
General Database Statistics Using Entropy
Maximization

Raghav Kaushik1, Christopher Ré2, and Dan Suciu2

1 Microsoft Research
2 University of Washington, Seattle WA

Abstract. We propose a framework in which query sizes can be es-
timated from arbitrary statistical assertions on the data. In its most
general form, a statistical assertion states that the size of the output
of a conjunctive query over the data is a given number. A very simple
example is a histogram, which makes assertions about the sizes of the
output of several range queries. Our model also allows much more com-
plex assertions that include joins and projections. To model such complex
statistical assertions we propose to use the Entropy-Maximization (EM)
probability distribution. In this model any set of statistics that is consis-
tent has a precise semantics, and every query has an precise size estimate.
We show that several classes of statistics can be solved in closed form.

1 Introduction

Modern database query optimizers are the result of thousands of man years
worth of work from very talented individuals, and so are extremely sophisticated.
Although the optimizers themselves are sophisticated, the heuristics they employ
are often not: When estimating the selectivity of two predicates, the optimizer
might make an independence assumption and so, assume that the selectivities of
two predicates are independent. When estimating the size of the intersection of
two columns, the optimizer might make a containment assumption and assume
that the values in one column are contained in the other. The cleverness of the
optimizer is in how and when to apply these rules. In spite of this intense effort
and the fundamental importance of the problem, there is no general theory that
explains how the optimizer should make these choices or when such choices are
consistent. In this paper, we take a first step towards such a general, principled
theory of how optimizers should make use of statistics.

The lack of a principled framework is likely to become an even more critical
problem as new sources of statistics become available to the query optimizer. For
example, several proposals [3,17] advocate acquiring query feedback and incorpo-
rating this statistical feedback into the optimizer. It is easy to collect cardinality
statistics from each query as it is executed by the database engine. The diffi-
culty lies in combining this newfound plethora of statistics to produce a single,
principled estimate. The lack of such a principled framework is a major reason
that execution feedback has not been widely adopted in commercial database
engines.

The key object of our study is a statistical program, which is a set of pairs
(v, d), where v is a query (also called a view) and d > 0 is a number. Each pair

V3(z) :- S(−, z)
V4(x) :- R(x,−)

V5(x, y) :- R(x, y), S(y,−, x), T (x)
V6(x) :- T (x), U(x, z), 10 < z < 50

Σ: Γ :

#R = 3000
#T = 42000
#V3 = 150
#V4 = 200
#V5 = 300000
#V6 = 4000

γ1 : R(−, y) ⇒ S(y)
γ2 : R(x,−) ⇒ T (x)
γ3 : R(z, y), S(y, z) ⇒ T (z)

Estimate: q(y) :- R(x, y), S(y, z)

Fig. 1. An example of a Statistical Program and a query, q whose cardinality we would
like to estimate.

(v, d) is called a statistical assertion, and means intuitively that the answer to
v has expected size d; we write it as #v = d and say simply that “the size of
v is d”. A statistical program encodes the information that is available to an
optimizer. The primary use of this information is to estimate the expected result
size of other queries during query optimization.

Example 1. Figure 1 illustrates a statistical program that asserts the sizes of
4 views and 2 base relations. The program also asks for the estimated size of
another query. This program asserts that the expected number of distinct tuples
in the relation R is 3000. The program also asserts (via V3) that the second at-
tribute of S contains 150 values. Our proposal also allows complex assertions that
involve joins and arithmetic predicates, such as V6. In addition to statistical as-
sertions, our model also allows specifies inclusion constraints. These constraints
are hard constraints and must hold in every instance I the distribution considers
possible, i.e., for which P[I] > 0. For example, γ1 says that each value in the
second column of R is also in the S relation.

In this paper, we study the probability distribution over database instances
that satisfy a given statistical program Σ.

1.1 Our Approach: Entropy Maximization

In this paper we define a model for a statistical program using the Entropy
Maximization principle. We assume that the relations in the database are drawn
from a finite domain D, of size N , and that each database instance I has some
probability P(I). P is chosen to fit the statistics Σ and without making any
other assumptions on the data. More precisely (1) for each assertion #v = d
in Σ, the expected size of v under P is d, and (2) the probability distribution
P has the maximum entropy among those that satisfy (1) (formal definition
given in Sec. 3). The EM model for a statistical program Σ is an instance of the

general EM principle in probability theory, discussed for example by Jaynes [12,
Ch.9,11], and which has also been applied to consistent use and construction of
histograms [14,16].

The EM framework has many attractive features. First, any combination of
statistical assertions has a well-defined semantics (except, of course, when it is
inconsistent); thus, a statistical program is treated as a whole, as opposed to
a set of separate synopses. Second, every query has a well defined cardinality
estimate; there is no restriction on the query, and the query estimate no longer
depends on which heuristics are used to do the estimation. A third reason is
that the EM framework has an interesting property that allows us to add a new
statistical assertion smoothly: if the estimate of a query q under a statistical
program Σ is d, then after adding the assertion #q = d the new EM probability
distribution is identical to the previous one. In practice this means that if we
add a small correction to the model, #q = d′ where d′ ≈ d, then the model
will change smoothly. The final, and most important conceptual reason is that
in a precise sense the probability distribution given by entropy maximization
depends only on the provided statistics and makes no additional assumptions
beyond this. We return to this point when we formally define our model and
state its properties in Sec. 3.1.

In this paper, we study the following model computation problem: given a
statistical program Σ and a set of full inclusion constraints Γ , find a solutions
to the EM model. (We explain below the reason for introducing constraints.)
Since an EM solution is tied to the particular domain D, we seek to remove
the dependency by letting the domain size N grow to infinity as is done, for
example in random graphs [9], knowledge representation [2], or asymptotic query
probability [5]. Since we seek an analytic understanding of the model, our goal is
to find analytic (asymptotic) solutions to the EM model. Solving the EM model
in general is, however, a very hard problem. We report in this paper several
partial results on the asymptotic solutions for statistical programs. While our
results do not add up to a comprehensive solution to statistical programs they
do offer explicit solutions in several cases, and shed light on the nature of the
EM model for database statistics.

1.2 Main Technical Results

In this paper, we introduce classify programs according to two axes. First,
whether the statistical assertions are on base tables only, or on both base tables
and views: we say that Σ is in normal form (NF) if all statistical assertions are
on base tables; otherwise it is in non-NF. The program in Fig 1 is in non-NF.
Second, whether the views in Σ,Γ have joins or are join-free: we call the pro-
gram composite if all views have joins, and atomic if all are join-free (we do not
consider mixed atomic/composite programs). All four combinations are possi-
ble, e.g., an NF, composite program means that all statistical assertions are on
base tables and the inclusion constraints are composite views. In this paper, we
consider only composite programs3.

3 It turns out that atomic and mixed programs require an entirely different set of more
complex, analytic techniques. In the full version of this paper [13], we discuss our

We give a complete solution for composite, NF programs: given statistics on
the base tables and a set of full inclusion constraints, the EM model is described
by an explicit formula. We prove this by using techniques from [6]. Second, we
prove a more limited result for non-NF programs, by giving an explicit formula
when the views are restricted to project-semi-joins. This explicit formula gives
an important insight into the nature of difficulty of the non-NF programs, as we
explain below.

In addition to these explicit solutions, we discuss a generic technique that we
encapsulate as the conditioning theorem (Sec. 4.1); this reduces a more complex
program to a simpler program plus additional inclusion constraints; this is what
has motivated us to study statistical programs together with constraints.

The conditioning theorem states that every solution P to the EM model
can be expressed as a conditional probability P(−) = P0(− | Γ), where P0

is a tuple-independent distribution called the prior, and Γ is a set of inclusion
and set-equality constraints. Since P0 is tuple-independent, it is specified by a
number pi ∈ (0, 1), one for each relation Ri, representing the probability that
a generic tuple in the domain belongs to Ri; the corresponding odds is denoted
αi = pi/(1 − pi). Understanding the quantity P0(Γ) is a key component to
understanding the EM model. This quantity converges to 1 for composite NF
programs, and to 0 for composite NNF programs, suggesting that the techniques
used to solve composite, NF programs (which turn out to be simpler) do not
extend to the other cases.

The EM model computation that we study in this paper is the first step in
our program of using the EM framework for query size estimation. The second
step is to use the model in order to do query size estimation, which we leave for
future work, noting that it has been solved for the special case of independent
distributions [6].

The rest of the paper is organized as follows. We describe the architecture
of our proposed optimizer in Sec. 2,the EM model in Sec. 3, discuss composite
programs in Sec. 4, and discuss how to handle range predicates in Sec. 5. We
conclude in Sec. 7.

2 Cardinality Estimation Architecture Under EM

In this section, we describe in detail the architecture of a cardinality estima-
tion that we envision. Figure 2 shows the architecture of a Volcano style query
optimizer. The cardinality estimation module is shaded since this is our focus.
We leverage execution feedback similar to prior work. As queries execute in the
system, the cardinalities of various expressions are monitored and stored in a
feedback cache. This cache constitutes additional information for the cardinality
estimation module to use.

In today’s query optimizer, synopses such as histograms are used for cardi-
nality estimation. They are built over the underlying database. Recent work ad-
dresses the problem of refining these synopses using execution feedback. However,

preliminary results for atomic programs. We show for example that any program can
be transformed to a normal form program. Interestingly, this normalization process
also introduces additional inclusion constraints.

Model Computation

(Focus of this paper)

Query Size

Estimation

Parameters of

EM Model

EM Based

Cardinality

Estimation

Feedback

Cache

Memo

Assertions

Cost Estimation
Transformation

Engine

Expression
Cardinality

Estimate

Query

Optimizer

Query Plan

Query

Execution

Engine

Results

Fig. 2. EM based Cardinality Estimation

these synopses are restricted in that they only cater to a small class of queries.
For example, single-table histograms only cater to point and range queries over
the same table. In order to generate estimates for complex queries, assumptions
such as the independence assumption and containment assumption are used [10]
which are known to yield significant estimation errors. Further, it is far from clear
how the execution feedback for such complex expressions which could counter
the estimate yielded by using the synopsis structures can be used to refine the
synopses. For instance, it is not clear how feedback about join cardinalities can
be used to refine single-dimensional histograms.

Instead, in this paper we consider a fundamentally different approach to
cardinality estimation. Here, the only input to the cardinality estimation module
is assertions about the database which consist of query expressions and their true

cardinality. These assertions could be obtained directly from the data itself or
from execution feedback. The goal of the cardinality estimation module then is
to use these assertions to estimate the cardinality of a new query expression.

Since the input assertions could in principle be consistent with multiple
database instances, they are interpreted as constraints and used to impose a
distribution on this space of possible worlds. The cardinality estimation then
finds the expected size of the new expression over this distribution.

We use the entropy maximization principle to identify the distribution. Thus,
the cardinality estimation module consists of a model computation component
which uses the input assertions to find parameters that encode the EM distri-
bution. These parameters are used by a query size estimation component to
compute the expected size of an expression over this distribution.

3 The EM Model

We introduce basic notations then review the EM model. CQ denotes the class
of conjunctive queries over a relational schema R1, . . . , Rm. We define a project-
join query as a conjunctive query without constants and where no subgoal has
repeated variables, and write PJ for the class of project-join queries. For example
R(x, y), S(y, z, u) is a project-join query, but neitherR(a, x) nor S(x, x, y), T (y, z)
are. An arithmetic predicate, or range predicate, has the form x op c, where
op ∈ {<,≤, >,≥} and c is a constant; we denote by PJ≤ the set of project-join
queries with range predicates.

Let Γ be a set of full inclusion constraints, i.e., statements of the form
∀x̄.w(x̄)⇒ Ri(x̄), where w ∈ PJ≤ and Ri is a relation name.

3.1 Background: The EM Model

For a fixed domain D and constraints Γ we denote I(Γ) the set of all instances
over D that satisfy Γ ; the set of all instances over D is I(∅), which we abbreviate
I. A probability distribution on I(Γ) is a set of numbers p̄ = (pI)I∈I(Γ) in [0, 1]
that sum up to 1. We use the notations pI and P[I] interchangeably in this
paper.

A statistical program is a pair Σ = (v̄, d̄), where v̄ = (v1, . . . , vs) are project-
join queries, vi ∈ PJ, and (d1, . . . , ds) are positive real numbers. A pair (vi, di) is
a statistical assertion that we write informally as #vi = di; in the simplest case it
can just assert the cardinality of a relation, #Ri = di. A probability distribution
I(Γ) satisfies a statistical program Σ if E[|vi|] = di, for all i = 1,m. Here E[|vi|]
denotes the expected value of the size of the view vi, i.e.,

∑
I∈I |vi(I)|pI . We will

also allow the domain size N to grow to infinity. For fixed values d̄ we say that a
sequence of probability distributions (p̄N)N>0 satisfies Σ = (v̄, d̄) asymptotically
if limN→∞EN [|vi|] = di, for i = 1,m.

Given a program Σ, we want to determine the most “natural” probability
distribution p̄ that satisfies Σ and use it to estimate query cardinalities. In
general, there may not exist any probability distribution that satisfies Σ; in this
case, we say that Σ is unsatisfiable. On the other hand, there may exist many
solutions. To choose a canonical one, we apply the Entropy Maximization (EM)
principle.

Definition 1. A probability distribution p̄ = (pI)I∈I(Γ) is an EM distribution
associated to Σ if the following two conditions hold: (1) p̄ satisfies Σ, and (2)
it has the maximum entropy among all distributions that satisfy Σ, where the
entropy is H = −

∑
I∈I(Γ) pI log pI .

With slight abuse, we refer to an EM distribution as the EM model, assuming
it is unique. For a simple illustration, consider the following program on the
relation R(A,B,C): #R = 200, #R.A = 40, #R.B = 30, #R.C = 20. Thus,
we know the cardinality of R, and the number of distinct values of each of the
attributes A,B,C. We want to estimate #R.AB, i.e., the number of distinct
values of pairs AB. Clearly this number can be anywhere between 40 and 200,
but currently there does not exists a principled approach for query optimizers to
estimate the number of distinct pairs AB from the other four statistics. The EM
model gives such a principled approach. According to this model, R is a random
instance over a large domain D of size N , according to a probability distribution
described by the probabilities pI , for I ⊆ D3. The distribution pI is defined
precisely: it satisfies the four statistical assertions above, and is such that the
entropy is maximized. Therefore, the estimate we seek also has a well defined
semantics, as E[#R.AB] =

∑
I⊆D3 pI |I.AB|. This estimate will certainly be

between 40 and 200; it will depend on N , which is an undesirable property, but
a sensible thing to do is to let N grow to infinity, and compute the limit of
E[#R.AB]. Thus, the EM model offers a principled and uniform approach to
query size estimation. Of course, in order to compute any estimate we must first
find the EM distribution pI ; this is the goal in this paper.

To describe the general form of an EM distribution, we need some definitions.
Fix the set of constraints Γ and the views v̄ = (v1, . . . , vs).

Definition 2. The partition function for Γ and v̄ is the following polynomial
T with s variables x̄ = (x1, . . . , xs):

TΓ,v̄(x̄) =
∑

I∈I(Γ)

x
|v1(I)|
1 · · ·x|vs(I)|

s

Let ᾱ = (α1, . . . , αs) be s positive real numbers. The probability distribution
associated to (Γ, v̄, ᾱ) is:

pI = ωα
|v1(I)|
1 · · ·α|vs(I)|

s (1)

where ω = 1/TΓ,v̄(ᾱ).

We write T instead of TΓ,v̄ when Γ, v̄ are clear from the context. The partition
function can be written more compactly as:

T (x̄) =
∑

k1,...,ks

CΓ (N, k1, . . . , ks)xk11 · · ·xks
s

where CΓ (N, k1, . . . , ks) denotes the number of instances I over a domain of size
N that satisfy Γ and for which |vi(I)| = ki, for all i = 1, s.

The following is a key characterization of EM distributions.

Theorem 1. [12, page 355] Let Σ = (v̄, d̄) be a statistical program. For any
probability distribution p̄ that satisfies the statistics Σ the following holds: p̄ is
an EM distribution iff there exist parameters ᾱ s.t. p̄ is given by the Equation
(1) (equivalently: p̄ is associated to (Γ, v̄, ᾱ)).

The message of this theorem is that the weight of an instance I under the EM
distribution only depends on |vi(I)|. That is, the distribution depends exactly on
the provided statistics and makes no additional assumptions. It is this property
that makes the EM distribution the natural model for database statistics. In
a Bayesian sense, for a fixed set of statistics the EM model yields the optimal
estimate. We refer to Jaynes [12, page 355] for a full proof and further discussion
of this point; the “only if” part of the proof is both simple and enlightening, and
we include in the Appendix for completeness.

We illustrate the utility of this theorem with two simple examples:

Example 2. The Binomial-Model Consider a relation R(A,B) and the sta-
tistical assertion #R = d with Γ = ∅. The partition function is the binomial,
T (x) =

∑
k=0,N2

(
N2

k

)
xk = (1 + x)N

2
and the EM model turns out to be the

probability model that randomly inserts each tuple in R independently, with
probability p = d/N2. We need to check that this is an EM distribution: given
an instance I of size k, P[I] = pk(1− p)N2−k, which we rewrite as P[I] = ωαk.
Here α = p/(1 − p) is the odds of a tuple, and ω = (1 − p)N2

= P[I = ∅]. This
is indeed an EM distribution by Theorem 1. Asymptotic query evaluation on a
generalization of this distribution to multiple tables was studied in [5]. 2

Example 3. Overlapping Ranges Consider two views4:

v1(x, y) :- R(x, y), x < .60N and v2(x, y) :- R(x, y), .25N ≤ x

and the statistical program #v1 = d1, #v2 = d2 (again Γ = ∅). Assuming
N = 100, the views partition the domain into three buckets, D1 = [1, 24],
D2 = [25, 59], D3 = [60, 100], of sizes N1, N2, N3. Here we want to say that
we observe d1 tuples in D1 ∪ D2 and d2 tuples in D2 ∪ D3. The EM model
gives us a precise distribution that represents only these observations and noth-
ing more. The partition function is (1 + x1)N1(1 + x1x2)N2(1 + x2)N3 , and the
EM distribution has the form P[I] = ωαk11 α

k2
2 , where k1 = |I ∩ (D1 ∪D2)| and

k2 = |I ∩ (D2 ∪D3)|; we show in Sec. 5 how to compute the parameters α1, α2.

In this paper we study the model computation problem: given a statistical
program Σ, find the parameters ᾱ for the EM model. The ultimate goal of our
program is to further use these parameters to estimate the size of arbitrary
queries, but we will not treat the latter problem in this paper. The model de-
pends on the size of the domain, N , and this is an undesirable property, since
in practice N has no meaning other than that it is large. For that reason, we
study the asymptotic model computation problem in this paper: find a sequence
of parameters ᾱN s.t. the distribution associated to (Γ, v̄, ᾱN) satisfies Σ asymp-
totically.
4 We represent range predicates as fractions of N so we can allow N to go to infinity.

To simplify our discussion we present our results for the case when the queries
in the statistical program have no range predicates, and show in Sec. 5 how to
handle range predicates. Thus, from now on, until Sec. 5, we will assume all
conjunctive queries to be without range predicates.

3.2 A Taxonomy for Statistical Programs

Recall that PJ denotes the class of project-join queries. We define here two sub-
classes. First, a project query is a single subgoal query without constants or re-
peated variables; denote P the class of project queries. Second, a single component
join query is a project-join query with the following properties: it is minimized,
has at least two subgoals, and has a single connected component; denote PJC the
class of single component join queries. Queries V3, V4 in Fig. 1 are in P; queries
V5 is in PJC . P and PJC are two disjoint subclasses of PJ that do not cover PJ.
Some queries in PJ are not in either class, e.g. v(x, y) :- R(x, y), R(z, y), S(u)
is a query that minimizes to R(x, y), S(u), which is neither in P nor in PJC (it
has two connected components): we do not treat such queries in this paper.

We classify statistical programs Σ = (v̄, d̄) and constraints Γ along two axes:

Definition 3. Σ is in normal form (NF) if all statistical assertions are on base
tables; otherwise, it is in non-normal form (NNF).

Definition 4. (1) Σ is composite if for every statistical assertion #v = d, v is
either a base table or is in PJC . Γ is composite if for every constraint ∀x̄.w(x̄)⇒
Ri(x̄), w is in PJC . We say that Σ,Γ is composite if both are composite. (2)
Σ,Γ is atomic if all their views are in P.

Thus, there are four combinations of programs: NF/NNF and composite/atomic.
For example, referring to Fig. 1, the program (Σ1, Γ1)Σ1 = {#R = 3000,#T = 42000}
with Γ1 = {γ1} is an atomic, NF program; if we add the statistical assertion
(V4, d4), then the program is still atomic, but no longer in normal form. On
the other hand, (Σ1, Γ) with Γ = {γ3} is composite and in normal form; if we
add the statistic (V5, d5) then this becomes a composite program, not in normal
form. We do not treat mixed atomic/composite programs.

4 Composite Programs

We start by discussing the case when all queries are composite. First, we intro-
duce the two main techniques used in this section, conditioning on the prior, and
the asymptotic probabilities from [5], then we give our results.

4.1 From Conditionals to EM Models

Recall that I denotes the set of all database instances, without any constraints.
Define a prior probability distribution to be any tuple-independent probability
distribution P0 on I. As seen in Example 2, this is an EM distribution for a
very simple NF program, which just asserts the cardinalities of each relation,
#Ri = di, and has no constraints. Each tuple t into Ri has probability P0[t] =

di/N
arity(Ri), and the EM parameters are αi = pi/(1−pi) ≈ pi. Now let’s add a

set of constraints Σ, i.e., consider the NF program consisting both of cardinality
assertions #Ri and constraints Σ. Its EM model is obtained as follows:

Theorem 2 (Conditioning). Let P be the EM model for a NF program Σ, Γ .
Then there exists a prior probability distribution P0 such that:

∀ I ∈ I(Γ), P[I] = P0[I | Γ]

Moreover, the expected values are obtained through the following transfer equa-
tion: E[|q|] = E0[|q| | Γ].

Proof. Let ᾱ be the parameters of P. Define the tuple-independent prior as
follows: for each relation Ri, define P0[t ∈ Ri] = pi = αi/(1 + αi). (Thus, the

odds of pi are precisely αi.) Then P0[I] = ω0

∏
α
|RI

i |
i (follows by generalizing

Example 2) and P[I] = ω
∏
α
|RI

i |
i (by definition). Thus, P and P0 are essentially

the same expression, only P is defined over a restricted domain I(Γ) ⊆ I.

For a simple illustration, consider the statistical program Σ: #R(A,B) =
d1, #T (B,C) = d2, and the constraints Γ : R(x, y), R(y, z) ⇒ R(x, z) and
T (x, y), R(y, z) ⇒ T (z, x). To solve it, first solve a different, simpler program
#R(A,B) = b1, #T (B,C) = b2, without constraints. This is a tuple-independent
probability distribution P0. Then the solution to Σ,Γ is given as P[I] = P0[I |
Γ]. The difficulty lies in choosing the statistics b1, b2 of the simpler model: we
need to ensure that E0[|R| | Γ] = d1, E0[|T | | Γ] = d2.

4.2 Background: Asymptotic Query Probabilities

Based on our discussion, we need to study prior probabilities that have the form
P[t ∈ R] = b(R)/Narity(Ri), where b(R) is a constant that depends only on the
relation symbol R. These tuple-independent distributions were studied in [5]. It
was shown that for any Boolean conjunctive query q ∈ CQ, there exists two
constants E(q) and C(q), which can be computed only from the constants b(R)
and the query expression, s.t. P[q] = C(q)/NE(q) +O(1/NE(q)+1). We give the
expressions for C(q) and E(q) in Fig. 3.

Example 4. We illustrate the notations in Fig. 3 on the query q = R(x, y), R(y, z),
and b(R) = b. D(q) = 4 − 3 = 1 and is called the degree of q; and b(q) = b2.
UQ(q) is obtained by substituting variables in q and contains four queries (up
to isomorphism): q itself, then R(x, x), R(x, y), then R(x, y), R(y, y), and finally
R(x, x). Their degrees are 1, 2, 2, 1 respectively, thus E(q) = 1 and is called the
exponent of q. UQ0(q) consists of the first and last queries (those that have
D = 1), and aut(q0) is the number of automorphisms for q0, and is 1 for both
queries in UQ0(q). Finally, C(q) = b2 + b is called the coefficient of q. Thus,
P[q] = (b2 + b)/N +O(1/N2).

We consider here only conjunctive queries where all connected components
have E > 0; this rules out some degenerate queries, whose treatment is more
complex [4]. All PJC queries satisfy this property, since they have a single com-
poment and E > 0.

V (q) = the number of distinct variables in q

a(q) =
X
{arity(g) | g ∈ goals(q)}

D(q) = a(q)− V (q)

b(q) =
Y
{b(g) | g ∈ goals(q)}

UQ(q) = {η(q) | η = a substitution of variables}
E(q) = minD(q0)q0 ∈ UQ(q)

UQ0(q) = {q0 | q0 ∈ UQ(q), D(q0) = E(q)}

C(q) =
X

q0∈UQ0(q)

b(q0)

aut(q0)

Fig. 3. Notations for Theorem 3 from [5].

Theorem 3. [5] For any conjunctive query q ∈ CQ, P0(q) = C(q)/NE(q) +
O(1/NE(q)+1).

4.3 Composite NF Programs

Theorem 4 (Composite, NF). Consider a statistical program in normal
form Σ: #Rj = dj, for j = 1,m. Consider a set of inclusion constraints Γ
where all queries are composite. Then an asymptotic solution to the EM model
is given by αj = dj/N

arity(Rj).

The proof uses Theorem 3 and is given in the appendix; it uses Theorem 3 as
well as specific properties of the expressions D and E in Fig. 3. At a high level,
the proof exploits the fact that limN P0[Γ] = 1 (i.e., the constraints, Γ , almost
surely hold), where P0 is the prior associated to the same statistical program
(Σ,Γ): that is, the constraints Γ holds almost certainly in the prior, and hence
the statistics are not affected by conditioning.

Example 5. Consider the constraintsR(x, y), R(y, z)⇒ R(x, z), and T (x, y, z), R(y, u)⇒
S(y), and the statistical assertions |R| = d1, |T | = d2, |S| = d3. An asymptotic
solution to the EM model is given by α1 = d1/N

2, α2 = d2/N
3, α3 = d3/N .

4.4 Composite Non-NF Programs

Let Σ be a statistical program that consists of assertions on all relations, #Rj =
dj , as well as assertions over composite views, #qi = di. Create a new relation
symbol Ti for each statistical assertion of the same arity as the view, and define
the set equality constraints ∀x̄.(∃ȳ.qi(x̄, ȳ) ⇐⇒ Ti(x̄)). Each set equality con-
straint is expressed as γi ∧ δi, where γi is a full inclusion constraint and δi is a
reverse inclusion constraint:

γi ≡ ∀x̄.qi(x̄)⇒ Ti(x̄)
δi ≡ ∀x̄.Ti(x̄)⇒ (∃ȳ.qi(x̄, ȳ))

Denote ∆ and Γ the set of all inclusion- and all reverse inclusion constraints. As
before, the EM solution is given by a conditional P[I] = P0[I | ∆ ∧ Γ], where
P0 is some tuple-independent prior. However, it is now more difficult to transfer
the expected sizes, and we provide a closed form solution only for a restricted
class of views.

Definition 5. A query q ∈ PJ is a project-semi-join query if the following con-
ditions hold. Let x̄ = (x1, . . . , xk) be its head variables:

– q has no self-joins (i.e., no repeated relation symbol).
– If two different subgoals in q share a variable y, then y ∈ x̄.
– For every subgoal g, if g contains xi then it also contains xi+1.

A core subgoal is a subgoal that contains the smallest number of head vari-
ables. The core of q is the set of core subgoals and denoted G. In what follows,
a transfer equation is an equation that relates a size estimate under the prior
distribution to the size estimate of the distribution under constraints.

Lemma 1. Let δ be an inverse inclusion constraint ∀x̄.T (x̄)⇒ ∃ȳ.q(x̄, ȳ) where
q is a project-semi-join query. Define the prior:

P0(t ∈ Rj) =
b(Rj)

Narity(Rj)

P0(t ∈ T) = 1− b(T)
NE(G)

(Here E(G) denotes the exponent of the core, see Fig. 3.) Let R1, . . . , Rm be all
subgoals in q, m ≥ 1. Then the transfer equation for the view is:

E0[|T | | δ] =

∏
R∈goals(q) b(R)

b(T)
(2)

The transfer equation for any other relation in R is as follows. If the query
consists only of the core, then:

E0[|Ri| | δ] = b(Ri) +
C(G)
b(T)

(3)

(C(G) is the coefficient of G, see Fig. 3.) If the query has subgoals other than
the core, then the expected cardinalities are unchanged.

We prove the lemma in the appendix. From the lemma we derive:

Theorem 5 (Composite, non-NF). Let Σ be a statistical program where all
queries are project-semi-join queries, and do not share common subgoals. Then
an EM model for Σ has the following parameters:

– For every base relation Rj, the parameter is αj = bj/N
arity(Rj).

– For every view assertion vj, the parameter is αj = NE(G)/bj, where G is
the core of vj.

where the numerical values bj are obtained by solving a system of equations (2)
and (3).

It is interesting to compare the solution to an NF program to that of a non-
NF program (Theorems 4 and 5). For NF programs all parameters have the form
αi = d/Na, for integer a > 0. For non-NF programs some parameters have the
form Na/d and, thus, go to infinity.

Example 6. Consider the following statistical program5:

#R1 = d1 #R2 = d2

v(x) :- R1(x), R2(x) #v = d3

Thus, we are given the sizes of R1, R2, and of their intersection. We introduce a
new relation symbol T and the constraint δ = T (x)⇔ R1(x), R2(x), then define
the program in normal form:

#R1 = d1 #R2 = d3 #T = d3

The theorem gives us the EM solution as follows. The core is the entire query,
hence we define the prior:

P0(R1(a)) = e1/N P0(R2(a)) = e2/N P0(T (a)) = 1− e3/N

where P0(R1(a)) denotes the marginal probability of the tuple R1(a). Note that
T has a very large probability. This gives us an EM model to our initial statistical
program if we solve e1, e2, e3 in:

d3 =
e1e2

e3

d1 = e1 +
e1e2

e3

d3 = e2 +
e1e2

e3

Example 7. A more complex example is a statistical program that uses the fol-
lowing project-semi-join view:

v6(x1, x2, x3) :- R1(x1, x2, x3, y), R2(x2, x3), R3(x2, x3, z),
R4(x1, x2, x3), R5(x1, x2, x3)

The core consists of R2 and R3, and so we define P0[t ∈ T] = eT /N
2, where eT

is chosen such that d2d3/eT = d6.

5 Its partition function is (1 + x1 + x2 + x1x2)N . Intuitevely, this is because each of
the n tuples is in R1 and so pays x1, is in R2 and so pays x2 or is in both R1 and
R2 and so pays x1x2.

5 Bucketization

Finally, we re-introduce range predicates like x < c, both in the constraints and
in the statistical assertions. To extend the asymptotic analysis, we assume that
all constants are expressed as fractions of the domain size N , e.g., in Ex. 3 we
have v1(x, y) :- R(x, y), x < 0.25N .

Let R̄ = R1, . . . , Rm be a relational schema, and consider a statistical pro-
gram Σ, Γ with range queries, over the schema R̄. We translate it into a buck-
etized statistical program Σ0, Γ 0, over a new schema R̄0, as follows. First, use
all the constants that occur in the constraints or in the statistical assertions to
partition the domain into b buckets, D = D1 ∪ D2 ∪ . . . ∪ Db. Then define as
follows:

– For each relation name Rj of arity a define ba new relation symbols, Ri1···iaj =
Rīj , where i1, . . . , ia ∈ [b]; then R̄0 is the schema consisting of all relation
names Ri1···iaj .

– For each conjunctive query q with range predicates, denote buckets(q) =
{qī | ī ∈ [b]|V ars(q)|} the set of queries obtained by associating each variable
in q to a unique bucket, and annotating the relations accordingly. Each
query in buckets(q) is a conjunctive query over the schema R̄0, without
range predicates, and q is logically equivalent to their union.

– Let BV =
⋃
{buckets(v) | (v, d) ∈ Σ} (we include in BV queries up to

logical equivalence), and let cu denote a constant for each u ∈ BV , s.t. for
each statistical assertion #v = d in Σ the following holds∑

u∈buckets(v)

cu = d (4)

Denote Σ0 the set of statistical assertions #u = cu, u ∈ BV .
– For each inclusion constraint w ⇒ R in Γ , create b|V ars(w)| new inclusion

constraints, of the form wj̄ ⇒ Rī; call Γ 0 the set of new inclusion constraints.

Then the following holds:

Proposition 1. Let Σ0, Γ 0 be the bucketized program for Σ,Γ . Let β̄ = (βk) be
the EM model of the bucketized program. Consider some parameters ᾱ = (αj).
Suppose that for every statistical assertion #vj = dj in Σ condition (4) holds,
and the following condition holds for every query uk ∈ BV :

βk =
∏

j:uk∈buckets(vj)

αj (5)

Then ᾱ is a solution to the EM model for Σ,Γ .

This gives us a general procedure for solving the EM model for programs with
range predicates: introduce new unknowns cīj and add Equations (4) and (5),
then solve the EM model for the bucketized program under these new constraints.

Example 8. Recall Example 3: we have two statistics #σA≤0.60N (R) = d1, and
#σA≥0.25N (R) = d2. The domain D is partitioned into three domains, D1 =
[1, 0.25N),D2 = [0.25N, 0.60N), andD3 = [0.60N,N], and we denoteN1, N2, N3

their sizes. The bucketization procedure is this. Define a new schema R1, R2, R3,
with the statistics #R1 = c1, #R2 = c2, #R3 = c3, then solve it, subject to the
Equations (5):

β1 = α1

β2 = α1α2

β3 = α2

We can solve for R1, R2, R3, since each Ri is given by a binomial distribution
with tuple probability βi/(1 + βi) = ci/Ni. Now use Equations (4), c1 + c2 = d1

and c2 + c3 = d2 to obtain:

N1
α1

1 + α1
+N2

α1α2

1 + α1α2
= d1

N3
α2

1 + α2
+N2

α1α2

1 + α1α2
= d2

Solving this gives us the EM model. Consistent histograms [16] had a similar goal
of using EM to capture statistics on overlapping intervals, but use a different,
simpler probabilistic model based on frequencies.

6 Related Work

There are two bodies of work that are most closely related to this paper. The first
consists of the work in cardinality estimation. As noted above, while a variety of
synopses structures have been proposed for cardinality estimation [1, 8, 10, 15],
they have all focused on various sub-classes of queries and deriving estimates for
arbitrary query expressions has involved ad-hoc steps such as the independence
and containment assumptions which result in large estimation errors [11]. In
contrast, we ask the question what is the framework for performing cardinality
estimation over arbitrary expressions in the presence of incomplete information.
We approach this task via the EM principle.

The EM model has been applied in prior work to the problem of cardinality
estimation [14, 16]. However, the focus was restricted to queries that consist of
conjunctive selection predicates over single tables. In contrast, we explore a full-
fledged EM model that can incorporate statistics involving arbitrary first-order
expressions.

Another body of related work consists of the work in probabilistic databases [7]
which focuses on efficient query evaluation over a probabilistic database. The in-
put statistics impose many possible distributions over the possible worlds and
we choose the distribution that has maximum entropy. Our focus in this paper
is in deriving the parameters of this EM distribution. The related problem of
query estimation for a given model is not addressed in this paper. This is closely
related to the problem of evaluating queries over probabilistic databases.

Finally, we observe that entropy-maximization is a well-established princi-
ple in statistics for handling incomplete information [12]. As with probabilistic
databases, new challenges emerge in the context of database systems, in our case
the nature of statistics.

7 Conclusion

In this paper we propose to model arbitrary database statistics using an Entropy-
Maximization probability distribution. This model is attractive because any
query has a well-defined size estimate, all statistics are treated as a whole rather
than as individual synopses, and the model extends smoothly when new statistics
are added. We reported in this paper several results that give explicit asymp-
totic solutions to statistical programs in several cases. As part of our technical
development we described a technique encapsulated as the conditioning theorem
(Theorem 2) that is of independent interest and are likely to be applicable to
other statistical programs.

We are leaving for future work the second part: using an EM model to obtain
query size estimates. This has been solved in the past only for the independent
case [6].

References

1. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking Join and Self-Join
Sizes in Limited Storage. In PODS, 1999.

2. F. Bacchus, A. Grove, J. Halpern, and D. Koller. From statistical knowledge bases
to degrees of belief. Artificial Intelligence, 87(1-2):75–143, 1996.

3. S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. Diagnosing Estimation
Errors in Page Counts Using Execution Feedback. In ICDE, 2008.

4. N. Dalvi. Query evaluation on a database given by a random graph. Theory of
Computing Systems, 2009. to appear.

5. N. Dalvi, G. Miklau, and D. Suciu. Asymptotic conditional probabilities for con-
junctive queries. In ICDT, 2005.

6. N. Dalvi and D. Suciu. Answering queries from statistics and probabilistic views.
In VLDB, 2005.

7. N. Dalvi and D. Suciu. Management of probabilistic data: Foundations and chal-
lenges. In PODS, pages 1–12, Beijing, China, 2007. (invited talk).

8. A. Deligiannakis, M. N. Garofalakis, and N. Roussopoulos. Extended wavelets for
multiple measures. ACM Trans. Database Syst., 32(2), 2007.

9. P. Erdös and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kut. Int. Kozl., 5:17–61, 1960.

10. Y. E. Ioannidis. The History of Histograms. In VLDB, 2003.
11. Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of

join results. In SIGMOD, May 1991.
12. E.T. Jaynes. Probability Theory: The Logic of Science. Cambridge University

Press, Cambridge, UK, 2003.
13. R. Kaushik, C. Ré, and D. Suciu. General database statistics using entropy max-

imization: Full version. Technical Report #05-09-01, University of Washington,
Seattle, Washington, May 2009.

14. V. Markl, N. Megiddo, et al. Consistently estimating the selectivity of conjuncts
of predicates. In VLDB, 2005.

15. F. Olken. Random Sampling from Databases. PhD thesis, University of California
at Berkeley, 1993.

16. U. Srivastava, P. Haas, V. Markl, M. Kutsch, and T. M. Tran. ISOMER: Consistent
histogram construction using query feedback. In ICDE, 2006.

17. M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s LEarning
Optimizer. In VLDB, 2001.

A Proof of Theorem 1

The “only if” direction is very simple to derive by using the Lagrange multipliers
for solving:

F0 =
∑
I∈I

pI − 1 = 0 (6)

∀i = 1, . . . , s : Fi =
∑
I∈I
|vi(I)|pI − di = 0 (7)

H = maximum, where H =
∑
I∈I

pI log pI (8)

According to that method, one has to introduce s + 1 additional unknowns,
λ, λ1, . . . , λs: an EM distribution is a solution to a system of |I|+s+1 equations
consisting of Eq.(6), (7), and the following |I| equations:

∀I ∈ I :
∂(H −

∑
i=0,s λiGi)
∂pI

= log pI − (λ0 +
∑
i=1,s

λi|vi(I)|) = 0

This implies pI = exp(λ0 +
∑
i=1,s λi|vi(I)|), and the claim follows by denot-

ing ω = exp(λ0), and αi = exp(λi), i = 1, s.

B Proof of Theorem 4

A type, τ , of a set of variables x̄ is a maximal consistent set of predicates of
the form xi = xj and xi 6= xj . Equivalently, a type is a partition of x̄, and
we denote s(τ) its size, i.e. the number of equivalence classes. For example,
x1 = x2 6= x3 = x4 = x5 is a type of size 2. If q is a conjunctive query and x̄ are
some of its variables, then qτ ∈ CQ(6=) denotes the query obtained by adding
the predicates τ to q. If ā is a ground tuple of the same arity as x̄, then the type
of ā is the unique type τ(ā) s.t. ā can substitute x̄τ(ā). For example the type of
(a, b, b, a) is x1 = x4 6= x2 = x3. Recall that all results in [5] apply to queries in
CQ(6=).

We start a few lemmas. Fix q ∈ PJ a project-join quey. Recall that q has
no constants. Let x̄ be some of its variables, and let ā be some constants of the
same arity as x̄.

Lemma 2. If q0 ∈ UQ0(q) then q0 has no constants.

Suppose q0 = η(q) had constants. Compute η in two steps: q1 = η1(q) equates
all variables as per the type of the constants, and q0 = η0(q1) maps some variables
x̄ one-to-one to constants. Then D(q0) = D(q1)+ |x̄|, contradicting the fact that
q0 has minimal degree.

Lemma 3. Then E(q[ā/x̄]) = E(qτ(ā)) + s(τ(ā)) ≥ E(q) + s(τ(ā)).

Continuing the notations above, for every q0 ∈ UQ(q[ā/x̄]) we have D(q0) =
D(q1) + |x̄| = D(q1) + s(τ(ā)), where q1 ∈ UQ(qτ(ā)). If we choose q0 ∈ UQ0

(i.e. minimize the value for D(q0)) then we obtain the ≤ side of the inequality;
if we choose q1 ∈ UQ0, then we minimize D(q1) and prove the other direction.

In other words, the lemma says that in order to compute the exponent of
q(ā/x̄) proceed as follows. First add in q all = and 6= predicates on x̄ that are
compatible with ā, call them τ , then compute E[qτ], and finally add to this the
number of distinct constants in ā.

Lemma 4. Let R(ā) be a ground tuple for the relation R, and let s = s(τ(ā))
be the size of its type (i.e. number of distinct constants in ā). Let q ∈ PJ be a
project-join query. Consider the conjuctive query q,R(ā), obtained by taking the
conjunction of q and R(ā). Then (1) E(q,R(ā)) ≥ E(q) + s, and (2) there exists
a tuple ā s.t. E(q,R(ā)) = E(q) + s.

Let z̄ be fresh variables. By the above lemma we have E(q,R(ā)) = E(q,R(z̄τ(ā)))+
s(τ(ā)). Claim (1) follows from E(q,R(z̄)) ≥ E(q) and the previous lemma. For
claim (2) there are two cases. If R does not appear in q, then E(q,R(z̄τ)) =
E(q) + s(τ) for any type τ (since R doesn’t unify with anything in q), hence
the claims holds for any choice of ā. If R appears in q, then E(q,R(z̄)) = E(q).
Indeed, consider any q0 ∈ UQ0(q), and let τ be the type of any subgoal mention-
ing R. Then q0 is also a homomrphic image of q,R(z̄τ)), hence E(q,R(z̄τ)) ≤
E(q0) = E(q).

Proof. (of Theorem 4) Denote P0 the prior corresponding to the parameters
αj in the theorem. We start by computing P0(Γ). Let γ1, . . . , γp be the in-
clusion constraints in Γ . Each γk has the form wk ⇒ Rj , hence its nega-
tion is ¬γk ≡ wk ∧ ¬Rj . This is a conjunctive query with one negated sub-
goal. Using the inclusion/exclusion formula we obtain P0[Γ] = 1 − P0[¬Γ] =∑
S⊆[p](−1)|S|P0[∧k∈S¬γk]. For each subset S ⊆ [p], denote QS the conjunc-

tive query QS ≡ ∧k∈Swk; by Theorem 3 we have P0[QS] = O(1/NE(QS)], hence
P0[∧k∈S¬γk] ≤ Pr[QS] = O(1/NE(QS)], which implies that P0[Γ] = 1−O(1/N).

Let Rj be a relation name and let t be a ground tuple in Rj . THen

E0[Rj | Γ] = Narity(Rj)P0[t | Γ]

On the other hand:

P0[t | Γ] =
P0[Γ, t]
P0[Γ]

=
P0[t]−P0[t¬Γ]

1−P0[¬Γ]

We have already seen that P0[¬Γ] = O(1/N). Similarly, P0[t¬Γ] = P0[t]∗O(1/N).
Indeed, for any conjuctive query QS defined above, E(tQS) ≥ E(QS) + s(τ(t))
hence P0[tQs] = O(1/NE(tQS)) ≤ O(1/Ns(τ(t))+E(QS)) and the claim follows
from the fact that P0[t] = O(1/Ns(τ(t))).

We conclude that P0[t | Γ] = P0[t], hence E0[Rj | Γ] = E[Rj].

C Proof of Theorem 4

Conjunctive queries are known to correspond to select-project-join query. Call a
conjunctive query a project-join query if (a) there are no constants in its body,
and (b) for any subgoal g occurring in q, all variable occurrences in g are distinct.
For example, R(x, y), R(y, z) is a project-join query, while R(a, x) and S(x, x, y)
are not.

Lemma 5. Let q be a project-join query with E(q) > 0. Let t be a ground tuple.
Then limN

P(t,q)
P(t) = 0

Proof. Note that both preconditions are necessary. If q has constants, then it
fails: t = R(a, b, c), q = R(a, b, x), then P(tq) = O(1)/N3 because t and R(a, b, x)
unify to t hence E(tq) = D(t) = 3, and P(t) = O(1)/N3. If q has repeated
variables, then it also fails: t = R(a, a, a), q = R(x, x, y), R(x, y, y), then E(tq) =
D(t) = 3, hence both P(tq) and P(t) are O(1)/N3. To see an example where
it holds, consider t = R(a, b, c), q = R(x, y, z), S(z, u). To compute E(tq) we
compute D(tq) = 8 − 4 = 4, and D(R(a, b, c), S(c, u)) = 5 − 1 = 4. Hence
P(tq) = O(1)/N4, while P(t) = O(1)/N3.

To prove the claim, we will show that E(tq) > D(t). So, let η(tq) ∈ UQ0(tq).
We have η(tq) = t, η(q) (since η doesn’t affect a ground tuple). If t doesn’t appear
as a subgoal in η(q), then E(tq) = D(t, η(q)) = D(t) +D(η(q)) ≥ D(t) +E(q) >
D(t). If t appears as a subgoal in η(q), then it means that η(tq) = η(q). In this
case η maps at least one subgoal g in q to the tuple t. Consider the substitution η′
that is like η, but whenever η(x) is a constant, η′(x) is set to a new distinguished
variable. In other words, η = θ◦η′, where θ maps the new distinguished variables
to the constants that they replaced. Note that V (η(q)) ≤ V (η′(q))−A(t), because
η must substitute at least the A(t) distinct variables occurring in g with constants
in order to equate it with t. Thus we have E(tq) = D(η(q)) ≥ D(t, η′(q)) (because
A(η(q))+A(t) = A(tη′(q))), and the claim follows from D(t, η′(q)) > D(t), which
is similar to what we argued above.

Corollary 1. Let γ be an inclusion constraint ∀x̄.(q ⇒ R), s.t. q is a project-
join query with E(q) > 0. Let t be a ground tuple. Then limN

P(t,¬γ)
P(t) = 0

Proof. The negation is ¬γ ≡ (q,¬R), i.e. a conjunctive query with one negated
subgoal. We have P(t,¬γ) = P(t, q,¬R) ≤ P(t, q), and the claim follows from
the previous lemma.

Corollary 2. Let Γ be a set of inclusion constraints s.t. any left hand side of
any constraint is a project-join query with E > 0. Let t be any ground tuple.
Then limN

P(t|Γ)
P(t) = 1.

Proof. By induction on the number of constraints in Γ . IF there is only one
constraint γ, then P(t | γ) = P(tγ)

P(γ) and the claim follows from the previous
corollary and the fact that P(γ) → 1. Consider a set of constraints of the form
γ, Γ . Then P(t | γ, Γ) = P(t,γ,Γ)

P(γ,Γ) . The denominator → 1, so we examine the
numerator:

P(t, γ, Γ) = P(t)−P(t,¬(γ, Γ))
= P(t)−P(t,¬γ)−P(t,¬Γ) + P(t,¬γ,¬Γ)

We have: P(t,¬γ)/P(t) → 0 by the previous corollary; P(t,¬Γ)/P(t) → 0 by
induction hypothesis; and P(t,¬γ,¬Γ)/P(t) ≤ P(t,¬γ)/P(t)→ 0.

Finally, we can prove Theorem 4. Denoting P0 the independent probability
distribution with the setting of the parameters in the theorem, we have E0[Rj] =
dj forall j. It suffices to prove that E0[Rj | Γ] = E0[Rj]. Consider a ground tuple
t of the relation Rj . By linearity of expectation, and since all ground tuples in R
have the same marginal probability, we have E0[R | Γ] = Narity(Rj)P0[t | Γ] =
Narity(Rj)P0[t]P0[t|Γ]

P0[Γ] → E0[R]× 1.

D Proof of Theorem 5

Proof. (of Lemma 1) Consider a subgoal of q of the formR(x1, . . . , xm, y1, . . . , yp).
Since the variables ȳ are not shared by any other subgoal, this is equivalent to
∃ȳ.R(x1, . . . , xm, ȳ) and, by by Theorem 3, it behaves the same (asymptotically)
as an atomic relation symbol R′(x1, . . . , xm) with indepedent tuple probability
bR/N

m. Thus, we will assume w.l.o.g. that there are no variables other than x̄
in the body of the query q.

Denote Gm(x1, . . . , xm) the conjunction of all subgoals in q that contain ex-
actly the variables x1, . . . , xm and none others. Thus, q = G1(x1, . . . , xk), G2(x2, . . . , xk), . . . , Gk(xk).
By abuse of notation we will also denote Gm as a set of subgoals, and talk about
a relation R ∈ Gm.

In the following we will denote a1, . . . , ak a set of generic constants; recall
that x1, . . . , xk are all the variables. For each m = 0, k denote the following:

a(m) = (am, am+1, . . . , ak)
x(m) = (x1, . . . , xm)

T (x(m)) = T (x(m), a
(m+1))

Gi(x(m)) = Gi(x1, . . . , xm, am+1, . . . , ai)
G(m)(x(m)) = G1(x(m)), . . . , Gm(x(m))

For each m = 0, k we define the following reverse inclusion constraint δ(m):

δ(m) = ∀x(m).T (x(m))⇒ G(m)(x(m))

Clearly δk = δ. We rewrite δ(m) as follows. Note that Gm(x(m−1)) is a constant
subgoal (since Gm does not have any variables in x(m−1)), hence we write it as
Gm.

δ(m) =
∧

am∈D
(∀x(m−1)T (x(m−1))⇒ G(m)(x(m−1)))

δ
(m)
⊥ =

∧
am∈D

(∀x(m−1)T (x(m−1))⇒ ⊥)

=
∧

am∈D
(∀x(m−1)T (x(m−1))⇒ (G(m)(x(m−1))), Gm)

=
∧

am∈D
(Gm ∧ δ(m−1)) ∨ δ(m−1)

⊥

We denote T(m−1) = ∃x(m−1)T (x(m−1)), and further introduce the notation
B(m−1) below, then re-express δ(m):

B(m−1) = (Gm ∧ δ(m−1)) ∨ (¬Gm ∧ ¬T(m−1))

δ(m) =
∧

am∈D
B(m−1)

δ(0) = G1 ∨ (¬G1 ∧ ¬T)

where T stands for T (ā).
Importantly, the events B(m−1) corresponding to different constants am ∈ D

are independent, hence the probability P0[δ(m)] we can express it as a product∏
am∈D P0[B(m−1)].

We start by computing E0[T | δ], which we write as:

E0[T | δ] = NkP0[T (ā) | δ] = NkP0[δ | T (ā)]
P0[δ]

P0[T (ā)]

Since P0[T (ā)] = 1 − O(1/N) we focus on computing the ratio between the
conditional, and unconditional probability of δ Denote P1[−] = P0[− | T (ā)]
and observe that P1 is a tuple-independent distribution that is idential to P0

on all tuples except the single tuple T (ā). We write δ = δ(k), and expand it as∧
a′

k∈D
as above, and will separate the conjunct into the case a′k = ak and the

case a′k 6= ak: the latter is the same for the a priori P0 and the conditional P1.

P1[δ]
P0[δ]

=
P1[B(k−1)]

∏
a′

k 6=ak
(· · ·)

P0[B(k−1)]
∏
a′

k 6=ak
(· · ·)

=
P1[Gk]P1[δ(k−1)] + P1[¬Gk]P1[δ(k−1)

⊥]
P0[Gk]P0[δ(k−1)] + P0[¬Gk]P0[δ(k−1)]

=
P1[Gk]P1[δ(k−1)]

P0[Gk]P0[δ(k−1)] + P0[¬Gk]P0[δ(k−1)
⊥]

Next we prove:

Lemma 6. (1) δ0 = true, δ0
⊥ = ¬T (ā), and (2) 1 ≤ P0[δm]/Pr0[δm⊥] ≤ 1 +

O(1/N)

The second statement follows from the fact that their ratio is
∏
am

P0[¬T̄ (am)∨
G(am)]/P0[¬T (am)] and that P[¬T (am)] domaines asymptotically P0[G(am)].
It follows that E0[T | δ] = C(Gk)/dT .

Next, we compute E0[R | δ] Denoting R(ā) a generic tuple we proceed simi-
larly, and note two differences. First P0[R(ā)] is no longe 1, but dR/Narity(R) and
we will keep it. Second, P1[−] = P0[− | R(ā)], hence P1[δ(k−1)

⊥] is no longer 0.
Instead, here there are two cases. Either there exists a single stratum, i.e. m = 1
and then we use the fact that P[δ0] = 1 and P[δ0

⊥] = P0[¬T] = bT /N
E(q); in

this case we obtain E0[R | δ] = C(G1)/dT + dR. Or there are multiple strata in
which case we obtain E0[R | δ] = dR.

