Probabilistic Databases: Diamonds in the Dirt

(Extended Version)

Nilesh Dalvi Christopher Ré Dan Suciu
Yahoo!Research University of Washington University of Washington
USA USA USA

ndalvi@yahoo-inc.com

1. INTRODUCTION

A wide range of applications have recently emerged that
need to manage large, imprecise data sets. The reasons for
imprecision in data are as diverse as the applications them-
selves: in sensor and RFID data, imprecision is due to mea-
surement errors [28,66]; in information extraction, impreci-
sion comes from the inherent ambiguity in natural-language
text [32,40]; and in business intelligence, imprecision is used
to reduce the cost of data cleaning [12]. In some applications,
such as privacy, it is a requirement that the data be less pre-
cise. For example, imprecision is purposely inserted to hide
sensitive attributes of individuals so that the data may be
published [29, 55,62]. Imprecise data has no place in tradi-
tional, precise database applications like payroll and inven-
tory, and so, current database management systems are not
prepared to deal with it. In contrast, these newly emerging
applications offer value precisely because they query, search,
and aggregate large volumes of imprecise data to find the “di-
amonds in the dirt”. This wide-variety of applications points
to the need for generic tools to manage imprecise data. In
this paper, we survey the state of the art techniques to han-
dle imprecise data which models imprecision as probabilistic
data [4,8,11,14,21,28,45,51,71].

A probabilistic database management system, or PROB-
DMS, is a system that stores large volumes of probabilis-
tic data and supports complex queries. A PROBDMS may
also need to perform some additional tasks, such as updates
or recovery, but these do not differ from those in conven-
tional database management systems and will not be dis-
cussed here. The major challenge in a PROBDMS is that
it needs both to scale to large data volumes, a core com-
petence of database management systems, and to do prob-
abilistic inference, which is a problem studied in AI. While
many scalable data management systems exists, probabilis-
tic inference is in general a hard problem [68], and current
systems do not scale to the same extent as data management
systems do. To address this challenge, researchers have fo-
cused on the specific nature of relational probabilistic data,
and exploited the special form of probabilistic inference that

*This work was partially supported by NSF Grants IIS-
0454425, 11S-0513877, 11S-0713576, and a Gift from Mi-
crosoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are In both examples, the uncertainty in the data is repre-
not made or distributed for profit or commercial advantage and that copies gented as a probabilistic confidence score, which is com-
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

chrisre@cs.washington.edusuciu@cs.washington.edu

occurs during query evaluation. A number of such results
have emerged recently: lineage-based representations [11],
safe plans [18], algorithms for top-k queries [63,82], and rep-
resentations of views over probabilistic data [65,67]. What
is common to all these results is that they apply and extend
well known concepts that are fundamental to data manage-
ment, such as the separation of query and data when analyz-
ing complexity [75], incomplete databases [44], the threshold
algorithm [31], and the use of materialized views to answer
queries [42,74]. In this paper, we briefly survey the key
concepts in probabilistic database systems, and explain the
intellectual roots of these concepts in data management.

1.1 AnExample

We illustrate using an example from an information ex-
traction system. The Purple Sox [61] system at Yahoo! Re-
search focuses on technologies to extract and manage struc-
tured information from the Web related to a specific com-
munity. An example is the DbLife system [27] that aggre-
gates structured information about the database commu-
nity from data on the Web. The system extracts lists of
database researchers together with structured, related in-
formation such as publications they have authored, their
co-author relationships, talks they have given, their cur-
rent affiliations, and their professional services. Figure 1(a)
illustrates the researchers’ affiliations, and Figure 1(b) il-
lustrates their professional activities. Although most re-
searchers have a single affiliation, in the data in Figure 1(a),
the extracted affiliations are not unique. This occurs be-
cause outdated/erroneous information is often present on
the Web, and even if the extractor is operating on an up-to-
date Webpage, the difficulty of the extraction problem forces
the extractors to produce many alternative extractions or
risk missing valuable data. Thus, each Name contains several
possible affiliations. One can think of Affiliation as being
an attribute with uncertain values; or equivalently, one can
think of each row as being a separate uncertain tuple. There
are two constraints on this data: tuples with the same Name
but different Affiliation are mutually exclusive; and tu-
ples with different values of Name are independent. The pro-
fessional services shown in Figure 1 (b) are extracted from
conference Webpages, and are also imprecise: in our exam-
ple, each record in this table is an independent extraction
and assumed to be independent.

puted by the extractor. For example, Conditional Ran-
dom Fields produce extractions with semantically meaning-
ful confidence scores [40]. Other sources of uncertainty can

Researchers:

Name Affiliation P
t} | Fred | U. Washington | pf =03 || X1 =1
t2 U. Wisconsin pr=02| X;1=2
t3 Y! Research pI=05| X1 =
t3 |[Sue U. Washington | p3 = 1.0 || X2 =
ti |[John | U. Wisconsin | pf =0.7 || X3 =1
t2 U. Washington | p2 =0.3 || X3 =2
tL |[Frank | YT Research pi=09] X4=
t2 M. Research pr=01| X4=2

(a)

Services:
Name | Conference | Role P
s1 || Fred | VLDB Session Chair | ¢1 =02 || Y1 =1
so2 || Fred | VLDB PC Member q2=081 Ya=1
s3 || John | SIGMOD PC Member g3 =071 Ys=1
s4 || John | VLDB PC Member =071 Ya=1
s5 || Sue SIGMOD Chair ¢ =051Ys=1
b)

Figure 1: Example of a probabilistic database. This is a block-independent-disjoint database: the 8 tuples
in Researchers are grouped in four groups of disjoint events, e.g., t1,t3,t} are disjoint, and so are t},t2, while
tuples from different blocks are independent, e.g., t7,t3,t are independent; the five tuples in Services are
independent probabilistic events. This database can be represented as a c-table using the hidden variables
X1, X2, X3, X4 for Researchers and Y1, Ya, Ys, Yy, Y5 for Services.

also be converted to confidence scores, for example prob-
abilities produced by entity matching algorithms (does the
mention Fred in one Webpage refer to the same entity as Fred
in another Webpage?). The example in Figure 1 presents a
very simplified view of a general principle: uncertain data
is annotated with a confidence score, which is interpreted as
a probability. In this paper we use “probabilistic data” and
“uncertain data” as synonyms.

1.2 Facets of &rosDMS

There are three important and related facets of any PROB-
DMS: (1) How do we store (or represent) a probabilistic
database? (2) How do we answer queries using our chosen
representation? (3) How do we present the result of queries
to the user?

There is a tension between the power of a representation
system, i.e., as the system more faithfully models correla-
tions, it becomes increasingly difficult to scale the system.
A simple representation where each tuple is an indepen-
dent probabilistic event is easier to process, but it cannot
faithfully model the correlations important to all applica-
tions. In contrast, a more complicated representation, e.g.,
a large Markov Network [60], can capture the semantics of
the data very faithfully, but it may be impossible to compute
even simple SQL queries using this representation. An extra
challenge is to ensure that the representation system maps
smoothly to relational data, so that the non-probabilistic
part of the data can be processed by a conventional database
system.

A PROBDMS needs to support complex, decision-support
style SQL, with aggregates. While some applications can
benefit from point queries, the real value comes from queries
that search many tuples, or aggregate over many data val-
ues. For example the answer to find the affiliation of PC
Chair of SIGMOD’2008 is inherently imprecise (and can be
answered more effectively by consulting the SIGMOD’2008
home page), but a query like find all affiliations with more
than 12 SIGMOD and VLDB PC Members returns much
more interesting answers. There are two logical steps in
computing a SQL query on probabilistic data: first, fetch
and transform the data, and second, perform probabilistic
inference. A straightforward but naive approach is to sepa-
rate the two steps: use a database engine for the first step,

and a general-purpose probabilistic inference technique [16,
24,80, 81] for the second. But on large data the probabilis-
tic inference quickly dominates the total running time. A
better approach is to integrate the two steps, which allows
us to leverage some database specific techniques, such as
query optimization, using materialized views, and schema
information, to speedup the probabilistic inference.

Designing a good user interface raises new challenges. The
answer to a SQL query is a set of tuples, and it is critical
to find some way to rank these tuples, because there are
typically lots of false positives when the input data is im-
precise. Alternatively, aggregation queries can extract value
from imprecise data because the Law of the Large Num-
bers. A separate, and difficult task, is how to indicate to
the user the correlations between the output tuples. For
example, the two highest ranked tuples may be mutually
exclusive, but they could also be positively correlated. As
a result, their ranks alone convey insufficient information to
the user. Finally, a major challenge of this facet is how to
obtain feedback from the users and how to employ this feed-
back to "clean” the underlying database. This is a difficult
problem, which to date has not yet been solved.

1.3 Key Applications

Probabilistic databases have found usage in a wide class of
applications. Sensor data is obtained from battery-powered
sensors that acquire temperature, pressure, or humidity read-
ings from the surrounding environment. The BBQ sys-
tem [28] showed that a probabilistic data model could be
used to manage this kind of sensor data; their key insight was
that the probabilistic model could answer many queries with
sufficient confidence without needing to acquire additional
readings. This is an important optimization since acquiring
fewer sensor readings allows longer battery life, and so more
longer lasting sensor deployments. Information Eztraction
is a process that extracts data items of a given type from
large corpora of text [32]. The extraction is always noisy,
and the system often produces several alternatives. Gupta
and Sarawagi [40] have argued that such data is best stored
and processed by a probabilistic database. In Data Clean-
ing, deduplication is one of the key components and is also
a noisy and imperfect process. Fuxman and Miller [2] have
shown how a probabilistic database can simplify the dedu-

plication task, by allowing multiple conflicting tuples to co-
exist in the database. Many other applications have looked
at probabilistic databases for their data management needs:
RFID data management [66], social networks [1], manage-
ment of anonymized data [17,56,62] and scientific data man-
agement [57].

2. KEY CONCEPTS IN A ProsDMS

We present a number of key concepts for managing prob-
abilistic data that have emerged in recent years, and group
them by the three facets, although some concepts may be
relevant to more than one facet.

2.1 Facet 1: Semantics and Representation

The de facto formal semantics of a probabilistic database
is the possible worlds model [21]. By contrast, there is no
agreement on a representation system, instead there are
several approaches covering a spectrum between expressive
power and usability [25]. A key concept in most representa-
tion systems is that of lineage, which is derived from early
work on incomplete databases by Immelinski and Lipski [44].

2.1.1 Possible Worlds Semantics

In its most general form, a probabilistic database is a prob-
ability space over the possible contents of the database. It
is customary to denote a (conventional) relational database
instance with the letter I. Assuming there is a single table in
our database, I is simply a set of tuples (records) represent-
ing that table; this is a conventional database. A probabilis-
tic database is a discrete probability space PDB = (W, P),
where W = {1, Is,...,I,} is a set of possible instances,
called possible worlds, and P : W — [0,1] is such that
> j=1., P(;) = 1. In the terminology of networks of be-
lief [60], there is one random variable for each possible tuple
whose values are 0 (meaning that the tuple is not present)
or 1 (meaning that the tuple is present), and a probabilistic
database is a joint probability distribution over the values
of these random variables.

This is a very powerful definition that encompasses all
the concrete data models over discrete domains that have
been studied. In practice, however, one has to step back
from this generality and impose some workable restrictions,
but it always keeping the general model in mind. Note that
in our discussion we restrict ourselves to discrete domains:
although probabilistic databases with continuous attributes
are needed in some applications [14,28], no formal semantics
in terms of possible worlds has been proposed so far.

Consider some tuple ¢ (we will use interchangeably the
terms tuple and record in this paper). The probability that
the tuple belongs to a randomly chosen world is P(t) =
2 jie I, P(I;), and is also called the marginal probability
of the tuple ¢t. Similarly, if we have two tuples t1,t2, we
can examine the probability that both are present in a ran-
domly chosen world, denoted P(t1t2). When the latter is
P(t1)P(t2), we say that ti1,t2 are independent tuples; if it
is 0 then we say that t;,t2 are disjoint tuples or exclusive
tuples. If none of these hold, then the tuples are corre-
lated in a non-obvious way. Consider a query @, expressed
in some relational query language like SQL, and a possible
tuple ¢ in the query @’s answer. P (¢ € @) denotes the prob-
ability that, in a randomly chosen world, ¢ is an answer to
Q. The job of a probabilistic database system is to return

all possible tuples t1,t2, ... together with their probabilities
P(t1 € Q),P(tz S Q), .

2.1.2 Representation Formalisms

In practice, one can never enumerate all possible worlds,
and instead we need to use some more concise representa-
tion formalism. One way to achieve that is to restrict the
class of probabilistic databases that one may represent. A
popular approach is to restrict the possible tuples to be ei-
ther independent or disjoint. Call a probabilistic database
block independent-disjoint, or BID, if the set of all possi-
ble tuples can be partitioned into blocks such that tuples
from the same block are disjoint events, and tuples from
distinct blocks are independent. A BID database is speci-
fied by defining the partition into blocks, and by listing the
tuples’ marginal probabilities. This is illustrated in Figure 1.
The blocks are obtained by grouping Researchers by Name,
and grouping Services by (Name,Conference,Role). The
probabilities are given by the P attribute. Thus, the tuples
t3 and t} are disjoint (they are in the same block), while the
tuples t1, tZ, s1, s2 are independent (they come from dif-
ferent blocks). An intuitive BID model was introduced by
Trio [78] and consists of maybe-tuples, which may or may not
be in the database, and z-tuples, which are sets of mutually
exclusive tuples.

Several applications require a richer representation for-
malism, one that can express complex correlations between
tuples, and several such formalisms have been described in

the literature: lineage-based [9,34], World-Set-Decompositions [5,

6], U-relations [3], or the closure of BID tables under con-
junctive queries [21]. Others are the Probabilistic Relational
Model of Friedman et al. [33, 35] that separates the data
from the probabilistic network, Markov Networks in [48],
and Markov Chains in [66]. Expressive formalisms, however,
are often hard to understand by users, and increase the com-
plexity of query evaluation, which lead researchers to search
for simpler, workable models for probabilistic data [25].

Any representation formalism is a form of database nor-
malization: a probabilistic table with correlated tuples is
decomposed into several BID tables. This is similar to the
factor decomposition in graphical models [16], and also sim-
ilar to database normalization based on multivalued depen-
dencies [30, 76]. A first question is how to design the
normal representation given a probabilistic database. This
requires a combination of techniques from graphical mod-
els and database normalization, but, while the connection
between these two theories was described by Verma and
Pearl [76] in the early 1990s, to date there exists no compre-
hensive theory of normalization for probabilistic databases.
A second question is how to recover the complex probabilis-
tic database from its normalized representation as BID ta-
bles. This can be done through SQL views [21,38] or through
lineage.

2.1.3 Lineage

The lineage of a tuple is an annotation that defines its
derivation. Lineage is used both to represent probabilis-
tic data, and to represent query results. The Trio sys-
tem [10, 78] recognized the importance of lineage in man-
aging data with uncertainty, and called itself a ULDB, for
uncertainty-lineage database. In Trio, when new data is pro-
duced by queries over uncertain data, the lineage is com-
puted automatically and captures all correlations needed for

computing subsequent queries over the derived data.

Lineage also provides a powerful mechanism for under-
standing and resolving uncertainty. With lineage, user feed-
back on correctness of results can be traced back to the
sources of the relevant data, allowing unreliable sources to
be identified. Users can provide much detailed feedback if
data lineage is made visible to them. For example, in infor-
mation extraction applications where data items are gener-
ated by pipelines of Al operators, users can not only indicate
if a data item is correct, but can look at the lineage of data
items to locate the exact operator making the error.

The notion of lineage is derived from a landmark paper
by Imielinski and Lipski [44] from 1984, who introduced c-
tables, as a formalism for representing incomplete databases.
We describe c-tables and lineage by using the example in
Figure 2. In a c-table, each tuple is annotated with a Boolean
expression over some hidden variables, which today we call
the lineage of that tuple. In our example there are three
tuples, U. of Washington, U. of Wisconsin, and Y! Re-
search, each annotated with a lineage expression over vari-
ables X1, X3, Y1, Y2,Ys. The semantics of a c-table is a set
of possible worlds. An assignment of the variables defines
the world consisting of precisely those tuples whose lineage is
true under that assignment, and the c-table “means” the set
of possible worlds defined by all possible assignments. For
an illustration, in our example the assignment X; = 3, Y2 =
1,Xs = 2,Ys = 1 (and any values for the other variables)
defines the world {Y! Research, U. of Washington}.

Lineage is a powerful tool in PROBDMS because of the
following important property: the answer to a query over
a c-table can always be represented as another c-table, us-
ing the same hidden variables. In other words, it is always
possible to compute the lineage of the output tuples from
those of the input tuples. This is called a closure property
and was first shown in [44]. We illustrate this property on
the database in Fig. 1, where each tuple has a very simple
lineage. Consider now the SQL query in Figure 3(a), which
finds the affiliations of all people who performed some ser-
vice for the VLDB conference. The answer to this query is
precisely the c-table in Figure 2.

2.2 Facet 2: Query Evaluation

Query evaluation is the hardest technical challenge in a
PROBDMS. One approach is to separate the query and lin-
eage evaluation from the probabilistic inference on the lin-
eage expression. Various algorithms have been used for the
latter. Luby and Karp’s Monte Carlo approximation algo-
rithm for DNF formulas [49] was used in [19, 63] and, re-
cently, a much more general Monte Carlo framework has
been proposed by Jampani et al. [45]. Zhang and Poole’s
Variable Elimination algorithm [81] was used in [71] while
Koch and Olteanu [50] use a variant of the Davis-Putnam
procedure.

Another approach is to integrate the probabilistic infer-
ence with the query computation step. The advantage of this
approach is that it allows us to leverage standard data man-
agement techniques to speed up the probabilistic inference,
such as static analysis on the query or using materialized
views. This has led to safe queries and to partial represen-
tations of materialized views, which we discuss next.

2.2.1 Safety
In a paper in 2004 [19] two of the current authors showed

that certain SQL queries can be evaluated on a probabilistic
database by pushing the probabilistic inference completely
inside the query plan. Thus, for these queries there is no
need for a separate probabilistic inference step: the out-
put probabilities are computed inside the database engine,
during normal query processing. The performance improve-
ments can be large, e.g., Ré et al. [63] observed two orders
of magnitude improvements over a Monte Carlo simulation.
Queries for which this is possible are called safe queries, and
the relational plan that computes the output probabilities
correctly is called a safe plan. To understand the context of
this result we review a fundamental principle in relational
query processing: the separation between what and how.

In a relational query the user specifies what she wants:
relational query languages like SQL are declarative. The
system translates the query into relational algebra, using
operators like join X, selection o, projection-with-duplicate-
elimination II. The resulting expression is called a relational
plan and represents how the query will be evaluated. The
separation between what and how was first articulated by
Codd when he introduced the relational data model [15],
and is at the core of any modern relational database sys-
tem. A safe plan allows probabilities to be computed in the
relational algebra, by extending its operators to manipulate
probabilities [18]. There are multiple ways to extend them,
the simplest is to assume all tuples to be independent: a
join X that combines two tuples computes the new proba-
bility as pip2, and a duplicate elimination that replaces n
tuples with one tuple computes the output probability as
1—(1—=p1)---(1 —pn). A safe plan is by definition a plan
in which all these operations are provably correct. The cor-
rectness proof (or safety property) needs to be done by the
query optimizer, through a static analysis on the plan. Im-
portantly, safety does not depend on the actual instance of
the database, instead, once a plan has been proven to be
safe, it can be executed on any database instance.

We illustrate with the query in Figure3(a). Any modern
relational database engine will translate it into the logical
plan shown in (b). However, this plan is not safe, because
the operation Iassitiation (Projection-with-duplicate elimina-
tion) combines tuples that are not independent, and there-
fore the output probabilities are oncorrect. The figure illus-
trates this for the output value Y! Research, by tracing its
computation through the query plan: the outoput probabil-
ity is 1 — (1 — p3q1)(1 — p3g2). However, the lineage of Y!
Research is (X; =3AY1 =1)V (X1 =3A Y, = 1), hence
the correct probability is p3(1 — (1 — ¢1)(1 — g2)).

Alternatively, consider the plan shown in (c¢). This plan
performs an early projection and duplicate elimination on
Services. It is logically equivalent to the plan in (b), i.e.,
the extra duplicate elimination is harmless. However, the
new plan computes the output probability correctly: the fig-
ure illustrates this for the same output value, Y! Research.
Note that although plans (b) and (c) are logically equivalent
over conventional databases, they are no longer equivalent
in their treatment of probabilities: one is safe, the other not.

Safety is a central concept in query processing on proba-
bilistic databases. A query optimizer needs to search not just
for a plan with lowest cost, but for one that is safe as well,
and this may affect the search strategy and the outcome: in
a conventional database there is no reason to favor the plan
in (c) over that in (b) (and in fact modern optimizers will
not choose plan (¢) because the extra duplication elimina-

Location

U. Washington
U. Wisconsin
Y! Research

(Xi=DAMi=1)V(Xi=1AYa=1)V(Xs=2)A(Ya=1)
(X1:2)/\(Y1:1)\/(X1:2)/\(Y2:1)V(X3:1)/\(X4:1)
(X1=3)) A1 =)V (X1 =3)A(Y2=1)

Figure 2: An example of a c-table.

SELECT x.Affiliation, confidence()
FROM Researchers x, Services y
WHERE x.Name = y.Name

and y.Conference = ’VLDB’

GROUP BY x.Affiliation

(a)

[Y Research [1 — (L —piq))(1—pig2) |

M atiiliation

‘ Fred Y! Research ‘ VLDB ‘ Session Chair H pfql H
| Fred YT Research | VLDB | PC Member | g, |

9Conference

lSer\/ices]

l Researchers]

[ewd [7] [y]

ed ‘ VLDB ‘ PC Member H [H
(b)

SELECT x.Affiliation, 1-prod(1-x.P*y.P)

FROM Researchers x, (SELECT Name, 1-(1-prod(P))
FROM Services
WHERE Conference = ’VLDB’
GROUP BY Name) y

WHERE x.Name = y.Name

GROUP BY x.Affiliation

(d)

H Y! Research H T-pi(l—q)(1 —q2) H

[[Fred | Y1 Research [1 (1 —q)(1 —g2) |

T affiliation

[Fred[1-(-a)(—g)]

9Conference

l Services]

l Researchers]

[P [WRss 7] R
q

ed ‘ VLDB ‘ PC Member ‘ 9

(c)

Figure 3: A SQL query on the data in Figure 1(a) returning the affiliations of all researchers who performed
some service for VLDB. The query follows the syntax of MayBMS, where confidence() is an aggregate operator
returning the output probability. The figure shows an unsafe plan in (b) and a safe plan in (c), and also traces
the computation of the output probability of Y! Research: it assumes there is a single researcher Fred with
that affiliation, and that Fred performed two services for VLDB. The safe plan re-written in SQL is shown
in (d): the aggregate function prod is not supported by most relational engines, and needs to be rewritten in

terms of sum, logarithms, and exponentiation.

tion increases the cost), but in a probabilistic database plan
(c) is safe while (b) is unsafe. A safe plan can be executed
directly by a database engine with only small changes to the
implementation of its relational operators. Alternatively, a
safe plan can be executed by expressing it in regular SQL
and executing it on a conventional database engine, without
any changes: Figure 3(b) illustrates how the safe plan can
be converted back into SQL.

Safe plans have been described for databases with inde-
pendent tuples in [19], for BID databases in [18, 21], for
queries whose predicates have aggregate operators in [64],
and for Markov Chain databases in [66]. While conceptu-
ally a safe plan ties the probabilistic inference to the query
plan, Olteanu et al. [59] have shown that is it possible to
separate them at runtime: the optimizer is free to choose
any query plan (not necessarily safe), then the probabilis-
tic inference is guided by the information collected from the
safe plan. This results in significant execution speedup for
typical SQL queries.

2.2.2 Dichotomy of Query Evaluation

In its most general form, query evaluation on a proba-

bilistic database is no easier than general probabilistic in-
ference. The latter is known to be a hard problem [68].
In databases, however, one can approach the query evalua-
tion problem differently, in a way that is best explained by
recalling an important distinction made by Vardi in a land-
mark paper in 1982 [75]. He proposed that the query ex-
pression (which is small) and the database (which is large)
be treated as two different inputs to the query evaluation
problem, leading to three different complexity measures: the
data complexity (when the query is fixed), the expression
complexity (when the database is fixed), and the combined
complexity (when both are part of the input). For example,
in conventional databases, all queries have data complex-
ity in PTIME®, while the combined complexity is PSPACE
complete.

We apply the same distinction to query evaluation on
probabilistic databases, and here the data complexity offers
a more striking picture: some queries are in PTIME (e.g.,
all safe queries), while others have #P-hard data complexity.
In fact, for certain query languages or under certain assump-

LAC®, to be more specific.

tions it is possible to prove a complete dichotomy, i.e. each
query belongs to one of these two classes [20,21,47, 64, 66].
Figure 4 describes the simplest dichotomy theorem, for con-
junctive queries without self-joins over databases with in-
dependent tuples, first proven in [19]. Safe queries are by
definition in the first class; when the dichotomy property
holds, then any unsafe query has #P-hard data complexity.
For unsafe queries we really have no choice but to resort to
a probabilistic inference algorithm that solves, or approx-
imates a #P-hard problem. The abrupt change in com-
plexity from PTIME to #P-hard is unique to probabilistic
databases, and it means that query optimizers need to make
special efforts to identify and use safe queries.

The quest for query evaluation techniques that softens the
transition from safe to unsafe queries is an active research
topic. One line of work is to extend the reach of safe plans:
for example safe sub-plans can be used to speed up pro-
cessing unsafe queries [65], functional dependencies on the
data, or knowing that some relations are deterministic can
be used to find more safe plans [22,59], safe plans have been
described for query languages for streams of events [66].

Current approaches for general query evaluation (includ-
ing non-safe queries) run some general-purpose probabilistic
inference algorithm on the lineage expressions; the shared
structure in the lineage can be used to speed up the prob-
abilistic inference [69,70]. Two recent developments are, in
our view particularly promising for solving the general query
evaluation problem. One is based on the observation made
by Olteanu et al. [58,59] that the probabilistic network cor-
responding to any safe plan has a simple structure called
“one occurrence normal form”, i.e., they can be written as
Boolean expressions where each variable occurs only once.
Hence, they can be represented as a Ordered Binary Deci-
sion Diagrams (OBDD) [77] of linear size. This raises the
possibility that other tractable cases of OBDDs can be in-
ferred, perhaps by analyzing both the query expression and
the database statistics. The second new direction is taken
by a recent project at IBM Almaden [45], which builds a
database system where Monte Carlo simulations are pushed
deep inside the engine, thus being able to evaluate any query,
safe or unsafe. What is particularly promising about this ap-
proach is that through clever query optimization techniques,
such as tuple bundles, the cost of sampling operations can
be drastically reduced.

2.2.3 Materialized Views

The use of materialized views to answer queries is a very
powerful concept in data management [42], and has been
applied to semantic caching [23], physical data indepen-
dence [74], and mediator-based data integration [41,52]. In
its most simple formulation, there are a number of material-
ized views, e.g., answers to previous queries, and the query
is rewritten in terms of these views, to improve performance.

In the case of probabilistic databases, materialized views
have been studied in [65,67]. Because of the dichotomy of the
query complexity, materialized views can have a dramatic
impact on query evaluation: a query may be unsafe, hence
#P-hard, but after rewriting it in terms of views it may
become a safe query, and thus is in PTIME. There is no
magic here, we don’t avoid the #P-hard problem, we simply
take advantage of the fact that the main cost has already
been paid when the view was materialized.

But there is a major challenge in using materialized views

over probabilistic data: we need to represent the view’s out-
put. We can always compute the lineage of all the tuples
in the view, and this provides a complete representation of
the view, but it also defeats our purpose, since using these
lineage expressions during query evaluation does not sim-
plify the probabilistic inference problem. Instead, we would
like to use only the marginal tuple probabilities that have
been computed for the materialized view, not their lineage.
For example, it may happen that all tuples are indepen-
dent probabilistic events, and in this case we only need the
marginal probabilities; we say in this case the view is fully
representable. In general, not all tuples in the view are in-
dependent, but it is always possible to partition the tuples
into blocks such that tuples from different blocks are inde-
pendent, and, moreover, there exists a “best” such parti-
tion [65]; within a block, the correlations between the tuples
remain unspecified. The blocks are described at the schema
level, by specific a set of attributes: grouping by those at-
tributes gives the blocks. This is called a partial representa-
tton in [65], and can be used to evaluate some queries over
the views. Note that the problem of finding a good partial
representation of the view is done by a static analysis that is
orthogonal to the analysis whether the view is safe or unsafe:
there are examples for all four combinations of safe/unsafe
representable/unrepresentable views.

2.3 Facet 3: User Interface

The semantics of query @ on a probabilistic database with
possible worlds W is, in theory, quite simple, and is given
by the image probability space [38] over the set of possible
answers, {Q(I) | I € W}. In practice, it is impossible, and
perhaps useless, to return all possible sets of answers. An
important problem in probabilistic databases is how to best
present the set of possible query answers to the user. To
date, two practical approaches have been considered: rank-
ing tuples, and aggregation over imprecise values.

2.3.1 Ranking and Top-k Query Answering

In this approach the system returns all possible answer
tuples and their probabilities: P(t1 € Q), P(t2 € Q), ... in
Sec. 2.1.1; the correlations between the tuples are thus lost.
The emphasis in this approach is to rank these tuples, and
restrict them to the top k.

One way to rank tuples is in decreasing order of their out-
put probabilities [63]: P(t1 € Q) > P(t2 € Q) > Often,
however, there may be a user-specified order criteria, and
then the system needs to combine the user’s ranking scores
with the output probability [43,73]. This creates some sur-
prisingly subtle semantics issues, which were pointed out and
discussed by Zhang and Chomicki [82]. A separate question
is whether we can use ranking to our advantage to speed up
query performance by returning only the k highest ranked
tuples: this problem is called top-k query answering. One
can go a step further and drop the output probabilities alto-
gether: Ré et al. [63] argue that ranking the output tuples is
the only meaningful semantics for the user, and proposes to
focus the query processor on computing the ranking, instead
of the output probabilities.

The power of top-k query answering in speeding up query
processing has been illustrated in an influential paper by
Fagin, Lotem, and Naor [31], and later extended to a variety
of settings, such as general SQL queries [54] and ranks based
on aggregates [53].

Hierarchical Queries
A conjunctive query is:

q(2)

where body consists of a set of subgoals g1, g2, . . .

THEOREM 2.2

To illustrate the theorem, consider the two queries:

In g1 we have sg(x)
In g2 we have sg(x)

=
- {

In the case of tuple-independent databases (where all tuples are independent) safe queries are precisely the
hierarchical queries; we define hierarchical queries here.

body

, gk, and Z are called the head variables. Denote Vars(g;) the set of
variables occurring in g; and Vars(q) = U;=1,ksVars(g:;). For each z € Vars(q) denote sg(z) = {g; | x € Vars(g:)}.

DEFINITION 2.1. Let q be a conjunctive query and Z its head variables. q is called hierarchical if for all x,y €
Vars(q) — z, one of the following holds: (a) sg(x) C sg(y), or (b) sg(x) D sg(y), or (c) sg(x) Nsg(y) = 0.

A conjunctive query is without self-joins if any two distinct subgoals refer to distinct relation symbols.

(DicHOTOMY). [19,21] Let q be a conjunctive query without self-joins. (1) If q is hierarchical
then its data complezity over tuple-independent databases is in PTIME. (2) If q is not hierarchical then its data
complexity over tuple-independent databases is #P-hard.

q1(z) :— R(z,2),5(z,y),T(z,z)
QQ(Z) P R(l‘7z)75($7y),T(y7z)

R,S,T},sg(y) = {S}; hence it is hierarchical and can be evaluated in PTIME.
R, S}, sg(y) = {S,T}; hence it is non-hierarchical and is #P-hard.

Figure 4: The dichotomy of conjunctive queries without selfjoins on tuple-independent probabilistic databases

is captured by Hierarchical Queries.

When applied to probabilistic databases that principle
leads to a technique called multisimulation [63]. It assumes
that a tuple’s probability P(t € @) is approximated by an
iterative algorithm, like a Monte Carlo simulation [49]: after
some number steps n, the probability P(¢ € Q) is known to
be? in an interval (p — €n,p + €n), where e, decreases with
n. The idea in the multisimulation algorithm is to control
carefully how to allocate the simulation steps among all can-
didate tuples in the query’s answer, in order to identify the
top k tuples without wasting iterations on the other tuples.
Multisimulation reduces the computation effort roughly by
a factor of N/k, where N is the number of all possible an-
swers, and k is the number of top tuples returned to the
user.

2.3.2 Aggregates over Imprecise Data

In SQL, aggregates come in two forms: value aggregates,
as in for each company return the sum of the profits in all
its units, and predicate aggregates, as in return those com-
panies having the sum of profits greater than 1M. Both types
of aggregates are needed in probabilistic databases. The
first type is interpreted as expected value, and most aggre-
gate functions can be computed easily using the linearity
of expectation. For instance, the complexities of comput-
ing sum and count aggregates over a column are same as
the complexities of answering the same query without the
aggregate, i.e., where all possible values of the column are
returned along with their probabilities [22]. Complexities
of computing min and max are same as those of computing
the underlying queries with the aggregates replaced by pro-
jections removing the columns [22]. One aggregate which is

2With high probability.

more difficult to compute is average, which is an important
aggregate function for OLAP over imprecise data [12]. Av-
erage is difficult to compute even on a single table, because
its expected value is not the ratio between the expected val-
ues of sum and count(*). A surprising result was shown
by Jayram, Kale, and Vee [46] who proved that average can
be computed efficiently on a single table. They give an ex-
act algorithm to compute average on a single table in time
O(nlog®n). They also give efficient algorithms to compute
various aggregates when the data is streaming.

The second type of aggregates occurs in the HAVING clause
of a SQL. A technique for computing them on a probabilis-
tic database is described in [64], by combining provenance
semirings [39] with safe plans.

3. A LITTLE HISTORY OF THE (POSSI-
BLE) WORLDS

There is a rich literature on probabilistic databases, and
we do not aim here to be complete; rather, as in Gom-
brich’s classic [36], we aim to “catch a glimpse”. Early exten-
sions of databases with probabilities date back to Wong [79],
Shoshani [72], and Cavallo and Pittarelli [13]. In an influ-
ential paper Barbara et al. [8] described a probabilistic data
model that is quite close to the BID data model, and showed
that SQL queries without duplicate elimination or other ag-
gregations can be evaluated efficiently. ProbView [51] re-
moved the restriction on queries, but returned confidence
intervals instead of probabilities. At about the same time,
Fuhr and Roelleke [34] started to use c-tables and lineage
for probabilistic databases and showed that every query can
be computed this way. A similar approach was pursued in-
dependently by Zimanyi [83].

Motivated by the “reliability of queries”, de Rougemont [26]
studied was the first time to study query complexity over
probabilistic data. Three years later, Griadel, Gurevich and
Hirsch [37] were the first to observe that a simple query can
have data complexity that is #P-hard.

[12] D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan,
and S. Vaithyanathan. Efficient allocation algorithms for
olap over imprecise data. In VLDB, pages 391-402, 2006.

[13] Roger Cavallo and Michael Pittarelli. The theory of
probabilistic databases. In Proceedings of VLDB, pages
71-81, 1987.

In a line of research started by Arenas, Bertossi and Chomicki [7},[14] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating

possible worlds have been used to define consistent query
semantics in inconsistent databases, i.e., databases that vio-
late constraints. It has been observed [2] that query answer-
ing in inconsistent databases is a special case of probabilistic
query answering over BID tables, where "certain tuples” in
inconsistent databases are precisely the tuples with proba-
bility 1 under probabilistic semantics.

The intense interest in probabilistic databases seen today
is due to a number of influential projects: applications to
sensor data [14, 28], data cleaning [2], and information ex-
traction [40], the safe plans of [19], the Trio system [78§]
that introduced ULDBs, and the advanced representation
systems described in [4,71].

4. CONCLUSIONS

Many applications benefit from finding diamonds in im-
precise data, without having to clean the data first. The
goal of probabilistic databases is to make uncertainty a first
class citizen and reduce the cost of using such data, or (more
likely) enable applications that were otherwise prohibitively
expensive. This paper described some of the recent advances
for large scale query processing on probabilistic databases
and their roots in classical data management concepts.

Acknowledgments We thank the anonymous reviewers
for their helpful comments, and Abhay Jha for discussions
on the paper.

5. REFERENCES

[1] E. Adar and C.Re. Managing uncertainty in social
networks. IEEE Data Engineering Bulletin, 30(2):15-22,
2007.

[2] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers
over dirty databases. In ICDE, 2006.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and
simple relational processing of uncertain data. In ICDE,
2008.

[4] L. Antova, C. Koch, and D. Olteanu. 10~(10"6) worlds and
beyond: Efficient representation and processing of
incomplete information. In ICDE, 2007.

[5] L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing
incomplete information with probabilistic world-set
decompositions (demonstration). In ICDE, 2007.

[6] L. Antova, C. Koch, and D. Olteanu. World-set
decompositions: Expressiveness and efficient algorithms. In
ICDT, pages 194-208, 2007.

[7] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki.
Consistent query answers in inconsistent databases. In
PODS, pages 68-79, 1999.

[8] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. IEEE Trans. Knowl.
Data Eng., 4(5):487-502, 1992.

[9] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. In VLDB,
pages 953-964, 2006.

[10] O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald, and
J. Widom. Databases with uncertainty and lineage.
VLDBJ, 17(2):243-264, 2008.

[11] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom.
An introduction to ULDBs and the Trio system. I[EEE
Data Eng. Bull, 29(1):5-16, 2006.

probabilistic queries over imprecise data. In SIGMOD,
pages 551-562, 2003.

[15] E. F. Codd. Relational completeness of data base
sublanguages. In Database Systems, pages 65-98.
Prentice-Hall, 1972.

[16] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter,
editors. Probabilistic Networks and Ezpert Systems.
Springer, 1999.

[17] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic conditional
probabilities for conjunctive queries. In ICDT, 2005.

[18] N. Dalvi, Chris Re, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering Bulletin,
29(1):25-31, 2006.

[19] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, Toronto, Canada, 2004.

[20] N. Dalvi and D. Suciu. The dichotomy of conjunctive
queries on probabilistic structures. In PODS, pages
293-302, 2007.

[21] N. Dalvi and D. Suciu. Management of probabilistic data:
Foundations and challenges. In PODS, pages 1-12, Beijing,
China, 2007. (invited talk).

[22] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. The VLDB Journal, 16(4):523-544,
2007.

[23] Shaul Dar, Michael J. Franklin, Bjérn THér Jénsson,
Divesh Srivastava, and Michael Tan. Semantic data caching
and replacement. In T. M. Vijayaraman, Alejandro P.
Buchmann, C. Mohan, and Nandlal L. Sarda, editors,
VLDB’96, Proceedings of 22th International Conference on
Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pages 330-341. Morgan Kaufmann, 1996.

[24] Adnan Darwiche. A differential approach to inference in
bayesian networks. Journal of the ACM, 50(3):280-305,
2003.

[25] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[26] Michel de Rougemont. The reliability of queries. In PODS,
pages 286-291, 1995.

[27] Pedro DeRose, Warren Shen, Fei Chen 0002, Yoonkyong
Lee, Douglas Burdick, AnHai Doan, and Raghu
Ramakrishnan. Dblife: A community information
management platform for the database research
community. In CIDR, pages 169—-172, 2007.

[28] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In VLDB, pages 588-599, 2004.

[29] Alexandre Evfimievski, Johannes Gehrke, and
Ramakrishnan Srikant. Limiting privacy breaches in privacy
preserving data mining. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 211-222, 2003.

[30] Ron Fagin. Multivalued dependencies and a new normal
form for relational databases. ACM TODS, 2(3):262-278,
1977.

[31] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal
aggregation algorithms for middleware. In Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
102-113. ACM Press, 2001.

[32] Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. John lafferty and
andrew mccallum and fernando pereira. In JCML, 2001.

[33] N. Friedman, L .Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In IJCAI, pages 1300-1309,

(34]

(35]

(36]
(37]
(38]

(39]

[40]

[41]

(42]

[43]

44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

(53]

[56]
[57]

(58]

[59]

1999.

Norbert Fuhr and Thomas Roelleke. A probabilistic
relational algebra for the integration of information
retrieval and database systems. ACM Trans. Inf. Syst.,
15(1):32-66, 1997.

Lise Getoor. An introduction to probabilistic graphical
models for relational data. IEEE Data Engineering
Bulletin, Special Issue on Probabilistic Data Management,
29(1):32-40, March 2006.

E. H. Gombrich. A Little History of the World. 1935.

E. Griadel, Y. Gurevich, and C. Hirsch. The complexity of
query reliability. In PODS, pages 227—234, 1998.

T. Green and V. Tannen. Models for incomplete and
probabilistic information. IEEE Data Engineering Bulletin,
29(1):17-24, March 2006.

T.J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31-40, 2007.

R. Gupta and S. Sarawagi. Creating probabilistic databases
from information extraction models. In VLDB, pages
965-976, 2006.

A. Halevy, A. Rajaraman, and J. Ordille. Data integration:
The teenage years. In VLDB, pages 9-16, 2006.

Alon Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270-294, 2001.

Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin.
Ranking queries on uncertain data: a probabilistic
threshold approach. In SIGMOD Conference, pages
673-686, 2008.

T. Imielinski and W. Lipski. Incomplete information in
relational databases. Journal of the ACM, 31:761-791,
October 1984.

R. Jampani, F. Xu, M. Wu, L.L. Perez, C.M. Jermaine, and
P.J. Haas. MCDB: a Monte Carlo approach to managing
uncertain data. In SIGMOD, pages 687700, 2008.

T.S. Jayram, S. Kale, and E. Vee. Efficient aggregation
algorithms for probabilistic data. In SODA, 2007.

A. Jha, V. Rastogi, and D. Suciu. Evaluating queries in the
presence of soft key constraints. In PODS, 2008.

B. Kanagal and A. Deshpande. Online filtering, smoothing
and probabilistic modeling of streaming data. In ICDE,
pages 1160-1169, 2008.

R. Karp and M. Luby. Monte-Carlo algorithms for
enumeration and reliability problems. In Proceedings of the
annual ACM symposium on Theory of computing, 1983.
C. Koch and D. Olteanu. Conditioning probabilistic
databases. In VLDB, 2008.

L. Lakshmanan, N. Leone, R. Ross, and V.S.
Subrahmanian. Probview: A flexible probabilistic database
system. ACM Trans. Database Syst., 22(3), 1997.

Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille.
Querying heterogeneous information sources using source
descriptions. In Proceedings of the 22nd VLDB Conference,
Bombay, India., 1996.

C. Li, K. Chang, and I. Ilyas. Supporting ad-hoc ranking
aggregates. In SIGMOD, pages 61-72, 2006.

C. Li, K. Chang, I. Ilyas, and S. Song. RankSQL: Query
algebra and optimization for relational top-k queries. In
SIGMOD, pages 131-142, 2005.

A. Machanavajjhala, J. Gehrke, D Kifer, and

M. Venkitasubramaniam. l-Diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, 2004.

A. Nierman and H.V. Jagadish. ProTDB: Probabilistic
data in XML. In VLDB, pages 646—657, 2002.

D. Olteanu and J. Huang. Using OBDDs for efficient query
evaluation on probabilistic databases. In SUM, pages
326-340, 2008.

D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs.
eager query plans for tuple independent probabilistic
databases. In ICDE, 2009.

[60]
[61]
(62]
(63]
(64]

[65]

(6]

[67)
(68]

(69]

[70]

(71]

[72]

73]

(74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

Judea Pearl. Probabilistic reasoning in intelligent systems.
Morgan Kaufmann, 1988.

Purple sox information extraction system:
http://research.yahoo.com/node/498.

V. Rastogi, D. Suciu, and S. Hong. The boundary between
privacy and utility in data publishing. In VLDB, 2007.

C. Re, N. Dalvi, and D. Suciu. Efficient Top-k query
evaluation on probabilistic data. In ICDE, 2007.

C. Re and D.Suciu. Efficient evaluation of having queries
on a probabilistic database. In Proceedings of DBPL, 2007.
C. Re and D.Suciu. Materialized views in probabilistic
databases for information exchange and query
optimization. In Proceedings of VLDB, 2007.

C. Re, J. Letchner, M. Balazinska, and D. Suciu. Event
queries on correlated probabilistic streams. In SIGMOD,
Vancouver, Canada, 2008.

C. Re and D. Suciu. Approximate lineage for probabilistic
databases. In VLDB, 2008.

Dan Roth. On the hardness of approximate reasoning.
Artificial Intelligence, 82(1-2):273-302, 1996.

A. Das Sarma, M. Theobald, and J. Widom. Exploiting
lineage for confidence computation in uncertain and
probabilistic databases. In ICDE, pages 1023-1032, 2008.
P. Sen, A. Deshpande, and L. Getoor. Exploiting shared
correlations in probabilistic databases. In VLDB, 2008.
Prithviraj Sen and Amol Deshpande. Representing and
querying correlated tuples in probabilistic databases. In
ICDE, 2007.

Arie Shoshani. Statistical databases: Characteristics,
problems, and some solutions. In VLDB, pages 208-222,
Los Altos, CA 94022, September 1982. Morgan Kaufmann.
Mohamed A. Soliman, Thab F. Ilyas, and Kevin
Chen-Chuan Chang. Probabilistic top- and
ranking-aggregate queries. ACM Trans. Database Syst.,
33(3), 2008.

O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP: a
vesatile tool for physical data independence. In Proc. 20th
International VLDB Conference, 1994.

M. Y. Vardi. The complexity of relational query languages.
In Proceedings of 14th ACM SIGACT Symposium on the
Theory of Computing, pages 137-146, San Francisco,
California, 1982.

T. Verma and J. Pearl. Causal networks: Semantics and
expressiveness. Uncertainty in Artificial Intelligence,
4:69-76, 1990.

Philip Wadler. BDDs—design, analysis, complexity, and
applications. Discrete Applied Mathematics,
138(1-2):229-251, 2004.

Jennifer Widom. Trio: A system for integrated
management of data, accuracy, and lineage. In CIDR, pages
262-276, 2005.

Eugene Wong. A statistical approach to incomplete
information in database systems. ACM Trans. Database
Syst., 7(3):470-488, 1982.

Y. Zabiyaka and A. Darwiche. Functional treewidth:
Bounding complexity in the presence of functional
dependencies. In SAT, pages 116-129, 2006.

N. Zhang and D.Poole. Exploiting causal independence in
bayesian network inference. J. Artif. Intell. Res. (JAIR),
5:301-328, 1996.

X. Zhang and J. Chomicki. On the semantics and
evaluation of top-k queries in probabilistic databases. In
International Workshop on Database Ranking (DBRank),
pages 556-563, 2008.

E. Zimanyi. Query evaluation in probabilistic databases.
Theoretical Computer Science, 171((1-2)):179-219, 1997.

