
Software-Based Fault Tolerance in Computer Vision

Chen-Han Ho
CS766 Computer Vision

Final Project Report
Professor Vikas Singh

1. Introduction

Manufacturing and process scaling are providing signif-
icant challenges in producing reliable transistors for future
technologies. Many academic experts, industry consortia
and research panels have warned that future generations
of silicon technology are likely to be significantly less re-
liable [11]. A recent Computing Community Consortium
Visioning Study [1] conclude that handling reliability will
probably become a first-order constraint.

To address this issue, modern processors often designed
with architectural overheads, including architectural check-
points, modular redundancy, and conservative design con-
straints. While these techniques provide error tolerant hard-
ware, their power and energy efficiency is degraded. Fur-
thermore, the problem exacerbates with technology scaling
because the transistor efficiency does not double every gen-
eration. In mobile domain where the power and energy ef-
ficiency is critical, efforts have to be made to tackle both
reliable and efficiency problems.

Stochastic optimization [9] and idempotent processing
[3] are two fault-recovery approaches that allows the soft-
ware to help mitigate the burden of hardware in reliability.
Stochastic optimization recast applications to optimization
problem and make application error tolerant. Idempotent
processing leverages compiler to construct idempotent re-
gions, and architectural mechanism to restart region exe-
cution whenever a failure happens. Comparing with pure
algorithmic approach as stochastic optimization, the idem-
potent processing relies hardware to detect faults and restart
execution. In addition, idempotent processing does not re-
quire error-free execution in the control phase of applica-
tions. In this project, we seek to understand the use of
idempotent processing in computer vision, and compare it
with stochastic optimization to explore the design tradeoffs.
The remainder of this report is organized as follows: Sec-
tion 2 gives a background of application robustification us-
ing stochastic optimization. Section 3 describes idempo-
tent processing, and its architectural implications. Section 4
and 5 describe our evaluation and conclusion.

0.18 0.18 0.18 0.20 

0.55 

1.00 1.00 

0.07 0.07 0.13 0.14 
0.29 

0.86 
1.00 

1.00E‐01 1.00E‐02 1.00E‐03 1.00E‐04 1.00E‐05 1.00E‐05 1.00E‐07 

N
or
m
al
iz
ed

 E
ne

rg
y 

Accuracy Target

Cholesky  CG 

Figure 2. Normalized energy at different failure rate

2. Stochastic Optimization

In [9] Sloan et al. proposed to recast applications to nu-
merical optimization problem for robustness. Assuming the
solution of original problem is a vector x∗, a cost function
f is defined such that the minimum of f is attained at x∗.
Thus, we can transform an application from its original im-
plementation to an error-tolerant implementation. The pri-
mary optimization engine used is gradient descent, which
converges to a local optimum as long as the step sizes
are chosen carefully. The search strategy used was conju-
gate gradient for most of the kernels that were evaluated
in the paper. Conjugate gradient allows efficient genera-
tions of conjugate directions, and guarantees quick conver-
gence. The result showed that the stochastic optimization
can produce good quality results for certain application, and
also reduced the energy by voltage scaling in least squares
problem. However, in some cases the result was not that
desirable. For example, the success rate of bipartite graph
matching drops quickly as the failure rate increase (below
50% at 5% of failure). Improvements are made in the paper
to enhance the success rate of error-tolerant bipartite graph
matching. The enhancement method includes precondition-
ing, momentum, alternate step size scaling , and annealing.
The success rate was improved to 100%.

Several limitations are observed in stochastic optimiza-
tion. First, the algorithmic approach can only tolerant hard-

1



Execution
Checkpoint 1 Checkpoint 2

Release
C CC

Failure

Roll-back
(a) Checkpointing

Execution Region 1

Region 2
Verify

Failure

Restart Execution

(b) Idempotance region execution

Figure 1. Checkpointing and idempotent execution

ware failures in specific phases of execution. The control
phase cannot be erroneous, and it may be difficult to sepa-
rate control and data phase for complex applications. Sec-
ond, the iterative method may result in consuming more en-
ergy than original implementation, because the instruction
executed may be up to 1,000X more. The above limitations
may be solved (but with overheads) in hardware or software.
For example, checkpointing or other hardware fault tolerant
approaches can be applied whenever the application execu-
tion is in control phase.

The accuracy of transformed application highly depends
on the solver. For example, the conjugate gradient solver
guarantees most n iterations to solve Ax = B when n is the
dimension of x. However, conjugate gradient solver can-
not achieve an accuracy higher than 10−5, where the SVD
and QR decomposition can achieve 10−2 accuracy. (The
accuracy here is the relative error to the non-error tolerant
implementation of same application.) Besides speed and ac-
curacy, the solvers may not be universal thus the generality
have to be considered when implementing the application.

Last, Figure 2 shows the normalized energy at different
failure rates for least squares problem. The numbers are
extract from [9], and the energy numbers are normalized to
Cholesky implementation at 10−7 accuracy. In the result,
the voltage and iteration of the solver are scaled at the same
time to achieve best result. The best saving observed are
93% and 82% at 0.1 relative error, for CG and Cholesky
solver respectively.

3. Idempotent Processing in Computer Vision
Idempotent processing [3, 4, 8] leverages the principle

of idempotence to break programs into regions of code
than can be recovered through simple re-execution. Fig-
ure 1 shows an example execution of idempotent process-
ing. Idempotence is a mathematical property which guaran-
tees that any region of code (a sequence of instructions) can
be freely re-executed, even after partial execution, and still
produce the same result. With idempotent regions, the exe-
cution can be implicitly checkpointed. Figure 1(a) shows a

reference execution of hardware checkpointing. The redun-
dant hardware saves the state of execution, which can be
retrieved whenever failure happens. In Figure 1(b) shows
corresponding idempotent execution. Whenever a failure
happens, the hardware detects the failure and restart the ex-
ecution from the beginning of the region. The hardware
must ensure that the execution is free of failure before start
execute next idempotent region and all side-effects of fail-
ure are appropriately contained. This is shown as a dark
”verify” box in the execution. Idempotent regions are iden-
tified in the assembly code level. A region of code is idem-
potent if it does not overwrite its inputs. For a variable
in a code region, the idempotence breaks whenever there
is a read-after-write dependence with no prior write in the
same region. While idempotent regions can be identified
in the program binary generated by normal compilation,
idempotent-aware compilation helps to control the size of
idempotent regions through different region construction al-
gorithm. Since there are a limited number of storage re-
sources (e.g. registers) in hardware, the compiler re-uses
the resources in normal compilation. However, this some-
times breaks idempotence by overwriting the same storage
resource and can be avoided in an idempotent aware compi-
lation. Idempotent compilation often accompanied with the
increase of total number of instructions, because compiler
will not perform some of the common optimizations to re-
duce the use of resources. Overall, the overhead of recovery
from a failure in idempotent processing comes from i) the
time of re-execution, ii) the additional instructions added to
preserve the idempotence, and iii) the hardware verification
phase.

The size of idempotent region impacts the time of re-
execution. In an error-prone system, we may want to con-
struct smaller idempotent regions to reduce the re-execution
time. As stochastic optimization, idempotent processing re-
covers failure in software. This eliminates the need of pre-
serving execution states in hardware. Compared to stochas-
tic optimization, idempotent processing requires hardware
to detect failures, verifying idempotent region execution,

2



and restart the execution when failure happens. This re-
quires modification in hardware, but not necessarily in-
creases the complexity and power consumption in hard-
ware. Idempotence may be used in other places than fault
tolerance. De Kruijf et al. proposed to use idempotent pro-
cessing to simplify the microprocessor design [3]. In their
case, the idempotence is used to recover architectural ex-
ceptions as branch mis-predictions and page faults.

In contrast to stochastic optimization, the re-execution
in idempotent processing always produce identical result as
error-free execution. This enables the use of idempotent
processing in many different algorithms. For example, the
Bipartite Graph Matching is often considered not a error tol-
erant algorithm. Although it can be potentially error tolerant
through stochastic transformation, no algorithmic modifica-
tion is required and 100% of accuracy can be preserved with
idempotent processing.

4. Evaluation
4.1. Methodology

To understand the idempotence in computer vision ap-
plications, we use a subset of kernels in VLFeat [2]
open source library: Agglomerative Information Bottle-
neck (AIB), Maximally Stable Extremal Regions (MSER),
Scale Invariant Feature Transform (SIFT), vector compar-
ison (VEC), and image convolution (CONV). AIB im-
plements the algorithm describe in [10], which includes
traversing customized data structure and merging thorough
binary tree. MSER algorithm is described in [7]. It includes
walk through pixels and filtering. SIFT implements the al-
gorithm in [5], which also includes filtering, sampling and
data movement. The above three are full applications, and
CONV and VEC are samll kernels that only perform one
task. Table 1 characterize these kernels in terms of the size
idempotent region construed by the compiler. The average
idempotent region size is shown in the number of instruc-
tions. Among the kernels, VEC has the largest region sizes
since its memory access pattern is highly regular. The sec-
ond row in Table 1 shows the input set size. We choose a
smaller input set to control the simulation time. All fault
injected experiments finished within 24 hours.

Kernel AIB MSER SIFT VEC CONV
Region 250 12 27 1056 95size

input set 3*10 324*223 500*1000 256*256
Table 1. Application characterization

We use idempotent compiler framework developed by
De Kruijf et al. to generate idempotent version of programs.
We build an instrumentation tool with Pin [6] to probabilis-
tically insert failures and jump instructions, which emulate
the behavior of re-execution. We assume that failure can

Figure 3. Normalized performance compared to baseline imple-
mentation

happen in every instruction, and the probability of hard-
ware failure is independent for each instruction. As a result,
the failures has a Poisson distribution. The failures are bit-
flipped result that can be written into the same destination
register or memory. The instrumented binary is executed on
a Intel Core2 Duo E7200 processor with RedHat 6 Enter-
prise Linux.

4.2. Results

The overhead of idempotent processing is twofold. First,
idempotent processing requires compiler to generate im-
plicit software checkpoints, which may results in more
instructions. Second, idempotent processing utilizes re-
execution to achieve 100% correct results. Figure 3 shows
the normalized performance of kernels in different failure
rate. The performance of each kernel is normalized to the
execution time of its baseline binary with no idempotence.
The execution of original binary is also instrumented with
the instrumentation tool but with zero failure rate. At 0.001
failure rate, the idempotent version of kernels achieves 75%
to 98% performance of baseline. In an extremely high fail-
ure rate of 0.1, two of the five kernels still performs similar.
However, SIFT and MSER drops quickly to 5X and 2.5X
slower, and VEC performs 16X slower. Compared to 10X
to 1000X increase of instructions in stochastic approach,
this is relatively smaller. In addition, the idempotent region
size can be optimized to achieve a better result in highly
error prone system.

To understand the potential benefit in energy, we show
the normalized energy of each kernel in Figure 4. We use
the same voltage scaling assumption for FPUs in [9], and
the energy is normalized to the baseline binary. When scal-
ing the voltage down (and hence the error rate increases),
we observed two of the five kernels uses lower energy com-
pared to the baseline. The worse case SIFT shows a 3.6X
increase in energy at 0.1 failure rate. Compared to the least
squares stochastic implementation, idempotent processing
always provides 100% accurate result but may increase the

3



Figure 4. Normalized energy compared to baseline implementa-
tion

energy consumption because the increased execution time,
while the stochastic approach can always reduce the energy
by lowering the accuracy target. Idempotent processor it-
self may be more energy efficient, but in this study, we only
consider the effect of voltage scaling.

4.3. Challenges, Limitations and Future Work

We address several challenges and limitations in this
project. First, current instrumentation tool inserts one jump
instruction after every instruction that is not a idempotent
region marker. This incurs high overhead and can be im-
provement to make the instrumentation tool more efficient.
Second, current idempotent compiler has optimization op-
tion for speed, however, it is built for branch prediction. An
optimization for fault tolerance is necessary for future anal-
ysis.

The assumption of voltage scaling and failures in [9] are
relatively high in fault tolerance study, this may because
they assume a stochastic processor which allows more fail-
ures. Besides, some important data is not presented in Sloan
paper, including the execution time of applications. The
energy result in the paper is difficult to be compared with
since both the number of iterations and voltage is changed.
A more sound comparison can be made if only one of the
variable is change in experiment. In all, re-implementing
stochastic optimization algorithms and using the instrumen-
tation tool to perform the experiments would be the next
step.

5. Conclusion
Reliability is an important constraint for future systems

and consensus is emerging around software fault recovery
to mitigate the burden in hardware. This project provides
a quantitative study of the use of idempotent processing
in computer vision applications. The hardware only has
to guarantee detection, and recovery is achieved through
simple re-execution in software. In a system with 0.001

failure rate, idempotent processing provides 100% execu-
tion accuracy with 75% to 98% lower performance. Com-
pared to stochastic optimization, the idempotent process-
ing has better accuracy with no programming effort. How-
ever, stochastic optimization can have better energy saving
by lowering the accuracy target.

We thank Marc de Kruijf for his help in idempotent com-
piler, professor Karu Sankaralingam and professor Vikas
singh for their advices on the project.

References
[1] Ccc visioning study on cross-layer reliability,

http://www.relxlayer.org/. 1
[2] The vlfeat open source library, http://www.vlfeat.org.

3
[3] M. de Kruijf and K. Sankaralingam. Idempotent pro-

cessor architecture. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-44 ’11, pages 140–151, New York,
NY, USA, 2011. ACM. 1, 2, 3

[4] M. de Kruijf, K. Sankaralingam, and S. Jha. Static
analysis and compiler design for idempotent process-
ing. In Proceedings of 33rd International Conference
on Programming Language Design and Implementa-
tion ”’(PLDI)”’, 2012. 2

[5] D. Lowe. Object recognition from local scale-
invariant features. pages 1150–1157, 1999. 3

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: building customized program analysis
tools with dynamic instrumentation. In PLDI ’05,
pages 190–200. 3

[7] J. Matas, O. Chum, M. Urban, and T. Pajdla. Ro-
bust wide baseline stereo from maximally stable ex-
tremal regions. In In British Machine Vision Confer-
ence, pages 384–393, 2002. 3

[8] J. Menon, M. de Kruijf, and K. Sankaralingam. igpu:
Exception support and speculative execution on gpus.
In Proceedings of 39th International Symposium on
Computer Architecture ”’(ISCA)”’, 2012. 2

[9] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi. A nu-
merical optimization-based methodology for applica-
tion robustification: Transforming applications for er-
ror tolerance. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on,
pages 161 –170, 28 2010-july 1 2010. 1, 2, 3, 4

[10] N. Slonim and N. Tishby. Agglomerative information
bottleneck. pages 617–623. MIT Press, 1999. 3

[11] A. W. Strong, E. Y. Wu, R.-P. Vollertsen, J. Sune, G. L.
Rosa, T. D. Sullivan, S. E. Rauch, and III. Reliability
Wearout Mechanisms in Advanced CMOS Technolo-
gies. Wiley-IEEE Press. 1

4


	1 . Introduction
	2 . Stochastic Optimization
	3 . Idempotent Processing in Computer Vision
	4 . Evaluation
	4.1 . Methodology
	4.2 . Results
	4.3 . Challenges, Limitations and Future Work

	5 . Conclusion

