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Abstract— We present a declarative framework for collective
deduplication of entity references in the presence of constraints.
Constraints occur naturally in many data cleaning domains and
can improve the quality of deduplication. An example of a
constraint is “each paper has a unique publication venue”; if two
paper references are duplicates, then their associated conference
references must be duplicates as well. Our framework supports
collective deduplication, meaning that we can dedupe both paper
references and conference references collectively in the example
above. Our framework is based on a simple declarative Datalog-
style language with precise semantics. Most previous work on
deduplication either ignore constraints or use them in an ad-hoc
domain-specific manner. We also present efficient algorithms to
support the framework. Our algorithms have precise theoretical
guarantees for a large subclass of our framework. We show,
using a prototype implementation, that our algorithms scale to
very large datasets. We provide thorough experimental results
over real-world data demonstrating the utility of our framework
for high-quality and scalable deduplication.

I. INTRODUCTION

Deduplication is the process of identifying references in
data records that refer to the same real-world entity. It is a
crucial step in the data cleaning process. Collective dedupli-
cation is a generalization in which one wants to find types
of real-world entities in a set of records that are related. For
example, in an ideal collective deduplication scenario, given
a database of paper references, the system would identify all
records that refer to the same paper; it would also produce
a (duplicate-free) set of all conferences in which the paper
was published. Of course, the same paper is not published in
several conferences and we expect that this constraint will hold
in the output. In general, the output of collective deduplication
is a set of several partitions of the input records (by entity type)
that satisfy constraints in the data. A concrete example of this
scenario is shown in Fig. 1(a).

Most of the existing approaches to deduplication are de-
signed around string similarity [1], [2]. Informally, they are
based on the intuition that two strings that are highly similar
to each other are likely to correspond to the same real-
world entity. But, string similarity alone fails to capture the
constraints that naturally hold in the data; this fact has been

observed several times in prior art. As a result, many clustering
algorithms do incorporate constraints [2], [3], [4], [5], [6], [7],
[8]. However, most prior approaches to database deduplication
are inflexible for at least one of three reasons: (1) They
allow clustering of only a single entity type in isolation,
which makes it impossible to answer queries that refer to
multiple entity types such as, how many distinct papers were
in ICDE 2008? (2) They ignore constraints, which prevents
users from encoding valuable domain knowledge or (3) They
use constraints in an ad-hoc way which prevents users from
flexibly combining constraints to suit their application needs.

Constraints arise naturally in many settings and a wide
variety have been considered in prior art. The simplest con-
straint arises from user feedback. For example, a user tells
the system that “ICDE” and “Conference on Data Engi-
neering” are the same conference, or conversely, that “Data
Engineering Bulletin” and “Data Engineering” are distinct
publications. Such constraints have been considered in the
clustering literature and are called must-link and cannot-link
constraints [9], [10], respectively. However, not all constraints
can be specified a pair at a time: more complicated constraints
such as ‘conferences in different cities, are in different years’,
seem to require specification in some declarative language.
Functional dependencies of this kind have also been previ-
ously considered by another body of clustering work [11].
Other prior art [5] has shown that considering even more
sophisticated constraints helps in the deduplication process;
an example of such a constraint is: “author references that
do not share any common coauthors do not refer to the
same author”. There are prior frameworks such as Markov
Logic Networks [12] or Probabilistic Relational Models [13]
that can express deduplication tasks [7], [14]. However, these
more general approaches require complicated inference and so
cannot scale up to medium or large datasets. In particular, no
prior framework has allowed this wide variety of constraints
to be declared, to be flexibly combined and to be efficiently
processed.

In this work, we propose Dedupalog, the first language
for collective deduplication, that is declarative, domain-



independent, is expressive enough to encode many constraints
considered in prior art and scales to large data sets. A key
feature of our language is that it allows users to specify both
hard and soft constraints. For example, the constraint that
every paper has a single publisher is an example of a hard
constraint; this constraint must be satisfied by every legal clus-
tering. Our model also allows soft constraints, e.g. papers with
similar titles are more likely to be clustered together. Users
specify a Dedupalog program and our algorithms produce a
clustering that minimizes the number of soft constraints that
are violated, while ensuring that no hard constraint is violated.
We validate the expressive power of Dedupalog in Sec. II, by
demonstrating that it can express many constraints found in
prior art on deduplication.

Our main algorithmic contribution is an efficient, scalable
algorithm for the entire Dedupalog language. Creating such
an algorithm is a very challenging problem because clustering
optimally is NP-hard in many setting. In fact, for some
natural variants of the clustering problem it is believed
that no algorithm can even give a bounded approximation
guarantee [15]. In spite of these facts, for a large class
of Dedupalog programs, we prove that our algorithm
clusters approximately optimally. Practically, although our
clustering algorithms are approximate, they yield a very
high precision-recall on standard datasets such as Cora [16]
(p = .97, r = .93). Additionally, our algorithm is scalable
and can cluster large datasets efficiently. For example, our
prototype can cluster the papers and conferences in the
ACM citation database, which contains over 465k records, in
approximately 2 minutes. In contrast, most prior deduplication
approaches have been confined to much smaller datasets,
such as Cora, that contain on the order of a thousand records.

Validation, Contributions and Outline

• In Sec. II, we motivate the Dedupalog language by show-
ing how to construct a sophisticated clustering program.
Additionally, we specify the semantics of Dedupalog.

• In Sec. III, we give our main algorithmic contribution:
A novel algorithm for the entire Dedupalog language.
We provide strong theoretical guarantees on quality. We
also give important physical optimizations that allow us
to achieve scalability.

• In Sec. IV, we experimentally demonstrate that our al-
gorithm achieves high precision and recall on standard
datasets such as Cora, (p = .97, r = .93). We demon-
strate that by adding constraints we can increase both
precision and recall on large, real datasets, such as the
ACM data. Finally, we give anecdotal evidence that our
system produces high quality deduplications and discuss
the use of our interactive deduplication system, that was
built using Dedupalog.

• In Sec. V, we discuss two practical extensions to our
work: adding weights and support for reference tables.

We discuss related work in Sec. VI and conclude in
Sec. VII.

II. MOTIVATION AND FORMAL MODEL

To use Dedupalog, the user’s workflow consists of four
steps: (1) She provides a set of input tables that contain the
references that need to be deduplicated and any additional
tables useful in their deduplication task, e.g., the results of
any similarity computation. (2) She defines a list of entity
references that define the kinds of entities that she wants to
deduplicate, e.g., authors, papers, publishers. (3) She defines
a Dedupalog program; this program tells the system about
properties the deduplication should satisfy. (4) She executes
the Dedupalog program with our framework. At the end of
step (4), the system produces a deduplication of her original
data that is aware of the constraints in her program from step
(3). In this section, we discuss steps (2) and (3) in more detail.

A. Declaring Entity References

The second step of the workflow when using Dedupalog is
to declare a list of entity references; this is accomplished by
declaring a set of entity reference relations that contain the
references that user wants deduped. For example, consider a
user with the data in Fig. 1(a) who wants to deduplicate the
papers, publishers and authors contained in her data. To inform
the system that she wants these three references deduped,
she declares three entity reference relations: papers (Paper!),
publishers (Publisher!) and authors (Author!). Each tuple
in these relations corresponds to a single entity reference.
Creating the data in the entity reference relations can be done
using any relational view-definition language. The Dedupalog
framework only needs to know the schema of these relations.
In Fig. 1(a), we have declared the contents of the entity
reference relations in Datalog.

When declaring entity references, the user has the freedom
to make some design choices. For example, in Fig. 1(a) the
user has decided that each reference to an author in the data
should be clustered. In particular, there are two references to
authors named ‘A.Gionis’. This decision is appropriate for au-
thor names since it is likely that there are two author references
that have the same name, but actually refer to different people.
In contrast, if two publisher names are identical, then they
almost certainly do refer to the same publishing company. As
a result, the declaration of Publisher! specifies that there is
a single entity for each string; this is known as the unique
names assumption [17]. Dedupalog works equally well with
either decision.

B. Dedupalog by Example

For each entity reference relation declared in the previous
step, e.g., R!(x), Dedupalog creates a clustering relation,
denoted R ∗ (x, y) that contains duplicate pairs of objects. For
example, Author∗(x, i, y, j) is a clustering relation containing
duplicate references in Author!(x, i). Clustering relations are
similar to standard intensional database predicates (views), but
are not identical to standard IDBs: Clustering relations must
be equivalence relations1. The primary goal of our algorithms

1An equivalence relation is reflexively, symmetrically and transitively
closed. A clustering relation R∗ is an equivalence relation on R!.



id pos author
1 1 A. Gionis
1 2 H. Manilla
1 3 P. Tsaparas
2 1 A. Gionis
3 1 I. Bhattacharya
4 2 L. Getoor

id Title Publication Venue Year
(t1) 1 Cluster Aggregation “ICDE” 2005
(t2) 2 Clustering Aggregations “Conference on Data Engineering” 2005
(t3) 3 Collective entity resolution in relational data “Data Eng. Bull.” 2007
(t3) 4 Collective entity resolution in relational data “Data Engineering” 2007

Wrote(id,pos,author) PaperRefs(id,title,venue,year)
(a) Fuzzy Duplicate Records inspired by the ACM Data

Paper!(id) :− PaperRefs(id,−,−,−)
Publisher!(p) :− PaperRefs(−,−, p,−)

Author!(id, pos) :− Wrote(id, pos,−)

(b) Entity Reference Tables
Paper ∗ (id, id′)<-> PaperRefs(id, t,−,−,−), PaperRefs(id′, t′,−,−,−), TitleSimilar(t, t′) (γ1)
Paper ∗ (id, id′)<- PaperRefs(id, t,−,−,−), PaperRefs(id′, t′,−,−,−), TitleVerySimilar(t, t′) (γ1i)

Publisher ∗ (p, p′)<-> PublisherSim(p, p′) (γ2)
Author ∗ (id, pos, id′, pos′)<-> Wrote(id, pos, a), Wrote(id′, pos′, a′), AuthorSim(a, a′) (γ3)

Publisher ∗ (x, y)<= PublisherEQ(x, y) (γ4)
¬ Publisher ∗ (x, y)<= PublisherNEQ(x, y) (γ5)
Publisher ∗ (x, y)<= Publishes(x, p1), Publishes(y, p2), Paper ∗ (p1, p2) (γ6)

¬Author ∗ (x, i, y, j)<= Wrote(p, x, i), Wrote(p, y, j), i �= j (γ7)
¬ Author ∗ (x, i, y, j)<- ¬ (Wrote(x, i,−),Wrote(y, j,−), Wrote(x, p,−), Wrote(y, p′,−), Author ∗ (x, p, y, p′)) (γ8)

(c) A Dedupalog program (Γ)
Fig. 1. (a) Is input data drawn from the ACM data that we wish to cluster (b) Entity reference tables (Sec. II). (c) A program of constraints. γ1, γ6, γ6b are
examples of soft constraints; the rest are hard constraints. γ6r is recursive. These constraints are explained in the text of Sec. II.

is to populate the clustering relations, which are the building
blocks of Dedupalog rules.

1) Soft-complete Rules: The first type of rule Dedupalog
allows are called soft-complete rules and are denoted with a
‘soft-iff’ (<->). These are the workhorse rules in Dedupalog;
each clustering relation is required to have at least one soft-
complete rule. An example soft-complete rule is “papers with
similar titles are likely duplicates”. To express this in Dedupa-
log, we must have created a standard relation, TitleSimilar,
of highly similar title pairs in step (1) of our workflow. We
can then write the following soft-complete rule:

Paper ∗ (id, id′)<-> PaperRefs(id, t,−,−,−),
PaperRefs(id′, t′,−,−,−),
TitleSimilar(t, t′) (γ1)

This rule says that paper references whose titles appear in
TitleSimilar are likely to be clustered together. Conversely,
those pairs not mentioned in TitleSimilar are not likely to
be clustered together, hence the ‘soft-iff’. Informally, when a
clustering violates a soft rule, it must pay a cost. The goal of
our algorithms is to violate as few soft rules as possible.

2) Soft-incomplete Rules: In addition to soft-complete
rules, Dedupalog also allows another type of soft-rule called
soft-incomplete rules. For example, if we have a set of titles
that are very similar, we may wish to tell the system that these
titles are very likely clustered together.

Paper ∗ (id, id′)<- PaperRefs(id, t,−,−,−),
PaperRefs(id′, t′,−,−,−),
TitleVerySimilar(t, t′) (γ1i)

Soft-incomplete rules differ from Soft-complete rules because
they only give positive information. For example, if we add
γ1i, any clustering will pay a penalty only if it does not

cluster pairs of titles in TitleVerySimilar together. This
is in contrast to soft-complete rules, which pay an additional
cost when pairs not returned by the rule are clustered together.

3) Hard Rules: Dedupalog also allows hard rules. The
simplest examples of hard rules are “the publisher references
listed in the table PublisherEQ must be clustered together”
and “the publisher references in PublisherNEQ must not be
clustered together”, in Dedupalog:

Publisher ∗ (x, y)<= PublisherEQ(x, y) (γ4)

¬ Publisher ∗ (x, y)<= PublisherNEQ(x, y) (γ5)

These rules are hard, because they must be satisfied in any
legal clustering. In the clustering literature, these contraints are
also called must-link (γ4) and cannot-link (γ5) constraints [9],
[10], respectively. These simple rules allow Dedupalog to
support user feedback or active learning [18], [19] which
improves the quality of clustering. For example, using this
feature, we have implemented an interactive application that
deduplicated the publisher and journal references in the ACM
data.

4) Complex Hard Rules: In general, hard rules may be
more sophisticated, involving joins with clustering relations:

Publisher ∗ (x, y)<= Publishes(x, p1),
Publishes(y, p2), Paper ∗ (p1, p2) (γ6)

This Dedupalog rule says that whenever we cluster two
papers, we must also cluster the publishers of those papers,
i.e., a functional dependency holds between papers and their
publishers. These constraints are central to collective dedu-
plication, [5], [7], [20]. They are also the underlying rule
used by Ananthakrishna et al. [11] to detect duplicates in data



warehouses. If our data is very dirty, the above hard rule may
be too strong; in this case, Dedupalog allows us to soften this
rule to a soft-incomplete rule by simply replacing <= with <-.

5) Complex Negative Rules: An example of a complex neg-
ative rule is the constraint that two distinct author references
on a single paper cannot be the same person. In Dedupalog,

¬Author ∗ (x, i, y, j)<= Wrote(p, x, i), Wrote(p, y, j), i �= j (γ7)

Here, Wrote(p, a, i) is a relation that says that author ref-
erence a appeared at position i on paper reference p. This
constraint is useful for disambiguation. For example, if there
is a paper with two authors named ‘W. Lee’, then we can
infer that there are at least two distinct persons with the name
‘W. Lee’ in the data. Although not illustrated, we also allow
negation in the body.

6) Recursive Rules: Consider the constraint “Authors that
do not share common coauthors are unlikely to be duplicates”.
We may only discover after clustering that two authors do
share a co-author and so should be clustered. To express this
constraint, we need to inspect the current clustering and that
requires recursion:

¬ Author ∗ (x, i, y, j)<-¬ (Wrote(x, i,−), Wrote(y, j,−),
Wrote(x, p,−), Wrote(y, p′,−),
Author ∗ (x, p, y, p′)) (γ8)

This constraint is essentially a restatement of the cen-
tral constraint used for disambiguation in Bhattacharya and
Getoor [21]. These constraints are sometimes called group-
wise constraints [2], [4]; in general, group-wise constraints
may involve aggregation functions, e.g., SUM, which are not
supported in Dedupalog.

It is possible that a Dedupalog program contains conflicts,
e.g., the hard rules in a program may simultaneously tell us that
two papers both must and cannot be clustered together. In these
cases, the conflicts are detected by the system and reported
to the user. Detecting and reporting conflicts can be very
useful for the user during deduplication; it notifies the user of
erroneous values that are otherwise hard to find. This idea is in
the same spirit as a separate line of work on detecting incon-
sistencies in data using conditional dependencies [22], [23].
These techniques are applicable to the deduplication problem,
and we incorporate them in to the Dedupalog runtime.

C. Formal Syntax and Semantics

Let I be the input instance that consists of the extensional
database predicates (EDBs) that contain standard database
relations, entity reference relations, the output of similarity
computation, etc.. Let J∗ denote an instance of the EDBs
and the IDBs (intensional database predicates), which are the
clustering relations; we denote J∗ with a superscripted star ∗
to emphasize that it contains the transitively-closed clustering
relations. A Dedupalog rule is a statement in one of the three
following forms:

HEAD <-> BODY (Soft-complete rule)
HEAD <- BODY (Soft-incomplete rule)
HEAD <= BODY (Hard rule)

c d

ba

c d

ba

(a) (b)
Fig. 2. Basic Correlation Clustering from Ex. 2.1 in (a) the relation E is
pictured and in (b) a clustering is illustrated. The cost of the clustering in (b)
is 2; the edges that contribute to the cost are illustrated with dashed lines.

where HEAD is a positive IDB symbol, e.g., Papers∗, or
a negated IDB symbol, e.g., ¬Papers∗, and BODY is a
conjunction of EDB predicates (possibly negated) and at most
one IDB predicate. Further, hard rules may only contain a
positive body and be non-recursive. The restriction that a
hard rule may contain only a single, positive IDB predicate
is to ensure that we can easily invert the rules. For example,
consider γ6 in Fig. 1, if we choose not to cluster two publisher
references together, then we can immediately determine which
paper references may not be clustered together. Soft-complete
rules satisfy an additional constraint; their BODY may contain
no clustering relations, e.g., γj for j = 1, 2, 3 in Fig. 1.

Definition 2.1: Given as input a program Γ, which is a set
of rules, and an instance I , an instance J∗ of the IDBs and
EDBs is a valid clustering if three conditions are met: (1)
J∗ agrees with the input instance I on the EDBs, (2) each
clustering relation R∗ in the IDBs is an equivalence relation on
the elements of R!, the corresponding entity-reference relation,
and (3) each hard-rule is satisfied by J∗ in the standard sense
of first-order logic.

Example 2.1: Consider a program with a single soft-
complete rule R ∗ (p1, p2)<->E(p1, p2) where I is such
that R! = {a, b, c, d} and let E be the symmetric closure of
{(a, b), (a, c), (c, d)}. This is graphically represented in Fig. 2.
Any partition of R!, e.g., {{a, b, c} , {d}}, is a valid clustering;
this partitioning is illustrated in Fig. 2(b).

Informally, the cost of a clustering J∗ is the number of
tuples in the output of soft-rules, i.e., either soft-complete or
soft-incomplete, that are violated.

Definition 2.2: For a soft rule γ, we define the cost of
clustering J∗ with respect to γ denoted Cost(γ, J∗) to be
the number of tuples on which the constraint γ and the
corresponding clustering in J∗ disagree. If γ is soft-complete,
then its cost on J∗ is2:
Cost(HEAD(i, j)<->BODY, J∗) def=

|{ {i, j} | i �= j and J∗ �|= HEAD(i, j) ⇔ BODY(i, j)}|

else, γ is soft-incomplete and its cost on J∗ is
Cost(HEAD(i, j)<-BODY, J∗) def=

|{ {i, j} | i �= j and J∗ �|= HEAD(i, j) ⇐ BODY(i, j)}|

2BODY(i, j) means that all head variables are replaced with constants, and
the others are existentially quantified.



The cost of a valid clustering J∗ with respect to an entire
program Γ is given by the equation:

Cost(Γ, J∗) def=
∑

γ∈ΓSoft

Cost(γ, J∗)

where ΓSoft is the set of all soft rules in Γ.
Example 2.2: The cost of the clustering in Fig. 2(b) is 2:

We incur cost one for placing c and d in different clusters,
since (c, d) ∈ E and one cost for placing a and c in the
same cluster, since (b, c) �∈ E. This is exactly the setting of
correlation clustering on a complete graph. The cost above is
known as the disagreement cost [24]. Notice that there is no
clustering of this input with cost 0.

Consider a slightly different single program: R ∗
(x, y)<-> E2(x, y, z). If we consider any input where
E(x, y) ⇐⇒ ∃z E2(x, y, z), then although this program
is distinct from the previous example, any clustering has the
same cost for both programs. In particular, the fact that there
is a variable, z, that is projected out does not affect the cost.

Our goal is to find a valid clustering J∗ that minimizes
Cost(Γ, J∗). As we discussed in Ex. 2.2, it may not be
possible to obtain a clustering J∗, such that Cost(Γ, J∗) = 0,
since I may contain inconsistent information. This motivates
the central technical problem of this work:

Deduplication Evaluation Problem: Given a constraint pro-
gram Γ and an input instance I , construct a valid clustering
J∗ of I such that J∗ minimizes Cost(Γ, J∗).

It is straightforward from prior art that that finding the
optimal clustering for a single soft-complete constraint is
NP-Hard [24]; concretely, the program R ∗ (x, y)<- E(x, y)
suffices. In fact, these problems are typically very hard, even to
approximate. For example, it is believed that minor variations
of the problem do not have constant factor approximations [15]
and obtaining even an unbounded (logn factor) approximation
is non-trivial [25]. However, in Sec. III we show that for a
large fragment of Dedupalog, our algorithm is a constant factor
approximation of the optimal.

III. MAIN ALGORITHM

In this section, we outline our main algorithm and give
optimizations that we use in the experiments. For ease of pre-
sentation, we shall first explain a novel theoretical clustering
algorithm on graphs, called clustering graphs, that forms the
technical heart of our approach. We then show how to use the
graph clustering algorithm to evaluate Dedupalog programs.
Finally, we conclude with the important physical optimizations
(execution strategies) that allow our algorithms to scale to large
datasets.

A. Clustering Graphs

The input to our problem is a clustering graph, which
is a pair (V, φ), where V is a set of nodes and φ is a
symmetric function that assigns pairs of nodes to labels, i.e.,
φ :

(
V
2

) → {[+], [−], [=], [�=]}. We think about a clustering
graph as a complete labeled graph; the nodes of the graph

CLUSTER(V,φ): (V, φ) is a clustering graph.
Output: clustering R∗ of V .

1. Transitive close (V, φ) wrt rules 1) and 2) below.
2. Select a permutation πV of V uniform at random.
3. Extend πV to an order π on edges (see below)
4. While ∃e s.t. φ(e) ∈ {[+], [−]} do (* exists a soft edge *)
5. Pick first soft-edge e in the order π,.
6. if φ(e) = [+] then set φ(e) = [=] else φ(e) = [�=].
7. Deduce edges follows from existing labels (in order by π).
8. EndWhile
9. Return transitively closed subsets of V wrt φ(e) = [=].

Fig. 3. Single Graph Algorithm: The deduction in step 4 uses the transitive
closure property and the rules specified below.

correspond to an entity reference and each edge is labeled
(by φ) with exactly one of four types: soft-plus ([+]), soft-
minus ([−]), hard-plus ([=]) and hard-minus ([�=]). The goal
is to produce a clustering, i.e., an equivalence relation R∗
on V such that: (1) all hard edges are respected, that is if
φ(u, v) = [=] then (u, v) ∈ R∗ and if φ(u, v) = [�=] then
(u, v) �∈ R∗ and (2) the number of violations of soft edges
is as few as possible, where an edge (u, v) is violated if
φ(u, v) = [+] and (u, v) �∈ R∗, or if φ(u, v) = [−] and
(u, v) ∈ R∗. Without the hard-plus and hard-minus edges,
this is exactly the correlation clustering problem proposed
by Bansal et al. [24]; who originally proposed a c factor
approximation with c ≈ 20, 000. This was later improved by
Ailon et al. [26] to c = 3; However, neither considered hard
constraints. Our algorithm in Fig. 3 is able to achieve a factor
of 3, in spite of hard constraints. This algorithm, although
simple to state is a non-trivial extension of Ailon et al. [26]’s
algorithm . Other seemingly minor extensions, such as adding
“don’t care”, i.e. edges that cause no penalties, are believed
to have no constant factor approximation [15].

Algorithmic Details The central operation the algorithm
performs is hardening an edge e, which means that the
algorithm transforms the label of an edge e from a soft
label, i.e., one of {[+], [−]}, into a hard label, i.e., one of
{[=], [�=]}. After hardening an edge, the algorithm deduces
as many constraints as possible, using the following two rules:

1) If φ(u, v) = [=] and φ(v, w) = [=], set φ(u, w) = [=].
2) If φ(u, v) = [=] and φ(v, w) = [�=], set φ(u, w) = [�=].

Informally, these rules are sound, i.e., every edge label
deduced by these rules is correct, and complete, i.e., if
an edge has a hard label h in every clustering, then these
rules deduce h. The order in which these rules are applied
during execution is important. To specify that order, the the
algorithm uniformly chose a random permutation of nodes,
πV : V → {1, . . . , |V |} (Line 2). This gives a partial order
on edges, � defined as

min(πV (x), πV (y)) < min(πV (u), πV (v)) =⇒ (x, y) � (u, v)

We pick an arbitrary total order π that extends �. In lines 4
and 5, the algorithm uses π to pick the first soft- edge, e, and
then hardens e. The algorithm continues in the loop (Lines 4-
8), until all soft edges have been hardened. In the final graph, a



Fix a constraint program Γ with ΓE = {R1!, . . . , Rn!} and instance I
CLUSTERMANY(GL = {G1, . . . , Gi−1} , ER = {Ri!, . . . , Rn!})

Input A set of compiled graphs GL

Input A set of to-be-compiled entity references ER

Output A clustering Ri∗ of each Gj for j = i, . . . , n.
1. If ER = ∅ then return ∅.
2. Else use Ri! to perform Forward-voting to produce Gi

4. Let R = CLUSTERMANY(GL ∪ Gi, ER − {Ri!}).
5. Backward-propagate R to Gi and cluster to produce Ri∗
6. Return {Ri∗} ∪ R

Fig. 4. Multiple Graph Algorithm: The Forward-voting and Backward-
propagation stages are explained in Sec. III-B.

clustering is exactly the [=]-connected components. The main
result of this subsection is that the algorithm in Fig. 3 returns
a clustering that is within a factor 3 of the optimal.

Theorem 3.1: If there exists a clustering of (V, φ), the
algorithm of Fig. 3 produces a clustering. Further, if we let
R∗ = CLUSTER(V, φ) and Opt denote the optimal (lowest
cost) clustering of (V, φ) then

Eπ[Cost(R∗, V, φ)] ≤ 3 Cost(Opt, V, φ)

where E is taken over the random choices of the algorithm.
The first part of the claim follows from the soundness and

completeness of the rules 1) and 2) above. The second claim,
that that the algorithm is 3-approximation in expectation, uses
the primal-dual schema technique (Vazirani [27, Ch.12-26]).
Our algorithm builds on the work of Ailon et al. [26], but is
a strict generalization of their work. In particular, they do not
consider hard constraints, and so we need a different algorithm
and more intricate argument. A complete proof of this theorem
appears in the full paper.

B. Compiling and Executing a Dedupalog Program

In this section, we detail how to compile and execute a
Dedupalog program Γ to obtain a clustering of all entity
references in Γ. Our algorithm has two-stages, Forward-
voting and Backward-propagation. The Forward-voting stage
executes first; it takes as input a program Γ and an instance I ,
and produces as output a list of clustering graphs, G1, . . . , Gn

where n is the number of entity references in Γ. The second
stage, Backward-propagation, takes as input the clustering
graphs produced in Forward-voting and uses the algorithm
from the previous section (Fig. 3) to produce the clusterings,
R1∗, . . . , Rn∗. We now explain these two stages in detail.
During these two stages, we always ensure the transitive
closure property for each individual graph. For the moment,
we assume that Γ does not contain any (self)-recursive rules,
e.g., γ8 in Fig. 1.

1) Forward-voting: For i = 1, . . . , n, let Γ(i) be the set
of rules in Γ that have Ri∗ in the HEAD. Forward-voting
is an inductive procedure. Without loss, we order the entity
references R!1, . . . , R!n, such that if there is some γ ∈ Γ such
that Ri∗ ∈ BODYγ and Rj∗ ∈ HEADγ , then i ≤ j. Inductively
at stage i, Forward-voting has produced graphs G1, . . . , Gi−1

such that for j < i the nodes in graph Gj are exactly the

Head Hard/Soft Voting Datalog Queries
Positive All q

[+]
γ (�x, �y) :−BODYγ [Rj∗ → E

[+]
j ]

Positive Soft q
[+]
γ (�x, �y) :−BODYγ [Rj∗ → E

[=]
j ]

Positive Soft-C q
[−]
γ (�x, �y) :−¬ q[+](�x, �y), Ri!(�x), Ri!(�y)

Positive Hard q
[=]
γ (�x, �y) :−BODYγ [Rj∗ → E

[=]
j ]

Negative All q
[−]
γ (�x, �y) :−BODYγ [Rj∗ → E

[+]
j ]

Negative Soft q
[−]
γ (�x, �y) :−BODYγ [Rj∗ → E

[=]
j ]

Negative Soft-C q
[+]
γ (�x, �y) :−¬ q[−](�x, �y), Ri!(�x), Ri!(�y)

Negative Hard q
[ �=]
γ (�x, �y) :−BODYγ [Rj∗ → E

[=]
j ]

Fig. 5. Queries generated for voting given a constraint γ with body BODYγ

and free variables �x corresponding to the first entity and �y corresponding to
the second entity. The Head column of the table indicates whether the head
of γ must be negative or positive to generate the associated query. Hard/Soft
indicates whether the query is generated when γ is hard, soft, soft-complete
(Soft-C) or in all cases. The substitution in the body is for each j < i,
i.e., each occurrence of Rj∗ is replaced with an edge relation, Ez

j for some
z ∈ {[+], [−], [=], [ �=]}.

values in entity reference relation Rj!. Our goal is to produce
a clustering graph Gi = (Vi, φi) that corresponds to Ri!. The
nodes of Gi, Vi, are exactly the entity references in Ri!. The
decision our algorithm needs to make is how to label the
edges in Gi, i.e., how φi assigns values to elements of

(
Vi

2

)
.

Intuitively, each constraint in Γ(i) offers a vote for the label
assigned to an edge e in Gi. For example, recall γ6 (Fig. 1):

Publisher ∗ (x, y) <= Publishes(x, p1), Publishes(y, p2),
Paper ∗ (p1, p2)

Intuitively, if two papers are likely to be clustered together,
then it is also likely that their publishers should be clustered
together. Specifically, the pair of papers t1 and t2 in Fig. 1 are
similar, hence the rule γ6 “casts a vote” that their publishers
should be clustered; here, the rule says that we should cluster
“ICDE” and “Conference on Data Engineering”.

a) Counting votes with queries: For each Dedupalog rule
γ ∈ Γ(i), the voting algorithm executes one or more queries
based on whether γ’s head is positive or negative and whether
it is hard or soft, we call these queries voting queries. For each
Dedupalog rule γ ∈ Γ(i) and for each entry in Fig. 5 such that
γ satisfies the conditions listed in the first two columns, we
create a voting query. For example, γ6 is positive and hard;
Fig. 5 tells us to generate two Datalog queries, q

[+]
γ6 and q

[=]
γ6 .

To construct the bodies of the voting queries, we replace
any occurrence of Rj∗ for j < i in the BODY of γ with either
E

[+]
j or E

[=]
j as specified by the entry in Fig. 5, where E

[+]
j

def=
{�e | φj(�e) = [+]}, i.e., the current [+] edges in j. E

[=]
j is

defined analogously. This is denoted by BODYγ [Rj∗ → Ez
j ]

for z ∈ {[+], [=]} in Fig. 5. Performing this substitution in
γ6, yields two Datalog queries:

q[+]
γ6 (x, y) :− Publishes(x, p1), Publishes(y, p2), E

[+]
Paper(p1, p2)

q[=]
γ6 (x, y) :− Publishes(x, p1), Publishes(y, p2), E

[=]
Paper(p1, p2)

The first query, q
[+]
γ6 says that if two papers are likely to



Input A set Vi of nodes and voting queries for each γ ∈ Γ(i)

Foreach {u, v} ∈ `
Vi
2

´

If exists γ ∈ Γ(i) such that {u, v} ∈ qh
γ for h ∈ {[=], [�=]}

then φ(u, v) = h.
else (* No hard edge, take the majority vote *)

PLUSVOTES(u, v) =
˛
˛
˛{γ | {u, v} ∈ q

[+]
γ }

˛
˛
˛

MINUSVOTES(u, v) =
˛̨
˛{γ | {u, v} ∈ q

[−]
γ }

˛̨
˛

if PLUSVOTES(u, v) ≥ MINUSVOTES(u, v) then
φ(u, v) = [+] else φ(u, v) = [−].

Fig. 6. Election Algorithm: If there is a hard vote, then we take that label.
Otherwise, we take the majority vote of the rules.

be clustered, then their publishers should likely be clustered
together as well. The second query, q

[=]
γ6 , asserts that if two

papers must be equal, then their publishers must be equal.
If γ6 were soft, i.e., we replace <= with <-, then instead of

two queries, we would generate one query, q
[+]
γ6 with but now

with two rules. The bodies of these rules are identical to those
above. The intuition is that soft-rules cannot force two pairs
to be together, only say that they are likely to be together, i.e.,
they cast only [+] votes.

b) Electing edge labels: Given the voting queries, we
construct the labels for the edges in graph Gi = (Vi, φi). For
any pair {u, v} ∈ (

Vi

2

)
, we select the edge according to the

following procedure in Fig. 6. The intuition is simple: If there
is a vote for a hard label h, then h is the label of that edge3. If
there are no hard labels for the pair {u, v} then φ(u, v) takes
the majority label.

Example 3.1: Continuing with the Publisher! entities,
there are two Dedupalog rules that vote for edges between
publishers: (1) the hard constraint γ6 (above). (2) the soft-
complete rule γ3; γ3 rule casts a [+] vote for each pair of
publishers that are listed in PublisherSim, i.e., are textually
similar. Consider the references t1 and t2 from Fig. 1. Here,
the string similarity between publishers tells us that “ICDE”
and “Conference on Data Engineering” are not close as strings.
However, t1 and t2 are likely to be merged, and so there will
be a vote for [+] from γ6 and one vote for [−] from γ3; Thus,
we are more likely to cluster these two publishers with γ6.

At the end of Forward-voting, we have produced a list of
clustering graphs G1 . . . Gn.

2) Backward-propagation: After Forward-voting has com-
pleted we begin the Backward-propagation stage. Inductively,
this stage moves in the opposite order of Forward-voting: At
stage i, we have produced a clustering Rk∗ of Gk, for k > i.
Let Γ(i) be the set of hard rules in Γ that contain Ri∗ in the
body. For any rule γ in Γ(i), the HEAD of γ is Rk∗ for some
k > i. If {x, y} �∈ Rk∗, then for any pair {u, v} such that
γ(x, y) holds whenever {u, v} ∈ Ri∗, then clustering u and v
together would violate a hard constraint. Hence, to prevent this
when clustering Gi, we set φi(u, v) = [�=]. Now, we cluster
Gi using the algorithm from Fig. 3 and recurse.

3If there are two different hard labels, then there is a contradiction and we
report this to the user, as previously described.

3) Recursive Constraints: Recursive rules are confined to
a single graph and are always soft. During the execution
of our basic algorithm (Fig. 3), we keep track of the votes
for each edge and which rule cast that vote. Naively, we
can simply reevaluate the query, update the votes and again
take the majority. However, since only a relatively few edges
change labels per iteration, an incremental strategy would be
preferable, e.g., using classical techniques to incrementally
evaluate Datalog [28, p.124].

The main result of this section is that CLUSTERMANY
returns a valid clustering and if there are no hard rules
between entity references, our algorithm is a constant factor
approximation.

Theorem 3.2: If there exists a valid clustering for a con-
straint program Γ on entity relations R1!, . . . , Rn! and input
instance I , then CLUSTERMANY (Fig. 4) returns a valid
clustering J∗. Let Opt be the optimal clustering of Γ and I .
If Γ is such that for any hard rule γ ∈ Γ, BODYγ contains no
clustering relations, then CLUSTERMANY returns a clustering
that has cost within a constant factor of the optimal. Formally,

E[Cost(Γ, J∗)] ≤ k Cost(Γ, Opt)

where k = 6 maxi

∣∣Γ(i)
∣∣ and E is over the choices of

CLUSTERMANY.
The proof of the first part of the claim follows essentially by

construction. While the cost bound follows from three costs:
(1) clustering a graph costs a factor of 3 (1)

∣∣Γ(i)
∣∣ is an upper

bound on the votes on any edge4 and (2) the voting (majority)
construction causes us to lose at most an additional factor of
2. Multiplying these costs together attains the bound.

C. Physical Implementation and Optimization

Naively implemented, the formal algorithm of Fig. 3 is
inefficient. In this section, we explain three key execution
strategies that we use in our implementation: implicit represen-
tation of edges,choosing edge orders and a sort-optimization.

1) Implicit Representation of Edges: If we are forced to
explicitly store all edge labels in the graph in our basic
algorithm in Fig. 3, then our running time would always
be quadratic in the number of nodes, which is too slow
at large scales. Instead, we choose to represent edge types
implicitly whenever possible. In our current implementation,
for example, we explicitly store [+] edges from soft-complete
rules, but implicitly represent [−] edges as the complement.
The same idea allows us to process the Backward-propagation
step efficiently: We can represent a clustering of n nodes
in space O(n), by picking a cluster representative for each
cluster and maintaining a mapping of nodes to their cluster
representative. Then, two nodes are in the same cluster iff
they have the same cluster representative.

2) Choosing edge orderings: We can optimize our basic
algorithm in Fig. 3, by making two observations: (1) we are
allowed to select any ordering of edges π that extends � and
(2) it is inefficient to process the [−] neighbors of a node i

4Self-recursive rules are included in Γ(i).



before the [+] neighbors, since [−] neighbors will never be
included in the same cluster as i. Thus, we choose π so that
all [+] neighbors come before any [−] neighbors. After seeing
all the [+] neighbors of the nodes, we do not need to explicitly
evaluate the [−] edges; they will be converted to [�=] edges.

3) Sort optimization: For some entity relations, there may
be no hard constraints. In this case, we are able to run
CLUSTER much more efficiently. The observation is that if
we sort the [+]-edges according to the random ordering π,
then we can cluster directly in this order: When we see an
edge (i, j) with π(i) < π(j), then (1) either i or j has been
clustered to another node, in which case we do nothing or (2)
j can be assigned to cluster i. The memory requirements for
π are small, since π can be implemented using a (random)
hash function. As we experimentally show, this technique can
result in a dramatic savings in main memory. However, the
required sorting can be done in external memory, where this
technique should be even more valuable.

IV. EXPERIMENTS

In this section, we validate that our solution is able to
achieve high precision and recall on the standard Cora dataset,
that our semantics for constraints allows us to recover im-
provements found in prior art, and lastly, that our approach
scales well in the size of the data and the size of the problem.
We also validate the specifics of our approach such as the
sort-optimization and the utility of interactive clustering.

A. Datasets, Measures and Implementation

We consider the Cora dataset [16], which is the standard
in the clustering community and the ACM citation dataset, a
large dataset of citations. The Cora dataset is a collection of
machine learning papers; we use a version of Cora that has
been extracted into XML records. The ACM database is very
large by clustering standards; it contains 436k references to
papers, publishers and conferences.

1) Measures: We consider two standard measures for clus-
tering, precision and recall. Let T be the ground truth:

Precision(J∗, T )
def
=

|J∗ ∩ T |
|J∗| and Recall(J∗, T )

def
=

|J∗ ∩ T |
|T |

2) Hardware and Implementation: We ran all experiments
on an Intel Core2 6600 at 2.4Ghz with 2GB of RAM running
Windows Vista Enterprise. All data for the experiments was
stored in SQL Server 2005. All reported performance numbers
are the average of five runs, and the standard deviation was
less than 3% of the total execution time in all cases. To
minimize the effect of query processing, all experiments were
run with a warm-cache and as the sole process executing on the
system. Our prototype implementation consisted of two parts:
(1) a main clustering library and console application written
in approximately 3000 lines of C# and (2) a GUI application
built to aid in deduplication, written in approximately 1700
lines of C#. Similarity scores were obtained using standard
TF-IDF scoring, which can be computed within minutes even
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Fig. 7. Comparison of matching titles without constraints versus the same
title match with a single hard constraint. The x-axis is the matching threshold.
The y-axis is the relevant measure, in (a) precision, in (b) recall.

on large datasets, e.g. using [29]. Our initial prototype did not
implement recursive constraints and supports only functional
dependencies between clustering entities.

B. Quality

We conduct four experiments to validate the quality of clus-
terings produced by our approach. The first question is: Does
our semantic for deduplication yield high quality clusterings
on the Cora dataset? We then dig deeper into our approach
and ask: Do the constraints described in prior art increase the
quality (precision and recall) in our framework? This question
is non-trivial because the semantic in our framework differs
from that proposed in prior art. To answer these question,
we present the precision and recall of two sets of programs
on the Cora dataset. From these experiments, we conclude
that even basic correlated clustering provides high quality on
Cora and that our approach to constraints increases quality.
Finally, we turn our attention to a more difficult question: Does
our approach offer quality gains at large scale? We present
results on the ACM data that show the naive approach (without
constraints) does not perform well, while an approach with
constraints has much higher precision without much drop in
recall.

1) Cora Validation: In the first experiment on Cora, we
compared matching the titles and running correlated clustering
(Standard) with a second program (NEQ) that matched the
titles as in Standard and had an additional hard rule that
effectively enforced a [�=] (cannot-link) constraint. Specifically,
it listed conference papers that were known to be distinct from
their journal versions. To test how robust our approach is to
the underlying similarity function, we ran the experiment with
several different thresholds. Fig. 7(a) shows the precision and
Fig. 7(b) shows the recall; the threshold of the similarity is
varied on the x-axis.

The first conclusion to draw is that both precision and recall
are high (each greater than .9) for reasonable settings of the
similarity threshold. Second, even Standard does a good job
clustering p = 0.95 for recall ≈ 0.8. Also, a single [�=]
constraint results in increased precision for every setting of
the threshold. In particular, for low settings of the threshold
we have the largest gain of 0.09 points; these low settings
are necessary to achieve high recall. This confirms that our
approach provides precision gains similar to prior art, in spite
of differing semantics.
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Fig. 8. Comparison of no constraints to with additional constraints. The
x-axis is the matching threshold. The y-axis is the relevant measure, in (a)
precision and in (b) recall.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

ci
si

on

Threshold for Similarity

Constraints
No Constraints

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

ci
si

on

Threshold for Similarity

Constraints
No Constraints

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.4  0.5  0.6  0.7  0.8  0.9  1

R
ec

al
l

Threshold for Similarity

Constraints
No Constraints

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.4  0.5  0.6  0.7  0.8  0.9  1

R
ec

al
l

Threshold for Similarity

Constraints
No Constraints

(a) (b)
Fig. 9. Quality results for clustering conference references from a subset of
the ACM data spanning 1988-1990. (a) Precision (b) Recall.

The second experiment we present is in Fig. 8; it compares
the results of three programs: (1) a baseline, called Standard
which is simply clustering based on string similarity, (2) an
additional soft-constraint that “papers must be in a single
conference”, called Soft Constraint, and (3) the same con-
straint, but instead as a hard-constraint, called Hard Constraint.
We compare the clustering of the papers and find that the
Hard Constraint provides both precision and recall gain over
the standard approach when the similarity threshold is low,
while it does not appear to harm the clustering result for
higher thresholds. The soft-constraint does not provide any
improvement in the quality of the paper clustering, but does
additionally cluster the conferences.

In this section we see that on the standard Cora dataset, our
semantics yields high quality. Further, our constraints correctly
capture the spirit of constraint in prior art.

2) Large Dataset Assessment: In this section we ask: Are
there benefits of constraints on large, real datasets? Our task is
to deduplicate references to conferences in the ACM dataset.
This is a challenging task because syntactic matching is very
misleading, e.g., ‘ICDE 07’ and ‘ICDE 08’ are distinct confer-
ences in our ground truth, but are very close as strings. Further,
the task can be ambiguous, e.g., which of the preceding does
the string ‘ICDE’ match? These problems are in addition to
the standard string similarity problems, e.g., ‘ICDE 09’ versus
‘25th International Conference on Data Engineering’ which
refer to the same conference.

Assessing the quality of large scale clustering is always
difficult, because obtaining the complete ground truth is ex-
pensive. Instead, we manually clustered three years of a subset
of the ACM data for 1988 to 1990, that contained 1157 con-
ference references. In Fig. 9, we compare the performance of
two approaches: (1) using string similarity and then correlation

Scale (p) Nodes (n) n2 [+] Edges
Conf Title Pubs

0.001 570 324k 4 2 30
0.01 5403 29.2M 742 52 1436
0.1 52k 2.81B 78k 5182 132k
0.5 266k 70.9B 2.0M 143k 3.5M
1.0 531k 282B 7.6M 585k 1.3M

Fig. 10. Statistics about the data. The number of nodes in each dataset n,
the number of nodes squared n2 and the number of positive edges for three
entities: Conferences, Paper titles and Publishers.

clustering, called No Constraints, and (2) the same program as
in (1), but with an additional hard constraint that “references
with different years, do not refer to the same conference”.
We again varied the similarity threshold. As we can see, the
gain in precision is large irrespective of the threshold. In
particular, the difference is always larger than 0.4. This should
be contrasted to the much simpler Cora dataset, where even
the naive algorithm performed well. On this task, the naive
has disastrously low precision. This result is not surprising,
since string similarity does not have access to the structure.
As a result, it naively clusters references to many distinct years
together. Additionally, the recall for both approaches is similar;
this shows that we are actually doing a better job clustering.
We observe that to a first-approximation, the reason for the
poor performance of the naive approach is over-clustering, i.e.,
it creates too few clusters. We verified that the clusterings for
No Constraint on the ACM data have many fewer clusters
than using Constraint; this suggests that we achieve similar
precision gains on the entire (large) dataset.

Discussion It is possible to simulate the behavior of the
program Constraint in the previous experiment without using
Dedupalog: Partition the data by year and independently
cluster the references in each year. However, this simulation
fails to capture the full power of Dedupalog. For example, this
approach cannot find duplicate references that have incorrect
or missing years. The Dedupalog approach treats the entire
dataset and so missing years are not a problem.

Further, Dedupalog can help catch errors in records. To
show this, we wrote an additional hard rule in our program:
“If two references refer to the same paper, then they must
refer to the same conference”. On the ACM data subset, this
program alerted us to 5 references that contained incorrect
years, e.g., a reference had year 2001, although the paper was
published in 2000. A similar check on the full data revealed
152 suspect papers with similar violations; we did not verify
that all of these papers were in error. Although such violations
are not numerous enough to show up in aggregate measures
like precision and recall, they are extremely valuable in real
deduplication scenarios. This underscores a key point of the
framework: Using the Dedupalog framework, we can flexibly
combine features to be more effective in a deduplication task.

C. Performance

We assess how well our solution scales with the size of
the data and the complexity of our clustering program. We
only present results from the ACM data, because the Cora
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Fig. 11. Performance Comparison. x axis is number of [+] edges in the
largest entity reference (conference). The y-axis is time in seconds. (a) The
running time of a program with a single soft-complete rule (Vanilla), a single
[=] constraint and a homomorphism. (b) A single equality constraint versus
Vanilla, and Vanilla without streaming optimization, No Stream.

dataset is a very small and our most complicated program
terminates in under 2 seconds. However, we note that alternate
approaches to clustering require expensive precomputation
such as computing a solution to a linear program [26], [25],
or requires computing several clusterings [30], which can
be arbitrarily slower. For example, running the linear program
corresponding to clustering Cora runs out of memory. For even
small subsets of the data solving the linear program takes more
than an hour; after running the linear program, an expensive
clustering algorithm is still necessary.

Performance Data In the following experiments, we mea-
sure the time to cluster the data, assuming that similarity
relations, constraints, etc., have been precomputed and stored
in the data. To create synthetic datasets, we randomly sampled
a fraction of the nodes in the ACM database and included their
neighbors. Of course, in this sampling procedure choosing
a p fraction of the nodes only gets a p2 fraction of edges.
Hence, we report the number of [+]-edges that remained after
sampling. The relevant statistics about the data are in Fig. 10.

Our first experiment is intended to show the broad strokes
of the scaling behavior. Fig. 11(b) shows the result of three
clustering programs in increasing order of complexity: (1)
A simple clustering of the references by conference with a
single soft-complete constraint (Vanilla) (2) Vanilla with two
additional hard constraints, called [=], and (3) clustering the
conferences and the papers with the constraint: “conference
papers appear in only one conference”, called HMorphism.
On the x-axis we varied the scale of the dataset, specifically
the number [+] edges. The first point to note is that the running
time of even the most complicated program, HMorphism, is
very efficient. Further, the scaling is approximately linear in
the number of [+]-edges in the graph. In many deduplication
scenarios, there are a large number of clusters, e.g., papers, and
so the the number of [+] edges is on the order of the number
of references in the data. Here, there are ≈ 7.6 million [+]
edges, as opposed to the worst case quadratic number of over
282 billion edges.

Not surprisingly, as the complexity of a program increases
so does its running time. However, the gap from no hard
constraints to hard constraints is much larger than the gap
between adding additional constraints or even more entity
references. To understand this in more detail, we drill-down

into the running time on a single graph. Fig. 11(b) shows
the result of three clustering programs on the same dataset:
(1) no constraints (Vanilla), (2) an [=] constraint, called [=]
and (3) Vanilla with our sort-optimization turned off (Sec. III-
C), called NoStream. With the [=] constraint, we cannot use
the sort-optimization; this graph shows that the main slow-
down with hard-constraints is not being able to use the sort-
optimization.

We also experimented with increasing the number of en-
tity references we collectively clustered, although we do not
present these numbers. The running time was again linear in
the number of edges in the graph. However, our prototype
naively stored structures in memory and so could not scale
to programs with 10s of entity references. However, there is
nothing in principle that prevents this scaling.

Interactive Deduplication We performed a manual cluster-
ing of Cora; we were able to get over 98% precision and recall
with only a couple of hours of work. Further, obtaining the
ground truth for the ACM subset required only 4 hours of work
with the aid of our interactive system. We used a heuristic to
recommend edges to the user inspired by [18].

V. DISCUSSION

In this section, we discuss two extensions to Dedupalog:
using weights and using clean entity lists.

A. Extension 1: Weights and Don’t Care Edges

When writing a Dedupalog program, we may believe that
the conclusions of some soft-rules are more trustworthy than
others. For example, a string similarity metric often also gives
a score, which corresponds to how well it trusts its conclusion.
A natural extensions to capture this kind of fine-grained
knowledge is by adding weights. It is relatively straightforward
to extend our algorithms to handle weights, by simply casting
votes in proportion the weight. However, can we can still
provide theoretical guarantees of quality? We give evidence
of a negative answer, almost immediately from prior art. Our
single entity clustering case captures correlated clustering, and
Demaine et al. [15] show that the existence of a constant
factor approximation for correlated clustering would provide
a constant factor approximation for the MULTICUT problem,
which is a very hard problem believed to have an unbounded
approximation factor.

We can use these results to exhibit a Dedupalog program
with hard constraints and two entity reference relations that
likely does not have a constant factor approximation. The
reduction uses the hard constraint to effectively introduce
weights in the graph. This shows that our positive result
Thm 3.2, likely cannot be strengthened to the full Dedupalog
language.

B. Extension 2: Clean Entity Lists

Often in deduplication scenarios, we have additional pieces
of clean data that should be useful to deduplicate the data. For
example, we may have a list of clean conference names. One
way to leverage this data is by simultaneously clustering the



clean list and the dirty data, and placing [�=] edges between
each element from the clean list. This is easily expressible
as a Dedupalog program. However, if our clean entity list is
complete, then we expect that every entity reference should
be assigned to one of the clean entities. While this complete
semantic is desirable, it leads to a very difficult algorithmic
challenge.

Proposition 5.1: Checking if a clustering program with [�=]
constraints and complete clean entity lists has even a single
valid clustering is NP-hard in the size of the data. Further,
even if you are promised that the entity reference data can
be clustered and there are more than 3 entities in the data, it
remains NP-hard to find such a clustering.

The reduction is to 3-coloring a graph. The clean entities
can be thought of as colors and the [�=] constraints encode
edges of the graph. Hence, a clustering is exactly a 3 coloring
of the graph. Further, it is known that coloring a 3-colorable
graph is hard even with an unbounded number of colors [31].

VI. RELATED WORK

Our work is orthogonal to most of the large body of
work on deduplication (see [32] for an extensive survey). A
significant part of the work on deduplication has focused on
string similarity measures. This includes work on basic string
similarity measures such as edit distance and variations [33],
[34], Jaccard, TF/IDF [3], [35], and Jaro [36], and more
complex similarity measures at the record or multi-attribute
level [33], [37], [38], which are typically derived by combining
single attribute similarity scores. Single- and multi-attribute
similarity measures form the basis of our soft rules; so this rich
body of work is relevant but orthogonal to our work. Other
work has focused on computational aspects of string similarity,
i.e., efficiently identify pairs of records that are similar to each
other on a specified set of attributes [29], [39], [40], [41].

Most of the existing work on deduplication focuses on
record matching; record matching outputs candidate pairs of
duplicate records by identifying pairs of similar records [42],
[43], [44], [38], which may not be transitively closed. A
clustering algorithm is then used to convert the pairwise record
similarity to a partitioning [45], [42], [46]. The approach of
record matching followed by clustering is not amenable to
collective clustering and cannot exploit constraints.

Some previous work falls into the bucket of declarative
data cleaning. We note however that the functionality that can
be specified declaratively often differs significantly from one
work to another, and from ours. The AJAX [46] declarative
data cleaning language enables one to specify the data cleaning
workflow using declarative SQL-like syntax. AJAX captures
operations that we do not consider such as information ex-
traction and approximate string join. AJAX however supports
only a simple clustering operation. The SPIDER [44] declar-
ative system uses the observation that some string similarity
measures can be captured within SQL using n-grams. Again,
SPIDER does not focus on complex clustering. Closely related
to declarative data cleaning systems are the interactive data
cleaning systems such as Potter’s wheel [47] and D-Dupe [19].

These systems do not focus on clustering. There has also been
work on learning similarity functions in an interactive fashion
using active learning [38]. The techniques presented in this
paper can be combined with interactive data cleaning systems
to offer richer functionality.

Some recent work has considered collective deduplication
in the presence of constraints [48], [21], [49], [50]. Dong et
al. [48] present a deduplication algorithm for personal in-
formation management. Their algorithm is monolithic and
incorporates hard-coded constraints in an ad-hoc way. It is
unclear how to add new constraints, nor does the system give
semantics independently of their algorithm. The deduplication
techniques presented by Bhattacharya et al. [21] is also
similar: They address a specific domain (citations), use hard-
coded constraints, and do not offer precise semantics.

Previous work has considered the use of Markov Logic Net-
works and other related probabilistic models to do collective
deduplication with constraints. A representative work in this
direction is [49]. This class of work provides clear semantics
and, in fact, offers richer functionality than our framework:
The output is (conceptually) a space of possible deduplications
in contrast to a single deduplication that we produce. However,
this functionality comes at a cost. It is #P-complete to evaluate
Markov logic networks even for very simple constraints, so the
current approaches do not scale to large data sets.

There has also been previous work on detecting violations
of hard constraints such as regular and conditional functional
dependencies [51], [22]. The techniques in these papers are
relevant to our work since they can be used to identify valid
clusterings that satisfy all hard constraints. A related line
of work considers the problem of automatically repairing a
database instance so as to satisfy all hard constraints [52], [53].
However, this work does not consider clustering. Fuxman et
al. [54] consider a slight variant that performs repairs on-
the-fly while answering queries, again in the presence of
hard constraints. Also related is the work in [2], [4] that
considers clustering in the presence of aggregation constraints;
This work does not consider collective deduplication and non-
aggregation constraints.

Clustering is a well-studied problem and has applications
well beyond data cleaning. The previous work is that is most
related to this paper is [26], which contains new algorithms for
correlation clustering. Our main algorithms are generalizations
of one of the algorithms in [26]. The correlation clustering
problem was first proposed and studied by Bansal et al. [24].

Correlation clustering is particularly well suited for dedu-
plication because it does not require the number of clusters k
as input. The more classic metric clustering algorithms [55]
such as k-means require k as input. Also, it seems nontrivial
to extend metric clustering to handle complex constraints. We
note however that the must-link and cannot-link constraints are
meaningful for metric clustering [9], [10]. Other non-metric
variants of clustering such as ROCK [1] also require k be
known in advance.



VII. CONCLUSION

In this work, we have proposed a novel language, Dedupa-
log, to specify deduplication programs that can be run at large
scale. We have validated its practical utility on two datasets,
Cora and ACM data. Theoretically, we have proved that a
large syntactic fragment of our language has a constant factor
approximation algorithm using a novel algorithm.
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