
Abstract

In this paper we describe the model used for the
NewsWire collaborative content delivery system. The
system builds on the robustness and scalability of Astrolabe
to weave a peer-to-peer infrastructure for real-time
delivery of news items. The goal of the system is to deliver
news updates to hundreds of thousands of subscribers
within tens of seconds of the moment of publishing. The
system significantly reduces the compute and network load
at the publishers and guarantees delivery even in the face
of publisher overload or denial of service attacks.

1. The Current Model for Internet Content
Delivery

The traditional model of web-based publish/subscribe
is poorly matched to websites that update their information
very frequently. The pull-model requires subscribers
to return to the publisher periodically to retrieve new
information. The information they receive may be not have
changed since their last access, and even if it has changed,
will often contain a large redundant subset when compared
to an earlier retrieval action. For example a community
news site such as Slashdot.org, where the front-page
summarizes recently added news articles, receives about
a million hits a day on this page, many from returning
consumers. It is estimated that a consumer who returns
4 times during a day receives about 70% redundant data.
Consumers who return more frequently (and Slashdot.org
has many) receive a much higher rate of redundant
data. From an end-to-end perspective, the bandwidth
necessary to support such a site is heavily underutilized,
as it is primarily employed to transport redundant data.
Slashdot.org has a policy that requests its consumers, and
certainly the automated consumers, to not pull the site
more than once per hour.

Another problem with the centralized approach is that
the publishers are very sensitive to overload and denial of

service attacks. As we have seen during the terrorist attacks
in September 2001, Internet news sites become completely
useless under overload, failing even to service a small
percentage of the visitors.

One way to address these problems involves what are
called RSS channels. Here an automated consumer pulls
a summary of the available information in XML format,
which can be used to determine whether full information
needs to be retrieved. Again using Slashdot as our example,
the RSS channel data would contain only headlines and
URLs to full articles. A second approach in dealing with
frequent pulls by subscribers is to use of a “last-modified/
if-modified-since/not-modified” http request/response
sequence combined with a delta-encoding for transmitting
only the changes to the information source. In both the
RSS and delta-encoding case the model for accessing
the summaries and the data, namely a pull-mechanism,
remains unchanged.

To guarantee robust and scalable access to information,
one would prefer to use a push mechanism for publishing
data that changes frequently. In this approach, the
consumer receives exactly the desired information without
any unnecessary overhead, in a timely manner, and avoids
having to frequently pull the producer. Such a service is
actually offered by some news site through proprietary
means (for considerable fees). Other sites offer e-mail
based services to provide client with latest news updates.
Many of the highest-volume news sites use a hybrid push/
pull approach to push their information to geographically
distributed content delivery nodes, from which the
consumer still has to pull the data.

2. The Case for Collaborative Content
Delivery

Our premise is that current push solutions fail to take
advantage of the collaborative power of the Internet. The
solutions are often proprietary, and employ a one-to-
many model where the producer is expected to deliver

A Collaborative Infrastructure for Scalable and Robust News Delivery

Werner Vogels
Cornell University

vogels@cs.cornell.edu

Chris Re
Cornell University

cmr28@cornell.edu

Robbert van Renesse
Cornell University
rvr@cs.cornell.edu

Ken Birman
Cornell University
ken@cs.cornell.edu

“personalized” content directly to each of the consumers.
The approach clearly has scalability limitations. Yet despite
these problems, there has been little activity by publishers
of the many real-time news sites to provide a coordinated
solution for this problem. We believe that the time has
come for an Internet-wide infrastructure for efficient real-
time content delivery.

The approach we favor is based on a scalable and
robust push-based publish/subscribe system, which
delivers data directly to consumers. The system would
support multiple publishers (news sources), each of which
would input updates into the system. A consumer would
subscribe to the appropriate subjects. This position paper
tackles the distribution aspects of the problem, using
peer-to-peer techniques. Notice that existing off-the-shelf
publish/subscribe systems are not scalable to Internet-wide
use, and often require extensive manual configuration and
dedicated dedicate server infrastructure.

This paper describes a peer-to-peer publish/subscribe
system that, we believe, really could operate at Internet
scale. Our solution is robust to disruption, rapid, offers
new ways of customizing delivery to subsets of the
subscribers, and needs no centralized infrastructure or
dedicated servers. The system is based on a set of peer-
to-peer component technologies, with which it weaves an
infrastructure for the delivery of message updates through
the direct use of cooperating end-nodes. Specifically,
our solution is based on Astrolabe; a software system
designed for ultra-scalable infrastructure and distributed
systems management. Astrolabe already exists, and our
new publish-subscribe technology is under development
now. We expect to make a prototype available for public
download in the late spring of 2002.

3. Astrolabe – Scalable Distributed
Management and Control

Astrolabe is technology that is designed for the
monitoring, management and data-mining of large-scale
distributed systems. The technology has four principal
properties:

1. Robust, through the use of epidemic techniques
2. Scalable, through the use of information

aggregation and fusion
3. Secure, through pervasive use of certificates
4. Flexible, through secure mobile code.
A detailed description of Astrolabe is outside the scope

of this paper and can be found in [1]. In the remained of
this section we will try to give sufficient background to
establish an intuitive notion of Astrolabe’s capabilities.

Astrolabe is best visualized as a collection of
hierarchical database tables. At the leaf table, a row is
assigned to a particular process or user, which is allowed
to update this row with attributes & values. These leaf
tables (and there may be a great many of them, perhaps
tens of thousands) are aggregated, with each leaf table
contributing a read-only summary row to its parent table
Each of these tables is limited to some small size (say, 64-
rows); thus the hierarchy may be several levels deep. The
same aggregation mechanism is used between each level.
We use the term zone to denote one of these tables (DNS
has a similar abstraction, the domain).

Stepping back, Astrolabe can be understood as a
database distributed through the network, but not residing
on any server. In contrast, the database in question is
virtual: like a jigsaw puzzle, each participant stores just a
part of the data structure, and the illusion of a tree of tables
is constructed at runtime through a peer-to-peer protocol.
The protocol also disseminates updates, which trigger
re-computation of parent tables much as a spreadsheet
updates dependent cells when the cells on which they
depend are updated. In a similar sense, one could say that
a peer-to-peer file system like PAST [2] resides in the
network, but is not fully represented by any server. Details
can be found in [1].

Our use of Astrolabe in this paper focuses on the data
associated with each computer connected to the system.
This data is organized into a single row per machine (or
per user), and can be understood as containing a time-
varying list of attributed exported by the machine. For our
purposes, those attributes define the machine’s subscription.
Attributes could be classical “subjects”, or could be very
remote from classical subjects, containing any sort of value
or descriptive information or even program-generated
information associated with the machine.

Recall that parent tables contain summaries or
aggregations of information in their child tables. Astrolabe
computes these summaries using aggregation functions,
which are expressions in SQL that take any number of
attributes from the child table and produce new attributes
for inclusion into the appropriate row in the parent table.
These aggregation functions are recomputed whenever a
row changes in a child table. The aggregations functions
are thus a form of mobile code, distributed throughout
system using the same epidemic techniques as are used for
updates to the data in the rows themselves, and executed
on the machines that run the system – the leaf nodes.
The system is fully secured through the use of public key
certificates.

Astrolabe’s epidemic communication techniques
guarantee that the state represented is eventually consistent,
e.g. if one were to freeze the system, all nodes would

eventually enter into consistent states. Of course, through
the information hierarchy imposed by the zoning structure,
each instance will only “see” the state of its neighbors and
of tables between itself and the root.

4. Astrolabe as an infrastructure
management service

Earlier, we commented that a weakness of off-the-shelf
publish-subscribe systems is that they require extensive
configuration. One of the premier applications of Astrolabe
technology is in the realm of infrastructure management.
The fact that Astrolabe represents state, instead of state-
transitions, and provides dynamic aggregation of the
individual state into information hierarchies, makes the
system highly appropriate for managing a distributed
infrastructure. For example, we have explored the use
of Astrolabe to manage dynamic bandwidth in media
applications, and for flow management and control
in telecommunications settings. The robustness and
scalability of the underlying epidemic technology make it a
very attractive system for environments where guaranteed
eventual consistency is essential to the operation of a
critical infrastructure. Thus, one use for Astrolabe in a
scalable publish-subscribe setting is to simply manage
the publish-subscribe subsystem. In doing so, we can
overcome one of the important obstacles to performing
publish-subscribe at Internet scale.

Examples of infrastructure management attributes that
can easily be stored in Astrolabe include the availability
and configuration of local communication paths, as well
as performance measurements of local networking and
computing elements. The aggregation functions used in this
setting would typically compute aggregated availability
and performance of network, and might offer real-time
guidance concerning which elements are in the min/max
category, and hence represent targets for new operations.

5. Application level multicast service based
on Astrolabe

A second use of Astrolabe is to support an application
level multicast service. The basic primitive used here
is a method SendToZone(zone,data), where the data is
disseminated through all the children zones to all the leaf
nodes that are in the tree under this zone. If the method is
executed with the root zone as the parameter, all the nodes
in the Astrolabe system will receive the data.

The information that the multicast system requires
from Astrolabe is the set of multicast representatives in
each zone. The representatives are selected in each zone

through an aggregation function that combines the local
knowledge of availability of independent network paths to
a node, the load on those paths and the load on each node.
This function will post the results to its entry in the parent
zone; together with some basic attributes on which higher-
level zone aggregation can be performed.

When a SendToZone is executed the system will visit
each of the entries in zone table, each representing a child
of this zone. For each of the entries the attribute with the set
of multicast representatives will be retrieved and the data
will be forwarded to one of the representatives based on a
set of local criteria such as where there currently are open
connections to one of the representatives. At the arrival
of the data at the representative, the process is repeated
recursively for all the children in the zone it represents,
until the data arrives at the leaf nodes, where it will be
delivered to the application Astrolabe is part of. In effect,
multicast is performed as a kind of recursive computation
on the aggregation in the zone.

For reasons of brevity, we omit additional details of
this mechanism. The actual implementation includes a
number of optimizations that accelerate multicasts in cases
where the same aggregation function is used by a series
of SendToZone operations. Although work remains to be
done, the protocol thus obtained should have many of the
properties of Bimodal Multicast, a peer-to-peer reliable
multicast protocol developed by our group several years
ago.

6. Publish/Subscribe based on Astrolabe

Jointly, these mechanisms permit us to define a publish/
subscribe architecture based on Astrolabe. Basically, the
solution extends the Astrolabe-based application-level
multicast with a selective forwarding mechanism. To
support this leaf nodes publish attributes that represent the
subscriptions in which the associated machine is interested.
Aggregation functions than perform a simple summary that
posts, in the parent zone, a list of the child zones in which
there are nodes interested in this subscription. Eventually
(within tens of seconds) the root zone will have all the
information on whether there are leaf nodes in the system
that have subscribed to particular publications.

Publishing data into the system is similar to the
multicast summarized above, except for that the decision to
forward the data to a child zone now is conditional on a leaf
below that child zone to have subscribed to the publication.
At the forwarding node this is a simple test that inspects
the subscription attribute in the aggregated information
for that child zone. If the attribute is present and it shows
active subscribers, the data will be forwarded to a child
zone representative.

Having an attribute for each possible subscription
would be poorly scalable because the work done for
purposes of filtering would be at least linear in the
number of subscriptions. Accordingly, our system
replaces the attributes with a Bloom filter that represents
all the subscriptions in the system. A Bloom filter is a
probabilistic mechanism for rapidly testing membership in
a large set using multiple hash functions into a single array
of bits. In the pub/sub system we can use a large single bit
array in the order of a thousand bits or more. At a leaf node
a subscription is hashed to a single bit in the array, and
the subscription arrays are aggregated into parent zones
trough a simple binary-or operation on the child arrays.
At the publishing node an attribute is added to the data
representing the bit position in the subscription array this
publication corresponds to. This information is then used at
each of the forwarding nodes to test whether the particular
bit position in the subscription array is set, and whether the
data should thus be forwarded.

The use of Bloom filters is not perfect, insofar as
multiple subscriptions can hash to the same bit in the
array. Accordingly, a final test is needed at the leaf node
whether the data that arrives at the node truly matches
a subscription. However, the accuracy can be made as
good as desired by varying the size of the bit array, and
we believe that a relatively small array will be more than
adequate for the target domain of our effort: Internet news
services.

7. News item subscriptions

Our publish/subscribe system is, among other things,
a research vehicle for understanding the trade-offs in
different mappings between news article meta-data and
subscription expressions. The news articles are published
in the ICE, NITF and NewsML formats [3], which are all
XML standards used in the news industry, which not only
deal with the description of the content but also provide a
mechanism for the standard description of the news-item
meta-data that is used in the construction of subscriptions.

An early internal prototype of the system, built as a
proof of concept, uses the simpler NITF format, with the
subscriptions expressed as a set of interest areas on a per-
publisher basis. Each available publisher is represented as
an attribute in Astrolabe, where the value of the attribute
is a small bit mask that corresponds to a specific set of
news categories this publisher provides. The bit masks
are aggregated in the same way as the Bloom filters,
as described in the previous section. This prototype has
limited scalability in the selection of publishers and is
not flexible in term of the expressiveness of subscriptions.
However, we expect to do much more as we move towards

NewsML and begin to enrich the subscription “space”
within which our Bloom filters operate.

8. A Collaborative Delivery Infrastructure
for News Items

Our publish-subscribe system is intended as a single
application that people can download and use to insert
themselves into the Collaborative Content Delivery
Network. Users would subscribe to a set of publishers
and provide more complex selection criteria based on the
meta-data associated with the news-items, in the form of
an SQL query. By inserting themselves into the network
they possibly provide forwarding services to other nodes
in the network depending on the criteria used to construct
set of zone representatives. A user will have access to a
set of configuration parameters that provides input into the
selection process.

The automatic configuration of application instances
into zones and the location in the zone hierarchy, as well
as the configuration necessary to handle firewalls, has been
addressed in the context of our overall Astrolabe research
effort, but is outside of the scope of this paper [1].

News producers would download and run a different
application capable of publishing information according to
a restrictive set of rules. These restrictions are necessary
to handle the authentication of publishers, to assure the
authenticity of the data they publish, and to perform flow
control. The infrastructure necessary to support these
functions is still a research topic.

Under the covers of the publisher is an application
identical to the subscriber application core, insofar as
it is just another Astrolabe leaf node, using its local
aggregation zone tables to drive the dissemination of its
data. The selection and filtering mechanisms used in each
forwarding component protect the system from flooding by
publishers.

A publisher is able to restrict the scope of the
dissemination of the data by selecting another zone than
the root zone to publish data into. This for example allows
the publisher to disseminate localized news items in Asia.
A future feature planned for the system is to allow the
publisher more control over the dissemination by adding
a predicates to the metadata that needs to be evaluated
using the attribute values of a child zone before it can be
forwarded to that zone. This would allow the publisher
to select the set of subscribers to which an item will be
delivered. For example, a publisher could send some item
only to “premium” subscribers, or onto to subscribers
which have previously shown an interest in certain
products.

9. The Forwarding & End System
Components

Our system seeks to deliver news items to the
subscribers in the order of tens of seconds, even if tens
or hundreds of thousands of subscribers are active. Each
forwarding component maintains a log file and a set of
forwarding queues, one for each of the representatives at
a child zone. The best strategy to fill queues is still under
research. We are experimenting with weighted round-robin
strategies, as well as some more aggressive techniques. In
this context we are also looking at what information the
representative can post into their tables to aid the selection
process.

News items are uniquely identified by the publisher
as part of the news item meta-data; this can be used to
remove duplicates, when (in the manner of the MIT
scalable publish-subscribe work [4]) we use multiple
representatives to forward a new item, to increase the
robustness of the delivery.

At the end system the news items are delivered to a
message cache, which is feeds the applications that use
the news items. Automatic cache management can be
configured to provide item management based on the meta-
data of the news items, which includes information about
item revision history. On the basis of this metadata, the
news item can be garbage collected, or fused or aggregated
into a more compact form.

The same cache is used for assisting in achieving end-
to-end reliability in the case of forwarding node failures,
and for a limited state transfer to participants that are
joining the system.

10. Experimentation and deployment

As described earlier in this paper we are currently
working with an early prototype which is to serve as a
proof of concept for the system. We are experimenting to
understand issues such as the complexity of forwarding
node selection, the use of redundant message publishing,
node failure & automatic zone reconfiguration and the
impact of those issues on end-to-end reliability, publisher

authentication, and of course the overall performance of
the system.

In parallel with this research we have started to build
a first production version of the system that is targeted for
wide-scale experimentation by actual users. We intent to
make two system configurations available late in the spring
of 2002; the first will be targeted towards the publishing of
technical news articles by sites such as Slashdot.org, Wired,
The Register, SilliconValley.com, News.com, etc. The
second configuration will be targeted towards the general
news distribution with publishing by Reuters, Associated
Press, the New York Times, etc. We are working to get the
collaboration of the major news sites, but we have already
developed some agents that are capable of transforming the
current RSS/HTML information from some publishers into
message streams for the system to bootstrap it.

The interface to the system is currently still under
development but it will be a full user control application
in the same style as many of the current file sharing
applications, with an additional web interface for access.
We are also looking for integration into popular content
aggregation systems such as Radio Userland [5] using
XML-RPC mechanisms

11. References

[1] Robbert van Renesse and Kenneth Birman,
Astrolabe, A Robust and Scalable Technology for
Distributed Monitoring, Management and Data Mining,
submitted for publication, 2002.

[2] Rowstron and P. Druschel, Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility, Proceedings of the 18th ACM Symposium
on Operating Systems Principles, pp. 160-173, Banff,
Canada, October 2001

[3] International Press and Telecommunication
Counsil, http://www.iptc.org.

[4] Alex C. Snoeren, Kenneth Conley, and David
K. Gifford, Mesh-Based Content Routing using XML,
Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pp. 160-173, Banff, Canada, October
2001.

