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ABSTRACT

A Markov sequence is a basic statistical model representing
uncertain sequential data, and it is used within a plethora of
applications, including speech recognition, image processing,
computational biology, radio-frequency identification (RFID),
and information extraction. The problem of querying a
Markov sequence is studied under the conventional seman-
tics of querying a probabilistic database, where queries are
formulated as finite-state transducers. Specifically, the com-
plexity of two main problems is analyzed. The first problem
is that of computing the confidence (probability) of an an-
swer. The second is the enumeration of the answers in the
order of decreasing confidence (with the generation of the
top-k answers as a special case), or in an approximate order
thereof. In particular, it is shown that enumeration in any
sub-exponential-approximate order is generally intractable
(even for some fixed transducers), and a matching upper
bound is obtained through a proposed heuristic. Due to this
hardness, a special consideration is given to restricted (yet
common) classes of transducers that extract matches of a
regular expression (subject to prefix and suffix constraints),
and it is shown that these classes are, indeed, significantly
more tractable.
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1. INTRODUCTION

A large fraction of the world’s raw data is sequential and
low-level [18], such as hand-written forms, audio feeds, and
video feeds. And while this low-level data is rich in infor-
mation, the data is difficult for many applications to use di-
rectly, since applications often need higher-level information,
such as the ascii text corresponding to the low-level image
of hand writing in a form. To make higher-level information
available to applications, a popular approach is to use a sta-
tistical model, which infers the higher-level information from
the lower-level, raw data. One popular statistical model to
extract sequential data from raw, unstructured data is the
hidden Markov model (HMM) [46]. Abstractly, an HMM
takes as input a sequence of observations and then produces
as output a probability distribution over a sequence of hid-
den states. HMMs can be used to extract structure that
is useful in a diverse set of applications: In RFID appli-
cations [39,47], the observations are the low-level antenna
sightings, and the hidden states are sequences of higher-level
locations, such as rooms or hallways. In speech applica-
tions [21, 40, 46, 52], the observations are acoustic signals,
and the hidden states are sequences of words or phonemes.
There are other data-rich applications that use HMMs as
well: sequence matching in biological data [13,20], optical
character recognition [4], and image classification [17].

In this paper, we consider Markov sequences. A Markov
sequence is a chain of random variables that hold the Markov
property—a random variable is independent of its history
given its predecessor. Markov sequences represent the out-
put of statistical models such as HMMSs; in particular, the
distribution encoded by an HMM and a sequence of observa-
tions can be efficiently translated into a Markov sequence.’
In our setting, the proper translation into a Markov sequence
has already taken place. In particular, we do not process
the observations of an HMM (e.g., signal readings) directly,
but rather the implied Markov sequence. There are other
statistical models, notably Chain CRFS [37], that produce
output that can be modeled by Markov sequences (in spite
of requiring different translations). This opens up even more
applications for Markov sequences (e.g., more sophisticated
information extraction [37,51]).

LAHAR [39,40,47] is a Markov-sequence database that sup-
ports query processing over a collection of Markov sequences.
In this paper, we study the complexity of querying a sin-
gle Markov sequence with the goal of introducing strong
querying capabilities into LAHAR. As in many probabilistic

!See the extended version [31] for a discussion on the details
of this translation.



databases [8,26,30,48,49], queries in LAHAR are formulated
as if the data were precise (i.e., deterministic); in contrast to
standard deterministic databases, each answer to a query is
assigned a confidence value, which is the probability of ob-
taining that answer when querying a random possible world.
The query language we study is based on finite-state trans-
ducers (or just transducers for short), which have been used
for querying both strings [1,2] and trees [41,42] (e.g., XML).
A transducer is essentially an automaton that emits output
strings throughout its run on the input string (in our case,
a random possible world of the Markov sequence). In this
work, we study transducers that hold the property of de-
terministic emission.? Our experience with LAHAR leads us
to view string transducers as a natural means of expressing
queries over Markov sequences.

In our running example, taken from RFID, we consider a
scenario where sensors are installed in different locations of
a hospital, and transmitters are attached to medical equip-
ment (like crash carts) and personnel. Here, one Markov se-
quence may represent the locations of a particular crash cart
at different times, and another the location of a particular
doctor. Note that an actual location of a transmitting object
is typically uncertain. For example, physical limitations may
lead to erroneous reads or, more commonly, missed readings.
As another example, the locations of sensors can easily intro-
duce ambiguity (e.g., sensors located near passages, or close
sensors that simultaneously read the same signal). More
subtly, the antenna readings themselves are low level, and
there may be no one-to-one mapping to higher-level events
(e.g., the same sequence could correspond to entering either
Room 1 or Room 2). We consider a specific task, where we
want to detect the sequence of rooms that a crash cart has
visited (e.g., to detect a source of infection). So, we formu-
late a transducer that reads the locations, and whenever the
crash cart changes rooms the transducer emits the number
of the new room. This simple transducer already exhibits
some of the challenges in query evaluation. First, there may
be a huge number of possible answers (sequences of rooms)
with different probabilities, and it may well be the case that
most of the answers have a confidence that is too low to be
of interest. Second, many possible worlds can result (i.e.,
be transduced into) the same answer, as such worlds may
differ in the duration of staying at each room as well as the
different sub-locations inside each room (e.g., the main area
versus the restroom).

In probabilistic relational databases and probabilistic XML
databases [8,9, 30, 49], evaluating a query entails two ba-
sic steps: First, enumerate all possible answers (i.e., those
having a nonzero confidence). Second, compute the confi-
dence of each possible answer. Later on, we argue that this
approach, separating answer enumeration from confidence
computation, is too weak to meet our needs. Nevertheless,
to explore the computational aspects of query evaluation,
we analyze the complexity of the two steps in our specific
context.

The first step, enumerating the possible answers, is often
simply an algorithm for query evaluation over standard, pre-
cise data. Typically, the algorithm terminates in polynomial
time if one fixes the query (i.e., this step is efficient under
data complezity). In our case, the goal is find all the output

2Formally, this means that an emitted string is completely
determined by the (possibly nondeterministic) state transi-
tion. See Section 3 for the exact details.

strings that are transduced into with a nonzero probability.
However, even if the transducer is held fixed, the number of
possible (different) answers may be exponential in the length
of the Markov sequence. Furthermore, holding the trans-
ducer fixed is not always realistically justified (e.g., as in the
above crash-cart example). Thus, one cannot expect the set
of possible answers to be generated in polynomial time. To
properly measure complexity, we adopt yardsticks from enu-
meration complezity [24] that relate the running time to the
size of the output. We show that one can enumerate all the
possible answers in polynomial time under input-and-output
complexity (that is, the running time is polynomial in the
combined size of the input and the output). Even better,
enumeration can be done with polynomial delay (between
every two consecutive answers) and polynomial space.

For the second step, we consider the computation of the
confidence of a given answer. In general, this problem is
FP#P_complete (in particular, #P-hard), which immedi-
ately follows from known results [28]. We show, however,
that this problem is tractable if the transducer is determin-
istic. At a high-level, one may expect to be able to apply a
determinization technique, such as the subset construction,
to achieve an evaluation that takes time exponential in the
size of the transducer and polynomial in that of the Markov
sequence. For transducers with uniform emission (i.e., all
emitted strings have the same length), this approach suc-
ceeds. Surprisingly, if one does not assume such uniformity,
then determinization does not help: we construct a fized
nondeterministic transducer, such that computing the con-
fidence, given a Markov sequence and an answer, is FP#F-
hard.

In many applications, we are interested not in all answers,
but in those with higher confidence; thus, in the above two-
step approach, most of the produced answers may be irrel-
evant. Moreover, since the number of answers for a trans-
ducer over a Markov sequence may be huge (i.e., exponential
in the length of the Markov sequence), the cost of produc-
ing even one valuable answer may be prohibitively high. So,
we set the more realistic goal of ranked enumeration of an-
swers. Our gold-standard result would be that we could
enumerate the answers in decreasing confidence (in particu-
lar, the answers with the highest probability should appear
first) with polynomial delay. Later on, we show that, in gen-
eral, this gold-standard result is unlikely, even under strong
restrictions on the transducer. So, we propose a heuristic ap-
proach: instead of scoring an answer with its confidence, we
score it with the probability of its best evidence, namely, the
probability of the most likely possible world that is trans-
duced into the answer. We show that with the new scoring
applied, ranked enumeration is possible. An instrumental
tool in achieving this enumeration is the top-k technique of
Lawler [38], Murty [43] and Yen [59].

While the above heuristic may seem practically reason-
able, its theoretic performance is very poor (albeit provably
better than that of the arbitrary order). Formally, if the
score is again taken to be the confidence, then our heuris-
tic provides an approzimately ranked enumeration [16, 32]
with the approximation ratio |X|™, where n is the length
of the Markov sequence and 3 is the sequence alphabet.
Quite remarkably, it turns out that our heuristic has a worst-
case optimal performance. In particular, we show that un-
less P = NP, it is intractable to approximate the top an-
swer (let alone enumerate in ranked order) within any sub-



exponential factor of the form on' ™’ (for any 6 > 0). Fur-
thermore, this lower bound holds even if the transducer be-
longs to the very restricted class of Mealy machines.

Motivated by the above daunting hardness of approxima-
tion, and drawing from our experience with LAHAR, we look
for practical, tractable subclasses of transducers. We ob-
serve that, very often, practical queries simply extract sub-
strings of their input. So, in Section 5 we consider sub-
string projectors (called s-projectors for short). Essentially,
an s-projector extracts from a string substrings that match a
DFA, such that the prefix and suffix of the string, surround-
ing the extracted substring, satisfy constraints (also given
as DFAs). We also look at indezxed s-projectors, which are
s-projectors that output, in addition to the extracted sub-
string, the indices of the substring inside the input string.
Thus, while an s-projectors selects substrings, an indexed
s-projector selects occurrences of these substrings.

Among other things, we show that indexed s-projectors
have an evaluation in the ezact order of decreasing confi-
dence, with polynomial delay and polynomial space. This
is done through a reduction to the problem of enumerating
paths of a directed graph in increasing weight [14]. Fur-
thermore, we show how this result can be used to obtain an
n-approximate ranked enumeration for s-projectors (which
is exponentially better than what can be done for general
transducers, or even for Mealy machines). Whether this
approximation ratio is tight remains an open problem; how-
ever, we show a /n lower bound (actually, n'/27% for all
0 > 0); in particular, this lower bound rules out the existence
of a constant-factor (or logarithmic-factor) approximation.

We first give preliminaries (§2) and describe the formal
setting (§3). We then describe our results for the general
problem (§4), and our exploration of s-projectors (§5). Fi-
nally, we discuss related work (§6) and conclude (§7).

2. PRELIMINARIES

In this section, we describe the basic concepts that are
used throughout the paper.

2.1 Strings and Automata

Let U be a set. By U™ we denote the set of all finite strings
of elements of U, that is, sequences of the form wuq ---un,
where u; € U for all 1 < 4 < n. For a string u € U~*,
we use |u| to denote the length u (here n), and we use €
to denote the empty string. For an integer n > 0, the set
of all the strings u € U™ of length n is denoted by U™. If
u = ui---Un is a string, and ¢, j and k are integers such
that 1 <7 <j <nandi<k<n+1, then upj denotes
the substring u; - - - u; of u, and uy; &) denotes the substring
u; - - - ur—1. Note that if 7 = 7, then uy; ;) is u; whereas uy; ;)
is the empty string e.

A nondeterministic finite automaton (NFA) A is a tuple
(4,Q4,q%, Fa,64) where Y4 is a finite alphabet, Q4 is a
finite set of states, ¢% € Qa is the initial state, Fa C Qa is
the set of accepting states and 64 : Qa X Xa — 294 (ie.,
04(q,s) is a subset of Q4 for all ¢ € Q4 and s € X4) is
the transition function. We usually do not specify the whole
tuple describing an automaton A, but rather implicitly as-
sume that A is the automaton (X4, Qa,¢%, Fa,64) (i-e., the
automaton symbol is consistently used as a subscript).

Let A be an NFA. A run of A on a strings = s1---8, €
¥ 4" is a mapping p : {1,...,n} — Qa, such that p(1) €
54(q%, s1) and p(i) € S4(p(i — 1),s;) for all 2 < i < n. The

run p is accepting if p(n) € Fa. We denote by L(A) the
subset of X% that comprises all the strings that are accepted
by A (i.e., strings s such that an accepting run on s exists).

A deterministic finite automaton (DFA) is an NFA A,
such that the image of 64 comprises singletons; that is,
[64(g,s)] =1for all ¢ € Qa and s € 4. It is well-known
that NFAs and DFAs, as well as regular expressions, recog-
nize the same class of languages, called regular. If A is a
DFA, then we may abuse the notation and view ¢ as a func-
tion Qa X ¥4 — Qa4 (rather than a function from Qa X X4
to singleton sets of 294).

2.2 Probability Spaces

All the probability spaces that we consider in this paper
are finite. Formally, here a probability space is a pair (22, p),
where 2 is a finite set and p : @ — [0,1] is a function
satisfying > ., p(0) = 1. We say that (€2, p) is a probability
space over ). By a slight abuse of notation, we may identify
a probability space (2, p) with the probability space (€', p’)
if Q' and p’ contain Q and p, respectively (and then p’ is
zero over '\ Q).

2.3 Enumeration of Answers

In an enumeration problem, the result for a given input is
a (possibly large) set of answers. An example is the prob-
lem of evaluating a query over a database, where the size
of the result can be exponential in the size of the input.
Polynomial running time in the size of the input may be
a wrong yardstick of efficiency when analyzing an enumer-
ation algorithm, because just writing the output may re-
quire exponential time. Several definitions of efficiency for
enumeration algorithms have been proposed [24]. The most
commonly used is polynomial input-output complexity, which
means that the running time is polynomial in the combined
size of the input and the output. A stronger definition is
polynomial delay, which means that the time before print-
ing the first answer, as well as the interval of time (delay)
between every two consecutive answers, is polynomial only
in the input size. (Between the two there is the notion of
incremental polynomial time.)

2.3.1 Ranked Enumeration

As said above, in many applications the result of an enu-
meration problem (e.g., query evaluation) consists of an
enormous number of answers. However, the answers are
not equally valuable to the user; instead, we often have a
scoring function that discriminates between answers. For-
mally, consider an algorithm FE for an enumeration prob-
lem P, and let score(:) be an underlying, real-valued scor-
ing function over the answers. We say that E enumer-
ates in decreasing score if for all inputs = for P with a set
P(z) = {y1,...,ym} of answers, if E prints y; before y;
then score(y;) > score(y;). Often, though, computational
limitations enforce one to use approximations. Formally,
let # > 1 be a number. We say that E enumerates in 0-
approximately decreasing score [16,32] if for all inputs z for
P with P(z) = {y1,...,Ym}, if E prints y; before y; then
0 - score(y;) > score(y;). In this work, 6 is usually not a
constant number but rather a function of the input.

Suppose that an enumeration algorithm FE enumerates
with polynomial delay. If E enumerates in decreasing score,
then one efficiently obtains top-k answers by stopping E af-
ter k outputs. Similarly, if E' enumerates in f-approximately



decreasing score, then stopping F after k outputs yields an
approximation of the top-k answers, as defined by Fagin et
al. [16]. Hence, the problem of incrementally enumerating
in decreasing (resp., approximately decreasing) score gener-
alizes that of top-k (resp., approximate top-k) evaluation.

3. FORMAL SETTING

We consider probabilistic data that come in the form of
a Markov sequence, and we study the problem of evaluating
queries over such data; our queries belong to various classes
of finite-state transducers. In this section, we formally define
our data and query models, and describe the computational
problems that are derived from the task of query evaluation.
We begin with the data model.

3.1 Markov Sequences

A Markov sequence is essentially a sequence of random
variables over a finite set of states, with the property that
future states depend only on the current state® and not on
the past states (namely, the Markov property). Formally,
a Markov sequence u of length n operates over a finite set
¥ of state nodes (or just nodes),* and comprises an initial-
state distribution po- and a transition function p,— for all
1 <7 < n, where puo- and p,-, are defined as follows.

e po- : X — [0, 1] is a function, such that ) po-(s) =
1 holds.

e i : XXX — [0,1] is a function, such that for all
s € X it holds that >,y pi(s,t) = 1.

The set ¥ of the state nodes of the Markov sequence p is
denoted by X,. We may write u[n] instead of p to denote
that p is a Markov sequence of length n.

Ezample 3.1. Our running example for this paper is in
the context of RFID. In particular, we consider a hospi-
tal, where transmitters are attached to medical equipment.
Each transmitter transmits discrete signals with fixed time
intervals in between. Sensors are spread over the hospital in
known locations (e.g., rooms, hallways, laboratories, etc.).
To the data management system, a transmission is an object
comprising a transmitter identifier and a sensor identifier.

In our example, we consider a specific crash cart. Based
on the relevant transmissions, a prediction of the location
of the cart at each point in time is made. Such a predic-
tion is done by viewing the transmissions as a sequence of
observations in a hidden Markov model (HMM), and then
translating this HMM into a Markov sequence (which, in our
case, incorporates both the HMM and the observed sensor
readings). A detailed discussion on HMMs and their transla-
tion into Markov sequences is given in the extended version
of this paper [31].

Figure 1 shows a tiny example p of the resulting Markov
sequence. In this figure, we consider two rooms, numbered
1 and 2, and a lab. Each of the three contains two loca-
tions. For example, Room 1 has the locations ri, and rip,

3We mention that all our results generalize to k-order
Markov sequences, provided that k is fixed.

4Note that ¥ denotes the set of state nodes of a Markov se-
quence, and the alphabet of an NFA. This is not accidental,
since we later use the state nodes as the alphabet symbols
of an NFA.
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Figure 1: A Markov sequence p describing locations
of a hospital cart

Ma, b, 2a, b : €

Ma, b - € M2a, rop @ €

r2a, r2p : 2

Figure 2: A transducer A” extracting a sequence of
visited places

and the lab has the locations |, and I,. The set ¥, com-
prises the six locations (i.e., ria, rip, etc.). The state nodes
at different times are represented by rectangles with rounded
corners. The functions po- and p,-, are represented by di-
rected edges that are labeled with probabilities. As an ex-
ample, po-(ria) = 0.7 is indicated by the upper edge ema-
nating from the filled circle on the left. As another example,
13— (la,lp) = 0.1 is indicated by the edge from the |, rectan-
gle to the I, rectangle between variables Ss and Ss (which
we discuss later). Note that edges with a zero probability
are excluded from the figure. Finally, observe that the sum
of edges emanating from each object is 1 (as we require in a
Markov sequence). O

Semantically, a Markov sequence p[n] defines the proba-
bility space (X, p) over n-long strings of nodes, where the

Table 1: Random strings and their output

string value probability output
S F1a Ia |a ra 2a 0.3969 12
t Mara la Ma r2a 0.0049 12
u Ia F1b F1b F1a F2a 0.002 12
v riala r2a rip lp 0.0315 21\
w rib rib la Ib Ib 0.0.0252 €
X F1a F1a b b b 0.007 N/A




probability p(s), for a string s = s1 - - - s, is given by

n—1
p(s) = po-(s1) x H i (84, 8it1) - (1)
i=1
By S* = S ... S we denote the random variables that

correspond to the random string s and its nodes. If p is
clear from the context, we may omit it from the superscript.
Recall that the Markov property states that node S; (at time
i) depends only on node S;—1 (at time ¢ — 1). Formally, we
have the following equations (which result directly from (1))
for all ¢ such that 1 < ¢ < n, nodes s, and strings t
(ST 7

e Pr (51 =s) = po-(s)
e Pr (SH—I =S | S[l,z‘] = t) =
Pr (Si+1 =S5 | S; = ti) = pi_)(ti,s)

Ezample 3.2. Recall the Markov sequence p that is de-
picted in Figure 1 and discussed in Example 3.1. Table 1
shows five random strings of u. For now, the rightmost col-
umn (“output”) should be ignored. Take, for example, the
string s = rialalariar2a of the top row. This string corre-
sponds to a unique directed path of Figure 1, from the filled
circle (on the left) to a node in the rightmost column. The
probability of s (that is, p(s) or Pr (S =s)) is obtained by
multiplying the probabilities along this unique path, that is,
p(s) =0.7x 0.9 x 0.9 x 0.7 x 1.0 = 0.3969. a

Consider a Markov sequence p[n]. A string s € Xj is
viewed as a data instance, upon which one can evaluate
meaningful queries. But, as mentioned above, u defines a
probability space over X, (captured by the random variable
S). Thus, we view u as a probabilistic database, and apply
the query according to the concept of querying probabilistic
data (which we formally define later on). Next, we formal-
ize the notion of a query over a string; later, we give the
formalism of applying such a query to a Markov sequence.

3.1.1 Finite-State Transducers

The queries that we consider are finite-state string trans-
ducers, or just transducers for short. We restrict the dis-
cussion to transducers with deterministic emission; that is,
each state transition deterministically produces a string of
output symbols, and there are no empty transitions (i.e.,
transitions that do not read a symbol of the input string).
We further discuss this restriction in Section 7. Formally,
a transducer comprises an NFA A and an output function
w:QaXXaXQa— A", where A is the output alphabet.
The transducer comprising A and w is denoted by A¥. We
assume that A is the set of all the symbols that occur in the
image of w, and we denote it by A, .

The transducer A“ transduces a string s € X4 into a
string o € A, denoted s -[A“}> o, if there exists an ac-
cepting run p: {1,...,n} — Qa on s such that

0= UJ(qOA,s1,q1)w(q1,sz,q2) o 'w(qn—l,sn,qn),

where ¢; = p(i) for all 1 <14 < n. Recall that each w(qg, s, q")
is a string over A, (which can be empty).

Let A“ be a transducer. We say that A% is deterministic
if A is deterministic (i.e., A is a DFA). We say that A* is
non-selective if Fa = Qa (thus, A accepts every string);
otherwise, A“ is selective. The output function w is said to

be k-uniform, where k is a nonnegative integer, if the length
of the string w(q, s,q’) is k for all (¢,5,¢') € Qa X Ta X Qa.
As an example, if w is 1-uniform, then A“ replaces each input
symbol with an output symbol (given that the input string
is accepted by A). As another example, if w is O-uniform,
then A“ simply tests whether the input string is accepted
by A, and if so it outputs €. We say that w is uniform if it is
k-uniform for some k. To show lower bounds on complexity,
we have a special interest in the restricted class of Mealy
machines, where a Mealy machine is a deterministic and
non-selective transducer A“, such that w is 1-uniform.

Ezample 3.3. Figure 2 shows a transducer A“ over the
alphabet X4 = {r1a, r1b, r2a, rab, la, Ib} (which, not coinciden-
tally, is the language X, of the Markov sequence p of Fig-
ure 1). Each state is represented by a circle, an accept-
ing state has an inner circle, and the initial state has an
incoming arrow. Thus, the set Qa is {qo,qxr,q1,4q2}, the
set Fa is {qr,q1,q2}, and the initial state ¢4 is go. The
functions d4 and w are represented by the labels on the di-
rected edges of the figure. Generally, the notation o : o
on the edge from ¢ and ¢’ means that ¢ € d4(q,0) and
w(q,0,q¢') = o. We use the notation o1,...,0% : 0 as a
shorthand for ¢ € §a(q,0:) and w(q,04,q¢') = o for all
i = 1,...,k. For example, reading |, or |, moves A from
q1 to qx (ie., 0a(q1,1a) = da(q1,lb) = {gr}), and A is emit-
ted in this transition (i.e., w(q1,la, qx) = w(q1, b, gr) = A).

It is easy to verify that the transducer A“ is determinis-
tic. It is selective, since A does not accept every string (in
particular, A accepts the strings that have at least one oc-
currence of either I, or Ip). It is not uniform, since different
emissions may have different lengths (among the lengths 1
and 0). O

3.1.2  Querying a Markov Sequence

Recall that data represented as a Markov sequence p[n]
defines a probability space over ;. To evaluate a query
(transducer) over u, we adopt the traditional concept of
querying probabilistic data where the goal is to produce
each possible answer along with its confidence (probabil-
ity) [8,30,48].

Formally, let u[n] be a Markov sequence, and let A be
a transducer. Throughout the paper, we make the implicit
assumption that ¥4 = X,; that is, the strings read by A“
are in the same language as that of the random strings gen-
erated by p. We denote by A¥(u) the set of all the strings
that have a nonzero probability of being transduced; that is,

A% (u) € {o e AL | Pr (S -{A“]» 0) > 0}.

A string of A¥(u) is called an answer. The confidence of an
answer is its probability of being transduced by a random
instance of p. The result of evaluating A“ over p is the map-
ping that assigns to each answer o € A“(u) its confidence.
More formally, query evaluation is the task of producing the
mapping conf : A¥(u) — [0,1] where conf(o) (the confi-
dence of o) is equal to Pr (S —-[A*]> o) for all 0 € A¥(u).

Ezample 3.4. We continue our running example. Recall
the Markov sequence of Figure 1 (described in Example 3.1).
Consider a scenario, where we identify that the particular
cart is contaminated. Suppose also that we know the cart
was not contaminated in its first visit to the lab. Our goal
is to trace the sequence of places (i.e., Room 1, Room 2



and lab) the cart has been in after that first visit. So, we
construct the transducer A“ of Figure 2. This transducer
emits, after the first visit to the lab, a symbol representing
a place whenever this place is being entered to from another
place. As an example, for both the strings u = I, r1p r1p r1a r2a
and s = r1a la la r1a roa of Table 1, A¥ emits the output 12.
The rightmost column of Table 1 shows the output that
A% emits for the strings of the corresponding rows. An ex-
ception is the last row, where the corresponding string x
is not acceptable by A and then the output is marked as
“N/A.” Recall from Example 3.2 that the strings of the table
are random strings of u. Note that the table does not con-
tain all the random strings of u; however, from the rightmost
column it follows that A“(u) contains (at least) the strings
12,21, and e. Also, it can be verified that the table con-
tains all the random strings of p that are transduced into
12; these strings are s, t and u, which have the probabilities
0.3969, 0.0049 and 0.002, respectively. Hence, conf(12) is
0.3969 + 0.0049 + 0.002 = 0.4038. a

3.2 Computational Problems

Naively speaking, query evaluation entails two tasks: com-
puting the set of answers, and computing the confidence of
each answer. The input for each of the two tasks consists of
a Markov sequence p and a transducer A“, and in the second
task we also get a string o € A,. We could also require o to
be an answer of A¥(u), since it can be shown that whether
a string o € A}, is an answer (i.e., has a nonzero probabil-
ity) can be decided efficiently. We assume that p and A*
are represented in a straightforward manner; in particular,
the representation of u[n] consists of a transition matrix for
each index 1 <1 < n, and an array for po-.

We use the convention that each probability in a Markov
sequence is a rational number represented by a pair of in-
tegers (each of which is represented in the standard binary
encoding): the numerator and the denominator.

Evaluating a query naively by separately solving the above
two tasks is often impractical, since for given u[n] and A%,
the set A“(u) can be huge (in the worst case its size can
be exponential in n, even if A“ is fixed). Moreover, many
(even the majority) of the answers o € A“ (1) may be such
that the confidence of o is tiny—too small to be of practical
interest. The desired kind of evaluation is that of a ranked
enumeration of A“(u), namely, an incremental algorithm
(e.g., one that runs with polynomial delay) that enumerates
A®(p) in decreasing confidence; if decreasing confidence is
infeasible, we may settle for an approximation thereof. An
efficient procedure for computing the confidence of an an-
swer is still required if the user desires the confidence to be
given along with each answer.

Finally, to explore the complexity of ranked enumera-
tion, we study the restricted problem of finding a top an-
swer. Formally, the input consists of a Markov sequence
1 and a transducer A“, and the goal is to find an answer
with a maximal confidence, that is, a string o, such that
Pr (S -5[4“} 0) > Pr(S 5[A“l o) for all o' € Af. We
also consider the problem of finding a 0-approximate top an-
swer for a number (or function) 6 > 1; that is, a string
o € A}, such that 6 - Pr (S -[A“]> o) > Pr (S —5[A“] o)
for all o’ € AY. An important observation, which we re-
peatedly use, is that hardness of finding a top answer (resp.,
a f-approximate top answer) rules out the existence of an
evaluation in decreasing (resp., f-approximately decreasing)

confidence with polynomial delay, as such an answer can be
obtained by taking the first output in the enumeration.

4. THE COMPLEXITY OF QUERY EVAL-
UATION

We now study the complexity of evaluating transducers
over Markov sequences. We start with the problem of un-
ranked enumeration of the answers.

4.1 Unranked Enumeration

Consider a transducer A“ and a Markov sequence p. In
this section, we consider the problem of enumerating A“ ()
in an unranked fashion, namely, the order of answers disre-
gards confidence values. The following theorem shows that
this problem is tractable. More specifically, given a trans-
ducer and a Markov sequence, one can enumerate all the
answers with polynomial delay and polynomial space.

THEOREM 4.1. Given a Markov sequence u and a trans-
ducer A, the set A”(u) can be enumerated with polynomial
delay and polynomial space.

To prove Theorem 4.1, we present a polynomial-space algo-
rithm that runs with a delay that is, roughly, polynomial in
A% linear in the length of u, and quadratic in the length
of the two answers before and after the delay. The algo-
rithm uses a general technique [34] that reduces an enumer-
ation problem into the problem of testing satisfiability of
constraints, which are used for recursively partitioning the
space of solutions. The challenge in applying this technique
is to find a proper class of (tractable) constraints. Here,
we use what we call prefiz constraints, and we show that
such a constraint can be enforced by efficiently transforming
the input transducer into a new one; thus, we are left with
the problem of testing whether A% (u) # @, or equivalently
Pr(S € £(A)) > 0, given A“ and p. The latter problem is
shown to be tractable by deploying dynamic programming.

Theorem 4.1 shows tractability of unranked enumeration.
In the next section, we consider the problem of enumerating
the answers in ranked order.

4.2 Ranked Enumeration

Ideally, we would like the answers to be enumerated effi-
ciently (i.e., with polynomial delay) in decreasing confidence.
Unfortunately, as we later show, this problem is highly in-
tractable. So, we first propose an enumeration in a heuristic
order by deploying a different scoring function: the maximal
probability of an evidence. Next, we give a formal explana-
tion.

Let pu be a Markov sequence, and let A* be a transducer.
Let o € A¥(u) be given. We denote by Emax(0) the max-
imal number p, such that there exists a string s € X} (an
evidence) where s 5[A“} o and p = Pr (S =s).

Ezample 4.2. Consider again Example 3.1, and let o be
the string 12. Recall that the set of random strings of u
that are transduced into o are exactly s, t and u of Table 1.
Since s has the highest probability among the three, 0.3969,
we conclude that Enax(0) = 0.3969. O

The following theorem shows that the answers for a trans-
ducer over a Markov sequence can be enumerated in decreas-
ing Fmax with polynomial delay. Note that unlike unranked



enumeration (Theorem 4.1), here polynomial space is not
guaranteed; indeed, the used space can grow proportionally
to the number of printed answers.

THEOREM 4.3. A¥(u) can be enumerated in decreasing
Emax with polynomial delay, given a transducer A“ and a
Markov sequence .

In the proof of Theorem 4.3, we devise an algorithm that
uses the ranked-enumeration technique of Lawler-Murty [38,
43]. This technique is essentially a reduction from enumer-
ation of results in ranked order to optimization (i.e., finding
the best result) under constraints. As in the proof of The-
orem 4.1, the class of constraints we use here is that of our
prefix constraints. As stated above, a prefix constraint can
be enforced over the given transducer. Hence, we obtain a
reduction to the problem of finding a top answer w.r.t. Emax,
and we give an efficient algorithm for that.

From a formal point of view, when considering the enu-
meration of Theorem 4.3 as an approximation of decreasing
confidence, the approximation ratio is poor: if the length of
u is n, then the (worst-case) approximation ratio is |X4|™.
Surprisingly, the following theorem shows that one cannot do
significantly better than Theorem 4.3, namely, a top answer
(and, hence, the whole enumeration) cannot be efficiently
approximated within any sub-exponential factor. Moreover,
this inapproximability holds already for Mealy machines,
such that the underlying DFA comprises exactly one state!

THEOREM 4.4. Assume P # NP. For all § > 0, no
polynomial-time algorithm finds a on'™? -approximate top an-
swer, given a Mealy machine A and a Markov sequence
wu[n]. Furthermore, it holds even if |Qa| =1 is assumed.

Theorem 4.4 shows hardness for Mealy machines with a
DFA that comprises one state; however, the alphabet 34 is
unbounded. Next, we show the existence of a fixed deter-
ministic transducer (with a fixed alphabet), such that the
same inapproximability holds. This transducer has the spe-
cial form of a projector, which is a transducer A* such that
each w(q, s,q’) is either the input symbol s or e.

THEOREM 4.5. Assume P # NP. There exists a (fized)
deterministic projector A%, such that for all § > 0, no poly-

-5
nomial time algorithm finds a on' -approximate top an-
swer, given a Markov sequence p[n].

The transducer A“ of Theorem 4.5 is tiny: |Xa| = 4,
|Au| =2 and |Qa| = 1. The proofs of Theorems 4.4 and 4.5
use two different reductions from the problem max-3-DNF,
which is that of finding a truth assignment that maximizes
the number of satisfied clauses in a given 3-DNF formula
(this problem does not have an efficient 7/8-approximation,
unless P = NP [15]). More specifically, each reduction gives
a constant-ratio lower bound on approximability. Then, we
amplify a 2"1_8—approximation to any desirable constant-
factor approximation, by essentially concatenating a poly-
nomial number of copies of the given Markov sequence.

4.3 Confidence Computation

We now consider the problem of computing the confidence
of an answer. Our results for deterministic transducers differ
from those for nondeterministic ones, and we begin with the
deterministic case.

The following theorem shows a polynomial-time complex-
ity for the problem of computing the confidence of an answer
for deterministic transducers. It also shows that we have a
faster algorithm in the case of uniform emission.

THEOREM 4.6. Computing Pr (S -[A“}P o), given a de-
terministic transducer A¥, a Markov sequence u[n| and a
string o € AL, is in O(Jo|n|Z,|?|Qal?) time. Furthermore,
it is in O(kn|S.%|Qal?) time if w is k-uniform.

Theorem 4.6 is proved by providing dynamic-programming
algorithms (assuming or not assuming k-uniformity) for com-
puting the confidence of an answer. Theorem 4.6, 4.1 and 4.3
together show that for deterministic transducers, there is
an efficient query evaluation, either unranked or ranked by
Emax, where the confidence of each answer is given along
with the answer itself (e.g., as soon as the answer is printed).

We now consider general (nondeterministic) transducers.
Unfortunately, Theorem 4.6 does not generalize to the class
of all transducers (under standard complexity assumptions),
as it is intractable to compute the confidence of an answer.
Furthermore, this holds even if we assume uniformity and
non-selectivity. This is shown in the following proposition,
which follows rather straightforwardly from the fact that
computing |L(A)NX7%], given an NFA A and a natural num-
ber n in unary representation, is #P-complete [28].

PROPOSITION 4.7. Computing Pr (S -{A“]> o), given as
input a Markov sequence u, a transducer A”, and a string
o € AY, is FP#P_complete.® It remains FP#F -hard even if
A“ is mon-selective and w is 1-uniform.

Whether there exists an efficient approximation for the
computation of a confidence (for nondeterministic trans-
ducer) is unknown. The left gap is large, since we do not
even have a sub-exponential efficient approximation. We
leave the resolution of this gap to future work. We men-
tion that an FPRAS (i.e., fully polynomial-time randomized
approximation scheme) for this problem would straightfor-
wardly imply an FPRAS for computing |£(A) N X7%]| (as
described above), which is a long-standing open problem.
Nevertheless, the following theorem shows that in the case of
uniform emission, the confidence of an answer can be com-
puted in time that is polynomial in 2194l and in the size
of rest of the input (which is often practical, and in line
with the notions of data complezity [57] and fized-parameter
tractability [12,44]).

THEOREM 4.8. Computing Pr (S -[A“}> o), given a trans-
ducer A® where w is k-uniform, a Markov sequence p, and
a string o € AL, is in O(nk - |X,|? - 4194l time.

The proof of Theorem 4.8 combines dynamic program-
ming with some form of subset construction. Observe that
this result cannot be obtained by just straightforwardly de-
terminizing A; to see that, observe that a nondeterministic

SFP#F is the class of functions that are polynomial-time
computable using an oracle to some function in #P, where
#P [56] is the class of functions that count the number of
accepting paths for the input of an NP machine. Using an
oracle to a #P-hard (or FP#F-hard) function, one can effi-
ciently solve every problem in the polynomial hierarchy [54].
5To the best of our knowledge, the best approximation is
that of Kannan et al. [28], which gives a quasi-polynomial
FRAS for the computation of |L(A) NX7%].



transducer can transduce a string s into multiple strings
o whereas a deterministic transducer transduces s into at
most one o (thus, a transducer cannot be determinized in
a straightforward sense). Another argument is that Theo-
rem 4.8 does not hold without the assumption of uniformity,
which we show next. (Recall from Theorem 4.6 that deter-
ministic transducers do not require uniformity for allowing
efficient confidence computation.)

THEOREM 4.9. There exists a (fized) non-selective trans-
ducer A with |Qa| = |Au| = 3 and |24| = 5, such that
computing Pr (S 5{A“} o), given a Markov sequence p and
a string o € A, is FP#T _complete.

The proof of Theorem 4.9 is by a reduction from counting
the number of satisfying assignments for a monotonic bipar-
tite 2-DNF formula, which is known to be #P-complete [45].

S. SUBSTRING PROJECTORS

In this section, we study a restricted class of transducers,
which we view as common in practice, and so, practically
important. We will show that this class is more tractable
than general transducers in terms of ranked enumeration of
answers. We call a machine of our restricted class a substring
projector, or s-projector for short.

Intuitively, when an s-projector runs over an input string,
it looks for a substring that matches a pattern (automaton),
and this substring is emitted. In addition, an s-projector can
specify constraints, in the form of automata, over the prefix
and suffix of the input string that occur before and after the
matched substring, respectively. Formally, an s-projector P
is represented by DFAs B and F, called a prefiz constraint
and a suffiz constraint, respectively, and a deterministic 1-
uniform projector A (that is, A“ is a deterministic trans-
ducer, such that wa(q1,s,q2) = s for all ¢g1,q2 € Q4 and
s € X4). The s-projector given by B, F and A“ is denoted
by [B]A[E] (note that w is not needed). For the s-projector
P = [B]A[E], we require that ¥p = ¥4 = Xg, and we de-
note this alphabet by Xp. For strings s,0 € X1, we denote
by s —{[B]A[E]}> o the fact that o € £(A), and there exist
two strings b and e, such that b € £(B), e € L(FE), and
s is the concatenation boe. An s-projector P = [B]A[E] is
simple if B and E accept every string of X.p; in this case, P
is denoted by [x] A[*].

Ezample 5.1. Continuing with the hospital RFID exam-
ple, we may want to know the path that a patient takes
from the operating room to the recovery unit. For that,
we use an s-projector that outputs the path from the point
when the patient is in the operating room, specified as a
prefix constraint, and when the patient arrives at the re-
covery room. In other domains, such as handwritten-form
data, s-projectors are particularly useful, as they allow us
to perform tasks of data extraction (e.g., for finding names
and email addresses). As a concrete (simplistic) example,
consider the s-projector P = [B]A[E], where B, A and E
correspond to the Perl-syntax expressions “.*Name:”, “[a-
zA-Z,]1+” and “\s.*”, respectively. When applied to a tex-
tual string, P produces Hillary if Name:Hillary, followed
by the whitespace character, occurs (anywhere) in the text.
O

As in the case of transducers, when given a Markov se-
quence p and an s-projector P, we assume that ¥, = Xp.

An easy observation is that, given an s-projector P (rep-
resented by B, A and E), one can efficiently construct a
(nondeterministic) transducer A%, such that for all s € ¥%
and o € A}, it holds that s <[P} o if and only if s 5{A“]> o.
Thus, we can view P as a special case of a transducer. In
particular, Theorem 4.1 holds for s-projectors; that is, the
set P(u) (i.e., the set of strings o € A}, that are transduced
into with a nonzero probability) can be enumerated with
polynomial delay and polynomial space.

Recall from Theorem 4.4 that for (deterministic) trans-
ducers, it is intractable to achieve an enumeration in ap-
proximately decreasing confidence with a ratio that is sub-
exponential in the length of the Markov sequence . In con-
trast, the following theorem shows that for s-projectors, we
can get an efficient enumeration where the approximation
ratio is the length of p.

THEOREM 5.2. The set P(u) can be enumerated in n-
approximately decreasing confidence with polynomial delay,
given an s-projector P and a Markov sequence u[n].

Theorem 5.2 is a consequence of results we give later on,
and we discuss the proof in Section 5.2.

It is yet unknown whether the upper bound of Theo-
rem 5.2 is tight. However, the following theorem gives a
square-root (rather than linear) lower bound, under the as-
sumption that NP % ZPP.” The lower bound holds already
in a case where a simple s-projector is held fixed. In particu-
lar, this theorem rules out the existence of an efficient ranked
enumeration, and a constant (or logarithmic) approximation
thereof.

THEOREM 5.3. Assume NP # ZPP. There exists a (fized)
simple s-projector [*]A[*], such that for all § > 0, there is
no polynomial-time algorithm for (néf‘s)—appro:cimatmg a
top answer, given a Markov sequence pun).

The proof of Theorem 5.3 is by a reduction from finding a
mazimum independent set of a graph, which is known to be
inapproximable within a |V|*~% factor, for all § > 0, where
V is the set of nodes [19].

We now consider the problem of computing the confi-
dence of an answer. Theorem 4.6 shows that this problem
is tractable for deterministic transducers. One might expect
the same for s-projectors, since an s-projector is defined by
means of DFAs. Unfortunately, this is not the case, and the
following theorem shows that the problem is #P-complete
for s-projectors. Furthermore, this problem remains hard
even if we fix the alphabet X, and we fix the DFAs B and
A to be those accepting every string and only the empty
string, respectively.

THEOREM 5.4. Computing Pr (S —[P}> o), given a Markov
sequence u[n], an s-projector P = [B]A[E] and a string
o € A}, is FP#P_complete. It remains FP#F -hard, even
if the alphabet Xp is fixed, B accepts every string, and A
accepts only €.

The next theorem shows that for an s-projector [B]A[E],
the confidence of an answer can be computed in time that

"ZPP is the class of decision problems that can be solved
by a randomized algorithm with polynomial expected time.
NP = ZPP is believed to be unlikely [60].



is polynomial in 2!/9F! and in the size of the rest of the
input. Combined with Theorem 5.4, we learn that hardness
of confidence computation stems solely from the size of the
suffix constraint E.

THEOREM 5.5. Computing Pr (S =[P}~ o), given a Markov
sequence u[n], an s-projector P = [B]A[E] and a string
o € AL, is in O(n|o)?|Sp?|Qs 4195 time.

The proof of Theorem 5.5 uses the fact that the state
complexity of the concatenation M.N of two DFAs M and
N is exponential |Qn| while polynomial in |Qas] [23].

5.1 Indexed s-Projectors

An s-projector extracts substrings that match a DFA (sub-
ject to prefix and suffix constraints). Often, it is required to
provide the user with not only the matched substring, but
also an actual occurrence of that substring in the input. For
example, when extracting names from text, we may want to
identify each occurrence of a name (rather than each name)
as an answer. To support this need, in this section we re-
quire the s-projector to specify the inder within S of where
emission begins. Formally, for an s-projector P = [B]A[E]
and a string s, an answer is now a pair (o,%), such that
s is the concatenation bue, where b € L(B), e € L(FE),
u —[A} o, and |b| =i — 1. We call such an s-projector an
indexed s-projector, and denote it by [B]| A[E] (that is, we
add the down-arrow to the notation of an s-projector). We
next show that this twist results in a significant increase of
tractability.

REMARK 5.6. Technically, emitting the index is not di-
rectly captured by a transducer. Nevertheless, we can sim-
ulate it by requiring the s-projector P = [B]A[E] to emit a
special symbol 1L whenever € should to be emitted before A is
reached. Thus, the index is obtained from the number of Ls
in the answer. m|

In the following theorem, we show that for an indexed
s-projector P, query evaluation can be done in the ezact
ranked order with polynomial delay and polynomial space;
in contrast, recall that the enumeration of Theorem 4.3 guar-
antees only an exponential-factor approximation, and does
not guarantee polynomial space (and, in fact, its space usage
may grow linearly with the output).

THEOREM 5.7. P(u) can be enumerated in decreasing con-
fidence with polynomial delay and polynomial space, given a
Markov sequence p and an indezed s-projector P.

To prove Theorem 5.7, we use a reduction to the enumer-
ation of the directed paths between two nodes of an edge-
weighted DAG [14].

Finally, the following theorem shows that the confidence of
an answer can be computed in polynomial time for indexed
s-projectors P = [B]|A[E]. Note that, unlike the running
time of Theorem 5.5, the dependence of the running time on
P is polynomial.

THEOREM 5.8. Given an indexed s-projector P, a Markov
sequence p[n] and an answer (0,1), the confidence of (0,1)
can be computed in O(n|Xp|*|Qp|*) time.

5.2 Proof of Theorem 5.2

We now discuss the proof of Theorem 5.2. Let P =
[B]A[E] be an s-projector. Let p be a Markov sequence,
and let o € P(p) be answer for P. Then, there exists one
or more indices 4, such that (o, ) is an answer for [B]| A[E].
We denote by Imax(0) the maximal number p, such that
there exists some ¢ where (0,i) € [B]|A[E](1) and p =
Pr (S —{[B]|A[E]}> (0,4)). The proof of the following propo-
sition is straightforward.

PROPOSITION 5.9. For all answers o € P(u) we have:
]max(o) < Pr (S _’[P']_> 0) <n- ]max(o) .

We conclude that an enumeration of P(x) in decreas-
ing Imax iS an enumeration in n-approximately decreasing
confidence. This observation, combined with Theorem 5.7,
implies the following algorithm: execute the enumeration
of Theorem 5.7, and whenever an answer (o,4) should be
printed, print o instead. But, we must avoid printing dupli-
cates, and thus need to remember the set of printed strings
and consult this set before each print. Since a large chunk
of duplicates may be encountered, polynomial delay is not
guaranteed (although incremental polynomial time [24] is).
Nevertheless, polynomial delay can be obtained by combin-
ing the strategy used for Theorem 4.3, and the corollary
of Theorem 5.7 that finding a top answer under Inax is
tractable. Thus, we obtain the following lemma.

LEMMA 5.10. P(u) can be enumerated with polynomial
delay in decreasing Imax, given an s-projector P and a Markov
sequence p[n].

Finally, Theorem 5.2 follows immediately from Lemma 5.10
and Proposition 5.9.

6. RELATED WORK

Markovian-stream databases have seen interest in the last
couple of years with several distinct research projects. Kana-
gal and Deshpande [25,26] advocate an approach to answer-
ing queries on sequential databases where the data and the
query are transformed into a graphical model. They trans-
form queries that are expressed in a sequence algebra [50] to
probabilistic inference on graphical models. Their approach
allows them to handle more general correlation structures
than HMMs [27]. Their querying setting and complexity re-
sults appear to be inherently different from ours (e.g., they
do not consider hardness of approximation), and it would
be interesting to perform a detailed comparison with their
approach. The focus of the CLARO project [11, 55] is on
high-volume data streams, where even simple models like
HMMs may not be able to keep up with overwhelming data.
There, query processing is a streaming variant of SQL. The
LAHAR system [39,40,47] was originally motivated by RFID
data, but has been applied to other sensor data and speech
data as well. There, queries are essentially linear DFAs com-
bined with aggregation across many streams. Such a query
is Boolean, and at each time period it returns the probabil-
ity that it is evaluated to true. In all of these systems, the
queries have small result sizes, and so they do not have to
deal with the central technical problem posed in this paper:
coping with queries (namely transducers) that return huge
numbers of answers.



Table 2: Complexity of transducing Markov sequences

Measure general uniform emission deterministic s-projectors mdga:ed
s-projectors
Compégxity of FP#P_complete FP#P_complete PTIME FP#P_complete PTIME
conucence FP#P_complete PTIME PTIME PTIME PTIME
computation
Order for ranked Emax: [2a]™ Emax: [24|™ Emax: [2a4|™ Imax: n conf (PSPACE)
evaluation with
polynomial delay no order (PSPACE)
Inapprox. Vé > 0 gnt~? gnt? gnt 0 néf‘s N/A

In recent years, there has been a flurry of activity in dis-
crete probabilistic relational databases, notably the Mystiq
project [3], the Trio project [58], and MayBMS [22]. These
approaches all consider the query language to be SQL. A no-
table exception is the more expressive language of Koch [35,
36], which allows the query to introduce further uncertainty.
The problem of enumerating maximal answers to relational
joins over probabilistic relations has also been studied [33];
that problem is inherently different from those studied here,
and its analysis required different algorithmic and proof tech-
niques (with hereditary properties [6] playing a central role).
None of the above systems deal with sequential probabilistic
models. There has also been work on managing continuous
uncertainty, notably the Orion project [5,53] and the BBQ
project [10]. Extending our work to continuous Markov se-
quences (or HMMs) is a challenging direction.

Querying probabilistic data by automata has been ex-
plored recently [7] in the context of probabilistic XML, where
the studied problem is that of computing the probability of
acceptance by a tree automaton. There are inherent differ-
ences between that work and ours. First, it is not at all clear
whether their XML model can (efficiently) capture Markov
sequences. Second, as exhibited in this paper, transducers
introduce challenges that do not exist in automata (e.g., the
data complexity of determining the probability of an an-
swer). Finally, enumeration of answers does not arise there.

Towards the goal of tagging parts of speech, the work
of Kempe [29] has combined HMMs and transducers in a
different way: the HMM is converted into a transducer that
heuristically approximates the behavior of the HMM within
the task of tagging. In principle, such a conversion could be
used as an alternative approach to querying HMMSs, with the
advantage that query answering could be done by means of
composition of transducers. Note, however, that the notion
of querying there is inherently different from the one of this
paper, since the conversion into a transducer eliminates the
probabilistic aspect of the setting. In contrast, our query
evaluation is heavily based on the probabilistic behavior of
the Markov sequence (or the HMM)—the probabilities are
translated into confidence values of answers, and ranking
thereof.

7. CONCLUSIONS

Towards the goal of obtaining strong querying capabilities
in a Markov-sequence database, we studied the complexity
of evaluating a transducer over a Markov sequence. In par-
ticular, we considered answer enumeration and confidence
computation. We showed that the former is tractable, if

one poses no restrictions on the order of answers. The lat-
ter, however, can be #P-hard in the case of nondeterministic
transducers. Our main focus has been on the enumeration of
answers in ranked order (by decreasing confidence), which in
practice is much more desirable than unranked enumeration.
Unfortunately, ranked enumeration is intractable, and even
highly inapproximable; theoretically, the best one can do is
to apply our heuristic for enumerating by decreasing Emax.
The class of s-projectors allows for better approximations,
and in the case of indexed s-projectors, ranked enumeration
is actually tractable.

Table 2 summarizes our complexity results. Each column
corresponds to a class of transducers. The first row shows
the complexity of computing the confidence of an answer.
In each cell, the upper part is the query-and-data complex-
ity, and the bottom one refers to the data complexity. Here,
hardness under data complexity means ezistence of a trans-
ducer for which the problem is hard. The second row shows
the best approximation (i.e., scoring function and ratio) pre-
sented for enumerating with polynomial delay. For example,
“Imax: m” means enumeration by decreasing Inax, where the
guaranteed approximation ratio is n. The term “PSPACE”
means that the enumeration is with polynomial space. Fi-
nally, the third row shows the lower bounds we gave for the
problem of approximating the top answer. In this row, all
the lower bounds hold already under data complexity, except
for “uniform emission,” where hardness applies to transduc-
ers with only one state, but with an unbounded alphabet
Y4

This work has been restricted to transducers with deter-
ministic emission. In the course of our research, we found
that without this restriction almost every basic problem is
computationally hard (even in the presence of other, quite
severe restrictions). We postpone to future work the chal-
lenge of identifying interesting cases of nondeterministic emis-
sion to where our positive results extend. This work gives
rise to quite a few additional future directions. Important
subjects are approximating the confidence of an answer, and
an average-case analysis of approximate ranked evaluation.
There is the practical challenge of effectively implement-
ing the proposed algorithms. In particular, we intend to
combine these algorithms in the LAHAR system, so as to
strengthen its querying capabilities with transducers.
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