), ku

r←$ Zq s←$ {0, 1}`

δ ← (HG(w̃))r
δ−−−−−→ h← δku

For i← 0 to l do cti ← E(gi, s)

s′ ← ⊥
h, {cti}←−−−−−

g̃ ← Hsl(w̃, h
1
r )

for i← 0 to l do
s′ ← D(g̃, cti)
if s′ 6= ⊥ then

break
If s′ = ⊥ then Abort

Else ct′←$ E(g̃, s′ ⊕ 1)
ct′, i−−−−−→ s′′ ← D(gi, ct

′)
If s′′ 6= s⊕ 1 then return false
Else return true

Fig. 2. Protocol for tPAKE. The client and the server are aware of the symmetric
encryption scheme SE = (E,D), the slow hash function Hsl and the (fast) hash function
HG, and the group (G, q). The hash function HG is used to hash any string onto a group
element in G.

shelf PSI/PSI-CA protocol is that in most of those protocols one of the parties
will learn the outcome, and it is hard to ensure the other party does not lie.
For example, if the client gets to learn the final result that the intersection is
non-zero (or zero), the client can lie to the server. A PSI protocol is not an
effective solution as we need security against malicious parties, and the goal of
the client and the server is slightly different in a simple PSI setting. But we take
some ideas from PSI and build our tPAKE protocol that we present in details
in the next section.

4 tPAKE protocol

To enable typo-tolerance, tPAKE uses oblivious pseudo-random functions (OPRF) [20]
and implicit authentication to provide a secure PAKE protocol that can toler-
ate a set of typos in the user-entered password. Our protocol is different from
prior PAKE protocols. Recall that we use a group G of size q, where discrete



10 Thitikorn Pongmorrakot and Rahul Chatterjee

Client Server

Input: w
{w0, . . . , wl} ← T l(w)
For i← 0 to l do
ri ← Zq

δi ← HG(wi)
ri

{δi}li=0−−−−−−−−→ ku←$ Zq

For i← 0 to l do
{hi}←−−−−−−−− {hi ← δku

i }
l
i=0

gi ← Hsl(wi, h
1
ri
i )

(g0, . . . , gl)−−−−−−−−→ Store (g0, . . . , gl), ku

SafeRegister(w):

{w0, . . . , wl} ← T l(w)
For i← 0 to l do
gi ← Fku(wi)

return (g0, . . . , gl)

Fig. 3. Safe registration protocol for tPAKE. The server never sees the plaintext pass-
word from the user. On the right we show a short-hand notation that utilizes OPRF
queries Fku(·) to the server holding the OPRF key ku.

log problem is hard. At its core, tPAKE uses an OPRF, Fk, which we describe
below.

OPRF protocol (Fk). OPRF protocols allows a client to obtain the pseudo-
random output of a string x from a server holding the key k without revealing the
value x. This is done by the client first sending a “blinded” value of the x, by com-
puting y ← HG(x)r, where is a freshly chosen random number r←$ Zq and HG
is a hash function that maps any binary string onto an element in G. The server
responds with yk. The client then “deblind”, by raising the server’s response
with 1/r; that is (yk)1/r = HG(x)k. We also apply a slow hash Hsl to the output
of the final exponentiation. Together we have, OPRF Fk : {0, 1}∗ 7→ {0, 1}`,
where Fk(x) = Hsl

(
x,HG(x)k

)
.

In tPAKE, during registration, the server picks a random key ku for user u,
and use that to evaluate the PRF Fku

(locally) on each of the variations of the
input password w (sent by the user). The server stores the PRF outputs along
with the key and the username. The registration process for user u is shown at
the top protocol in Figure 2. Note, we assume the registration process is done
in a safe environment, which is to say that the user and the server act honestly
during registration. This is a standard assumption given that registration is done
only once, while login protocol is executed multiple times. For added security to
prevent giving away user password to the server, we can tweak the protocol so
that the server only learns hash of the password variations chosen by the client.
We show this safe registration protocol in Figure 3, which will ensure that the
server doesn’t see the actual password in plaintext, ever.

During Login, the client masks the password w̃ given by the user by raising
the hash HG(w̃) of it to a freshly generated random value r. Then the client
forwards that value δ = HG(w̃)r to the server, which raises δ to the power ku,
the secret value for the user u, selected during registration. The server also



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 11

encrypts a freshly chosen random bitstring s using all the stored PRF outputs
gi for user u. The server sends back δku and the ciphertexts {cti} to the client.

The client unmasks δku by raising it to the power 1
r and then computes

g̃ = Fku(w̃). With g̃, the client tries to decrypt each of the ciphertexts cti
received from the server, and if any of the decryption succeeds, it learns that the
entered password w̃ is either the correct password or one of its variations. One
important design decision we made is to let the client know early whether the
login is going succeed. Alternative options that reveal this decision to the server
first could reveal the user password to a malicious or compromised server.

Finally, to prove to the server that the user successfully decrypted one of
the ciphertexts, the user encrypt the modified value s⊕ 1 using its PRF output
g̃. The server tries to decrypt that ciphertext using its knowledge of the stored
PRF values, and if the decryption succeeds and s′′ = s ⊕ 1, the login succeeds,
else the login fails.

The benefit of using encryption (instead of just hash functions, as used in
prior works, such as [11]) is that we obtain implicit client and server authenti-
cation. We will expand on this next.

4.1 Security of tPAKE protocol.

The OPRF protocol we use is based on Chaum’s blind signature [14]. This
ensures that the server learns nothing about the user password through this
OPRF call. We also assume that the hash functions are one-way and collision-
resistant. The secret-key encryption scheme is semantically secure and robust,
that is to say without the key, an attacker cannot learn anything about the
plaintext.

As noted in our threat model (see Section 2.1), there are three threats we
need to defend against. The first threat is about malicious client attacker who
wants to learn about the password (or any non-trivial information about the
password) of a legitimate user. The only values that are revealed to the client in
the protocol are h := HG(w̃)rku and {cti := E(gi, s)}. Here, h does not contain
any information about the passwords stored on the server; and cti is equivalent
of random string unless the attacker can learn one of the {gi}’s, for which the
attacker has to be able to make OPRF queries on behalf of the user. This is
equivalent of online guessing attack, which is the base case of any attack against
authentication services. Thus a malicious client obtains no advantage over an
attacker attempting to log in to a server that just allows typo-tolerant passwords.

Next threat is about a compromised server learning the user password. Ide-
ally, a compromised server should not learn anything about the user password
beyond what it already knows. There are two types of malicious server attacker.
In the first case, where the attacker compromised the server, it already knows the
PRF outputs {gi} of the user passwords. Therefore, from the interaction with
the client, the attacker should not learn any information about the user pass-
word that can be used to recover the password faster than mounting dictionary
attack against the gi values. For the second case, where the attacker pretends to
be a server via, say a phishing campaign, the server does not have gi values. In



12 Thitikorn Pongmorrakot and Rahul Chatterjee

this case the server should not learn anything about the password. Our protocol
achieves both the security goals.

First, if a server does not have correct {gi} values and ku, then the client will
always end up aborting the protocol. This is because, given the server does not
know the input password w̃, it is impossible for the server to guess g̃ without
guessing the password w̃ — a guarantee provided by the OPRF protocol we use.
Without the knowledge of g̃ the server cannot construct ciphertexts cti, such
that the decryption by the client D(g̃, cti) succeeds — a guarantee we get from
the robustness of the symmetric-key encryption scheme we use. Therefore, the
attempt by the client to decrypt cti will always fail, the client will abort, and it
will not send any further communication. The only value that the serve receives
from the client is HG(w̃)r, which is indistinguishable from a random value in
G — from the obliviousness guarantee provided by the OPRF. It is important
to note that the abort is necessary, otherwise, the malicious server will learn
the encryption of s ⊕ 1 under g̃, which the server can now use to mount offline
dictionary attack.

In the second case, where the server that knows gi, the only inputs are δ,
ct′, i. Here, δ is indistinguishable from as a random value in G, without the
knowledge of the random exponent r; i has no information about the input
password besides which typo is entered.6 Finally, given gi’s, ct

′ contains no new
information beyond if the login is successful or not. Therefore, the attackers best
strategy is to mount guessing attack against gi’s. Therefore, the attacker who
compromises the server learns no new information from the Login protocol, that
can be used to learn user passwords faster. This concludes our security argument.

5 Adaptive-tPAKE Protocol

In Section 4, we give a protocol for allowing a fixed, predefined set of typos. By
allowing population-wide popular typos, the previous solution limit its applica-
bility to only those users who make “popular” typos, leaving out other users
who make frequent but rather “unpopular” typos. Therefore, in this section we
show how to build a typo-tolerant PAKE that can allow dynamically learned,
personalized set of typos. We propose adaptive-tPAKE for the same. Adaptive-
tPAKE employs a system similar to TypTop [13] that works by caching failed
login attempts to let the system learn user’s typos over time. PAKE’s design
prevents revealing the typos to the server, and, therefore, we do the testing for
typo on the client-side after every successful login.

The pseudocode is shown in Figure 5. The protocol uses a secure public-
key encryption scheme PKE = (K, E ,D), where K is a key generation algo-
rithm, E is a (randomized) encryption algorithm that uses the public key, and
D is the decryption function that uses the secret key. So, for any message m,

6 The server might be able to use this information to find out the most frequently
entered password among (g0, . . . , gl). We can protect against such leakage by not
sending the i, but that will require the server to try to decrypt ct′ using every gi,
which is inefficient.



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 13

Register(w):

W ← {(w, 1) | w ∈ T l(w)}
ku←$ Zq

(sku, pku)←$K
For i← 0 to lc do T← (⊥, 0)
W← ∅
T← CacheUpdate(T,W )
ctw←$ E(sku, w)
Store pku on a trusted server
return T,W, ku, ctw

CacheUpdate(T,W ):

For i← 0 to lc do T′[i]← T[i]
For (w, n) ∈W

For i← 0 to l do
w′, n′ ← T[i]
If CachePick(n′, n) = true
g ← Fku(wi)
ct← E(gi, sk)
T′[i]← (w, n)

return T

Fig. 4. (Left) ServerRegister protocol for adaptive-tPAKE. Here T is the typo-cache
that keeps track of the typos the user is allowed to log in with; W is the wait list
which stores the submitted passwords that are not yet checked for typo by the user.
We also use a public key encryption scheme where, K is the key generation method. It
is security critical that the public key pku is stored on a trusted server that the user
can verify during login. (Right) CacheUpdate Protocol; CachePick is a function that
would pick the cache line to be replaced following the caching policy(e.g. LFU, LRU,
etc.). Fku is a OPRF call to the server holding the key ku. Multiple queries to the
server can be combined for network efficiency.

D(sk, E(pk,m)) = m if (sk, pk)←$K. We also assume the this public-key encryp-
tion scheme can be also used for signing messages. We assume there is a function
valid(sk, pk) that verifies if the sk and pk pairs are generated together from K.
So, let sign and verify are the functions for signing and verifying functions such
that for any message m, verify(pk, sign(sk,m)) = true, if valid(sk, pk) = true.

The main idea behind adaptive-tPAKE is similar to that of tPAKE: use
OPRF and implicit authentication. But adaptive-tPAKE has to store some more
data for each user. The additional data includes a typo-cache T, and a “wait-
list” W. The typo-cache holds the passwords that the user is allowed to log in
with, and the wait-list holds the set of typos that are not yet verified by the
legitimate user. Of course, none of these data is in plaintext. The typo-cache
stores encryption of a secret key sku under different allowed typos. Only the
legitimate user with the access to the real password or a typo of it can obtain
the secret key sku. The secret and public keys are generated during registration
(see left figure of Figure 4). The corresponding public key pku is uploaded to a
public key repositories, such as MIT PGP public key server7.This is important
to ensure the user can reliably obtain the public key from a trusted server for
security. If the public key is compromised (changed in a way that the user cannot
verify), the security of this protocol is violated. We are not sure if adaptive-
tPAKE can be created without the requirement of a trusted server to hold the
public key.

Note that the registration makes OPRF call to the server which holds the
OPRF key ku, similar to what we did in SafeRegister. Thereby, the registration
ensures that the server does not learn the plaintext passwords. The registration
fills the typo-cache T with potential typos of the password (based on population-

7 https://pgp.mit.edu/

https://pgp.mit.edu/


14 Thitikorn Pongmorrakot and Rahul Chatterjee

Login(w̃):

Client Server

Input: w̃, pku
(∗) Input: T,W, ku, pku, ctw

r←$ Zq s←$ {0, 1}`

δ ← (HG(w̃))r
δ−−−−−−−−→ h← δku

For i← 0 to l do
cti, ni ← T[i]

sk ← ⊥ ; t← false
h, {cti}, s←−−−−−−−−−−−

g̃ ← Hsl(w̃, h
1
r )

For i← 0 to l do
sk ← D(g̃, cti)
If valid(sk, pku) then
t← true; break

If t = false then

ct←$ E(pku, w̃)
ct−−−−−−−−→ W←W ∪ {ct}

return false

Else σs←$ sign(sk, s)
σs−−−−−−−−→ If not verify(pku, σs, s) then

return false

w ← D(sk, ctw)
W,T, ctw←−−−−−−−− Else return true

W ← {}
For i← 0 to lw do
w̃i ← D(sk,W[i])
if ∆(w̃i, w) = true then
W [w̃i]←W [w̃i] + 1

T′ ← CacheUpdate(T,W )
T′−−−−−−−−→ Update T← T′ ; W← ∅

(∗) pku is obtained from the trusted server.

Fig. 5. Pseudocode for the adaptive-tPAKE protocol. Here we use a public-key en-
cryption scheme PKE = (K, E ,D). The typo-cache T holds the set of passwords that
the user is allowed to log in with; and the waitlist W holds not-yet-verified typos. The
function ∆ is a function comparing two strings that return true when the two are
deemed similar enough to be typo of one another.

wide statistics) and the waitlist W. In addition to these, the server also stores
the encryption of the real password w under the secret key sk. This password is
used later to help a user identify valid typos present in the waitlist.

The first part of the protocol is similar to tPAKE (see Figure 2), with the
following difference. In adaptive-tPAKE, the server does not encrypt random
value s, instead it forwards the encryption of the secret key sk to the user. Note
the user can only decrypt after obtaining the OPRF output from the server. This
ensures a malicious client cannot mount offline guessing attack against the user
password (or typos). The server also sends challenge s in plaintext to the client,
so that if the client is able to decrypt the secret key, it must sign the random
value s with the sk, which the server verifies with the stored public key pku. If
the client successfully obtains the secret key and convinces the server it is the



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 15

legitimate user, then the server hands the client the waitlist W, typo-cache T,
and the ciphertext of the plain text ctw. At this point, the client has proven its
legitimacy and it is warranted to obtain these information.

The client decrypts the waitlist and checks for the typos that are valid (within
small edit distance, and matches other security requirements, e.g. difficult to
guess). The valid typos are then inserted into the cache. The cache update pro-
cedure is shown in the right figure of Figure 4. Interestingly, we use the same
CacheUpdate function during registration to update the typo-cache T.

In case the user fails to obtain the secret key, it will encrypt the input pass-
word w̃, and submits that to the server to store it in the waitlist W.

Security of adaptive-tPAKE. The security of adaptive-tPAKE relies on the
legitimacy of the public key pku generated during registration. If the client relies
on the server to obtain pku, then a malicious server can hand over a pku for
which the server knows the secret key. In that case, when the client sends the
encryption of the input password due to failing to obtain the secret key, the
server will learn the input password. Therefore, we use a remote trusted server
for this, and leave it as a open question whether we can have a secure PAKE
protocol that adaptively learns users typos over time.

Assuming the pku is not tampered with, we can argue adaptive-tPAKE main-
tains the required security. When the client fails to obtain the secret key, the
only values the client learns are h := HG(w̃)rku , {cti := E(gi, sku)}, and s. The
client is not given the frequencies of each password, as that information can be
misused for guessing attack. Following the same argument we used for tPAKE,
the client learns nothing about the password in adaptive-tPAKE as well. The
best the client can do is mounting online guessing attack by repeatedly calling
the server to obtain the Fku

(·). Only after the client successfully learns the secret
key can the client learn the typo-cache T, the waitlist W, and ctw.

Finally, a malicious server can try to learn about the user password. In
adaptive-tPAKE, if the server does not have valid T, the client will not be able
to decrypt and obtain the sk that is a valid pair of pku. Therefore, the client
will abort after sending the encryption of the input password to the server. The
input password w̃ is encrypted using the public key pku. If pku is legitimate,
then the server cannot learn anything about w̃ from this.

If the server has a legitimate T, then the server will handover the typo-cache
T and the waitlsit W to the client, and the client will respond with the updated
T and W. During CacheUpdate, it is ensured the client never sends plaintext
password to the server — it always use the OPRF protocol to obtain the Fku(·)
of the waitlisted passwords that are to be inserted in the cache. Thus, the server
does not obtain any information that it can use to mount guessing attack faster
than what it already learns from the registration process.

6 Performance Evaluation tPAKE and Adaptive-tPAKE

Implementation and test setup. We prototype tPAKE and adaptive-tPAKE
to measure their computational performance and efficacy of typo-tolerance. We



16 Thitikorn Pongmorrakot and Rahul Chatterjee

Register (ms) Login (ms)

PAKE 37.85 65.16
tPAKE (5 passwords) 50.86 66.97
tPAKE (10 passwords) 64.94 67.56
Adaptive-tPAKE 109.50 174.54

Fig. 6. Total execution time (excluding network latency) for tPAKE registration and
login.

measure the time to compute registration and login processes on the perspec-
tive of the client as well as compute some micro-benchmark on the server side.
For instantiating the cryptographic primitives we use, SHA-256 as the hash
function Hfa and Hsl, AES for symmetric-key encryption scheme, and brain-
poolP256r1 [27] elliptic curve for the group G where discrete is known to be
hard. The security parameter ` is chosen to be 128.

Both the server and the client are console-based Linux applications written
in Python 3.6. We use Cryptography.io [5] for the symmetric-key and public-
key encryption operations. For elliptic curve operations, we used fastecdsa

library [25]. The server uses flask [1] for serving HTTP requests and sqlite3 [3]
for storage. On the other hand the client uses Python’s requests [2] library for
making requests. All experiments are run on Ubuntu 20.04 on an Intel Core i5
machine with 16 GB of RAM.

Performance testings are done using two separate machines in the same local
network with minimal latency to avoid potential hardware and network bottle-
neck. The tests are done by setting up a server on one machine with the other
machine acting as the client. The client would make HTTP POST requests to
the server in order to log in. Server-side execution time is measured starting from
when the client makes the request until the response is received. Client-side ex-
ecution is measured by taking the time it takes to complete the whole protocol.
Additionally, each user would not make consecutive login requests to avoid the
impact of caching on the execution time.

For tPAKE, we first analyze the effect of the number of typos l on computa-
tional time and bandwidth. As shown in Figure 6, tPAKE’s performance over-
head depends largely on the number of the passwords that the protocol would
handle. Bandwidth required is linearly proportional to the number of acceptable
passwords. On the other hand, there is no significant difference in execution time
between PAKE and tPAKE in our testing. Adaptive-tPAKE, however, is con-
siderably more expensive both in term of execution time and bandwidth. Noted
that in our experiment, we assume that pku, the public key used to encrypt fail
login attempts, is available locally on the client machine, thus, the performance
overhead required to acquire pku isn’t factored into our evaluation.

The set of typos we considered for this is taken from prior work. More details
on the set of typo-correctors and their efficacy are noted in Appendix A.



tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 17

Time
(s)

Success
(%)

attempts
/success

PAKE 5.497 94.97 1.0529
tPAKE(5 passwords) 5.525 95.85 1.0432
tPAKE(10 passwords) 5.544 96.20 1.0394
Adaptive-tPAKE 5.815 96.40 1.0373

Fig. 7. Complete login test for PAKE, tPAKE, and Adaptive-tPAKE. The time column
includes the time it takes for users to input the password (or passwords in case of
reentry), the computation overhead on the client and the server side, and the network
latency.

Execution time. Execution times for registration shown in the figure is measured
on the safe registration protocol we introduced in Section 5 that ensures the
security of the password during registration.

To understand the total time spent in login and the benefit of allowing typo-
tolerance, we simulate real world use cases by making use of actual user pass-
word input data collected in prior work [12] via an Amazon Mechanical Turk
experiment. The dataset contains multiple login attempts of each user to their
(hypothetical) accounts and the time taken to enter each password We simulate
user input in the order it was collected to measure the time and the number of
attempts it will take for successfully login should the password checking system
employ tPAKE or adaptive-tPAKE. We also measure the average login success
rate and the average number of login attempts required to successfully authen-
ticate. The test shows that tPAKE and adaptive-tPAKE improves the login
success rate and reduces the number of times the user has to attempt to log
in. However, the rate of typos by the users of this experiment is low (< 4%),
therefore the benefit of typo-tolerance is reflected in the time saved in logging
in. We expect the benefit to be more visible if users are more error prone, like
while entering password through mobile touch pads [12].

Bandwidth. Next we measure the bandwidth overhead for our protocol. Band-
width is measured as the total amount of data communicated between the server
and the client. In our setting, the bandwidth is affected by the number of ty-
pos handled by the protocol. For our implementation, two rounds of commu-
nication are required during login, but only bandwidths of the first response
from the server are affected by the number of typos. The size of the login re-
quest is 435 bytes. The response size is 345, 837, and 1,452 bytes for PAKE,
tPAKE (l = 5), and tPAKE (l = 10), respectively.

Adaptive-tPAKE requires similar packet sizes to its tPAKE counterpart de-
pending on the size of the typo-cache T. Additionally, adaptive-tPAKE, also
requires an additional round of communication, essentially doubling the band-
width. A verification round is needed for making sure that both agree on a
session key and requires an additional 374 bytes. Packets measured in our tests
only includes the minimal amount of data that are required to complete the
protocols, thus, additional metadata could result in the increase of packet size.



18 Thitikorn Pongmorrakot and Rahul Chatterjee

Adaptive-tPAKE. Adaptive-tPAKE enables the personalization of typo-tolerant
password-checking by incorporating a typo cache, which happens to adds several
layers of complexity to the implementation of the protocol. An extra round of
communication is required for every login, increasing the total execution time.
While adaptive-tPAKE’s execution cost might be considerably more expensive
than PAKE or tPAKE, adaptive-tPAKE being able to reduce the number of
attempts users are required to input their password not only make up for the
lost time while also improving the usability of the login process. According to
our test done using data collected via Amazon MTurk, adaptive-tPAKE shows
a 1% increase in login success rate compared to conventional PAKE. It only
requires an average of 1.0392 login attempts to successfully login with Adaptive-
tPAKE compared to 1.0502 attempts using PAKE with no typo-tolerance. The
simulation also shows that the time saved from reducing the average number of
attempts make up for the more expensive execution time of adaptive-tPAKE.
Furthermore, the performance of adaptive-tPAKE could potentially be even bet-
ter in real-world use cases where the protocol would be better personalized to a
user’s input habit after an extended amount of login being made. Overall, the
result shows that the adaptive-tPAKE improves the login success rate compared
to tPAKE without having to increase the number of acceptable passwords.

7 Conclusion

We present typo-tolerant password-authenticated key exchange, or tPAKE, a
communication protocol based on password-authenticated key exchange(PAKE)
that allows PAKE to be tolerant to small typographical mistakes made by users
securely. We provide a formal proof to demonstrate the security of tPAKE
against man-in-the-middle and compromised server. we proposed the safe regis-
tration protocol that eliminates the need to assume that communication during
registration is secure and not eavesdropped by making use of PAKE’s secu-
rity properties. Our safe registration protocol is not only computationally se-
cure against eavesdropper but also compromised server. Furthermore, we also
present a PAKE version of the TypTop system that allows the personalization
of typo-tolerant password checking with PAKE’s security properties. we measure
execution time and bandwidth to gauge the performance overhead of our proto-
cols. We also conduct simulations using data gathered via a study on Amazon
MTurk to quantify the potential usability gain adaptive-tPAKE has over old-
school PAKE.

References

1. Flask documentation, https://flask.palletsprojects.com/en/1.1.x/
2. Requests, https://requests.readthedocs.io/
3. Sqlite, https://www.sqlite.org/
4. Twitter advising all 330 million users to change passwords after bug ex-

posed them in plain text. https://www.theverge.com/2018/5/3/17316684/

twitter-password-bug-security-flaw-exposed-change-now (2018)

https://flask.palletsprojects.com/en/1.1.x/
https://requests.readthedocs.io/
https://www.sqlite.org/
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now


tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 19

5. Cryptography.io documentation (2019), https://cryptography.io/
6. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-

tocols. In: Cryptographers track at the RSA conference. pp. 191–208. Springer
(2005)

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: International conference on the theory and applica-
tions of cryptographic techniques. pp. 139–155. Springer (2000)

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks (1992)

9. Biryukov, A., Dinu, D., Khovratovich, D.: Argon and Argon2: password hashing
scheme. Tech. rep., Technical report (2015)

10. Bonneau, J., Schechter, S.: Towards reliable storage of 56-bit secrets in human
memory. In: 23rd USENIX Security Symposium (USENIX Security 14). USENIX
(2014)

11. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) Advances in Cryptology —
EUROCRYPT 2000. pp. 156–171. Springer Berlin Heidelberg, Berlin, Heidelberg
(2000)

12. Chatterjee, R., Athalye, A., Akhawe, D., Juels, A., Ristenpart, T.: password typos
and how to correct them securely. IEEE Symposium on Security and Privacy (2016)

13. Chatterjee, R., Woodage, J., Pnueli, Y., Chowdhury, A., Ristenpart, T.: The typtop
system: Personalized typo-tolerant password checking. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. pp. 329–
346. ACM (2017)

14. Chaum, D.: Blind signature system. In: Advances in cryptology. pp. 153–153.
Springer (1984)

15. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinal-
ity of set intersection and union. In: International Conference on Cryptology and
Network Security. pp. 218–231. Springer (2012)

16. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.) Euro-
crypt 2004. pp. 523–540. Springer-Verlag (2004), lNCS no. 3027

17. Dupont, P.A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy password-
authenticated key exchange. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 393–424. Springer (2018)

18. Farashahi, R.R., Shparlinski, I.E., Voloch, J.F.: On hashing into elliptic curves.
Journal of Mathematical Cryptology 3(4), 353–360 (2009)

19. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web. pp. 657–666. WWW
’07, ACM, New York, NY, USA (2007). https://doi.org/10.1145/1242572.1242661,
http://doi.acm.org/10.1145/1242572.1242661

20. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions (2005)

21. Icart, T.: How to hash into elliptic curves. In: Annual International Cryptology
Conference. pp. 303–316. Springer (2009)

22. Keith, M., Shao, B., Steinbart, P.: A behavioral analysis of passphrase design and
effectiveness. Journal of the Association for Information Systems 10(2), 2 (2009)

23. Keith, M., Shao, B., Steinbart, P.J.: The usability of passphrases for authentication:
An empirical field study. International journal of human-computer studies 65(1),
17–28 (2007)

https://cryptography.io/
https://doi.org/10.1145/1242572.1242661
http://doi.acm.org/10.1145/1242572.1242661


20 Thitikorn Pongmorrakot and Rahul Chatterjee

24. Krebs, B.: Facebook stored hundreds of millions of user passwords in plain text for
years (2020)

25. Kueltz, A.: fastecdsa (2020), https://github.com/AntonKueltz/fastecdsa
26. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and

reversals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)
27. Lochter, M., Merkle, J.: Elliptic curve cryptography (ecc) brainpool standard

curves and curve generation (Mar 2010), https://tools.ietf.org/html/rfc5639
28. Mazurek, M.L., Komanduri, S., Vidas, T., Bauer, L., Christin, N., Cranor, L.F.,

Kelley, P.G., Shay, R., Ur, B.: Measuring password guessability for an entire uni-
versity. In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. pp. 173–186. ACM (2013)

29. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979). https://doi.org/10.1145/359168.359172, http://doi.acm.
org/10.1145/359168.359172

30. Percival, C., Josefsson, S.: The scrypt password-based key derivation function
(2015)

31. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Psi from paxos: Fast, malicious
private set intersection. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 739–767. Springer (2020)

32. Provos, N., Mazieres, D.: Bcrypt algorithm. USENIX (1999)
33. Shay, R., Kelley, P.G., Komanduri, S., Mazurek, M.L., Ur, B., Vidas, T., Bauer, L.,

Christin, N., Cranor, L.F.: Correct horse battery staple: Exploring the usability of
system-assigned passphrases. In: Proceedings of the Eighth Symposium on Usable
Privacy and Security. p. 7. ACM (2012)

A Typo Analysis & Generation

Typo is handled in tPAKE by generating a preset number of typos from the
password during registration, which will be used as the list of typos accepted
by tPAKE during login. Therefore, it is crucial that the typos generated would
coincide with typos that users will make for tPAKE to be useful, so we analyzed
typos data that was collected [12,13] and compiled a list of typo generation
functions that can be implemented with tPAKE.

The type of typo generation functions implemented can greatly affect the
effectiveness of tPAKE, thus, typo analysis is done on collected user data to
determine suitable typo generation function (typo-gen). We found that 41.00%
of all typos are within 1 edit distance. We analyzed different types of typos that
users tend to make by categorizing typos into 4 types, insertion, deletion, sub-
stitution, and transposition. Insertion refers to adding a character at a position
in the string. Deletion means removing a character from the string. Substitution
refers to replacing a character in the string with another character. Transpo-
sition is done by swapping the location of 2 existing characters in the string.
Out of all typos, insertion makes up of around 30 percent, whereas deletion and
substitution make up of 17 and 28 percent respectively of all the typos within
1 edit. Contrary to our expectation, however, transposition makes up only a
small fraction of the typos. Only around 4 percent of all typos fixed is from
transposition operation.

https://github.com/AntonKueltz/fastecdsa
https://tools.ietf.org/html/rfc5639
https://doi.org/10.1145/359168.359172
http://doi.acm.org/10.1145/359168.359172
http://doi.acm.org/10.1145/359168.359172


tPAKE: Typo-Tolerant Password-Authenticated Key Exchange 21

Fig. 8. Performance of different typo functions. First part (swc-l-1) of a function name
refers to type of the operation. The second part of the name (swc-l-1) refers to the
position that operations is applied on. E.g. swc-l-1 means substituting at the first
character from the left with its shift-modified counterpart.

The substitution of characters with its shift-modified counterpart is the most
common type of substitution typos, especially at the first character where the
character tends to be capitalized. We use swc-l-1 typo-generator to handle this
type of typos. We found swc-l-1 can tolerate 2.47% of all typos. While other
substitution typos (non-shift substitution) and insertion typos (typos that can
be generated from substitution) are common, it is difficult to identify a consistent
pattern to formulate a typo-gen. Transposition typos on the other hand are few
and far between, which makes it ineffective to have a typo-gen for this type of
typos. swc-all is typo-gen that switches all the characters in a string to its shift-
modified counterpart. swc-all proves to be effective in typo generation and is
able to account for 10.97% of all the typos. Other common typo-gen are function
handling different variations of deletion typos that are both common and easy
to program for which make them great candidates for typo generation functions.
The 10 typo generation functions included in Figure 8 account for 20.86% of all
typos being made, in other words, 48.21% of all typos within one edit distance.

Similar to tPAKE, our adaptive-tPAKE protocol will only accept and cache
typos that are within 1 edit away from the correct password. One advantage
that Adaptive-tPAKE has over tPAKE is that it doesn’t need to preemptively
predict during registration what type of typos the user would make in the future,
which means that it could account for typos that tPAKE could not, for instance,
insertion typos that make up a significant portion of all typos. Furthermore,
adaptive-tPAKE would adapt to password input habit that is unique to each
user that our typo analysis could not capture.


	tPAKE: Typo-Tolerant Password-Authenticated Key Exchange

