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Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a
fundamentally important task in data management, used in query optimization, progress estimation, and
resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical
assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples
returned by a new query. We model this problem using the probability space, over possible worlds, that
satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization
model for statistics (MaxEnt). In this paper we develop the mathematical techniques needed to use the
MaxEnt model for predicting the cardinality of conjunctive queries.
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1. INTRODUCTION

Cardinality estimation is the process of estimating the number of tuples returned by a query. In rela-
tional database query optimization, cardinality estimates are key statistics used by the optimizer to
choose an (expected) lowest cost plan. As a result of the importance of the problem, there are many
sources of statistical information available to the optimizer, e.g., query feedback records [Stillger
et al. 2001; Chaudhuri et al. 2008] and distinct value counts [Alon et al. 1996], and many models to
capture some portion of the available statistical information, e.g., histograms [Poosala and Ioannidis
1997; Kaushik and Suciu 2009], samples [Haas et al. 1996], and sketches [Alon et al. 1999; Rusu
and Dobra 2008]; but on any given cardinality estimation task, each method may return a different
(and so, conflicting) estimate. Consider the following cardinality estimation task:

“Suppose one is given a binary relation R(A, B) along with estimates for the number of
distinct values in R.A, R.B, and for the number of tuples in R. Given a query q, how many
tuples should one expect to be returned by q?”

Each of the preceding methods is able to answer the above question with varying degrees of ac-
curacy; nevertheless, the optimizer still needs to make a single estimate, and so, the task of the
optimizer is then to choose a single (best) estimate. Although the preceding methods are able to
produce an estimate, none is able to say that it is the best estimate (even for our simple motivating
example above). In this paper, our goal is to understand the question raised by this observation:
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Given some set of statistical information, what is the best cardinality estimate that one can make?
Building on the principle of entropy maximization, we are able to answer this question in special
cases (including the above example). Our hope is that the techniques that we use to solve these
special cases will provide a starting point for a comprehensive theory of cardinality estimation.

Conceptually, our approach to cardinality estimation has two phases: we first build a consistent
probabilistic model that incorporates all available statistical information, and then we use this prob-
abilistic model to estimate the cardinality of a query g. The standard model used in cardinality
estimation is the frequency model [Srivastava et al. 2006]. For example, this model can express
that the frequency of the value a; in R.A is fj, and the frequency of another value a, in R.A is f>.
The frequency model is a probability space over a set of possible tuples. For example, histograms
are based on the frequency model. This model, however, cannot express cardinality statistics, such
as #R.A = 2000 (the number of distinct values in A is 2000). To capture these, we use a model
where the probability space is over the set of possible instances of R, also called possible worlds.
To make our discussion precise, we consider a language that allows us to make statistical asser-
tions which are pairs (v,d) where v is a view (first order query) and d > 0 is a real number. An
assertion is written #v = d, and its informal meaning is that “the estimated number of distinct tu-
ples returned by v is d”. A statistical program, X = (¥, d), is a set of statistical assertions, possibly
with some constraints. In our language, our motivating question is modeled as a simple statistical
program: #R = dg, #R.A = d4, and #R.B = dp. A statistical program defines the statistical infor-
mation available to the cardinality estimator when it makes its prediction. We give a semantics to
this program following prior work [Markl et al. 2005; Srivastava et al. 2006; Kaushik et al. 2009]:
our chief desideratum is that our semantic for statistical programs should take into consideration all
of the provided statistical information and nothing else. This is the essence of our study: we want
to understand what we can conclude from a given set of statistical information without making ad
hoc assumptions. Although the preceding desideratum may seem vague and non-technical, as we
explain in Section 2, mathematically this can be made precise using the entropy maximization prin-
ciple. In prior work [Kaushik et al. 2009; Ré and Suciu 2010], we showed that this principle allows
us to give a semantics to any consistent set of statistical estimates. '

Operationally, given a statistical program X, the entropy maximization principle tells us that we
are not looking for an arbitrary probability distribution function, but one with a prescribed form.
For an arbitrary discrete probability distribution over M possible worlds one needs to specify M — 1
numbers; in the case of a binary relation R(A, B) over a domain of size N, there are M = o pos-
sible worlds. In contrast, a maximum entropy distribution (MAXENT) over a program X containing
t statistical assertions is completely specified by a tuple of ¢ parameters, denoted @. In our moti-
vating question, for example, the maximum entropy distribution is completely determined by three
parameters: one for each statistical assertion in X. This raises two immediate technical challenges
for cardinality estimation: Given a statistical program X, how do we compute the parameters @? We
call this the model computation problem. Then, given the parameters @ and a query g, how does one
estimate the number of tuples returned by ¢? We call this the prediction problem. In this work, we
completely solve this problem for many special cases, including binary relations where ¢ is a full
query (i.e., a conjunctive query without projections).

Our first technical result is an explicit, closed-form formula for the expected size of a conjunctive
query without projection for a large class of programs called normal form programs (NF programs).
The formula expresses the expected size of the query in terms of moments of the underlying MAXENT
distribution: the number of moments and their degree depends on the query, and the size of the
formula for a query ¢q is O(|g|). As a corollary, we give a formula for computing the expected size
of any conjunctive query (with projection) that uses a number of moments that depends on the size
of the domain. Next, we show how to extend these results to more statistical programs. For that, we
introduce a general technique called normalization that transforms arbitrary statistical programs into

'Intuitively, a program is consistent if there is at least one probability distribution that satisfies it (see Section 2 for more
detail).
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normal form programs. A large class of statistical programs are normalized into NF programs, where
we can use our estimation techniques. We solve our motivating question with an application of this
technique: to make predictions in this model, we normalize it first into an NF program, then express
the expected size of any projection-free query in terms of moments of the MaxENT distribution. By
combining these two techniques, we solve size estimation for projection-free queries on a large class
of models.

To support prediction, we need to compute both the parameters of the MaxEnT distribution and the
moments of the MaxENT distribution efficiently. The first problem is model computation: given the
observed statistics, compute the parameters of the MaxENT distribution that corresponds to those
statistics. This is, in general, a very difficult problem and is intimately related to the problem of
learning in statistical relational models [Wainwright and Jordan 2008]. We show that for chain
programs the parameters can be computed exactly, for hypergraph programs and binary relational
programs the parameters can be computed asymptotically (as the domain size N grows to infinity),
and for general relational programs the parameters can be computed numerically. For the last two
methods we have observed empirically that the approximations error is quite low even for relatively
small domain sizes (say N = 300), which makes these approximations useful in practice (especially
as input to a numeric solving method). The second problem is: once we have the parameters of the
model, compute any given moment. Once the parameters are known, any moment can be computed
in time N°?, where ¢ is the number of parameters of the model, but in some applications this may
be too costly. We give explicit closed formulas for approximating the moments, allowing them to be
computed in O(t) time.? Thus, combining with our previous solution for prediction, we can estimate
the expected output size of a projection-free conjunctive query g in time O(|g|).

main tool in deriving asymptotic approximation results is a novel approximation technique, called
the Peaks Approximation, that approximates the MaxENT distribution with a convex sum of simpler
distributions. In some cases, the Peaks Approximation is very strong: all finite moments of the
MaxENT distribution are closely approximated by the Peaks Approximation. A classical result in
probability theory states that, if two finite, discrete distributions agree on all finite moments then they
are the same distribution [Shao 2003, pg. 35]. And so, if our approximation were not asymptotic
then the Peaks Approximation would not be an approximation — it would be the actual MAXENT
distribution.

Outline and Novelty

In Section 2, we discuss the basics of the MaXENT model. In Section 3, we explain our first technical
contribution, normalization. In Section 4, we address prediction by showing how to estimate the size
of a full query in terms of the moments of an MAXENT model. This section is substantially expanded
from our conference version. Then, in Section 5, we discuss the model computation problem and
solve several special cases using a novel technique, the Peaks Approximation, along with full proofs
that are new to this version. We discuss an extension of our techniques to histograms in Section 6
(that previously appeared [Kaushik et al. 2009; Ré and Suciu 2010]) including the statement and
proof of our result for histograms. We discuss related work in Section 7 and conclude in Section 8.

2. THE MAXENT MODEL FOR STATISTICAL PROGRAMS

We introduce basic notations including the queries that we consider. We then review the basic prop-
erties of the MAXENT model. Finally, we give descriptions of the statistical programs that we consider
for the remainder of the paper.

Notation. We assume a fixed countably infinite set of constants Const. A schema is a finite se-
quence R = (Ry, ..., R,,) where each R; has a fixed arity r; > 0. An instance I (over R) is a sequence
(R!,...,RL) such that each R! is a finite relation of arity r;, i.e., a finite subset of Const’. We may
abuse notation and use R; to denote both the symbol R; and its corresponding instance Rf . We will

2We assume here the unit cost model [Papadimitriou 1994, pg. 40], i.e., arithmetic operations are constant cost.
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often consider a fixed, finite domain D C Const. In this case, the preceding definitions are modified
in a straightforward way, e.g., R{ C D’. Throughout this paper, we define N = |D|. N will play a
central role in our technical development.

A conjunctive query over R has the form 3y.4(X, j,¢) where % and ¥ are tuples of variables, ¢
is a tuple of constants, and ¢ is a conjunction of positive atomic formulas over R. Here, X denotes
the head variables, whose bindings will be returned by a query when applied to an instance. For
example, g(x) = dy;Ay».R(x, y1), S (y1,¥2, ¢) is a conjunctive query over schema (R, S ). We assume
that ¢ is safe in that each variable in X is used in some atomic formula. A full conjunctive query is a
conjunctive query that contains no variables, ¢(x); a full conjunctive query is, thus, a collection of
grounded tuples. We use a standard datalog-style notation to denote such queries [Abiteboul et al.
1995]. A view is just another name for a query: we refer to queries and views interchangeably in
this paper.

CQ denotes the class of conjunctive queries over a relational schema R. A projection query is
a query that contains a single atom without repeated variables. For example, g(x) :— R(x,y) is a
projection query, while g(x) :— R(x, x) is not. We also denote projection queries using a named
perspective [Abiteboul et al. 1995], e.g., Ri(Aj,...,A,) then R;.A1A, denotes the projection of R;
onto the attributes A;A,. To specify statistics for range values, as in a histogram, one needs arith-
metic predicates such as x < y. To simplify presentation, our queries do not contain arithmetic or
inequality predicates. In Section 6, we extend our results to handle arithmetic predicates. Given a
view v and a database I, we denote by v(I) its output on database I. For projection queries in the
named perspective, we use the more standard notation R’.A; to denote the set of values that appear
in attribute A, of relation R in database I.

Let I be a set of full inclusion constraints, i.e., statements of the form R;.X C R;, where X is a set
of attributes of R;, meaning Yx.3y.R;(X,¥) = R;(X).

2.1. Background: The MaxEnt Model

For a fixed, finite domain D and fixed constraint set I', we denote by (') the set of all instances
over D that satisfy I'. The set of all instances over D is 1(0), which we abbreviate |. A probability
distribution on I(I') is a tuple of numbers p = (p;)ser) in [0, 1] that sum to 1. We use the notations
pr and Pr[/] interchangeably in this paper.

A statistical program is a triple £ = (I, 9, d), where T is a set of constraints, ¥ = (v,,...,v,) and
each v; is a projection query, and (dy, ..., dy) are positive real numbers. A pair (v;, d;) is a statistical
assertion that we also write as #v; = d;. For example, we can assert the cardinality of a relation,
#R = d; or the cardinality of a single attribute #R.A = d,.

A probability distribution on I(I) satisfies a statistical program X if E;[|v;|]] = d; foralli = 1,...,s.
Here E;[|vi|]] denotes the expected value of the size of the view v;, i.e., 3 Vi(D)|p;. Given a
probability distribution p, we define the estimate that p makes for the size of a view (or query) g to
be Ep[lgl]. Our goal is to compute a probability distribution p that satisfies the statistical program,
then given a query ¢ estimate E;[|q|].

We will let the domain size, N, grow to infinity. For fixed values d we say that a sequence of
probability distributions (5™)yso satisfies £ = (v,d) asymptotically if limy_c Ezm [|vil] = d;, for
i=1,...,s.

Given a program X, we want to determine the most “natural” probability distribution p that satis-
fies £ and we will use it to estimate query cardinalities. In general, there may not exist any proba-
bility distribution that satisfies X; in this case, we say that X is unsatisfiable. We say that a program
T = (,d) is satisfiable if there exists a distribution p such that fori = 1,...,s, E;[[vill = d; and
unsatisfiable otherwise.® On the other hand, there may exist many solutions. To choose a canonical
one, we apply the principle of Maximum Entropy (MAXENT).

3Using a compactness argument, we show in Appendix A.1 that if a program is satisfiable, there is at least one distribution
that maximizes entropy. In general, we are unaware of a simple procedure to check satisfiability of a program. For the
programs that we consider in this paper, these checks are straightforward.
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Fig. 1. A graph that plots the domain size (on x-axis) versus E[|R.AC]|] (y-axis) for the program R(A, B, C): #R = 200,
#R.A = 20, #R.B = 30, #R.C = 40.

Definition 2.1. A probability distribution p = (p;)ier) is a MaxENT distribution associated
to X if the following two conditions hold: (1) p satisfies Z, and (2) it has the maximum entropy
among all distributions that satisfy X, where the entropy of p is H(p) is defined as the quantity

= Yreir) Prlog pr.

We refer to a MAXENT distribution as the MAXENT model, since, as we later show, it is uniquely
defined. Let p(X) be the distribution associated to X, then we define Prs to be Prjx) and Es to be
E;x).

pl(:'c))r a simple illustration, consider the following program on the relation R(A, B, C): #R = 200,
#R.A = 20, #R.B = 30, #R.C = 40. Thus, we know the cardinality of R and the number of distinct
values of each of the attributes A, B, C. We want to estimate #R.AC, i.e., the number of distinct
values of pairs AC. Clearly this number can be anywhere between 40 and 200, but currently there
does not exist a principled approach for query optimizers to estimate the number of distinct pairs
AC from the other four statistics. The MaxEnT model gives such a principled approach. According
to this model, R is a random instance over a large domain D of size N, according to a probability
distribution described by the probabilities p;, for I C D3. The distribution p; is defined precisely: it
satisfies the four statistical assertions above, and is such that the entropy is maximized. Therefore,
the estimate we seek also has a well-defined semantics, as E;[|R.AC|] = 3 ,cps pilRT.AC|. This
estimate will certainly be between 30 and 200; it will depend on N, which is an undesirable property.
Ideally, one could compute this estimate for each fixed N in a closed form. We are unable to do this
(except by using directly the definition of the expected value, E5[[v|] = 3 e [V(Dlpr, whose size is
exponential in N), but we are able to solve these equations numerically. To make the computations
more tractable while removing the sensitivity on N, a sensible thing to do is to let N grow to infinity,
and compute the limit of E;[|R.AC]]. In Figure 1, we plot E;[|R.AC]] as a function of the domain
size (N). Interestingly, it very quickly goes to 200, even for small values of N. Thus, the MaxENT
model offers a principled and uniform approach to query size estimation.

To describe the general form of a MAaXENT distribution, we need some definitions. Fix a program
¥ =T, 7,d), and so a set of constraints I" and views ¥ = (v1, ..., vy).

Definition 2.2. The partition function for £ = (T, ¥,d) is the following polynomial T* with s
variables X = (x1,..., X,):

%) = Z AL

I
Let & = (ay, ..., ay) be s positive real numbers. The probability distribution associated to (X, @) is:
I .
= wa,llvl( DI aLV“(I)l (D)

where w = 1/T%(a@).
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_ We write T instead of T* when T, ¥ are clear from the context (notice that 7 does not depend on
d), and express it more compactly as:

T(® = ). CrN k... k- o

Ky
where Cr(NV, k1, . .., k;) denotes the number of instances I over a domain of size N that satisfy I" and
for which |v;(I)| = k;, for all i = 1, ..., s. Our technical developments need a function defined by the

compact form of the partition function that we call a term function that is denoted ¢* and is defined
by:

(%K) = Cr(N, ki, .. k)xkt - & s0 that T5(3) = Z FER)
k

The following is a key characterization of MAXENT distributions.

THEOREM 2.3. [Jaynes 2003, page 355] Let X be a statistical program. For any probability
distribution p that satisfies the statistics X the following holds: p is a MAXENT distribution iff there
exists a tuple of parameters & such that p is given by the Equation (1) (equivalently: p is associated
to (Z,@)).

We refer to Jaynes [Jaynes 2003, page 355] for a full proof; the “only if”” part of the proof is both
simple and enlightening, and so we reproduce it here:

Proor. The “only if” direction is very simple to derive by using Lagrange multipliers to solve:

Fo=) ,pi=1=0 @)
Iel
Vi=1,...,s: F,-:Z|v,»(1)|p,—d,~=o 3)
Iel
H = maximum, where H = Z —prlogp; “)
Iel
According to the method, one has to introduce s + 1 additional unknowns, Ay, 41, ..., A;: a MAXENT

distribution is a solution to a system of |l|+ s+ 1 equations consisting of Eq.(2), (3), and the following
[I] equations:

O(H + X0

s AiFy)
Yiel: ——=

—logpr+ (Ao + Y. AiviDl) =0

i=1,....8

This implies p; = exp(dy + X
a; =exp(A),i=1,...,s. O

s Ailvi(D)]), and the claim follows by denoting w = exp(4y), and

Note that in Theorem 2.3 the parameters @ are not necessarily unique. However, they are always
unique if the views ¥ are affinely independent. Call the m views ¥ affinely dependent over a set of
instances I(I') if there exist m + 1 real numbers ¢, d, not all zero, such that:

VI e I(D). Z vi(Dlc; =d
Jj=l..s
We say v is affinely independent over I(T') if no such ¢, d exist.

THEOREM 2.4. LetX = (T, ¥, d) be a satisfiable statistical program where ¥ is affinely independent
over |(I'), then there is a unique tuple of parameters & that satisfies ¥ and maximizes entropy.

Minor variants of this theorem have previously appeared in the literature [Wainwright and Jordan
2008, §3.2]. Nevertheless, we include a proof for completeness in Section A. As a trivial exam-
ple of an affinely dependent statistical program, consider two views v; and v, that have identical
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definitions: then for every instance |v;(I)] = |v2({)|, and, in this case, the MaxEnt model is not
uniquely defined: the parameters a, @, can be varied while keeping their product a;a, constant.
As another example, one may have a statistical program X consisting of a histogram with m buck-
ets, defined by the views vy, ..., Vv, and the total number of elements in the histograms, vy: then
oDl = vi(Dl + ... + [vp(D)|. In all the statistical programs that we consider in this paper, one
can always choose a subset of the views that are affinely independent, hence, from now on we will
assume without loss of generality that, for any program X = (T, ,d) we consider, 7 is affinely in-
dependent over I(I').* Therefore, the parameters that maximize the entropy are uniquely defined,
justifying the term “the MaxEnt Model”.
We illustrate with an example:

Example 2.5. The Binomial Model Consider a relation R(A, B) and the statistical assertion

that the MAXENT model is the following probability distribution: randomly insert each tuple in R
independently, with probability p = d/N?. This is the Binomial Model, given by Pr[I] = p*(1 —
p)V'=k_ To check that this is a MaxENt distribution, rewrite it as Pr[/] = wa*. Here @ = p/(1 — p)
is the odds of a tuple, and w = (1 — p)N2 = Pr[I = 0]. This is indeed a MaXENT distribution by
Theorem 2.3. Asymptotic query evaluation on a generalization of this distribution to multiple tables
has been studied [Dalvi et al. 2005]. ]

In this example, « is the odds of a particular tuple. In general, the MaXENT parameters may
not have a simple probabilistic interpretation. They do, however, determine all the moments of the
distribution as we explain in the following proposition’:

ProposITION 2.6. Let X be a partition function for £ = (U, 9, d) with parameters a, then for v € v
we have:

o\ 5
a%)ua)

where (QV%)" denotes that the operator 6 = av£ is applied k times, and

T*(@) x E[p[] = (av

k

0
T*@) x Elv)w] = @) pro (@)

Here (X)) = x(x—1) - - - (x — k+ 1) denotes the falling factorial. The proof is straightforward: apply
the operators directly to the partition function, 7% in compact form and use linearity. Since MAXENT
distributions are polynomials, computing derivatives is straightforward — but possibly expensive.

Example 2.7. Consider the binomial model: 7'(x) = ZkN:() (IZ)xk = (1 + x)V. This model can be

viewed as a distribution over the size of a randomly chosen subset v C [N]. Consider the expected
size of v, E[|v|]. By definition:

ZkN:() (?:)kxk
T(x)

The proposition above gives us a convenient way to compute E[|v|]] as follows: T(x)E[v|]] =
(xlf—x)(l + x)¥ = Nx(1 + x)N-. It follows that E[|v|]] = Nx/(1 + x). In similar way, the value of

E[|v*] can be found by applying (xa%) twice.

E[jv]] =

#We prove that all programs that we define below are affinely independent in Appendix A.2.
5 A moment is a real number that measures some random variable of a probability distribution. The k™ (raw) moment of a
random variable is X is E[X*]. The k' factorial moment of X is E[(X Y l. A discrete distribution is uniquely determined by
either its factorial moments or its raw moments [Shao 2003, pg. 35]. We also consider moments of more than one random
variable, e.g., E[X(Y)(2)] denotes the joint moment of X and the 2nd factorial moment of Y.
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2.2. A Normal Form for Statistical Programs

We define a normal form for statistical program. We say an assertion is on a base table if it is of the
form #R = ¢ for some relational symbol R and constant c.

Definition 2.8. X is in normal form (NF) if all statistical assertions are on base tables; otherwise,
it is in non-normal form (NNF).

For illustration, consider the relation R(A1, Ay). The program #R = 20, #R.A; = 10, and #R.A, = 5
where I' = 0 is in NNF. Consider three relation names S (A}, A3), R1(A}), R2(A,). The program with
constraints S.A; C R; for i = 1,2 and statistical assertions #S = 20, #R; = 10, #R, = 5is in NF.

Any NF program without constraints consists of independent binomial models, one for each base
table. When there are constraints, then an NF program may not be a binomial. Still, we have found
NF programs to be easier to reason about than a NNF program. We will prove in Section 3 that
every program can be translated into a statistical program in normal form.

2.3. Important Programs

We describe two classes of programs that are central to this paper: relational programs and hyper-
graph programs.

2.3.1. Relational Statistical Programs

Definition 2.9. Fix a single relation name R(Ay,...,A,). A relational program is a program
X =T, 9,d) where I = 0 and every statistical assertion is of the form #R.X = d for X C {Ay,..., A}

That is, all views are projections are queries over one table, and there are no constraints. Relational
programs are in NNF.

A relational program is called simple it consists of m + 1 assertions: #R.A; = d; fori=1,...,m,
and® #R = dg. We always order the parameters and assume without loss of generality that d; < d» <
...dy < dg. Our motivating example in the introduction is a simple relational program of arity 2.

We now give the partition function for a simple relational program. For a fixed N > 0, let r(k,[) =
r(ki, ..., kn, ) be the number of relational instances I with schema R(A1, ..., A,,) where the attribute
of each domain is of size N such that |R'| = I and |R'.A;| = k; fori=1,...,k.

ProrosiTion 2.10. Consider a simple relational program g, of arity m Fori =1,...,m, let a;
be the parameter associated with the assertion #R.A; = d;. Let y be the parameter associated with
the assertion |R| = dg. The partition function T associated to Tgy, is:

. (N
Zrm (5 — ! ki
T (@,y) = ,—gl r(k,lyy |,»=1| (ki)ai

The function r(k, ) is difficult to compute. One can show, using the inclusion/exclusion principle,

that for m = 2:
k) =Y (—1)-f1+.iz(k1)(k2)((kl — itk - jz))
jl =0 kl jl j2 !
jz = O, ey k2

This generalizes to arbitrary m. To the best of our knowledge, there is no simple closed form for r:
we circumvent computing r using normalization, in Section 3.

2.3.2. Hypergraph Statistical Programs

O#R is equivalent to #R.A1A> ... A,,.
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Definition 2.11. Fix a set of relation names Ry, Ry, ..., R,. A hypergraph program consists of
> = (I, 9, d), where X has one statistical assertion #R; = d; for every relation name R;, and I consists
of inclusion constraints of the form R;. X C R, where X is a subset of the attributes of R;.

A hypergraph program is in NF. If there are no constraints, then a hypergraph program consists
of m independent binomial models. The addition of constraints changes the model considerably.

We consider two important special cases of hypergraph programs in this paper: chain programs
and simple hypergraph programs.

Chain Programs. The first is a chain program. Fix m relation names: R;(Ai,...,An),
Ry(Az, ... Ap), oo Ry(An). A chain program of size m, ¢y, is a hypergraph program where I’
the set of constraints is defined as

= {R,;].A,'AH_] ...Am QR, | i= 2,...,111}

For example, X¢; is the following program on R;(A;, A;) and Ry(A»): #R; = d, #R, = d», and
Ri.A> CR,.

ProposiTioN 2.12. (Chain Partition Function) Let X¢,, be a chain program of size m > 1. Denote

the parameters of ¢y, as @ = (a1, . .., ay). Then its partition function satisfies the recursion:
T>Y(ay) = (1+a)"
Zejr c) N
T (an,. . ap) = (1+ @ T™ (... ay)

forj=1,2,....,m—1.

To prove this proposition, apply the binomial theorem inductively. The partition function T* is
sometimes referred to as a cascading binomial [Dalvi et al. 2005].

Example 2.13. Consider the schema R;(A;, A3), R2(Ay). The chain program X, is #R| = dj,
#R, = d;, and R|.A; C Ry, and its partition function is:

T*(@) = (1 + ax(1 + a))MN

Given d = (d;,d,), we need to find the parameters @, a, for which the probability distribution
defined by T*< has E[|R,|] = d; and E[|R,|] = d>.

‘We now show that the solutions are @ = [#Ldl and ap = Ndfzdo(l +ay)™N. We verify that:
1 0 a’z(l + cxl)N d2
E[R)] = o= e»— T™> =N =N =d
Raoll = 757 @257 T+ +a) " (N—dp+dy 2
1 0 (12(1 +01)N aq aq d;
E[R|]] = — aj— T** =N = E[|R,[IN =dhN— =d
IRl = 752 @1 g, Tra(ray  Tra - CWRINTZ = bV =4

These results hold for any domain N that is large enough (here N > d, and d, N > d;). Observe that
no limits are needed.

Simple Hypergraph Programs. The second special case is the following. A simple hypergraph
program of size m is a hypergraph program over S (A1, ...,An), Ri(A1),. .., Ru(A,), where the con-
straints are S.A; € R; fori = 1,...,m. We denote by Xy, a simple hypergraph program of size m,
and will refer to it, with some abuse, as a hypergraph program. Its partition function is:

ProposiTioN 2.14 (HYPERGRAPH PARTITION FUNCTION). Given a hypergraph program Zy,,, let & be
a tuple of m parameters (one for each R;) and y be the parameter associated with the assertion on
S. Then, the partition function is given by:

_ _ n " (N
T (@, y) = Z i (@, v, k) where = (@, y; k) = (1 + 7)Hf:1 ki 1_[ (k )af’
R i=1
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This partition function corresponds to a simple two-stage random process: select random sets R;
from the domain using a binomial distribution, then select a random subset S of edges (hyperedges)
from their cross product R; X- - -XR,, using another binomial distribution. Note that the term function
is simpler than in Proposition 2.10. This term function will play a central role in our later technical
developments.

Example 2.15. The hypergraph program Xp, is over three relations, S(A,A3), Ri(A}), and
R(A,), two constraints S.A; € Ry, S.A, C R,, and three statistical assertions: #R; = d;, #R, = d,,
#S = ds. Denoting a, a,, and y the parameters of the MAXENT model, we have:

N\(N
TZHZ(QI, (1/2,)/) = Z (kl)(kz)af]l‘lalg(l + 'y)klkz

ki ka

This expression is much simpler than that in Prop. 2.10, but it still does not have a closed form. To
compute moments of this distribution (needed for expected values) one needs sums of N? terms.
The difficulty comes from (1 +y)k'k2: when k1 kyy = o(1), this term is O(1) and the partition function
behaves like a product of two binomials, but when k k,y = Q(1) it behaves differently.

2.4. Problem Definitions

We study two problems in this paper. One is the model computation problem: given a statistical
program X = (I, v, d), find the parameters @ for the MAXENT model such that @ satisfies X. The other
is the prediction problem, given the parameters of a model and a query g(X), compute E[|g(¥)|] in
the MaxENT distribution. We first discuss a technique, normalization, that is useful to attack both
problems.

3. NORMALIZATION

We give here a general procedure for converting any NNF statistical program X into an NF program
with additional inclusion constraints. In fact, this theorem is the reason why we consider inclusion
constraints as part of our statistical programs.

Theorem 3.1 below shows one step of the normalization process: how to replace a statistical
assertion on a projection with a statistical assertion on a base table plus one additional inclusion
constraint. Repeating this process normalizes X.

We describe the notation in the theorem. Let R = (R, ..., R,,). Let ¥ be a set of s projection views,
and assume that v; is not a base relation. Thus, the statistic #v,; = d ensures that the program is in
NNF. Let Q be a new relational symbol of the same arity as v,, and set R = RU{Q},I” = TU{v, C Q).
Replace the statistical assertion #v;, = d; with #Q = d; (where the number d; is computed as
described below). Denote a = arity(Q). Denote w the set of views obtained from v by replacing v,
with Q.

Let us examine the MaXENT distributions for (I', ¥) and for (I, w). Both have the same number
of parameters (s). The outcome of the former is a database instance with m relations: Ry, ..., Ry;;
the latter has as an outcome a database instance with m + 1 relations: Ry,...,R,, Q. Consider a
MaxEnT distribution for (I, w), and examine what happens if we compute the marginal distribution
over Ry, ...,R,,. As we show below, the resulting distribution is another MAXENT distribution’, for
(T, ¥). More precisely,

THEOREM 3.1 (NORMALIZATION). Consider a MAXENT distribution for (I",w), with parameters

Bi,...,Bs and outcomes Ry, ..., Ry, Q. Then the marginal distribution over Ry, ..., R, is a MAXENT
distribution for (I', V), with parameters given by a; = B; fori = 1,...,5s — 1, and a5 = l'f—ﬁ In

7Given a two outcomes x,y with domain D and probability distribution given by Pr, the marginal distribution of x is the
probability function defined by Pry[x = d] = Y, yrcp Pr[x = d,y = d’] where d € D.
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addition, the following relations hold between the partition functions T for (I',v) and U for (I", w):

U®

T@ =g w

&)

Finally, the following relationship holds between the expected sizes of the views in the statistical
programs:

Er[|v,l]
Er[lvil]

Nea; + (1 - ay)Ey[lQl] (6)
Eyllwil] fori=1,...,s—-1

Proor. We show Equation 5. Equation 6 follows immediately, by direct derivation. Denote | =
I(T) the set of R-instances that satisfy the constraint I', and J = J(I"") the set of R’ instances that
satisfy I'”. An instance J € J has m + 1 relations: we write I = (Iy,. .., I,;) for the first m and denote
K the m + 1’st relation, thus J = (I, K) (and one can check that I € |, because the constraints I’
extend I'). The additional constraint in I'"” is v((I) C K. For every instance J = (I, K), the relation K
uniquely splits into K = L U P, where L = v4(I) and P = K — v,(I). Note that the sole constraint on
Pis P C D* — vi(I). Moreover, |wy(J)| = |K| = [vi(D)] + |P|, and [w;(J)| = |v;(D|fori=1,...,5s -1,
thus:

s—1

Z ]i['B‘iW[(J)I = Z Z ﬁlsvx(l)lﬂp‘ . ]_[IBLVJ(I)I

U@ =
Jed i=1 Iel PCD—v(I) i=1
s—=1
i(1 s |y,
=2 (1_[/3'!( )'] O (1
Iel \i=1

i viD gY@ N
Z(nﬁil ] e popn (3P

Iel \i=1

ST el 1+ g0 = 7@ - (1 + B

Iel i=1

a

We give some examples of how the normalization theorem is used. Intuitively, the last equation
tells us how to set the expected sized d; of Q to obtain the same distributions, namely d; = (ds —
Nag)/(1 - ay).

Example 3.2. The A, R-Model (Cascading Binomials) Consider two statistical assertions on
R(A,B): #R = d, and #R.A = d,. Our goal is to compute the parameters @, a, of the MaxENT model
from the two statistics d;, d». This program is not normalized: we use Theorem 3.1 to normalize it,
compute its parameters 31,82, then obtain a;, @,. To normalize, add a new relation symbol Q(A),
the constraint R.A C Q, and make the following two statistical assertions, #Q = ¢, #R = d; the new
constant ¢ is an unknown (it is given by Eq.(6)). This is a chain program, and we gave its solution
in Example 2.13: 8; = d,/(cN —d;) and B, = ¢/(N — ¢)(1 + 8;)™". By Theorem 3.1, the parameters
of the non-normalized model are @, = S5,/(1 + 82), @) = B, and the new statistics, c, is given by
Eq.(6): ¢ = Na; + (1 — ay)d,. Thus, we have a non-linear system of equations with three unknowns,
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a1, as, c. To solve it, we first derive the following approximation: a, ~ %e‘d' /c Indeed:

ay = ’82 = ¢ (1 + ¢ )_1
L+p  (N-od+p)N (N =o)(1+p)N
c (N = +p)"

T N=o+B)N (N =)+ BN + ¢
C

TWN-o(+8) + ¢

Nc _ —di/c
Nootgyvee = ce

Thus, assuming N large enough, we will approximate @, = %e"" /¢ This implies ¢ = Nay + (1 —
@)ds ~ ce™/ +d,. This is a transcendental equation in ¢, which first we rewrite as e™" = 1 —d,v,
where v = 1/c, then further substitute t = d;v + d—; so that v = dl‘l(t - Z—;), obtaining the following:

4
W(%e_@) 1
d; d

Noting that limy_,e(1 + 81)Y = e?/¢, we obtain limy_. Ny = limy_,e

_g-dy d dy _4
e dé)zd—?t = t:W(d—;e ";) = v=
where W is the Lambert-W (multi-)function defined as W(x)e"V® = x [Corless et al. 1997]. W is a
function (not a multifunction) for positive reals, and W (xe™) = x occurs only at x = 0, thus v > 0
for all d1,d, > 0. This gives us an explicit solution ¢ = 1/v for ¢ in terms only of the two statistics
di, d», and, furthermore, we obtain the parameters a, =~ I%e‘d‘ /“and @) = d/(cN - d)).

Example 3.3. To appreciate the power of normalization, we will illustrate on the NNF program
on R(A,B): #R.A = d,, #R.B = d;, and #R = d. Let @, a,,y be the associated parameters of
MAXENT. Its partition function 7 (@, @,y) is a complicated expression given by Prop.2.10. The NF
Program has three relations R;(A), Rx(A,) and R(A1, A), statistics #R| = ¢1,#Ry = ¢, #R = ¢, and
constraints R.A; C Ry, R.A; C Ry. Its partition is U(B1.2,7) = Y (g)(g)ﬁf‘ﬁ?(l + Yk (see
Example 2.15). After applying the normalization theorem twice, we obtain the following identity:

T(ar,a2,7) = (1L+B) ™A +B) ™ UB1. B2, ¥)

where a; = B;/(1 + ;) for i = 1,2. Moreover, d; = Na; + (1 — a;)c; fori = 1,2 and d = c. This
translation allows us to do predictions for the NNF program by reduction to the (more manageable)
NF hypergraph program. This justifies the normalization theorem, and our interest in hypergraph
programs.

After normalization, the challenge that remains is to compute the values ¢ and the B parameters
that yield ¢ according to the normalized model.

4. PREDICTION

In this section, we describe how to estimate the size of a projection-free conjunctive query g on a
hypergraph program. Then using normalization, we show how to estimate the expected size of a
query on a relational program. Throughout this section we assume that the parameters of the model
are given: we discuss in the next section how to compute these parameters from given a statistical
program.

Recall from Section 2 that a conjunctive query g has the form 3y.¢(%, y,c). We write g(¥) to
highlight the head variables x. Our technique is to rewrite E[|g(X)|] in terms of the moments of the
MaxENT distribution. We first reduce computing E[|g(¥)|] to computing Pr[g’] for several Boolean
queries ¢’ (i.e. queries without head variables). Then, we provide an explicit, exact formula for
Pr[g’] in terms of moments of the MAXENT distribution.
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4.1. From Cardinalities to Probabilities
We start from an observation:

Ellq®)l] = ) Priq(%/2)] where ¢ = |¥
ceD!
where g(X/c¢) means the Boolean query that results from substituting x; with ¢; fori = 1, ..., ¢, where
t is the number of head variables in ¢. This is true since,

Ellq(0ll = ELli¢ | (/@)1= ) Ellg®/all = ) Priq(x/e)]
ceD! ceD!
The first equality is the definition of |g(X)|, the second is linearity of expectation. The last is that the
expectation of a Boolean random variable is equivalent to its probability.

Let v be the views used in a statistical program, g(x) be the query whose size we want to estimate,
and C be the set of all constants mentioned in ¥ and q. A C-permutation of the domain D is a
bijection f : D — D that is invariant on C. The MAaXENT model is invariant under C-permutations,
meaning that for any instance I, Pr[I] = Pr[f(I)], for any C-permutation f. Therefore, Pr[g(X/c)]
is the same for all constants ¢ € D — C. We exploit this in order to simplify the formula above, as
illustrated by this example:

Example 4.1. Assume no constants occur in the views ¥, and consider the query ¢(x,y,z) =
R(x,y),R(y,2),x #y,y # z,x # z. Then:

Ellg(x,y, 2l = Z Prig(ci, c2,¢3)] = (N)) Prig(ar, a2, a3)]

C1,€2,C3

where (N)qy = N(N — 1)---(N — k + 1) is the falling factorial. Here a;, a,, a3 are three distinct,
fixed (but arbitrary) constants, and g(a;, a», az) = R(a;, a2), R(a», a3). The case without inequalities,
q(x,y,2) = R(x,y), R(y, z), can be handled similarly, by considering five cases: (1) a; # a, # a3 # ay,
2)a; =ax # az # ay, ..., (5) ag = a» = az, leading to E[|q(x,y,2)|] = (N)@3)Prlg(ai, a2, a3)] +
(N)y Prlg(ay, a1, a3)] + ... + (N)q) Prlg(ai, a1, a))].

We generalize the example. Let ¥ = {xj,...,x;} be the query’s head variables, and let A =
{ai,...,a;} be distinct constants, that do not occur in C (the set of constants in ¥ and ¢(X)). Consider
all substitution 6 : {x,...,x;} > AU C: call 6, 0 equivalent if there exists a C-permutation f such
that 8; = f o 6. We want to retain a single substitution from a set of equivalent substitutions, and for
that we retain the smallest one in lexicographic order. If 6 < 6, denotes the lexicographic order on
substitutions®, then we call 8 canonical if for any other equivalent substitution 8;, we have 6 < 6.
Let © be the set of canonical substitutions.

ProposiTion 4.2. With the notations above:
Ellg®] = D (N = [Clygaonay Prig®(®)]
0e®
The proof is straightforward, by a direct extension of the example above.

4.2. Probabilities for Simple Programs

A full query is a Boolean query without variables, e.g., ¢ = R(a, b), R(a, d) is a full query. We give
here an explicit equation for Pry[g] over the MAXENT distribution given by a program X, for the
case when X is either a simple hypergraph program, or a simple relational program. Note that, in
probabilistic databases [Dalvi and Suciu 2007], computing the probability of ¢ for a full query is

8The lexicographic order is defined in a standard fashion. First, define the following order < on A U C: a; < a ;j for all
1 <i<j<tya; <cpforallie [t], k €[|C|]; and ¢ < ¢; forall 1 < k <[ <|C|. Then the lexicographic order 6 < 6; is defined
as: 3i.6(i) < 01(i) and Vj < i,0(0) = 6;(i).
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trivial, because all tuples are assumed to be either independent or factored into independent sets.
MAaxENT models, however, are not independent, and cannot be decomposed into simple indepen-
dent factors. As a result, computing Prs[q] is non-trivial. Computing Prs[g] intimately relies on the
combinatorics of the underlying MaxENT distribution, and so, we are only able to compute Prs[q]
directly for some programs.

Simple Hypergraph Programs We start with the case of a simple hypergraph program Xg,,.
Recall that the schema is S(A4,...,A,), Ri(A1),...,Ru(A,,), and Xy, consists of the constraints
S. Ay CRy,...,S. Ay C Ry, and the statistics #S = d,#R, = d|,...,#R,, = d,. The parameters of
the MAXENT model are y (for #5') and g3; for #R;), i = 1,...,m.

Let g = g1,82,... be a full conjunctive query, i.e., each g; is a grounded tuple. Let I(g) be the
smallest database instance that satisfies g. /(g) can be obtained from g by chasing the inclusion
constraints: it consists of all tuples g1, g», . .. occurring in ¢, and, in addition, of all tuples R;(a;) s.t.
q contains some atom S (@) such that (a); = g;. Define:

u; =|Rf(q)|, i=1,....m Uug =|SI(")|

If ¢ = S(a,b),S(a,d),Ri(a), Ra(c), then 1(q) = {Ri(a),Ra(b), Ra(c), Ra(d), S (a, b), S(a, d)}, uy =
1,u2 = 3,143 =2.

Denote (X)) = X(X = 1)--- (X — k + 1), the k-falling factorial. Given a probability space Pr, we
write A; for the random variable |R;.A;| = |R;|. Then E[(A;),] denotes the expected value of the u-
falling factorial of A;; it can be computed directly as Y (ki) H(@, v, k) in time O(N™) (see Prop 2.6),
and we give more effective methods in the next section.

THEOREM 4.3. With the notation above, let Xy, be a hypergraph program of arity m over a
domain of size N. Then, following equation holds:

us -1
PrEHm [C]] = (1 Z'}/) [ 1_[ <N>(Mz)] EZHm

1,...m

This theorem allows us to reduce query answering to moment computation. Thus, if we can
compute moments of the MaxENT distribution (and know the parameter y), we can estimate query
cardinalities. We defer the proof to Section 4.3 and instead inspect some examples and show how
we use this formula.

Example 4.4. Letq = S(a,b),S(a,d),Ri(e),Ry(c). Then uy = 2, up = 3, ug = 2. We have:
¥\ Ex,.[Ai(A - DAY(A; - D(A2 - 2)]
1+y NZ(N — 1)2(N - 2)

Here Es,,[A1(A] — 1)A2(A2 — 1)(A2 — 2)] denotes the expected value of |R;| - (IR — 1) - |Ra| - (JR2| —
D - (IRz| = 2).

Pl’zm [CI] = (

Example 4.5. Given a binary relation S (A, B), define the fanout X, of a constant a is the number
of tuples (a, b) € S. Computing the expected fanout is an important problem in query optimization.
Fix two constants b # b’; we have E[X,] = 1 + (N — 1) Pr[S(a, ") | S (a, b)]. Applying Bayes’ Rule
gives us:

Pry,,[S(a,b), S(a,b7] _ LY Es,,[A-B-(B-1)]
Prs,,[S (a, b)] L+y Es,,[A - B]

Finally, we show how to derive an interesting identity between the expectations of |S| and of the

product [, |R;| for a hypergraph program Xp,,:

CoroLLary 4.6. Es,, [IS]] = %EZHW[]—L:W [R;|].

Es,,[Xsd=1+(N-1)
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Proor. We have Es,, [|S|] = N"-Prg, [S(ai,....am)] = %E;Hm [A;...A,], by applying Theo-
rem 4.3 to the query g = S(ay,...,a,); the Corollary follows from the fact that A; = |[R;|. O

Notice that, in the Corollary, Es, [IS|] is exactly d, the statistics on #S in the program X,,. How-
ever, Ex,, [|R]...|R;|]is not easily related to dy, . .., dy,; while Ex, [IR;]] = d;, the random variables
Ay, ..., A, are not independent, hence Es, [A; ...A,] is not the product [, d;.

Simple Relational Programs Next, we discuss the case when Zg,, is a simple relational pro-
gram of arity m: R(Ay,...,A,), with statistics #R.A; = d; for i = 1,...,m, #R = d, and no
constraints. Let «;, i = 1,...,m and y be its parameters. A full query g consists of a set of
atoms of the form R(¢). Construct a new hypergraph program Xpy,,, by normalizing Xg,,: it has
schema R(Ay,...,An), Q1(A1), ..., On(A,), constraints R.A; € Q;, i = 1,...,m, and parameters
Bi = a;/(1 —a;),i = 1,...,m. The MAxENT distribution given by X, is a probability space with
outcomes R, Qi, ..., Qy,; from Theorem 3.1 (applied m times) it follows that the marginal distribu-
tion of R is precisely the MAXENT distribution for the Xg,,-program. This discussion implies:

CororLary 4.7. Prg, [q] = Prs,, [q].

Example 4.8. Consider a relational program Xy over a relation R(A, B) given by the statis-
tics #R = d, #RA = d,, #R.B = d,. Suppose we want to estimate the size of the query
q(x,y,2) = R(x,y),R(z,y),x # z. Thus, Ex,[lg]] = N*(N — 1)Prg,[q(a, b, c)], where a,b,c are
three fixed constants s.t. a # c¢. To compute Pry,[q(a, b, c)] we first normalize the program (us-
ing Theorem 3.1) obtaining the hypergraph program Xy, over relations R(A, B), R|(A), R,(B), con-
straints RA C Ri,R.B C R, and statistics #R = d',#R; = d|,#R, = d;. Let y be the pa-
rameter for #R in Xy. Then Prs, (q(a, b, c)) = Pry,(g(a,b,c)) = (L)z By (R1OR - DiRo1) [|1;]12|E\]1\!;1_\]—)1>IR2I], implying

5 1+y
Exllgll = (%) Ex,[IRi| (Ri| - D R].

General Conjunctive Queries So far we have considered only queries without existential vari-
ables. Consider a Boolean conjunctive query g with v existential variables, g = 3y.¢(¥,¢), [J| = v.
Then, we can express Pr[g] in terms of O(N”) moments. We illustrate here the main idea, on one ex-
ample, the relational program Xz in Figure 1: given #R, #R.A, #R.B, #R.C, compute Ex,[|[R.AC|]. We
have Ey,[|R.AC|] = N?Prs,[q(a, c)], where g(x,z) = Jy.R(x,y,z) and g(a, c) is the Boolean query
q' = 3y.R(a,y, c). After normalizing that relational program, we obtain the hypergraph program Xy
over R(A, B,C), Ri(A), R,(B), R3(C) with constraints R.A C R, R.B C R,, R.C C R3, and we have
Prs,(q") = Pry,(q"). We cannot apply directly Theorem 4.3 because the query ¢’ has an existential
variable y. Instead, we write ¢’ = \/,cp R(a, b, ¢), then apply the inclusion-exclusion formula:

Pr,lg] = > (~D'Pry, [R@.by.o)..... R(@ by )]
BCD:B={by,....b;}
= Z(—l)“l(N)( . )kEZH[A‘<B><k>-C1
- k)\1+y N2 (N

Each moment above can be computed in time O(k - N?), and there are O(N) moments to compute.
In practice, however, one may stop when k < N. For example, when computing Figure 1, taking
k = 3, the error ¢ satisfied |¢] < 10719,

4.3. Proof Of Theorem 4.3

Fix a hypergraph program Zy,,; recall its schema is S (A), Ri(A)), i = 1,...,m, and its constraints
are['={S.A; CR;|i=1,m}.Letg = gi,...,gs be afull query over these relations.
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Recall the general form of the partition function, given in Definition 2.2. For hypergraph pro-
grams, we have shown in Proposition 2.14 that it admits a simpler form:

_ RV w ) ) N\ ..
T = TEHm(a,; y) = Z ]_[ a,l i ")’lS | — Z(l + y)”,:l,...m ki o l_l (k)af,
Wel(D) i=1,...,m 2 i=l,m N

Denote by T, the partition function over the constraints I' U {g}; in other words, it sums only over

the worlds W such that W k ¢, and, thus, Prs,, [g] = % A world W satisfies ¢ iff it contains 1(g),
because the latter is the smallest database instance that satisfies ¢g. Using the same argument as in
the proof of Proposition 2.14, we have:

T, = Z 1—[ a!.RM'y'SW' — [yus x l—l a,ui]xZ[ l_[ (N];ui)aiff]x(l+y)ﬂi—l ..... (ki) —us

Wel(D):W2I(q) i=1,...m i=1,..., 7 1.

M

The term () counts tuples in /(g); the remaining part of the expression counts the other tuples. The
expression simplifies to:

e L e

i=1,...m

) y us N —u; ki [Tizt,..m ki
- (1+7) Zkl[ y (ki—ui)ai]X(Hw

i=1,...m

The first line is algebra. The second line is simply renumbering (and observing that (IZ) = 0 for

k < 0). We claim that:
T us A
—":(V)El_[<>(k’)
T L+y N

i=1,...,

which immediately implies the theorem, because Prs,, [q] = % We prove the claim:

Y s <Ai>(u,-)
E
(] +7) [ 1_[m <N>(ui)

i=1

y \¥1 1,9
= = a'—T
1+ Y T i <N>(u,) ' oa;

..... m

y \*1 N\<kdw) &, it ki
_ 1 i (1 i=1,.m Ki
(1 +7) r Z[}:izll—lm(ki)<N>(ui)a, )

Y “1 N —u\ I k T,
= — i % 1 + i=l.mKi — _ 1
(5] 7201 o xaemmne=3

The last line uses the binomial identity:

(N) Ky Ny kday (N =gy (N - v)
KJ(NYoy kI (N)wy — (k=)' \k-v

.....

O

5. MODEL COMPUTATION

We first describe the solutions for chain programs. These programs can be solved in closed form.
Then, we discuss the Peaks Approximation technique, which is used to solve the model computation
problem for hypergraphs and binary relational programs.
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5.1. Warm up: Chain Programs

Consider a chain program of size m, ¢,, = (I, ¥, d). For an example when m = 2, see Example 2.13.
Recall that the partition function for a chain program is defined by the recurrence (Proposition 2.12):

. . N
70 = Land T (an,..., ) = (1 + @jn T, ... )))

We show that we can write a simple equation for the moments of the chain program:

ProrosiTion 5.1. Given a chain program Z¢,, of size m, then for j=1,...,m
Cl,'TCi_l
E[R] = N—
[| J|] i:lj_[m 1+ a,iTCt—l

Proor. This follows directly from the following calculation:

ci TCi-1 P
0 TCi = T ' X N_1+agTC’_1 , lf_] =1
(9on- TCIXNH(;%%TCZ_l 1f]<l

Then, we use this inductively:

aiTCi—l

0 Cm Cm
@z T" =T"x [] NIy aFaT

804,-

We conclude by observing that ajﬁTcm =T"xE[R)]]l. D
J

We now give an O(m) time algorithm to solve the model computation problem by observing the
following identity:
dj _ E[Ile] _ (leCj;l
diyi E[Rju] 1+ ;T¢!

The recursive procedure starts with 7¢° = 1 in the base case; recursively, we compute the value 7¢
and all moments. We observe that this uses no asymptotic approximations. Summarizing, we have
shown:

THEOREM 5.2. Given a chain program X of arity m the above algorithm solves the model com-
putation problem in time O(m) for any domain size.

5.2. Overview of The Peaks Approximation

The Peaks Approximation writes a MAXENT distribution as a convex sum of simpler distributions
using two key pieces of intuition. First, in many cases, almost all of the mass in the partition function
comes from a small fraction of its terms. Second, around each peak, the function behaves like a
simpler function (here, a product of binomials).

To make this intuition more concrete, consider the following hypergraph program Zy: #R;.A; =
2, #Ry.A; = 4 and #S = 10 on a domain of size N = 99. In Figure 2, we solve the model and then
plot In f(k, 1) where f(k,[) = max{r**(k,[),e~'°} and ¥ (k;, k,) is the associated term function: k;
is on the x axis, and k; is on the y axis, and on the z-axis is In #(x, y). Most of the mass of r=#2(k, I) is
concentrated around #(2, 4), i.e., around the expected values given in the program, and some slightly
smaller mass is concentrated around #(99,99). The idea of the Peaks Approximation is to locally
approximate the term function ¢ in the neighborhood of (2,4) and (99, 99) with simpler functions.

The formal setting that we consider in this section is as follows: we are given a simple hyper-
graph program Xy, of size m with relations R, ..., R,, and §. We are also given @ = a1, ..., @, and

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Christopher Ré and Dan Suciu

Local Maxima
(Peaks)

5.00

-5.00
-10.00

Fig. 2. A graph of In#(k, [) for the hypergraph program with #R.A = 2 #R.B = 4), #R = 10 and N = 99. For readability, we
plot In f(k,[) where f(k,[) = max{t(k, ), ¢~ 19}, Almost all mass comes from the two peaks.

v the parameters of the MaxENT distribution associated with Xy. Intuitively, we want to approxi-
mate the MAXENT distribution with a convex sum of products of binomials. Formally, we devise an
approximation for *#, the term function associated with .

We describe the Peaks Approximation in three steps. (1) We define the functions that we use in
the Peaks Approximation, and (2) we describe how to find the parameters of the approximation that
we define in step (1). Finally, in step (3) we give a technical lemma that defines a sufficient condition
for the Peaks Approximation to be a good approximation.

Step (1): The Approximating Functions. Our approximation function will be a weighted sum of
two products of binomials: it is parametrized by two tuples of values ¢, &» € R” that represent
the center of each product of binomials.” Let Peaks = {Z‘(l), @ } In the next section, we show how
to find Peaks. For now, we define a function #@, y; k) that approximates {EHm

i,y k) = Z (1 + y)I=mP@ 1—[( )a ‘(1 + y)}/P© where P(¢) = 1_[ ci

cePeaks i=1

The partition function associated to the Peaks Approximation, 7 is obtained by summing 7 over k:

T(@y) = Z (1 +7)1-P© 1_[ (1 + a1 +y)qp(c>) o

cePeaks =l

We can view the Peaks Approximation as replacing the complicated MaXENT distribution T with
the simpler function 7. In the next section, we show how to find Peaks and so specify 7.

Step (2): Finding the set Peaks. Fix a hypergraph program X. We take Peaks to be the set of local
maxima for the term function =#». Intuitively, this is where T%’s mass is concentrated, so it makes
sense to locally approximate ¢ near the peaks. Below, we show a surprising fact: for hypergraph
programs, there are at most two local maxima (justifying our notation above).

THEOREM 5.3 (NUMBER OF PEAKS). Let Sy, be a simple hypergraph program of size m. Let t*# be
the term function of Zy,. Then, for any fixed (&,y) such that a; > 0i=1,...,m,y >0, (@, y; k)
has at most 2 local maxima in k.

We prove this theorem in Section 5.4 in several steps. The first observation is that we can interpo-
late ¢ with a smooth function (i.e., a continuously differentiable function). Second, we observe that

91t is straightforward to extend this idea to a mixture of more than a product of two binomials (i.e. [Peaks| > 2). We do not
need this generalization for our theoretical development in this paper.
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a local maxima of #(@, y; k) function must be a critical point.'® Then, we observe that, by the mean
value theorem [Rudin 1976, pg. 108], to find a critical point it suffices to find values of k such that
tk) = t(k + e?) for i = 1,...,m where ¢? is the unit vector in direction i]. This process yields a
system of equations (one equation for each ki, ..., k,). We then show that all the solutions of this
system of equations are the zeros of a function of a single variable. In turn, we show that the now
one-dimensional function has at most 3 zeros by showing that the third derivative of this function
has a constant sign. Then, we conclude that at most 2 critical points can be local maxima.

Step (3): Sufficient Conditions for Approximation. Informally, we give a sufficient condition about
the set Peaks that allows us to conclude the Peaks Approximation is a good approximation to the
hypergraph partition function. The lemma is unfortunately technical and requires three conditions,
which intuitively say: (1) that the error around each peak is small enough, (2) the peaks are far
enough apart, and (3) that the peaks are not in the middle of the space. Given these conditions,
we show that the Peaks Approximation is asymptotically strong: every finite moment of the Peaks
Approximation is an asymptotic approximation of the original distribution.!!

Lemma 5.4. Fix a hypergraph program Xyg,,. Let N = 1,2,..., and let Tf\:, denote the partition
function for £ on a domain of size N. For each N, let Ty be the Peaks Approximation for Tf, and
cfl’N) forl =1,2andi = 1,...,m denote the local maxima of t". We make the following three
assumptions: (1) In(1 + yY)N"2 = o(1), (2) mini—;__n |c(.1’N) - cﬁz’N)l > N7% for some € > 0, and (3)

,,,,, i

for I = 1,2 3i such that min {c(l’N), N - cEl’N)} = O(N'™7) for some T > 0. With these assumptions,

i

for any tuple 5 of m positive numbers:

. EryITi=r, m(Adp]
lim =
Nooo B [Tzt m{Aiesy]

.....

We prove this lemma in Section 5.5 by showing two statements. The first statement informally
says that the peaks are a best local, linear approximation (in the exponent), and we use this to
write the error of the Peaks Approximation in a closed form. The second result is a variation of
the standard Chernoff Bound [Mitzenmacher and Upfal 2005], which is the typical tool used to say
that random binomial variables are very sharply (exponentially) concentrated about their mean. The
proof of Lemma 5.4 then boils down to a calculation that combines these two statements.

Moment Computation for the Peaks Approximation. We give a closed-form solution for moments
of the Peaks Approximation as a weighted sum of each peak:

THEOREM 5.5. Let T be a Peaks Approximation (Eq. 7) defined by Peaks with parameters

i, ..., Ay, Y. Then, for any § € N the following equation holds:
al(1+ y)s,-P(E)/ci
= i
El [ @wal= 2, vo || Vo
i=1,...m cePeaks i=1,...m 1

where N is the size of the domain and

w(@) = (T(a. 7/))_l D+t PO (jkv)af"(l +y)lilat©
3 =1\

Notice that w(c) > 0 for ¢ € Peaks and ) zcpeas W(€) = 1. Coupled with the fact that each term in
the summation is the moment of a binomial, this justifies our statement that the Peaks Approxima-

10Given a continuously differentiable function f : R™ — R, a critical point is a point x € R™ such that dx;#(x) = 0 for
i=1,..., m.
'To be clear about the order of quantifiers: the value of § is chosen, and then the limit N is applied in the theorem.
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tion is a mixture of binomials. Combining Theorem 5.5 with Theorem 4.3, we can approximate any
full query in O(|g|)-time using the Peaks Approximation.

Next, we use this sufficient condition to verify asymptotic solutions for several statistical pro-
grams.

5.3. Asymptotic Model Computation Solutions

We state the asymptotic solutions for simple hypergraph programs and simple binary (arity 2) rela-
tional programs.

Hypergraph Programs. We solve hypergraph programs of any arity.

THEOREM 5.6. Consider a hypergraph programs of arity m > 2, where (without loss) 0 < d; <
dy <--- <dy, <dg = O(1) then the following parameters are an asymptotic solution:

d
@ =d;N ' andy = gN'"™ + N7 ((5 +In —S)
Ng

where g = — Y-y mln%, and we set§ = g2/2 — (dy +dy) ifm=2and § = 0 if m > 2.

.....

The strange looking ¢ term for m = 2 arises for a technical reason: we need to balance a limit
appropriately. The key to the proof of Theorem 5.6 is to establish following lemma that describes
the local maxima of ¥ above parameters.

Lemma 5.7. With the parameters and notation of Theorem 5.6, the set of local maxima for =
are {J +6W, @ 4+ 6(2)} where & = (N —d,, N — d;) ifm =2 and ¢? = (N,...,N) otherwise; and
6" is a vector such that max; |6;| = O(N~'). Moreover, in the notation of Theorem 5.5, w(¢?) = ;’,—;
and w(@V) = 1 — w(@?).

Observe that the conditions of Lemma 5.4 are satisfied, so that we may use the peaks instead of
the MaxENT to calculate the moments. Using the fact that w(¢®) = o(N~') it is straightforward to
calculate the moments of the distribution and verify that E[|R;|] = d; - w(c") + N -w(c®) = d; + o(1)
and E[|S]] = 0 - w(cV) + N’”% swy = dg ﬁ — dg. Anecdotally, we have implemented this
statistical program and verified that the values converge within small errors for small N (on the order
of hundreds) for a broad range of values of d. We return to the proof of this Lemma in Appendix B.

Binary Relations. Our solution for binary relations combines normalization and the Peaks ap-
proach, but there is a subtle twist. Recall the binary relational program X, is over a binary relation
R(A, B) with assertions #R.A = d4, #R.B = dp, and #R = dg. If we try to directly reuse the solu-
tions from Theorem 5.6 for Zy,, and we set the hypergraph parameters to any constant, then the
normalization tells us that both |R.A| and |R.B| tend to zero with increasing N, i.e.,

Es,[IRA]l =+ a)Eg,, [IR{[] - Nay = di —d; — 0
It turns out, finding the solution for binary relations require subtle balancing:

THEOREM 5.8. Given Zg, above assume that dy < dp < dg. Then, the tuple of parameters

(a1, ap,7y) defined as follows is an asymptotic solution for Tg,: Let lf;l = aN7!, 12_39 = bgl‘1

andy = giN~' + N2 where
a=(dy+ 1)/’ =1), b=dy/d, and g, = ~W_|(—ab)

dc —dp
Nln

Here, W_; denotes the value of the Lambert W function over the non-principal (but real-valued)
branch.

©=81/2+1+pIn(1l +p)
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The proof uses normalization to transform the program into a hypergraph program, and then use
the Peaks Approximation instead of the MAxENT distribution (via Lemma 5.4). We include these
calculations in Appendix C along with a proof of the above.

We solve programs with non-binary relations using numeric techniques based on solving the set
of equations defined by Equation 8.

5.4. Proof of Theorem 5.3

Fix m > 2. Given a hypergraph program X, and values for N, @, 7y, our goal is to find (and char-
acterize) the set of local maxima for *#. The technical problem is that the set of maxima is only
known through a system of equations — and this system of equations has many variables. This im-
plies that the solution set could be infinite. We show, however, that the solution set is finite, by
showing that all the solutions must lie along some curve in 1d, i.e., we show there is a function
f with domain R that characterizes all solutions. Then, we find the roots of this one dimensional
equation. More strongly, we show that there are at most two maxima, proving the theorem.

We begin with an observation. Let 1 denote the vector (1,...,1) € R™. Suppose that the term
function has a (local) maximum value at some point k € N, Then, we have the following pair of of
inequalities:

tk = 1) < #(k) and 1k + 1) < #(k)

Now, ¢ can be viewed as a continuous function with type R” — R. From this fact, we can deduce that
the function g(s) = (I + s1) — 1@ + (1 + s)f),:“,The inequalities above suggest that g(0) > O while
g(1) < 0. Hence, there is some s € [0, 1] such that g(s) = 0, which implies our above statement.
Exactly symmetric reasoning applies for minima. Thus, we can find all local maxima and minima
by solving the following system of equations:

tk)=ttk—e)fori=1,...,m

We denote by K1 = []}2, k;. Then the resulting system of equations to describe a peak is equivalent
-1
to the following using the identity (g )(kzz ]) =N +k],_k" (for real-valued k;).
N+1-k
k—a,-a +yknk = fori=1,....m (8)
Fix some i, a;, and 7, then the above equations define a pair of functions (f;,g;) fori = 1,...,N

where g;, f; : R — R. Let f; be the function that maps K7 to k; and let g; denote its inverse. We show
that these functions can be used to characterize the solutions of the equations. We observe that g;
can be found with straightforward arithmetic

1 N+1- ki
- In + Inq;
In(1 + ) k;
Computing, f;, however, requires more work and the use of a special function, Lambert’s W
(multi)function, which is defined by W(x#) = v means that ve" = u. We derive an explicit form
for f; in terms of W:

gitky) =

Lemma 5.9. Let f; be defined as above, then for eachi = 1,...,m f; can be written explicitly as:

-1
fi(K) = (N + 1)(1 + Lw(cKne-CKﬂi))
CKH

i

where ¢ = ﬁ In(1 + ), i.e., ¢ does not depend on K.
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Proor oF LEMMa 5.9. We need to do some algebra to get the solution into the form where W can
help us. Define ¢ = N~'(n(1 +y)) and let x; = (N + 1)k; thus our equation becomes:

. L
(1 4+ )N <

1

1 1 1
—(l - —)exp {CKH—} =—
Xi Xi o

Now write z; = 1 — Xi (so that xl = 1 — z;). Using this substitution and rewriting we have:

we rearrange terms:

1
ziexp {—cKnz} = ——e "
[07

And now, let v; = —cKpz; so that z; = —(‘Tn leaving:

vexp {v} = cKye 1 —

Inverting this equation using the W function gives:
1

1+ = W(LcKpe k)

1 . 1 1 .
V= W(—cKne_‘K“) = z= ——W(—CKHe_‘K“) = X
@ cKn @

O
Any critical point is a zero of the following equation:
O(Ky) = Ji(Kn) — Kn
i=1,....,n

We show that ® has at most 3 zeros, and, so at most two can be local maxima. Thus, Figure 2
represents the picture of the general case for hypergraph programs.

Lemma 5.10. Assuming that a; > 0 fori=1,...,m, ®(Ky) has at most 3 zeros.

Intuitively, we show that the logarithmic derivative is concave, which implies the original function
has at most 3 zeros using the mean value theorem [Rudin 1976, p.108].

Proor. We first convert this equation into an equivalent form using log, here we use that Ky > 0.
> log fi(Kn) = log Kn
i=1,...m

The following calculations are easiest to verify with the computer algebra system, Maple. We
differentiate this equation with respect to Kr;. We use the fact that:

dW(x)  W(x)
dx  x(1+ W(x))

5 W(gKne * a7 ) 1
A Kn(1+W(gKnetkia; ")~ K

Which in turn reduces to:

Z W(gKne ko) ~

(1 + W(gKneskuarhy)
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Now, we show that this equation has at most 2 solutions, by showing that its derivative has 1 solution.
Taking a derivative, we have:

W(eKpe kg !
(- gk § — ke T ),
Ku(1 + W(gKne skna; 1))

=1
We observe that the summation is always positive, since @; > 0. In turn, in this range moreover W is
a single-valued, positive function. Thus, there is exactly one zero: when g = KLH, hence the second
derivative has exactly one zero, proving the claim. O

We observe the main theorem as a corollary. Since 7 is the partition function for simple hyper-
graphs, this immediately implies Theorem 5.3 holds.

5.5. Proof of Lemma 5.4

We now state a proposition that precisely spells out the local, relative error of using the Peaks Ap-
proximation to approximate a hypergraph program; this will allow us to provide sufficient conditions
for T to be a good approximation (defined formally below).

ProposiTioN 5.11. Let X be a hypergraph of arity m and let € be a tuple of constants of arity m.
Let t = t* be the term function and then let {(&; k,y; ©) be a (single peak) approximation. Further, let
® be any derivative (operator) generated by composing finitely many partial derivatives from the

set {(,%}i:] o Then, for any 6 € Z™ we have:

O« +3)] _ _ AN 5
m_exp{ln(uyw(@[ ﬂ (1+C‘) 1 _Z Ci]} 9)

i=1,...m 4 i=1,....m

,,,,,

except if O[t(¢ + 6)] = 0 in which case O[HE + 6)] = 0 as well.

Deriving this equation is straightforward, but we can read some interesting things from it: First,
the Peaks Approximations is preserved under taking moments. Intuitively, assuming the Peaks Ap-
proximation is good, we can use the approximation to compute moments. A second point is that ¢
is an arbitrary point in the statement above, i.e., ¢ is not necessarily a local maximum of 7', and so,
our approximation is in some sense a best local, linear approximation (in the exponent) for 7 about
c.

A second key fact that we need is about the constituent parts of 7: binomials. A binomial dis-
tributed random variable is tightly concentrated (e.g., Chernoff’s bound [Alon and Spencer 1992,
p- 270]). Translating this fact into our notation is the following result that most of the mass of the
binomial is on a small number of terms:

a
1+a

N
Z (k)a/k <21 +a)¥ exp{—62u/2} where y = N
k:ly—pl>op

We need a generalization of this observation around each peak. For 0 € R™ and a point gz € R™,
define the 6-neighborhood around fi as the following set:

Nbd(@,6) = (ke N" | |u; —ki| < 6; fori=1,...,m}
Also, we say that f(N) = O(g(N)) if f = O(g(N)polylog(N)).

Lemma 5.12. With the notation of the theorem. We assume that In(1 + y) = O(N'™™) and that
there exists some T > 0 and some i such that min {c;, N — ¢;} = O(N'™7). Let ¢ € {E(l), 5(2)}. Then, for

any s > 0, there exists a tuple 5 € R™ that satisfies the following two conditions simultaneously.

(I) Foreachi=1,...,m. N™° > g; where g; = min {exp{—c"éf/Z} , eXp {—(N - ci)éf/Z}}
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(2) For any ¥ € Nbd(¢, 8) such that ly; — c;| < 6;, the relative error at ¥ (Eq. 9) tends to 0 as N — oo.

Proor LEMma 5.12. We set 6; so that the first equation holds with equality and satisfies condition
(D) ie., 6; = \/Z_SC;I/ 2InN. It suffices to prove the condition on the border, so consider some
3 = ¢ + 6. To simplify notation, write §; = zcl._l/ % where z = V2sInN. The following chain of
inequalities establishes (2). We can write the exponent of Eq. 9 as (Let C be some constant)

In(1 + y)P(@) Z ]_[6— In(1 + ) Z le(nc;/z)[ncj]
Xc{l,...,m}:|X|>2

c
Xc(l,...m):|X|>2 ieX Tt ieX je-X

Cln(1l +7) Z X1 (N\XI/Z(I—T)) (Nh)q(l—r))

Xc{l,..mp|X|>2

IA

c(’;') In(1 + Y)(N"™"7 + O(N" 32" In" N — 0

The first inequality is the assumption that ¢; = O(N'~7) which implies there is some C. The second
inequality observes that the high order term is when |X| = 2. Thus, since In(1 + ) In™ N = O(N'™")
then In(1 +y)N"~!="In" N = o(1) which is less than any &, proving the claim. O

We now prove Lemma 5.4. Property (2) says that for any £ > 0 and large enough N, the relative
error of all terms in the & neighborhood is less than . Moreover, the terms on the the frontier of
this neighborhood contribute O(N~™). Then, we observe a following simple fact about the Peaks
Approximation: every term not contained in one of these balls must be smaller than some term on
the frontier of one of these neighborhoods. To see this consider the following graph: each term in
the partition function is a node and it adds a directed edge to its highest valued neighbor. Now, the
only sinks (with out degree 0) in this graph are local maxima. And so, any node ¥ has a path from
itself to one local maxima, call it ko. Either the node is within the neighborhood, or the path must
cross the frontier of the neighborhood ko, and so, the value 1(¥)t(kg)~! = o(N~™). Since there are at
most N such terms taking k > m suffices to show the asymptotic statements. Moreover, since the
terms are N~*®) apart the two binomials contribute only a negligible amount inside each others &
neighborhood.

6. EXTENSION: BUCKETIZATION

An arithmetic predicate, or range predicate, has the form x op ¢, where op € {<,<,>,>} and
c is a constant; we denote by P= the set of project queries with range predicates. We introduce
range predicates like x < ¢, both in the constraints and in the statistical assertions. To extend the
asymptotic analysis, we assume that all constants are expressed as fractions of the domain size N,
e.g., in Ex. 6.1 we have v|(x,y) :— R(x,y), x < 0.25N. We leave non-asymptotic assertions such as
R.A < 10 for future work.
Example 6.1. Overlapping Ranges Consider two views'?:

vi(x,y) i— R(x,y), x < .60N and v,(x,y) :— R(x,y), 25N < x

and the statistical program #v| = d;, #v, = d>. Assuming N = 100, the views partition the domain
into three buckets, D, = [1,24], D, = [25,59], D3 = [60, 100], of sizes Ny, N>, N3. Here we want to
say that we observe d; tuples in D; U D; and d, tuples in D, U D3. The MaxENT model gives us a
precise distribution that represents only these observations and nothing more. The partition function
is (14+x)M (1 +x;x)™(1 + x,)™, and the MaxENr distribution has the form Pr[I] = wa]f‘ a];z, where
ki = |IN(Dy VU D,)| and kp = |I N (D, U D3)|; we show below how to compute the parameters o, a;.

12We represent range predicates as fractions of N so we can allow N to go to infinity.
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Let R = Ry,...,R,, be a relational schema, and consider a statistical program X, I' with range
queries, over the schema R. We translate it into a bucketized statistical program >0 TO over a new
schema RY, as follows. First, use all the constants that occur in the constraints or in the statistical
assertions to partition the domain into b buckets, D = D; U D, U ... U D,. Then define as follows:

— For each relation name R; of arity a define b new relation symbols, R;""i“ = Ri., where iy,...,i, €
[b]; then RY is the schema consisting of all relation names R;""i".

— For each conjunctive query ¢ with range predicates, denote buckets(q) = {¢' | i € [b]V**@I}
the set of queries obtained by associating each variable in g to a unique bucket, and annotating
the relations accordingly. Each query in buckets(g) is a conjunctive query over the schema R,
without range predicates, and ¢ is logically equivalent to their union.

—Let BV = |J{buckets(v) | (v,d) € Z} (we include in BV queries up to logical equivalence), and
let ¢, denote a constant for each u € BV, s.t. for each statistical assertion #v = d in X the following
holds

cy = d (10)

ucbuckets(v)

Denote 2 the set of statistical assertions #u = c¢,, u € BV.
— For each inclusion constraint w = R in T, create bV ™! new inclusion constraints, of the form
wl = R': call I'? the set of new inclusion constraints.

Then the following holds:

ProposiTioN 6.2. Let 20, T be the bucketized program for X,T. Let B = (Bx) be the MAXENT
model of the bucketized program. Consider some parameters & = (a;). Suppose that for every
statistical assertion #v; = d; in X condition (10) holds, and the following condition holds for every
query u; € BV:

=[] a (11)

J:ugebuckets(v;)
Then & is a solution to the MAXENT model for Z,T.

This gives us a general procedure for solving the MaXENT model for programs with range predi-
cates: introduce new unknowns ci and add Equations (10) and (11), then solve the MaxENT model
for the bucketized program under these new constraints.

Example 6.3. Recall Example 6.1: we have two statistics #oa<oeon(R) = d;, and
#0 4>0258(R) = dr. The domain D is partitioned into three domains, D; = [1,0.25N), D, =
[0.25N,0.60N), and D3 = [0.60N, N], and we denote N, N,, N5 their sizes. The bucketization pro-
cedure is this. Define a new schema R!, R2, R3, with the statistics #R! = ¢!, #R? = ¢, #R> = ¢3, then
solve it, subject to the Equations (11):

B = ai
B = aja
B3 = a

We can solve for R',R?,R?, since each R' is given by a binomial distribution with tuple probability
Bi/(1 + B;) = ¢'/N;. Now use Equations (10), ¢! + ¢*> = d; and ¢ + ¢* = d, to obtain:

a) @
N1 +N2 = dl
1+ a; 1 +ajar
a2 a1
N3 dr

+ Ny =
1+ap 1+aaz
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Solving this gives us the MAXENT model. Consistent histograms [Srivastava et al. 2006] had a similar
goal of using MAXENT to capture statistics on overlapping intervals, but use a different, simpler
probabilistic model based on frequencies.

7. RELATED WORK

The first body of related work is in cardinality estimation. As noted above, while a variety of syn-
opses structures have been proposed for cardinality estimation [loannidis 2003; Olken 1993; Deli-
giannakis et al. 2007; Alon et al. 1999], they have all focused on various sub-classes of queries
and deriving estimates for arbitrary query expressions has involved ad hoc steps such as the in-
dependence and containment assumptions which result in large estimation errors [loannidis and
Christodoulakis 1991]). In contrast, we ask the question: given some statistical information, what is
the best estimate that one can make?

The MAxENT model has been applied in prior work to the problem of cardinality estima-
tion [Markl et al. 2005; Srivastava et al. 2006]. However, the focus was restricted to queries that
consist of conjunctive selection predicates over single tables. In contrast, we explore a full-fledged
MaxENT model that can incorporate statistics involving arbitrary first-order expressions. There are
more technical differences as well: the previous model applies the MaxENnT model to the space of
frequencies of observed statistics, which are continuous real-valued observables. It is non-trivial to
use MAxENT in continuous settings (as it may no longer uniquely defined) [Jaynes 2003, p.377].
In contrast, we consider the MAXENT to the probability distribution on the underlying (discrete) re-
lations. In this case, the estimates MAXENT provides are unique. That said, MAXENT is still only a
principle, and other principles are possible [Kass and Wasserman 1996]. Additionally, our technical
results differ from the above approach in two ways: (1) we show how to predict full conjunctive
queries using the MAXENT approach (in contrast, prior work focused on single-table histogram es-
timates), and (2) we find asymptotic solutions to the MAXENT models (in contrast, prior work used
numerical techniques).

In our previous work [Kaushik et al. 2009], we introduced the MaxENT model over possible
worlds for computing statistics, and solved it in a very limited setting, when the MaxENT distribution
is a random graph. We left open the MaxENT models for cardinality estimation that are not random
graphs, such as the models we solve in this paper. In another work [Kaushik and Suciu 2009], we
discussed a MAXENT model for set/bag semantics: we did not discuss bag semantics in this paper.
Also prior art did not address query estimation. Entropy maximization is a well-established principle
in statistics for handling incomplete information [Jaynes 2003].

The MaxENT principle also underlies the graphical model approach, notably the probabilistic re-
lational model [Getoor et al. 2001] and Markov Logic Networks [Domingos and Richardson 2004].
In particular both approaches require that the underlying probability distribution is in the expo-
nential family (which is dictated by an MaXENT approach). Recall that the classical central limit
theorem (CLT) is an asymptotic statement that provides conditions under which the mean of a sam-
ple of large enough number of random variables will be approximately normally distributed. Our
asymptotic results in this paper are inspired by such results, and we can view our results as a first
step toward a kind of central limit theorem for graphical models. In the same way that the CLT
provided a basis for many independent sampling related tasks, such a theory would allow for such
tasks where the structure of the task was specified by graphical models. For example, our results
may provide an initial estimate for the optimization programs that underlie parameter estimation
in graphical models. It is interesting future work to explore how the techniques in this paper apply
to inference and learning in such approaches, e.g., Factor Graphs [Sen and Deshpande 2007] and
Markov Logic Networks [Richardson and Domingos 2006].

Probabilistic databases [Dalvi and Suciu 2007; Antova et al. 2007; Koch and Olteanu 2008;
Widom 2005] focus on efficient query evaluation over a probabilistic database, in which proba-
bilities are specifies with tuples. Our focus is on computing the parameters of a different type of
models.
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8. CONCLUSION AND FUTURE WORK

We propose to model database statistics using maximum entropy probability distributions. This
model is attractive because any query has a well defined size estimate, all statistics act as a whole,
and the model extends smoothly when new statistics are added. As part of our technical develop-
ment we described three techniques: normalization, query answering via moments, and the Peaks
Approximation that we believe are of both theoretical and practical interest for solving statistical
programs.

The next step for our work is to implement a prototype cardinality estimator using the theoretical
underpinnings laid out in this paper.

Our work raises several theoretical directions. One direction is to find a general theory of numeri-
cal solutions for richer MaxENT models. While an analytic solution is the gold standard for MAXENT
models, many applications of cardinality estimation can tolerate approximate solutions. In our ex-
periments for this paper, we solved many of models (many more than we can solve theoretically)
using numerical techniques. For even moderate domain sizes, applying the direct entropy equation
is infeasible (as there is one variable for each of the exponentially many possible worlds). Empiri-
cally, we have had some success solving the peak equations numerically. However, determining the
right mathematical optimization approach to solve MaxENT models in general is an intriguing open
question.

A second direction is to understand the complexity of decision procedures that a general cardi-
nality estimator built on the MAXENT theory must support. For example, deciding whether or not
an arbitrary statistical program is affinely independent or is satisfiable for logical models for large
enough N is an open question. In contrast, there is an obvious but potentially exponential decision
procedure for each N. In this work, we have seen that for simple models we can decide these prop-
erties easily — but we do not have a general procedure for these problems. Efficient special cases of
such procedures could have practical applications: they would enable optimizers to find contradic-
tions in their statistical specifications (say as a result of estimates that have changed due to updates,
inserts, and deletes of the underlying databases).
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Online Appendix to:
Understanding Cardinality Estimation using Entropy Maximization

CHRISTOPHER R E, University of Wisconsin—-Madison
DAN SUC|U, University of Washington, Seattle

A. PROOF OF THEOREM 2.4

In this section, we reprove some folklore statements that we were unable to track down proofs;
these results are not contributions of this work (for a variant of these results see Wainwright and
Jordan [Wainwright and Jordan 2008, §3.2]).

Fix a domain size N. Given a program X = (T, ¥, d) over a space of instances I(I'), Let P(T") denote
all probability distributions over I(I'). The set P(I') is a closed, bounded subset of R thus it is
compact. Moreover, P(I') is convex.

We say that X is satisfiable if there exists p € P(I') such that F(p) = d. A hypergraph program
Yy = (¥, d) is consistent over a domain of size N if d is in the convex hull of the vectors: (¢, z) where
2= [li=1...mci where ¢ € {0,..., N}".
Given a set of views v define E : P — R’ by E(p) = ¢ where

&=, bl
I€lnst
Let H denote the entropy, i.e., H(p) = — X ;e P110g pr. H is a continuous, real-valued function.
Moreover —H(p) is a convex function since its Hessian is only non-zero on the diagonal, aip, -

H(p) = p;l and all other (mixed) second derivatives are 0. This shows that —H it is positive definite
on the interior of P(T"), which is equivalent to convexity [Boyd and Vandenberghe 2004, pg. 65].

A.1. Maximum Entropy Distribution Exists
ProposiTioN A.1. The set E™'(d) is compact.

Proor. We observe that E is continuous. Hence, E~!(d) is a closed set. Since P(I) is compact,
this means that E~!(d) is a closed subset of a compact set, and so compact. [

Thus, the entropy H takes a maximum value on the set. Formally,

sup H(p) = H(g)
PEE-N(d)

for some g € E~'(d), which proves that there is at least one maximum entropy probability distribu-
tion.

A.2. Uniqueness

ProrosiTion A.2. Given a satisfiable statistical program X, then there is a unique probability
distribution that satisfies X.

Proor. Consider the negative entropy function —H(p). By compactness and continuity of —H,
—H(p) attains a minimum value on P(I') provided P(I') is not empty (which since X is satisfiable
it is not). By convexity of P(I') and strict convexity of —H(p), there is a single point that obtains a
minimum value. Thus, there is a unique minimal value of the negative entropy, and hence a single
distribution with maximum entropy. [

© YYYY ACM 0362-5915/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



App—2 Christopher Ré and Dan Suciu

Given a set of || parameters, @, let P be the function that maps & to a probability distributions p,

over I(I) defined by
_1 (D) _ i)
pa(l) = 7 ,-:11_[," @, where Z = J;{) ,-:ll_[m a;

We now give a sufficient condition for P to be injective. We say that a set of views ¥ where [J| = m
is affinely dependent over I(I') if there exist real numbers ¢ and a value d such that (1) ¢; are not all
zero and (2) the following holds:

VIelD. > vDlej=d

If no such (¢, d) exists, we say that the views are affinely independent.

ProposiTion A.3. Fix a set (). If v is affinely independent over |(I') then, P mapping « to p, is
injective.

Proor. Suppose not, then there exists @, B such that P(@) = P(B). This implies that for each I,
log p,(I) — log pg(I) = 0 so that:

log(Z) ~log(Z) = )" Iv;(Dl(loga; — log3))

But then, define ¢; = loga; — logB; and d = log(Z) — log(Z’), then (¢, d) is a tuple of constants
violating the affine independence condition, a contradiction. O

Now we are ready to show:

TaEOREM A.4. If X = (I, ¥,d) and v is affinely independent over I(T') and T is satisfiable then
there is a unique solution & that maximizes entropy.

ProoF. Suppose not, then there are two solutions and both are of the form P(@) and P(B), but
this means that P(@) = P(B) by Prop A.2. On the other hand, since v is affinely independent (by

assumption) we have that P is injective (Prop A.3), and so @ = 8, a contradiction. O

Remark A.5. The reverse direction of Prop A.3 holds. Thus, this gives a condition to check for
a program.

A.2.1. Chains, Hypergraphs, and Relations are Linearly Independent

ProposiTION A.6. A set of vectors is {x(i)}A |
i=

.....

=1,

Fix a tuple of views ¥. Denote by 7y : I — N"*! as 7(I) = t where t; = [vi(D)| fori =1,...,mand
Tms1 = 1. We denote the unit vector in direction i as €.

ProposiTioN A.7. A chain program T of size m > 2 is affinely independent for domain sizes
N2>1

Prook. Let Iy = {R (@), ..., Ri(@)} so that 7(Iy) = x* where xg.k) =1ifj={1,.... k) U{m+1}
and xi.k) = 0 otherwise. The set {x®};_,, is a set of m + 1 linearly independent vectors. [

ProposiTioN A.8. A hypergraph program of size m — 1 where m > 2 is affinely independent for
Sfor any |(I') where the domain size is N > 1.

Proor. Let I; = {Ri(a)} then 7([;) = e® + ¢"*? and I,,,; = {Ri(a), S (@)} then 7(I;) = 1 which is
linearly independent. Moreover, T(0) = e+ It is straightforward that this is a linearly independent
set. O
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ProrosiTioNn A.9. A relational program of size m — 1 where m > 2 is affinely independent over
domains of size N > 2.

Proor. The vectors are x? = 1 + ¢ + ™D for i = 1,...,m — 1 (a world with two tuples
that differ on one attribute) and x"™ = 1 (a world with one tuple) and x"*D = ¢+ (the empty
world). O

B. HYPERGRAPH SOLUTIONS: PROOF OF LEMMA 5.7

We begin with Equation 8 and verify that our claim of where the solutions lie. Technically, our first
claim is that there exists ¢; (which may depend on N) such that:

N - (di +6i)

(1 + [Mjiejdi =
Am ai(1+7y)

Since d; are constant and using the definition of a;, we take any ¢; we may write:

i o _ _ _
131330(1 —m—d,-N ')(1 +o(N ')): 1+O0N™" (12)

Notice that we can take §; = o(N~!). The upper peak is verified by the equation:

G e
A}13301\]_61‘&,(%4) =1

.....

first order so the difference between m = 2 and m > 3 is not visible. Finally, straightforward (but
routine) calculations now show that these are indeed maxima. To see this, observe that Equation 12 is
(locally) monontone increasing in the sense that increasing —9; increases the value of each equation.
Since this holds for each §; we see that this is a maximum value.

C. SIMPLE RELATIONAL SOLUTIONS: PROOF OF THEOREM 5.8

We first verify the peak equations for Theorem 5.8. (d4, N %ﬁ + dp) is a peak. To see this, for the
first component of the first peak, we use the expansion:

(1 + VT = exp (b + dgy + o(1))

and, exp {b + o(1)} = O(1).

]

Na(1 +y)Nwetde _ | b+o(1)) -1
ol +7) 5 = aexpib + of ])} =ae’ —1+0(1) > dy
1 +a(l +7)N—l+ﬁ+d3 1+ O

Second, we use the expansion:

(A +y)% =1+yds +o(N"

NB(L+y)*“ -1 _ Nﬁ(l+ydA+o(N‘1)—1>_1 B o
1+B(1L+y)% — 1+B(1 +yds +o(N-)) _Nl+ﬁ+bdA_1+0(1)—Nm+ds+0(l)

To see that the second peak is (N — (Nl’%ﬁ +dp), N — dy).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



App—4 Christopher Ré and Dan Suciu

Na(l +y)N4 -1 B N —o(l)
Ttal+pV o ~ T+d+pip °
_ B(L+y)™

= N—NW—O(I)
B+ yds + 0N

= N-N -o(1l
Trparpi W
- N-N-L 4,
1+8
NB(1 + y)V -0+ _ N
B o4d = Bo1d _0(1)
1+ B(1 +y) ") 1+ a(l +y) "5
B
1 + (VLW‘FdB) _ 1
- yonety N—dy

1+ a(l +y)"ta

We now compute the ratios of the two peaks in the approximations: Write x; = a(1 + y)" and
yi = B(1 + )" then,

1, "0 (2)"(£)" ay)n

TV ¥+ ¥ (2] (£) 14yt
(1 x0) (130" () (8) @+

a+ l)N(l + L)Nygl—lo a'N_loxgl_kOﬁN_k“(l + ,y)NZ—(k0+lo)n+kolo
Yo X0

()" (5)"

yalo aN-lo xako BNk (1 4 )N ~tko+lon

[ 1
_(1_% ] g_m

Here we have written y = ]n% + (lng + %) so that (1 +9)V" = (@B) Vg and (1 + )" = (aB)™".

The limit (1 + )" = (aB)" g% since nly is close (enough) to n>. With this we can write equation for
T (and their intended limits):

E[A] =ko + — — ko E[B] =lp + ——2 — [,
E[G] =7 (kolo + g(N —ko)(N —lp)) = E[A] 45 +dg —dp =dg
1+vy E[A]
Now, to achieve this we set gﬁ = lf,gl;ih”. Now, for S':

Es[A] = ko(1 + @) —na = a(e’ — 1) -1
Es[B] = Io(1 +B) — nB = npkoy = bko

Thus, we take b = j—j and a = ‘j;}f]l and y as above. This is then a solution to R(A, B).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



