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ABSTRACT
The proliferation of imprecise data has motivated both re-
searchers and the database industry to push statistical tech-
niques into relational database management systems (RDBM-
Ses). We study strategies to maintain model-based views
for a popular statistical technique, classification, inside an
RDBMS in the presence of updates (to the set of training
examples). We make three technical contributions: (1) A
strategy that incrementally maintains classification inside
an RDBMS. (2) An analysis of the above algorithm that
shows that our algorithm is optimal among all determinis-
tic algorithms (and asymptotically within a factor of 2 of
a non-deterministic optimal strategy). (3) A novel hybrid-
architecture based on the technical ideas that underlie the
above algorithm which allows us to store only a fraction of
the entities in memory. We apply our techniques to text pro-
cessing, and we demonstrate that our algorithms provide an
order of magnitude improvement over non-incremental ap-
proaches to classification on a variety of data sets, such as
the Citeseer and DBLife.

1. INTRODUCTION
Motivated by the proliferation of imprecise data, there is a

growing trend among database researchers and the database
industry to push statistical techniques into relational database
management systems (RDBMSes). Building on these ef-
forts, our Hazy project aims to build an end-to-end system
for imprecision management; a critical portion of our effort
is to tightly integrate statistical techniques into an RDBMS.
In this work, we focus on the technical challenges that arise
when maintaining a ubiquitous statistical task, classifica-
tion, inside an RDBMS.

Classification can be defined as the following task: Given
a set of entities E (e.g., papers extracted from the Web),
a set of labels L (e.g., research areas), and a set of labeled
entities, called training examples, T (e.g., papers labeled by
research area), the goal of classification is to assign to each
entity in E a label from L. Typically, this is done by learning
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(training) a model (which depends on T ) and then using that
model to label each entity in E. Classification is widely used,
e.g., in extracting structure from Web text [12, 27], in data
integration [13], and in business intelligence [7, 14,22].

Many of these application scenarios are highly dynamic:
new data and updates to the data are constantly arriving.
For example, a Web portal that publishes information for
the research community, it must keep up with the new pa-
pers that are constantly published, new conferences that
are constantly announced, etc. Similar problems are faced
by services such as Twitter or Facebook that have large
amounts of user generated content. Unfortunately, current
approaches to integrating classifiers with an RDBMS treat
classifiers as a data mining tool [22]. In data mining scenar-
ios, the goal is to build a classification model for an analyst,
and so classification is used in a batch-oriented manner; in
contrast, in the above scenarios, the classification task is
integrated into the run-time operation of the application.
As many of these applications are often built on RDBM-
Ses, it has now become critical to have classifiers that are
integrated with an RDBMS and are able to keep up with
high rates of arrival of new information in these dynamic
environments.

In the above dynamic applications, there are two types of
dynamic data: (1) new entities, e.g., new papers to classify,
and (2) new training examples, e.g., as the result of user
feedback or crowdsourcing. To handle data of type (1), when
a new entity arrives, we must classify the entity according to
the model and then store the entity and its label. Handling
data of type (2) is more challenging. The reason is that when
a new training example arrives, the model itself changes. In
turn, this may force us to change the label of every entity in
the database. Hazy offers solutions for both problems, but
our primary technical focus is on type (2) dynamic data.

We integrate classification into an RDBMS (in our case
PostgreSQL) via the abstraction of model-based views. In
model-based views, statistical computations are exposed to
a developer through relational views. As we explain in Sec-
tion 2.1, this abstraction allows a developer to use the output
of classification with standard SQL queries, and allows new
training examples to be inserted with standard SQL insert
statements. Thus, to a developer that uses Hazy, the result
of classification appears to be a standard relational view.

In full analogy with classical materialized views [3], Desh-
pande and Madden [11] considered two approaches to main-
taining general statistical views: eager, where the view is
maintained after each update (i.e., new training example),
and lazy, where updates are applied only in response to a



read request (i.e., the request for the label of an entity). The
eager approach allows very high read performance, but has
higher maintenance costs; in contrast, the lazy approach of-
fers more efficient updates, but has worse read performance.
In this work, we describe a novel incremental data reorgani-
zation strategy that can improve the performance of either
an eager or lazy approach.

To gain intuition, we explain how Hazy improves the up-
date performance of an eager approach: on each update, a
näıve eager approach relabels every entity. Intuitively, this
operation is wasteful: although the labels of many entities
do not change as a result of a single new training example,
an eager approach must still read every entity tuple, and
write back each entity that changed label. If, however, we
could quickly identify the set of entities whose labels change
(or may change), then we could save work by reading and
writing a smaller number of entities on each update. To find
the entities that are likely to change labels, Hazy provides a
data structure and a strategy that clusters together entities
on disk by how likely their label is to change. Using this
clustering, Hazy can process dramatically fewer tuples and
so can achieve much higher performance.

Maintaining this clustering as new updates arrive raises
an immediate technical problem. Intuitively, the reason is
that the set of entities whose labels are likely to change may
not remain the same after many updates. To continue to
reap the benefits of the clustering, we need to periodically
reorganize the data. Our first contribution is a strategy
that chooses when to reorganize the data. At a high level,
our strategy weighs the expected benefit of reorganization
against the time that it takes to reorganize the data set: if
reorganization is cheaper in this calculation, then it chooses
to reorganize. Our second contribution is our analysis that
shows that Hazy’s maintenance strategy has an optimal run
time among all deterministic strategies for this problem and
is (asymptotically in the size of the data) a 2-approximation
of a nondeterministic optimal strategy (see Thm. 3.3). Em-
pirically, Hazy’s strategy results in an order of magnitude
performance improvement over näıve approaches.

Using this strategy, we design both main-memory and on-
disk architectures for view maintenance and integrate them
into PostgreSQL. Of course, the main-memory approach is
orders of magnitude faster than a näıve on-disk approach,
but has the limitation that the data set must fit in main
memory. In some of our target applications, this main-
memory limitation is a problem, e.g., in text processing a
common approach is to have a vector for each document with
a component for each word in the corpus: even represented
using sparse vectors, millions of entities may still require tens
of gigabytes of RAM. To combat this, our third technical
contribution is a hybrid of main-memory and on-disk archi-
tectures that keeps some number of entities in main memory:
the technical problem is: given a space budget, which enti-
ties do we keep in main memory? At a high level, Hazy’s
strategy tells us which fraction of the entities are likely to
change labels, and the hybrid architecture stores these enti-
ties in memory. Often, we can store a small fraction of the
entities in memory (say 1%) and still service almost every
read and update without going to disk. Combining both
our architectural techniques and algorithmic techniques, we
show up to two orders of magnitude performance improve-
ments over state-of-the-art techniques.

Prior Work on Statistical Views in RDBMSes
Pushing statistical processing (e.g., SVMs [22]) inside an
RDBMS is a trend in the database industry. No prior ap-
proaches, however, consider efficient strategies for mainte-
nance of classification views. Our work in Hazy extends
the line of work started by MauveDB [11] that proposes
model-based views and considers materialization strategy
for such views, i.e., should the data be materialized lazily,
partially, or eagerly? This concept has been expanded to
statistical views for probabilistic inference over Markovian
Sequences [17,23] where all updates are appends. The Monte-
Carlo Database System [15] makes statistical sampling a
first class primitive, but Jampani et al. do not discuss main-
taining statistical views. A related line of work in probabilis-
tic databases [1,2,10] considers specialized models to manage
uncertainty, in this work we address the orthogonal problem
of building a statistical model from raw data.

Hazy builds on work in the machine learning community
to incrementally learn support vector machines and linear
models [6,9,19,21]; this work is essentially used as a subrou-
tine in Hazy. In Hazy, our goal is to address the problem
of incrementally maintaining the output of a classification
task in an RDBMS. For an expanded related work, please
see Appendix D.

Contributions, Validation, and Outline
• In Section 2, we illustrate Hazy’s use by example, de-

fine its semantics, and give the necessary background
on lazy and eager approaches.

• In Section 3, we describe our main technical contri-
butions: an efficient strategy to support incremental
maintenance for classification views, a theoretical anal-
ysis of our strategy, and several architectural optimiza-
tions based on our strategy.

• In Section 4, we validate our technical contributions on
several real data sets from DBLife, Citeseer, and the
UCI machine learning repository.1 We demonstrate
that Hazy’s incremental strategy is an order of mag-
nitude more efficient than non-incremental strategies
on several data sets.

In the appendix, we include pseudo code, proofs of our
claims, an extended related work, and extended experiments
including how we use Hazy in multiclass classification.

2. EXAMPLE AND BACKGROUND
We introduce Hazy by example and conclude this section

with a formal description of Hazy’s semantics.

2.1 Hazy by Example
We describe how a user declares a classification view in

Hazy by example.

Feature Functions. Before defining Hazy’s views, we need
the concept of a feature function, which is a user-defined
function that maps an (entity) tuple to a vector describ-
ing the features that are important for a classification task.
An example feature function is tf bag of words that com-
putes a vector of the term (word) frequencies for each tuple
(treating each tuple as a document). We discuss Hazy’s
registration of feature functions in Appendix A.2.

1
http://archive.ics.uci.edu/ml/



Classification Views. To create a list of newly published
database systems papers for a Web page, we need to sepa-
rate papers about database systems from those papers about
other research areas. In Hazy, we start by declaring a clas-
sification view, which contains a declarative specification of
the entities and the training examples. Hazy populates and
maintains the view by performing the classification task.

Example 2.1 Classifying papers by area in Hazy:

CREATE CLASSIFICATION VIEW
Labeled_Papers KEY id -- (id,class)
ENTITIES FROM Papers KEY id -- (id, title, . . . )
LABELS FROM Paper_Area LABEL l -- (label)
EXAMPLES FROM Example_Papers KEY id LABEL l -- (id, label)
FEATURE FUNCTION tf_bag_of_words

Here, we have illustrated the schema of each portion of the
view with SQL comments. Example 2.1 declares a view,
Labeled Papers, with two attributes (id, class) that con-
tains each paper in Papers, but now labeled by the clas-
sification mechanism, e.g., a paper may be labeled as a
database paper. The developer may access Labeled Papers

as a standard SQL table (although Hazy is responsible for
maintaining this view). This also declares to Hazy that
there is an existing table (or view) Papers that contains the
entities (papers) to be labeled and has a primary key id.
Paper Area declares a set of labels (here the set of research
areas). Finally, the training examples are specified by a table
Example Papers with schema (id, label) where id refers to a
paper, and label is one of the labels previously declared. A
developer may insert new training examples into this table,
and Hazy will ensure that the Labeled Papers view reflects
the result of retraining the model with these examples. Of
course, one option is to simply redo training and then pop-
ulate the view. An alternative is to incrementally maintain
the view by leveraging incremental algorithms [6,9,19]; these
algorithms tell us how to update the classifier’s model, but
they do not tell us how to efficiently reclassify the entities
inside the database. Our first technical contribution is an
incremental algorithm to maintain classification views as the
underlying training example (and so model) is updated.

In Hazy, classification may be implemented in several
ways: support vector machines [5, 8, 16], ridge regression,
ordinary and weighted least squares, or logistic regression;
each of these methods can also be combined with various
kernels (see Appendix B.5.2). In Hazy a user specifies one
of a handful of predefined classification methods in the view
declaration, e.g., by writing USING SVM at the end of the
view declaration. If the user does not specify, Hazy chooses
a method automatically (using a simple model selection al-
gorithm based on leave-one-out-estimators [26, p. 27]).

Using Hazy. A key virtue of Hazy’s approach is that a
user may write arbitrary SQL in terms of a classification
view. This is trivial to support, because classification views
appear to the RDBMS as exactly standard database views.
To support user feedback, Hazy allows standard SQL up-
dates, inserts, and deletes to the tables (or views) that define
the entities and training examples of a classification view.
Using triggers, Hazy monitors the relevant views for up-
dates, and the challenge for Hazy is to incrementally main-
tain the contents of a classification view.

Semantics of the Views. We define the contents of a clas-
sification view. To keep our formal presentation concise, we
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Figure 1: An Example Linear Model

focus on a classification view that is defined by a linear clas-
sifier, which is a very broad class containing linear support
vector machines, least squares, and logistic regression. Hazy
does handle non-linear kernels and multiclass problems (for
details see Appendix B.4). Formally, a linear model is de-
fined by a pair (w, b) called a model where w ∈ Rd for d ≥ 1
and b ∈ R (b is called the bias term).

A classification view V (id, class) is defined by a pair (In, T)
where In(id, f) is a view with a key id that defines the set
of entities to be classified and their feature vectors f. Here
f ∈ Rd for d ≥ 1, and contains the result of applying the fea-
ture function to the tuple with key id. T (id, l) is a view that
defines the training examples: id is a key, and l ∈ {−1, +1}
is the label. A model (w, b) is a solution to an optimization
problem that depends only on T (see Appendix A.1). In
turn, a model (w, b) defines the contents of V as:

V = {(id, c) | (id, f) ∈ In and c = sign(w · f − b)}

where sign(x) = 1 if x ≥ 0 and −1 otherwise.

Example 2.2 A simple linear model is illustrated in Fig-
ure 1 that labels entities as database papers or not. There
are five entities here, Pi for i = 1, . . . , 5 that are mapped
by feature functions to vectors in R2. For example, P1 is
associated with the vector f(P1) = (3, 4). The model in the
example is the pair (w, b) where w = (−1, 1) and b = 0.5.
The model vector w defines a line by the set of points x ∈ R2

such that x·w+b = 0: those entities on above the line are in
the class (database papers) and are shaded, and those below
the line are not. In higher dimensions, the line is general-
ized to a hyperplane. The shaded region is the set of y such
that y · w + b ≥ 0, and we call this set the positive class.
Hence, according to this model, both P1 and P3 are labeled
as database papers, while Pj for j ∈ {2, 4, 5} are not.

In Hazy, classification views are defined using standard
SQL views, e.g., in Example 2.1, In is defined by the SQL
view Papers, while the training examples are defined by the
view Example Papers. Hazy is responsible for maintaining
V ; this paper studies the mechanisms to maintain V effi-
ciently as the model changes. As updates arrive (inserts
or deletes) the model changes – but perhaps only slightly
as the result of incremental training: Figure 1(b) shows a

model w(s) (at time s) and then it changes to a new model

w(s+1) using an incremental training algorithm. Only P2

and P3 change classes here, and it is up to Hazy to quickly
identify P2 and P3 and relabel only such entities.

2.2 Background: Lazy versus Eager
Hazy handles arbitrary SQL, but for the sake of presen-

tation, we focus on three operations: (1) Single Entity read,



which is a query that asks for the label of a single entity, e.g.,
“is paper 10 a database paper?”, (2) All Members, which is
a query that asks for all members of a class, e.g., “return all
database papers”, and (3) Update, which adds a new training
example, e.g., “paper 45 is a database paper.”2

We describe the eager and lazy approaches in more detail.
The input is a table In(id, f), where id is a key and f is a
feature vector (it is an element of Rd for some d ≥ 1). The
goal is to maintain a view V (id, class). In an eager approach,
V is maintained as a materialized table. In contrast, in a
lazy approach, V is implemented using an SQL view whose
definition contains a user-defined function that in response
to a read of a tuple with id = x, reads the feature vector
associated to x in In, and labels it using the current model.
In both cases, we maintain a hash index to efficiently locate
the tuple corresponding to the single entity.

Naı̈ve Approach. The näıve approach for Single Entity
read in an eager approach is to simply look up the result
in the materialized view V . In a lazy approach for a Single
Entity read, we must retrieve the tuple and its feature vec-
tor, and then classify the tuple. For an All Members read,
in an eager approach we simply scan the table looking for
those tuples in the class, while in a lazy approach we must
scan and relabel every single tuple. On an Update, both
approaches first retrain the model. On our data sets, re-
training the model takes roughly on the order of 100µs. In
a lazy approach, this is all the work that the update needs
to do. In contrast, in an eager approach we must reclassify
all the entities which requires an entire scan over the corpus
and update the documents. A technical intuition behind
Hazy is that much of the work in this scan is wasted – often
only a small fraction of labels change on any given iteration.

Hazy’s Technical Goals. Hazy’s techniques can improve
either eager or lazy approaches. Specifically, Hazy improves
the cost of Update in the eager approach, while maintaining
its All Members performance. (Hazy slightly improves All
Members as well); in the lazy approach, Hazy improves the
All Members query while retaining the lazy approach’s op-
timal Update performance. We also propose a hybrid archi-
tecture that improves Single Entity performance.

3. CLASSIFICATION VIEWS IN HAZY
We describe how Hazy initially trains a model, Hazy’s

novel strategy for incrementally maintaining classification
views, and several optimizations.

3.1 Initialization (Learning)
Hazy is agnostic about the particular choice of learning

algorithm, but Hazy’s default learning algorithm is stochas-
tic gradient [4], an incremental optimization technique. We
choose this as Hazy’s default, since incremental gradient al-
gorithms examine a small number of training examples per
step, and so they have a small memory footprint during the
training phase [9, 25]. Additionally, these methods allow
Hazy to efficiently and incrementally maintain the model
at each step. Although this method is simple, as we demon-
strate (Appendix C.1), our approach is substantially faster
than other state-of-the-art approaches (namely, SVMLight

2Hazy supports deletion and change of labels by retraining
the model from scratch, i.e., not incrementally.

and an established commercial system), while maintaining
as good (if not better) quality. Moreover, using a gradient-
based approach allows Hazy to handle many linear models
using essentially the same code.

3.2 Incremental Maintenance
A challenging operation is to maintain the view when new

training examples arrive: once the classification view is con-
structed, updates to the training examples may cause the
model to change and so the contents of the view. In this
section, we first explain how Hazy can be applied in the ea-
ger setting to speed up Update performance. In Section 3.4,
we discuss how Hazy improves the performance of All Mem-
bers in a lazy approach.

Input and Output We are given as input a relation
In(id, f) where f is a feature vector. Then, in an online

fashion we are given a sequence of models (w(i), b(i)) for
i = 1, 2, . . . (we call i a round). The sequence of models
capture the result of incrementally training a model with
a sequence of examples. At each round i, Hazy maintains
a (materialized) view V(i)(id, class, eps). We abuse notation

by redefining V (i) to have an additional attribute eps. Hazy
will use eps to ensure sequential access, but it is not needed
(and not present) in näıve strategies. The content of V (i) is
the set of (id, c, eps) where:

(id, f) ∈ In, eps = w(i) · f − b(i) and c = sign(eps)

Internally, Hazy maintains a scratch table H: for s ≤ i the
contents of H(s)(id, f, eps) are

H(s) = {(id, f, eps) | (id, f) ∈ In, and eps = w(s) · f − b(s)}

Hazy maintains that H is clustered on eps. ε for an en-
tity is the distance to the hyperplane defined by (w(s), b(s)).
Figure 1(A), illustrates ε for paper 5.

Algorithm Overview At round i+1, Hazy has a single
instantiation of H(s) for some s ≤ i (s will signify the last
round Hazy reorganized the data). The algorithm has two
components: The first component is an incremental step
that uses H(s) to update a (hopefully small) portion of V(i)

to build V(i+1). Intuitively, after many rounds (when i is
much bigger than s), the model at s and i are far apart,
and so the incremental step may not perform well. And
so, the second component of Hazy’s strategy is deciding
when to reorganize H. We call the (online) algorithm that
chooses when Hazy reorganizes the data the Skiing strategy
(referring to the classic ski rental problem [18]).

3.2.1 The Skiing Strategy
The Skiing strategy operates in rounds. In each round,

say i + 1, Skiing makes one of two choices: (1) perform

an incremental step and pay a cost c(i) to update V (i) to
V (i+1). The cost c(i) is in seconds (c(i) is unknown to the
strategy until it makes its choice). Or (2) a reorganization
step that reorganizes H (effectively setting s = i + 1) and

pays a fixed, known cost S (and also updates V (i)). We
describe this formally in Appendix 3.3.

Let α ≥ 0 be a constant (α = 1 suffices in practice). When
Skiing makes choice (1) it measures the time to execute

the step in round i and calls this cost c(i), then Skiing
maintains an accumulated cost a(i) (with an optimal data
organization Skiing would incur cost 0, and so intuitively,
a(i+1) represents the waste incurred by Skiing’s most recent
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Figure 2: An illustration of H(s) at a round i
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choice of data organization) as:

a(i+1) = a(i) + c(i) s.t. a(0) = 0 (1)

When a(i) ≥ αS, Hazy reorganizes the data (choice (2))
and resets the accumulated cost to 0. The strategy is sum-
marized in Figure 7 in Appendix B.3.

3.2.2 The Individual Steps
We now describe the state that Hazy maintains, the in-

cremental step, and the reorganization step.

State Maintained by Skiing. At round i, Hazy main-

tains a model (w(s), b(s)) for some s ≤ i called the stored
model. The Skiing strategy chooses when Hazy changes
the stored model by choosing the parameter s. For con-
venience, denote the positively labeled elements at round

i as V
(i)
+ = {id | (id, 1) ∈ V (i)}, and define V

(i)
− anal-

ogously. Hazy maintains a pair of scalars that depend
on the model at round i and the last round Hazy reor-
ganized, s; these scalars are denoted lw(s,i) and hw(s,i) (de-

fined below). The important property is that if t ∈ H(s) and

t.eps ≥ hw(s,i) (resp. t.eps ≤ lw(s,i)) then t.id ∈ V
(i)
+ (resp.

t.id ∈ V
(i)
− ). We informally refer to lw(s,i) and hw(s,i) as

the low water and high water, respectively. These scalars
are used to form a sufficient condition to determine class
membership. This test is incomplete: for those tuples, with
t.eps ∈ [lw(s,i), hw(s,i)], the label of t.id may be either 1 or
−1. Notice t.eps is a function of the stored model (so s),

while t ∈ V (i) depends on the model at round i. Figure 2
shows H and the above scalars during execution.

Incremental Step. The input at round i + 1 is a model,

(w(i+1), b(i+1)), and our goal is to update the label of the

tuples in the view V (i) to build V (i+1). Intuitively, if the
model at round i is close (in some norm) to the model that

is used to cluster H(s), then we can use the clustering of H(s)

to examine fewer tuples to build V (i+1).
Given that the model has changed, we need to bound how

much closer each entity could have gotten to the hyperplane
associated with the new model (c.f. Figure 1(B)). For each
feature vector y, the technical key is to bound the size of
the dot product |w · y| in terms of the length (norm) of w
and y. There is a beautiful basic inequality from functional
analysis called Hölder’s inequality that allows us to do just
this. Fix any p, q ≥ 0 such that p−1 + q−1 = 1, called
Hölder conjugates [24, p.139]. And let M = maxt∈In ‖t.f‖q.

Let j ≥ s be a round, we define scalars ε
(s,j)
high and ε

(s,j)
low as

ε
(s,j)
high = M‖w(j) −w(s)‖p + b(j) − b(s)

ε
(s,j)
low = −M‖w(j) −w(s)‖p + b(j) − b(s)

Notice that M is only a function of the set of entities E.

Lemma 3.1. For j ≥ s, let t ∈ H(s,j). If t.eps ≥ ε
(s,j)
high

then t.id ∈ V
(j)
+ . If t.eps ≤ ε

(s,j)
low then t ∈ V

(j)
− .

We use this lemma to define a pair of scalars lw(s,j) and
hw(s,j) (low and high water) for s ≤ j as follows:

lw(s,j) = min
l=s,...,j

ε
(s,l)
low and hw(s,j) = max

l=s,...,j
ε
(s,l)
high (2)

The only tuples whose label may differ from their setting
at s (the last reorganization) have t.eps ∈ [lw(s,j), hw(s,j)].
Hazy saves over an eager approach in that it only needs
to reclassify tuples satisfying t.eps ∈ [lw(s,j), hw(s,j)] (which
may be much smaller than the entire data set). To quickly
identify these tuples on disk, Hazy maintains a clustered
B+-tree index on t.eps in H.

Reorganization Step. Intuitively, for the incremental step
to have good performance in round i, the stored model,
(w(s), b(s)), and the current model, (w(i), b(i)), must be close.
After many rounds, these models may drift away from one
another. When Skiing tells Hazy to reorganize, Hazy sets
the stored model to (w(i), b(i)), reclusters H, and rebuilds
the needed indexes; Hazy sets S to the time it takes to
perform these operations.

Choosing the Norm. In Hazy, the norm (p above) is cho-
sen for quality – not performance – reasons. In text process-
ing `1 normalization is used to compensate for documents
of different lengths, and so (p = ∞, q = 1) is used. Some
applications use `2 normalization, and so (p = 2, q = 2) [20].

3.3 Analysis of Skiing
We show that Skiing is a 2-approximation (in terms of

cost) of an optimal strategy to maintain Hazy’s state (in
the size of the data), and Skiing is optimal among all de-
terministic online strategies (up to sub-constant factors).

We make two assumptions. The first is that the cost we
pay at i is only a function of the last round Hazy reorga-
nized, and we define c(s,i) to be the cost we pay at round i if
our last reorganization was at s (s ≤ i). Second, we assume

that c(s,i) ≤ c(s′,i) whenever s ≥ s′, i.e., reorganizing more
recently does not raise the cost. In Hazy, both of these
assumptions hold as the cost is a function of the number of
tuples in [lw(s,i), hw(s,i)], which is monotone increasing in i
for a fixed s (see Eq. 2). In Appendix B.3, we consider alter-
native incremental strategies that do not satisfy the second
property.

Formally, we consider the following on-line problem: At
each round i, we either (1) reorganize and pay cost S, or (2)

we pay a cost c(s,i) ≤ S where s is the last round that the
strategy chose to reorganize. Let σ ≥ 0 such that σS is the
time to scan H.

We define the notion of a schedule to capture the action of
any strategy. Fix N , the number of rounds, then a schedule
is an increasing sequence of integers ū where 0 = u0 <
u1 < u2 < · · · < uM ≤ N (here ui is the round of the



ith reorganization) and M is the number of reorganizations.
Given a schedule ū, let bicū = max {u ∈ ū | u ≤ i}, i.e.,
the largest element of ū that is smaller than i; intuitively,
bicū is the most recent round that we reorganized before i

in the schedule ū. Denote the set of costs by c̄ = {c(s,i)}
for s ≤ i ≤ N (satisfying the above properties). The cost of
a schedule ū with length M and reorganization cost S with
costs c̄ is

Cost(ū, S, c̄) =
X

i=1,...,N

c(bicū,i) + MS

This says that we pay for M reorganizations (a cost of MS)
and then we pay for each of the incremental steps.

A strategy Ψ is a function that takes c̄ as input and
produces a schedule ū. For example, ū = Skiing(c̄) de-
notes that ū is the sequence of reorganizations that the
Skiing strategy performs. This definition allows very pow-
erful strategies (e.g., that can see the future). Intuitively,
a strategy is a deterministic online strategy if the schedule
depends only on the input it has observed up to any point.
Formally, Ψ is a deterministic online strategy if ū = Ψ(c̄)

and for any other d̄ such that c(bicū,i) = d(bicū,i) we have
that ū = Ψ(d̄). The Skiing strategy is a deterministic on-
line strategy: it does not have access to elements of c̄ until
after it makes its decision in each round.

We define Opt to be a strategy that finds a best (lowest
cost) schedule for any set of costs. Our formal statement
concerns the competitive ratio, denoted ρ, between the cost
of what a strategy produces and the optimal cost. Let C be
the set of sets of costs. For any strategy Ψ define ρ as:

ρ(Ψ) = sup
c̄∈C

Cost(ū, S, c̄)

Cost(ō, S, c̄)
where ū = Ψ(c̄), ō = Opt(c̄)

Lemma 3.2. Let α (the Skiing parameter) be the positive
root of x2 + σx − 1. With the notation above, ρ(Skiing) =
(1+ α + σ). Moreover, for any deterministic online strategy
Ψ, we have ρ(Ψ) ≥ (1 + α + σ).

We include the proof in Appendix B.3. Two immediate
consequences of this lemma are (1) the Skiing strategy is
optimal among all deterministic online strategies, and (2)
since σ → 0 as |In| → ∞ (reorganizations contain a sort,
which is asymptotically more expensive than a scan); and
observing that this implies that α → 1, we have the following
asymptotic statement:

Theorem 3.3. As the data size grows, |In| → ∞, and
so σ → 0, we have that ρ(Skiing) → 2 and this is optimal
among all deterministic online strategies.

3.4 Lazy Hazy
In a lazy approach, the All Members query performance

is suboptimal, and Hazy improves its performance. When
responding to an All Members query, Hazy needs to read
those tuples above low water (lw(s,i)) and so it reads NR

tuples where NR ≥ N+ (N+ is the number in the class). In
contrast, with an optimal data layout we would need to read
only N+ and so a fraction of this work is wasted. Thus, if the
read takes S seconds then Hazy sets c(i) = (NR−N+)N−1

R S

and updates the accumulated cost a(i) as before. One can
check that the formal conditions of Lemma 3.2 are met, and
so the same performance guarantees still hold. In a lazy
update we do not accumulate waste, since a lazy update has
optimal performance, data reorganization cannot help. The
rest of the strategy is identical to the eager case.

3.5 Architectural Optimizations
We describe two performance enhancements to the on-disk

architecture of Hazy: a main-memory architecture, which
provides excellent performance when all entities fit in mem-
ory, and a hybrid architecture that given a memory budget
improves Single Entity read rates.

3.5.1 In-memory Architecture
We observe that the output of classification data is a func-

tion of the training examples and the entities. Since we can
always recompute the model, we only need to store the train-
ing examples and entities persistently. Thus, we can main-
tain the classification view in memory for performance, and
when memory needs to be revoked we do not have to write
it back to disk – we can simply discard it. We leverage this
observation to make an improved main memory architecture
that we refer to as Hazy-MM. The structure we maintain
in memory is similar to the structure in Section 3.2, e.g.,
we still cluster the data in main memory, which is crucial to
achieve good performance, and we use the Skiing strategy
to choose when to reorganize the data.

3.5.2 Hazy’s Hybrid Architecture
The goal of our hybrid solution is to reduce the memory

footprint of the main-memory architecture, while improving
the Single Entity read rate of both the lazy and eager ap-
proaches. We again use the Skiing strategy to reorganize
the data. We continue to maintain the on-disk structure
previously described. In memory, we maintain a buffer of B
entities, and a hash map h(s) : E → R that we call the ε-map
defined as follows: for each t ∈ H(s) we define h(s)(t.id) = ε

where ε = t.eps. In addition, we continue to maintain lw(s,i)

and hw(s,i). When h(s)(t) ≥ hw(s,i) (resp. h(s)(t) ≤ lw(s,i)),

then we are sure that t.id ∈ V
(i)
+ (resp. t.id ∈ V

(i)
− ). In this

case, we simply return the correct value. Otherwise, we
check the buffer, and if it is not present in the buffer, then
Hazy goes to disk. Appendix B.4 includes pseudocode for
the search procedure. Calculating c(i) for eager and lazy
approaches in the hybrid architecture is a straightforward
extension of the previous architectures. Again, the Skiing
strategy reorganizes the data on disk and in memory.

The main-memory footprint of our hybrid architecture
may be much smaller than the total size of the data: it
is B(f + k) + (k + sizeof(double))N where k is the size of the
primary key in bytes, f is the size of the feature function
in bytes, and N is the number of tuples in the data set; in
contrast, the whole data set size is N(k + f). On text data,
f may be in the thousands of bytes, e.g., each word in the
abstract may be a feature. For example, the Citeseer data
set (with feature vectors) is 1.3GB, yet the ε-map is only
5.4MB (over 245x smaller).

4. EXPERIMENTS
We verify that Hazy’s techniques provide performance

gains across various classification tasks.

Prototype Details and Experimental Setup. Hazy is im-
plemented in PostgreSQL 8.4. We use a linear support vec-
tor machine for classification. We have implemented several
gradient and incremental training algorithms, but we per-
form all experiments in this section with stochastic gradient
based on Bottou’s code [4] in C. All updates to the classi-



Data set Abbrev Size # Entities |F | 6= 0

Forest FC 73M 582k 54 54
DBLife DB 25M 124k 41k 7
Citeseer CS 1.3G 721k 682k 60

Figure 3: Data Set Statistics. For each data set, we
report its size in Bytes, the number of entity refer-
ences in the data set, and the number of features.

fication views are monitored using standard triggers; Hazy
runs in a separate process and IPC is handled using sockets.
Further details can be found in Appendix B.1. Unless oth-
erwise noted, all experiments are run on a single configura-
tion: Intel Core2 CPU at 2.4Ghz with 4GB of RAM and two
SATA disks running 64-bit Linux 2.6.18-194. Performance
numbers are run 7 times and the times are averaged. For
uniformity, we set α = 1 for all experiments (Section 3.2.1).

Data set Descriptions. In the performance experiments
we use three data sets: Citeseer (CS), Forest (FC), and
DBLife (DB). Forest is a standard benchmark machine learn-
ing data set with dense feature vectors.3 DBLife is the set
of papers crawled by the DBLife Web portal. Our goal is to
classify these papers as database papers or not. Citeseer is
a large set of papers that we also want to classify as database
papers or not. In both DBLife and Citeseer, we use a bag
of words feature set and so use sparse feature vectors. A key
difference between Citeseer and DBLife is that we use the
abstracts as features in Citeseer (as opposed to simply the
title in DBLife), this results in more non-zero components in
the sparse feature vector representation. Statistics for the
data sets that we use are shown in Figure 3. We include
accuracy results and bulk-loading times in Appendix C.1.

4.1 Maintaining Classification Views
The central claim of this section is that Hazy’s incre-

mental techniques for maintaining classification views are
more efficient than alternate non-incremental techniques.
Specifically, we explore the performance of our strategies for:
(1) Updates, (2) Single Entity reads, and (3) All Members
queries. We perform all combinations of experiments us-
ing all five techniques, hazy and näıve main memory (MM),
hazy and näıve on-disk (OD), and hybrid for all three op-
erations on three data sets: Forest, DBLife, and Citeseer.
We summarize the most interesting experimental results in
this section. Finally, in these experiments we restrict the hy-
brid to hold less than 1% of the entities in main memory (a
breakdown of the hybrid’s memory usage is in Figure 6(A)).

4.1.1 Improving the Eager Approach
We verify that Hazy’s techniques improve the perfor-

mance of Update for an eager approach (which is the slow
operation in an eager approach). To assess update perfor-
mance, we perform the following experiment: we randomly
select 3k training examples from each data set. Then, we
insert these examples with prepared statements into the
database. We then measure the average time per update for
each approach. The results are summarized in Figure 4(A).

3FC is a multiclass classification problem, but we treat FC as
a binary classification to find the largest class. We consider
the full multiclass classification in Appendix C.

Technique FC DB CS FC DB CS

OD Naive 0.4 2.1 0.2 1.2 12.2 0.5
Hazy 2.0 6.8 0.2 3.5 46.9 2.0

Hybrid 2.0 6.6 0.2 8.0 48.8 2.1

MM Naive 5.3 33.1 1.8 10.4 65.7 2.4
Hazy 49.7 160.5 7.2 410.1 2.8k 105.7

Eager Update Lazy All Members
(Updates/s) (A) (Scan/s) (B)

Figure 4: Eager Updates and Lazy All Members.

In all cases, the relative standard deviation is less than 10−4.
In our desired applications we have often partially trained a
model. To simulate this, the experiment begins with a par-
tially trained (warm) model (after 12k training examples).

The state-of-the-art approach to integrate classification
with an RDBMS is captured by the näıve on-disk approach;
Hazy’s main memory approach achieves between 36x and
124x speedup over this approach. We can also see that using
a näıve strategy in memory is an order of magnitude slower
than Hazy, which validates our claim that Hazy’s strategy
is a critical ingredient in our speed up. Interestingly, we
see that Hazy is an order of magnitude faster even using
an on-disk architecture: Hazy is 8-10x faster on Forest in
both main-memory and on-disk architectures. An exception
to this observation is Citeseer: we dug deeper, and veri-
fied that since Citeseer has a much larger feature space,
the model has not converged by the end of the run. Thus,
Hazy guesses incorrectly and pays a high cost for sorting.
In memory, sorts are very inexpensive, and Hazy achieves
a 4x improvement. We also run an experiment that begins
with zero examples; here, Hazy still offers orders of magni-
tude improvement: 111x speedup for Forest, a 60x speedup
for DBLife, and a 22x speedup for Citeseer.

4.1.2 Improving the Lazy Approach
In the lazy approach, the bottleneck is the All Members

query. To assess the extent to which Hazy improves the per-
formance of the All Members in a lazy approach, we repeat-
edly issue a query that asks “how many entities with label 1
are there?” We verified that PostgreSQL is using a sequen-
tial scan on each iteration (Hazy also scans all entities).
To make the comparison between the different approaches
fair, we call Hazy via a user-defined function. The state of
the art is näıve on-disk, and we see speed ups of over 225x
to 525x for all strategies and architectures. Logging reveals
that Hazy scans fewer entities and that is the reason that
Hazy is faster than the näıve in-memory technique.

Updates. Update in a lazy approach performs exactly the
same code for all architectures and strategies (update the
model and return), and so have identical speed: for Forest is
1.6k updates/sec, DBLife is 2.8k updates/sec, and Citeseer

is 2.5k updates/sec.

4.2 Performance of the Hybrid Architecture
Recall from the cost model, that the main technical claim

of the hybrid is that it speeds up Single Entity reads. The
buffer size of the hybrid architecture is set to 1% of the data
size. In this experiment, we ask for the label of 15k uni-
formly randomly selected entities. The hybrid architecture
shines: We see that the hybrid’s read rate is 97% of the read



Arch Eager Lazy

FC DB CS FC DB CS

OD 6.7k 6.8k 6.6k 5.9k 6.3k 5.7k
Hybrid 13.4k 13.0k 12.7k 13.4k 13.6k 12.2k
MM 13.5k 13.7k 12.7k 13.4k 13.5k 12.2k

Figure 5: Single Entity Read. (Read/s)

Data Total ε-Map

FC 10.4MB 6.7MB
DB 1.6MB 1.4MB
CS 13.7MB 5.4MB
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Figure 6: (A) Memory usage for hybrid on each data
set. (B) Single Entity read v. hybrid buffer size.

rate of the pure main-memory architecture while maintain-
ing only 1% of the data in memory. We list the raw RAM
usage of the hybrid in Figure 6. The hybrid is always faster
than on-disk architecture for both eager and lazy (hazy and
näıve strategies have essentially identical performance); and
it has low memory usage. Recall that the ε-map takes the
primary key of each entity to its ε value in the stored model.
We see the amount of memory used for the ε-map is much
smaller than the entire data set, because it does not contain
the feature vector (confirming our assertion in Section 3.5.2).

To understand the effect of the buffer size on overall per-
formance, in Figure 6(B), we vary the buffer size (percentage
of entities in the buffer) for three different models that have
1%, 10%, and 50% of the tuples between low and high wa-
ter (we call them S1, S10 and S50, respectively). Then,
we measure the Single Entity read rate. We observe that
when the buffer size is larger than the number of tuples be-
tween low and high water, we achieve close to main-memory
architecture performance. By instrumenting the code, we
verified that most of the speed up is due to Hazy’s ability
to quickly prune using the ε-map. Of course, disk access are
expensive and we need to have very high hit rate to com-
pensate. When the model has 10% between low and high
water, approximately 90% of accesses are answered by this
filter. Still, mitigating approximately half the disk access
has a noticeable difference: when we keep 5% of the enti-
ties in the hybrid’s buffer, we get a sizable boost over the
on-disk architecture. And so the hybrid’s high performance
on DBLife is because the average number of tuples between
low and high water is small: 4811 of 122k (σ = 122).

Extended Experiments. In Appendix C, we describe ex-
periments on scalability and scale-up (number of threads),
and we discuss how we use Hazy in a multiclass problem.

5. CONCLUSION
We demonstrate the Hazy approach to incremental main-

tenance of classification views using the abstraction of model-
based views. We show that our algorithmic techniques are
able to improve prior art in both the eager and lazy ap-
proaches by two orders of magnitude: roughly, one order
of magnitude from Hazy’s novel algorithm and one from
the architectural improvements. The key technical contri-
butions are (1) an incremental algorithm that improves the

performance of both eager and lazy approaches inside an
RDBMS and (2) a novel hybrid index structure. We present
experimental evidence on several datasets.
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APPENDIX
A. MATERIAL FOR SECTION 2

A.1 Convex Optimization Problem for SVMs
The best model (w, b) is defined via an optimization prob-

lem [5]. For d, p > 0 and x ∈ Rd, we define ‖x‖p
p =P

i=1,...,d |xi|p. The convex optimization problem is:

min
w,b

ηt:t∈E+∪E−

1

2
‖w‖2

2 + C
X

t∈E+∪E−

ζt

f(t) ·w + b ≤ −1 + ζt ∀t ∈ E−

s.t. f(t) ·w + b ≥ 1− ζt ∀t ∈ E+

Here, ζt ≥ 0 for t ∈ T are slack variables that allow the
classification to be noisy, i.e., we do not assume the data are
linearly separable [5].

A.2 Feature Functions
In Hazy, feature functions often have two phases: in the

first phase, a function computes some statistics about the
corpus, and in the second phase, using that statistical infor-
mation, a particular tuple is translated into a vector. Thus,
we define a feature function as a triple of user-defined func-
tions: computeStats, which takes as input a table name and
computes whatever information is needed from the whole
corpus; computeStatsInc, which takes a tuple and incre-
mentally computes statistics; and computeFeature that con-
ceptually takes a tuple and the statistical information and
returns a vector. In Hazy, these functions communicate
via a catalog-like table. An example feature function that
requires the catalog is tf idf bag of words computes tf-idf
scoring for tuples (treating each tuple as a document) in
which the computeStats function computes term frequencies
and inverse document frequencies for the corpus and stores it
in a table, computeStatsInc incrementally maintains the in-
verse document frequencies, and the computeFeature func-
tion uses this table to compute the tf-idf score for each tu-
ple. In contrast, in tf bag of words (term frequencies) no
statistics are needed from the corpus. A final example is TF-
ICF (term frequency inverse corpus frequency) in which the
term frequencies are obtained from a corpus, but explicitly
not updated after each new document [31]. In general, an
application will know what feature functions are appropri-
ate, and so we design Hazy to be extensible in this regard,
but we expect that the administrator (or a similar expert)
writes a library of these feature functions. Hazy also sup-
ports kernel functions that allow support vector machines to
handle non-linear classification tasks. Kernels are registered
with Hazy as well.

B. MATERIAL FOR SECTION 3

B.1 Implementation Details
We implemented Hazy in PostgreSQL 8.4, which has the

notable feature of multi-valued concurrency control (MVCC).
Any attempted in-place write (update) actually performs a
copy, and so as an optimization we create a user-defined
function that updates records in place without generating a
copy. The use of Hazy-MM is transparent to the user: up-
dates are still handled via triggers, and queries against the

Input : a, the accumulated time, s the sort time.
Output: Return a
1: If a ≥ αS then Reorg(); return 0
2: Else return a + time(Take Incremental Step())

Figure 7: The Skiing strategy.

table are rerouted to Hazy-MM via PostgreSQL’s “ RETURN”
trigger. To get improved performance, however, Hazy of-
fers several fast-path functions for prepared statements; it
is future work to more fully integrate Hazy-MM with Post-
greSQL.

B.2 Proof of Lemma 3.1
The proof of Lemma 3.1 uses two applications of Hölder’s

inequality [24, p.139], which says that |〈x, y〉| ≤ ‖x‖p ‖y‖q

where p−1 + q−1 = 1 and p, q ≥ 1.

Proof of Lemma 3.1. Denote t.eps by εt. We write
w(i+1) = w(s) + δw, b(i+1) = b(s) + δb . Fix parameters
p, q ≥ 0 such that p−1 + q−1 = 1 and let M = maxt ‖f(t)‖q.
Observe that

t ∈ V
(i+1)
+ ⇐⇒ 〈w(s) + δw, t, f〉 − (b + δb) > 0

⇐⇒ εt > −(〈δw, f(t)〉 − δb)

We use Hölder’s inequality: |〈δw, f(t)〉| ≤ ‖δw‖p ‖f(t)‖q ≤
‖δw‖p M . So if εt ≥ M ‖δw‖p + δb then εt ≥ −(〈δw, f(t)〉 −
δb) and so t ∈ V

(i)
+ . On the other hand, if εt ≤ −M ‖δw‖p +

δb then t ∈ V
(i)
− .

B.3 Skiing Strategy Analysis
Fix a σ ≥ 0 and let α be the positive root of x2 + σx− 1.

The Skiing strategy is: Initially set a, the accumulated cost,
to 0. At time i, if a ≥ αS then choose option (2) and set a

to 0. Otherwise, select option (1) and set a to a + c(i). Let
Optc̄ denote the optimal solution for c̄ over all schedules.

Lemma B.1. For any set of costs c̄ of the algorithm:

cost(Skiing) ≤ (1 + σ + α)cost(Optc̄)

Proof. Consider a run of length N and without loss of
generality assume that it ends after an even number of Ski-
ing reorganizations. Suppose that Skiing chooses option 1
at time 0, t1, . . . , t2M . Consider any interval [tm, tm+2]. Let
C1 the cost of Skiing on [tm, tm+1) and C2 = (tm+1, tm+2)
so that the cost of Skiing is C1 + C2 + 2S on this interval.
Observe that αS ≤ Ci < (σ + α)S for i = 1, 2. Suppose
that Opt does not reorganize in this interval, then it pays
at least cost C1 + C2 and so Skiing’s competitive ratio is
1+α

α
on this interval. Suppose that Opt reorganizes once,

then its cost is at least min {C1, C2} + S. Without loss let
zS = C1 then our claim is that: 2+z+α+σ

1+z
≤ 1 + α + σ,

which reduces to the claim: 0 ≤ z(σ + α)− 1. Now, z ≥ α,
when z = α then the right hand side is 0 by the definition
of α; then observe that the rhs is an increasing function in
z, which completes the claim. Finally, suppose that Opt
reorganizes k ≥ 2 times, then it pays at least kS, and since

C1 + C2 ≤ 2(α + σ)S, in this case the ratio is 2(1+α+σ)S
kS

.
Since k ≥ 2, the largest this ratio can be is 1 + α + σ.



We prove the following lower bound.

Theorem B.2. For any deterministic strategy Ψ where σ
and α set as above

ρ(Ψ) ≥ 1 + σ + α

Proof. We assume without loss that the approximation
factor is not infinite, otherwise the theorem trivially holds,
i.e. there is some B ≥ 0 such that Cost(Ψ) ≥ B ·Cost(Optc̄)
for all c̄. Fix ε > 0. Consider the following family of costs:
c(k,i)(z) = ε if z = 0 and k ≤ i. For some i, Ψ must
reorganize call t is this index – otherwise its approximation
is unbounded, the optimal simply reorganizes first and then
incurs cost 0.

We first observe that if the reorganization occurs at t then
it has paid cost tε = βS for some β and so Ψ pays (1+β)S.
The optimal solution here does not switch at t and pays cost
βS so the ratio is at least 1+β

β
. (This is loose if β ≥ 1, but

it does not matter for the theorem).
Now create a second set of costs such that: d̄ = c̄ except

that d(t,t)(0) = S. Since Ψ is a deterministic online strategy
it produces the same sequence on this set of costs. If Ψ
does not reorganize at t, then the adversary can continue to
make Ψ pay non-zero cost, while the optimal pays 0 cost,
until Ψ chooses to reorganize. As a result, Ψ pays at least
(1 + β + σ)S − ε. In contrast, the optimal reorganizes once
and pays S, and so the ratio is (1 + σ + β)− εS−1. Letting
ε → 0, the competitive ratio satisfies:

max
c̄

Cost(Ψ; c̄)

Cost(Opt; c̄)
≥ max


1 + β

β
, 1 + σ + β

ff
Now, using the fact that for β ≥ 0 we have:

max


1 + β

β
, 1 + σ + β

ff
≥ 1 +

1

2

“
σ +

p
σ2 + 4

”
and this minimum is achieved at β is the positive root of
x2 + σx− 1, which is when α = β.

Non-monotone Incremental Step Functions. We can op-
timize our choice of incremental function, which makes our
low and high water violate our property (2) from Section 3.3.

lw(s,i) = min
j=i−1,i

ε
(s,j)
low and hw(s,i) = max

j=i−1,i
ε
(s,j)
high

Experimentally, we have validated that the cost differences
between the two incremental steps is small. Still, theoreti-
cally, it is natural to wonder if our analysis can be applied to
the case without the monotonicity assumption. Informally,
if we drop the monotonicity assumption, then no approxima-
tion factor is possible. Consider any deterministic strategy
on an input that no matter where its incremental cost is
1. Suppose the strategy never reorganizes, then consider an
optimal strategy: at stage 1, it reorganizes and then pays
cost 0 from then on. Its total cost is 1, but the strategy
that never reorganizes has unbounded cost. On the other
hand, suppose that the strategy reorganizes at least once on
long enough input. Consider an optimal strategy that re-
organizes at any other time, then, the optimal pays a fixed
cost S while the strategy is again pays an unbounded cost.

Input: id (a tuple id), h(s) hybrid’s ε-map, lw(s,i), and hw(s,i).
Output: Return +1 if t is in the class and −1 otherwise.

1: If h(s)(t) ≤ lw
(s,i)
low then return −1

2: If h(s)(t) ≥ hw
(s,i)
low then return +1

3: If id in buffer then return class
4: else look up class using on-disk Hazy.

Figure 8: Hybrid Look up Algorithm

Name L(z, y)
SVM max {1− zy, 0}
Ridge (z − y)2

Logistic log(1 + exp(−yz))

Name P (w)
`p (p ≥ 1) λ ‖w‖p

p

Tikhanov λ ‖w‖Q

KL −H(w)
(a) (b)

Figure 9: (a) Common loss functions. (b) Common
penalty (regularization) terms. Here we abbreviate
z = x ·w, ‖w‖Q = wT Qw for a positive definite Q, and

the binary entropy as H(w).

B.4 Hybrid Approach
Figure 8 summarizes the search routine for the hybrid

data structure.

B.5 Extensions to the Model
We discuss here how many extensions are easy to integrate

into our model in Hazy; we believe this illustrates a strength
of our architecture.

B.5.1 Other Linear Classification Methods
So far for concreteness, we have focused on support vector

machines, which are one of the most popular forms of linear
models. Other linear models differ from SVMs in that they
optimize different metrics. Most popular classification mod-
els can be written as convex (but non-smooth) optimization
problems in the following form:

min
w

P (w) +
X

(x,y)∈T

L(w · x, y)

where P is a strongly convex function called a regularizer
and L is a convex function called the loss function. Fig-
ure 9 lists P and L for some popular linear models that are
supported by Hazy. Internally, Hazy uses (incremental)
gradient-based methods, and we have found it very easy to
add new linear models. Typically, a new linear requires tens
of lines of code.

The reason that these models are called linear is that the
label of a function x (denoted l(x)) depends on the value of
w · x where w is a model:

l(x) = h(w · x)

For example, in SVMs, ridge regression, logistic regression,
h is simply the sign function. The only property we use in
our previous algorithm is that h is monotone non-decreasing.

B.5.2 Kernel Methods
Kernel methods extend linear methods using the kernel

trick [5]. A kernel K : Rd × Rd → R is a positive semi-
definite function.4 We can write a kernel classifier as:

4A function K : Rd × Rd → R is positive semi-definite



c(x) =
X

i=1,...,N

ci ·K(si, x)

here each ci is a real-valued weights, and si is called a sup-
port vector. The number of support vectors, N , may be on
the order of the number of training examples, but can be
substantially smaller.

Here, the model is encapsulated by the weights on the
support vectors. The same intuition still holds: if w + δ =
w′, then observe that all the above kernels K(si, x) ∈ [0, 1]
hence the maximum difference is the `1 norm of δ. Then,
we can apply exactly the same algorithm. Here, we have
regarded both models as being in the same space (the first
model assigns 0 weight to the new training example). This
is important as a new training example can introduce a new
support vector.

B.5.3 Linearized Kernels
For shift-invariant kernels5, such as the Gaussian and the

Laplacian kernel, we directly reuse our linear techniques
from the body of the paper by transforming these kernels
to (low) dimensional linear spaces.

The idea is based on a technique of Rahimi and Recht
called random non-linear feature vectors [30]. Suppose that
all vectors are in Sd, the unit ball in d dimensions (any
compact set will do). The idea is to find a (random) map
z : Sd → RD for some D such that for x, y ∈ Sd we have
z(x)T z(y) ≈ K(x, y). More precisely, with arbitrarily high
probability, we find a function z such that |z(x)T z(y) −
K(x, y)| ≤ ε for all x, y ∈ Sd simultaneously. The value of
D depends directly on the confidence we want in this prop-
erty and ε−1. We can describe one such z explicitly: Choose
r(i) ∈ Rd+1 uniformly distributed on the sphere, then the
ith component z(x) is given by z(x)i =

√
2 cos(r(i) · x) .

Given such a z, observe that the kernel function f(x) =P
i=1,N αiK(si, x) ≈

P
i=1,N αiz(si)

T z(xi) = vT z(x) where

v =
P

i=1,N αiz(si). This can be a substantial reduction:

|v| = D and so testing a point is O(D) versus O(Nd). Also,
given z we can transform the learning and testing problem to
a linear problem. Often, this problem is indistinguishable in
quality from the original kernel. Importantly for this work,
the problem is again a linear classification problem.

B.5.4 Multiclass Classification
One standard technique to turn a binary classification

into a multiclass classification is to build a decision-tree-like
structure where each node corresponds to a single binary
SVM. Hazy supports multiclass classification with similar
efficiency gains for this case.

C. EXTENDED EXPERIMENTS

C.1 Overhead of Learning and Classification
In Hazy, the RDBMS performs all data manipulation for

learning and classification. Of course, this can have over-
head compared to hand-tuned solutions using files. To quan-
tify this overhead, we compare Hazy’s solution where each

if for any x1, . . . , xN ∈ Rd, c1, . . . , cN ∈ R, we haveP
i,j=1,...,N K(xi, xj)cicj ≥ 0.

5A function f(x, y) is shift invariant if it can be written
f(x − y). A kernel is shift invariant if it is shift invariant
regarded as a function.

Data set SVMLight SGD-based
P/R Time P/R File Hazy

MAGIC 74.4/63.4 9.4s 74.1/62.3 0.3s 0.7s
ADULT 86.7/92.7 11.4s 85.9/92.9 0.7s 1.1s
FOREST 75.1/77.0 256.7m 71.3/80.0 52.9s 17.3m

Figure 10: Performance of SVMLight, a stochastic
gradient method (no RDBMS) [4], and Hazy.
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Figure 11: (A) Scalability. (B) Scaleup.

training example is a single update statement against two
popular approaches in Figure 10: (1) a stochastic gradient
method (SGD) [4] where all data manipulations are done
in hand coded C-files, and (2) SVMLight [16], a popu-
lar package to do SVM classification that has been tuned
over several years. In Figure 10, we compare our approach
on several standard machine learning data sets with 90%
as training data. Overall, we see that the SGD-based ap-
proach is much faster than SVMLight and has essentially
the same quality. The overhead that Hazy imposes over the
hand-tuned SGD-based solution is due primarily to the over-
head of PostgreSQL to do insert-at-a-time update method.
To verify this, we implemented a bulkloading method, and
the time dropped to 44.63s to classify Forest (parsing code
in Hazy is slightly optimized).

C.2 Scalability, Scale-up, and Sensitivity
Figure 11(A) shows a data scalability experiment for eager

updates. We created a synthetic data sets of sizes 1GB,
2GB and 4GB (x-axis). We then plot the eager update
performance with a warm model: as we can see, the Hazy
main memory technique has the best update performance,
but is unable to run on the 4GB data set (since the test
machine has 4GB of RAM). We see that Hazy on-disk is
close to the näıve main memory technique and scales well
with the data set size. Additionally, we see that the hybrid
architecture pays only a small penalty on update over the
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Figure 12: (A) Feature Sensitivity. (B) Multiclass.
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Figure 13: Tuples between Low Water and High Wa-
ter on (A) Forest and (B) DBLife.

on disk architecture (it has a more expensive resort). We
conclude that Hazy scales well in the data set size.

One feature of our approach is that the locking proto-
cols are trivial for Single Entity reads. To demonstrate this
fact, we plot our read performance for Single Entity in main
memory as we scale up the number of threads. We see
that slightly over-provisioning the threads to compensate
for PostgreSQL latency achieves the best results; this exper-
iment is run on an 8 core machine and 16 threads achieves
peak performance (42.7k reads/sec). For comparison, train-
ing forest on this machine takes 195.22 minutes.

We conduct two sensitivity experiments: (1) α-sensitivity
(the parameter in Skiing) and (2) feature sensitivity graphs
by scaling up the size of the features. We found that by tun-
ing α we could improve the performance approximately 10%
over the default choice setting of α = 1. In Figure 12, we
conduct an experiment for (2): We scaled up the number of
features (using the random features of Appendix B.5.3) and
measured the performance of the All Members query in lazy
Hazy and lazy näıve for main-memory and on-disk archi-
tectures. We found that Hazy excels in these situations as
it avoids dot-products which have become more costly. We
conclude that Hazy scales well with the data set size, is able
to take advantage of multicore machines, and is insensitive
to feature size.

One key piece of intuition in the Hazy algorithm is that
the number of tuples between low water and high water will
be a small fraction of the overall tuples. We confirm this
intuition in Figure 13(A) and Figure 13(B) with the fol-
lowing experiment: we count the number of tuples that are
between low and high water after we have seen 12k update
examples (warm model). Indeed, in the steady state we see
that approximately 1% of the tuples are between low and
high water on both Forest and DBLife.

C.3 Extension: Multiclass Classification
We train a multiclass configuration using several different

configurations of binary classification. We present only a
sequential one-versus-all approach for performance. In Fig-
ure 12, we vary the number of classes and measure eager
update performance in the classification to understand how
Hazy is affected. The model is warm with 12k training ex-
amples. The data set is Forest where we have manually
coalesced some of classes together. We see that Hazy main-
tains its order of magnitude advantage in updates per second
over a näıve memory technique as the number of classes in-
creases, which suggests that Hazy offers value in multiclass
settings.

D. EXTENDED RELATED WORK
Incorporating support vector machines into database man-

agement systems is an ongoing trend: Oracle 11g supports
support vector machines, but they do not consider incremen-
tal training nor do they consider incremental maintenance
of results.

Data intensive and semantically rich problems, such as
querying data from information extraction or data integra-
tion, often produce data that can be contradictory and im-
precise; this observation has motivated research to treat this
data as probabilistic databases [1, 2, 10] and several sophis-
ticated statistical frameworks have been developed such as
Factor Graphs [33], and the Monte Carlo Database [15].

An interesting problem that is related, but orthogonal,
problem is active learning [32,35], where the goal is to lever-
age the user feedback to interactively build a model. Techni-
cally, our goal is to solicit feedback (which can dramatically
help improve the model). In fact one of our initial motiva-
tions behind the hybrid approach is to allow active learning
over large data sets.

There has been research on how to optimize the queries on
top of data mining predicates [28]; we solve the complemen-
tary problem of incrementally maintaining the output of the
models as the underlying data change. There has been work
on maintaining data mining models incrementally, notably
association rule mining [29, 34, 36, 37], but not for the gen-
eral class of linear classifiers. Researchers have considered
scaling machine learning tool kits that contain many more
algorithms than we discuss here, e.g., WekaDB [38]. These
approaches may result in lower performance than state-of-
the-art approaches. In contrast, our goal is to take advan-
tage of incremental facilities to achieve higher levels of per-
formance.
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