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Abstract— A large amount of the world’s data is both sequen-
tial and imprecise. Such data is commonly modeled as Markovian
streams; examples include words/sentences inferred from raw
audio signals, or discrete location sequences inferred from RFID
or GPS data. The rich semantics and large volumes of these
streams make them difficult to query efficiently. In this paper,
we study the effects—on both efficiency and accuracy—of two
common stream approximations. Through experiments on a real-
world RFID data set, we identify conditions under which these
approximations can improve performance by several orders of
magnitude, with only minimal effects on query results. We also
identify cases when the full rich semantics are necessary.

I. INTRODUCTION

People and computers worldwide generate exabytes of au-
dio, video, text, GPS, RFID, and other types of multimedia and
sensor data [2]. Because disk storage is cheap, most of this data
is archived for future use in diverse applications from location
tracking in retail and hospitals [9], to activity monitoring [7],
multimedia search/retrieval [15], and more.

While some applications can use raw sensor or multimedia
streams directly [6], most rely on higher-level streams inferred
from the low-level data. Search engines, for example, can
index audio files by content only after these files have been
translated into text. Similarly, location tracking or activity
monitoring applications require that raw sensor streams be
transformed into location or activity sequences before they
are queried. Due to noise in the data or ambiguity in the
inference process (or both), these inferred, high-level streams
are imprecise (e.g., a spoken word might be either “eight” or
“ate”; while an RFID reading might only narrow a person’s
location down to one of several adjacent rooms).

The current state of the art for supporting imprecise se-
quences is the model-based view [1]. A model-based view
allows applications to query data as if it were deterministic;
internally, however, the DBMS maintains a model of the im-
precise sequence and uses this model to compute query results
annotated with confidence scores. Because the sequence model
is decoupled from the queried view, DBMS designers may
choose any of several standard imprecise sequence models.
These models range from simple deterministic models (called
“MAP” models in the AI literature [11]), to models that reflect
sophisticated correlations both within and between sequence
elements [3], [8].

In general, model choice has a significant impact on DBMS
quality and performance: increased model complexity yields
higher fidelity to the underlying data and thus higher accuracy,
but incurs additional computational and I/O costs. These high
costs naturally raise the question of whether highly sophisti-
cated imprecise sequence models are worthwhile. Would ap-
plications notice a difference in result quality if rich, imprecise
streams were approximated using simple, deterministic ones?
What performance benefits could be gained from such an
approximation, which would allow high-performance, deter-
ministic stream processing engine to be leveraged? How might
a system achieve a flexible trade-off between the accuracy and
efficiency of imprecise sequence processing?

In this paper, we study the performance and accuracy trade-
offs of three common stream models: MAP (a deterministic
model), independence (an uncorrelated model), and Markovian
(a temporally-correlated model). We perform our study in the
context of two common types of sequence queries—event
queries and aggregated variants—and report results obtained
using real-world location sequences inferred from an office-
building RFID deployment.

Using the Markovian model to provide an accuracy baseline,
we find that the independence approximation does not always
yield higher accuracy than the simpler MAP approximation,
despite its increased expressiveness. The accuracy of the
two approximate models varies significantly based on query
characteristics (described in Section II-B). The performance
of all three models is as expected; independence and MAP
approximations accelerate query processing by one and two
orders of magnitude, respectively, with respect to baseline
performance on a Markovian model.

II. DATA & QUERY MODEL

A. Data Model: Markovian Streams

Our study focuses on an imprecise, sequential data model
called a Markovian stream; the Markovian model or simplified
versions have been adopted in nearly all imprecise sequence
management systems [3], [4], [8], [12], [13].

The real-world Markovian streams in our study are derived
from an office-building RFID deployment in which RFID
readers are mounted in hallways. Figure 1(a) shows a small
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Fig. 1. (a) A schematic view of an RFID deployment. (b) A Markovian
stream representing a distribution over paths through the environment in (a).
The number on an arrow d → d′ indicates the conditional probability p(d′ | d);
the number inside each box represents the box’s marginal probability.

portion of this office environment, including RFID readers A,
B, and C. When a mobile RFID tag (attached to a person or
an object) moves within the detection range of a reader, the
reader records the time and presence of the tag using tuples
of the form (Tag id, Reader id, Time).

A Markovian stream over a tag’s location can be inferred
from these low-level tuples using any of many standard
probabilistic inference algorithms. Such a Markovian stream
represents a probability distribution over the paths the tag may
have taken through the building. This stream is imprecise, both
because of sensor noise (readers often fail to detect nearby
tags) and because of inherent ambiguity (e.g. even on noise-
free data it is impossible to distinguish between Office1 and
Lab1). The stream in Figure 1(b), for example, expresses that
Bob was in either Office1 or Lab1 with equal probability
at time 12:02. The Markovian stream is also temporally
correlated: the distribution over the tag’s location at time
t+ 1 depends on its uncertain location at time t. For example,
Figure 1(b) expresses that, given that Bob was in Office1 at
12:01, he stayed in Office1 at time 12:02 with probability
1.0. The full-length version of this paper contains a formal
definition and relational schema for Markovian streams [5].

Markovian streams are the output of probabilistic inference
algorithms. These inferred streams, once materialized on disk,
are the data queried in this study.

B. Query Model: Event Queries and Aggregation
Our study evaluates accuracy/performance trade-offs on

both event (sequence) queries, and aggregated event queries:
1) Event Queries: At the heart of Markovian stream pro-

cessing are event queries, which search for patterns in a
Markovian stream (e.g. “Find all times when Bob entered
the coffee room last week.”). An event query is defined as
an ordered sequence of query links, which are simply NFA
states with 1) a single incoming edge and 2) an optional self-
loop edge. Examples are shown in Figures 2(a1), (a2), and
(a3). An event query result comprises a 〈seqID, p〉 tuple for
each timestep in the stream, indicating the probability p with
which the pattern was satisfied at stream element seqID. A
set of such tuples is plotted in Figure 2(b1).

Event queries are processed on Markovian streams using
NFA-based algorithm developed in prior art [8]. This algorithm
maintains a joint distribution over 〈 current NFA state(s), last
input 〉. Updating this distribution for a single Markovian
stream timestep, to process a query with k links, requires
O(2kD2) time (here, D is the size of the Markovian stream
domain, which in our study is 966 locations).
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Fig. 2. (a1-a3) Markovian stream event queries. (b1) Event query output
(unaggregated) on a real-world Markovian stream. (b2) Output of a count-
based aggregation of the event query shown in (b1).

2) Aggregated Event Queries: We introduce here two types
of temporal aggregations over Markovian streams. The first
type is a Boolean aggregation which determines whether a
particular event query was satisfied at any timestep (e.g. “Did
Bob enter the coffee room at any time last Monday?”). The
second type is a count-based aggregation, which determines
the number of timesteps that satisfied the event query (e.g.
“How many times did Bob...?”).

Temporal aggregation results cannot be computed simply
by post-processing event query results, because event query
results are correlated with each other. In the Markovian stream
in Figure 1(b), for example, the pattern (HallA, Office1) is
satisfied at timesteps 12:01 and 12:02, but these matches are
mutually exclusive because they depend on Bob being in two
different locations at time 12:01.

Computation of temporal aggregations requires maintaining
the joint distribution over 〈 current NFA state(s), last input,
aggregate-value 〉. Updating this distribution with a single
Markovian stream timestep requires O(2kD2A) time, where A
is the size of the aggregated value’s domain. This computation
is described further in the full-length version of this paper [5].
For Boolean aggregation, A ∈ {0, 1}; however, for count-based
aggregation, A grows linearly in the length of the Markovian
input stream (in the worst case). Importantly, we show in
Section III that the performance consequences in practice are
usually minor.

C. Markovian Stream Approximations
Here we briefly introduce the MAP and independence

Markovian stream approximations. The full-length version of
this paper [5] includes more details, including theoretical upper
bounds on the errors incurred by these approximations.

1) MAP approximation represents a Markovian stream
with its single most likely deterministic sequence (called
the Maximum a Posteriori sequence). MAP views achieve
quadratic space and computational savings by reducing the
size of each timestep from O(D2) to O(1).

2) Independence approximation discards the temporal corre-
lations in a Markovian stream. The probability of a path using
independence approximation is the product of independent
values drawn from the stream’s marginal distributions, instead
of from its conditional distributions (temporal correlations).
Independence approximation thus reduces the size of a Marko-
vian stream timestep from O(D2) to O(D).



III. EMPIRICAL STUDY

In this section, we study the performance and accuracy
trade-offs of three imprecise stream models: Markovian, in-
dependent, and deterministic (MAP). We use real streams
inferred using a particle filter from readings collected in a
real deployment comprising 160 RFID readers installed in
the hallways (and only the hallways) of our 6-story office
building [14]. From over 6.6 million tag sighting events,
we have curated two data sets which we label unambiguous
and ambiguous. Each set comprises five distinct RFID traces
reflecting a series of brief 1-minute office visits, for a total
of 2.2 hours of Markovian streams (sampled at 1Hz), and 172
Mb of data. The five unambiguous Markovian streams contain
uncertainty, but identify a single most likely location at each
timestep. In contrast, the ambiguous streams often identify 2-
3 rooms with roughly equal probability (recall the inherent
ambiguity problem from Section II-A). In the ambiguous
streams, temporal correlations capture the fact that objects
cannot move arbitrarily (e.g. they can’t move through walls,
teleport, etc.).

A. Performance Study
In this section we identify the performance bottlenecks

of Markovian stream processing and evaluate the effects on
performance of independence and MAP approximations.

1) Performance Bottlenecks: We identified query process-
ing bottlenecks by measuring baseline (no approximation)
CPU and I/O performance on a set of representative queries.
These queries search for the entered-room events present in
our data. For simplicity, we restrict our study to fixed-length
queries [4], on which performance and accuracy trends are
most clear. The set of test queries includes four basic event
specifications (NFAs including 1, 2, 4, and 8 links), each
processed using all three temporal aggregation semantics.
These results appear in Figure 3(a) (note the logscale y-
axis), which reports average performance over five separate
evaluations of each query.

The most interesting feature of Figure 3(a) is its demonstra-
tion that CPU costs dominate performance, sometimes by
several orders of magnitude (the ratio between CPU and disk
I/O time is shown above each bar in the plot). This feature sets
Markovian stream processing apart from standard data ware-
housing where disk I/O costs, rather than CPU costs, would
traditionally dominate in an untuned prototype. Figure 3(a)
also demonstrates that CPU costs increase exponentially
with query length; this scaling is noted in prior art [8]
and is demonstrated most clearly on the unaggregated and
Boolean-aggregated queries. Finally, Figure 3(a) shows that
aggregation latency is minimal. Recall from Section II-B
that the performance of count-based aggregation degrades as
the size of the count domain increases. This aggregation cost
is included in the CPU cost of the count-aggregated query
performance in Figure 3(a). This figure shows that short event
queries are satisfied relatively frequently, producing larger
count domains (511 for the 1-link count-aggregated query in
Figure 3(a)). Longer event queries are satisfied infrequently, so
their count domains remain small (27 for the 8-link counting
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Fig. 3. (a) Overview of average performance on 5 trials of each query.
Note the logscale y-axis. Numbers above each query bar give the ratio of
CPU
I/O latency. (b) Average performance of 4-link queries using MAP and

independence approximations.

query in Figure 3(a)). Thus only queries satisfied frequently
incur additional, non-trivial CPU costs.

2) Performance on Approximate Streams: We study the
effects on performance of MAP and independence approxima-
tions using the twelve representative queries in Figure 3(a).
The relative effects of each approximation technique are
consistent across all query lengths and aggregations, so for
clarity we present results for a single, unaggregated 4-link
query. Figure 3(b) shows these performance results, averaged
over five trials of each query/approximation. Note that the y-
axis of Figure 3(b) is not in logscale.

As expected, Figure 3(b) shows that the dimensionality
of stream timesteps dominates efficiency. Independence and
MAP approximations yield performance gains of one and two
orders of magnitude, respectively, due to the fact that they
reduce the processing state matrix to a vector and a constant,
respectively. However, we also find that the query processing
engine must be designed to exploit these approximations,
as we show in the full-length version of this paper [5].

B. Accuracy Study
We study the effects of approximation on accuracy using

a subset of the test queries already introduced; for simplicity
we discuss only the accuracy of 4-link queries (results were
similar on queries of other lengths). We define error as the
Earth Mover’s Distance [10] between result distributions (for
Boolean queries, this reduces to the absolute difference be-
tween result probabilities) as computed using approximate vs.
Markovian streams. Figures 4(a-f) plot this error as computed
on all ten test streams (five from each data set).

1) MAP Error: MAP error is highly bimodal on non-
aggregated (i.e. event) queries in our RFID/location domain,
where event query matches tend to have probabilities well
below 0.3. Most MAP errors stem from false negatives (the
MAP stream “misses” events contained in the Markovian
stream), and thus the magnitude of most MAP errors
equals the (low) probability of “missed” events. However,
in the rare cases when the MAP estimate includes a false
positive event match, this false match incurs an error that
approaches the maximum error of 1.0. MAP error is on
average higher on Boolean-aggregated queries because the
true probability of Boolean aggregates tends to be higher
than the true probability of individual (non-aggregated) event
queries, increasing the error incurred by false negatives.
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Fig. 4. Differences in query results computed on full vs. approximate Markovian streams, reported as the Earth Mover’s Distance between distributions over
the result value. Differences are shown for each approximation on a set of five 4-link queries with varying temporal aggregation semantics, on two trace sets.

Finally, on count-aggregated queries, MAP approximation
is surprisingly accurate. Although the MAP count is inaccurate
in proportion to the number of false positives/negatives in the
MAP stream, the MAP count is generally within the right
order of magnitude (we will see shortly that this is not true of
independent approximations). In general, the quality of MAP
approximations depends on the fidelity of the MAP estimate
to the original Markovian stream; this in turn depends on the
amount of uncertainty present in a data set.

2) Independence Error: Independence error is low on un-
aggregated queries in our domain. Here, assuming indepen-
dence tends to yield slightly underestimated event query
probabilities, because the independence assumption reduces
the probabilities of high-probability paths containing query
matches. Note, however, that Figures 4(b) and (e) include only
non-zero errors, since the vast majority of timesteps incur zero
error and hence obscure the behavior of the remaining errors.

In contrast, assuming independence on temporally-
aggregated queries (whether Boolean or count-based) tends
to yield results that overestimate the true values. This over-
estimation is often significant, because the mutual-exclusivity
constraints encoded in temporal correlations are ignored. The
effect of overcounting can be characterized by the degree of
temporal uncertainty present in a data set; see the full version
of this paper for more details [5].

3) Query Optimization: Query optimization techniques to
choose the best (or no) approximation for a given Markovian
stream and query are beyond the scope of this study; however,
as a general guideline, our results show that MAP is preferred
for count-aggregated queries, while the less aggressive inde-
pendence approximation is preferable for Boolean queries.

This study demonstrates that the full complexity of the
Markovian model is not always justified—many queries can be
processed with high accuracy on simple, approximate models.
At the same time, however, this study also demonstrates that
there do exist queries that can be answered at a reasonable
level of accuracy only by processing a fully Markovian model.
Thus the accuracy/performance trade-off space is rich; a
formal cost model for optimizing this space is an important
area for future work.

IV. CONCLUSION

In this paper, we studied the performance/accuracy trade-
offs of several standard approximations of Markovian streams,

in an RFID-based location tracking domain. We found that the
trade-off space is rich, affording many opportunities for query
acceleration with minimal impact on query error.
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[5] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Approximation
trade-offs in a markovian streamm warehouse: An empirical study.
Technical Report #UW-CSE-09-07-03, University of Washington, July
2009.

[6] E. Lo et al. Olap on sequence data. In J. T.-L. Wang, editor, Proc. of
the SIGMOD Conf., pages 649–660. ACM, 2008.

[7] D. J. Patterson, D. Fox, H. A. Kautz, and M. Philipose. Fine-grained
activity recognition by aggregating abstract object usage. In Proc. of
the ISWC Conf., pages 44–51, 2005.
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