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Abstract

Expensive dataflow queries which may involve large-scale computations operat-
ing on significant volumes of data are typically executed on distributed platforms to
improve application performance. Among these, cloud computing has emerged as an
attractive option for users to execute dataflows allowing them to select proper config-
urations (e.g., number of machines) to achieve desired trade-offs between execution
time and monetary cost. Discovering dataflow schedules that exhibit the best trade-offs
within a plethora of potential solutions can be challenging, especially in a heteroge-
neous environment where resource characteristics like performance and price can be
varied. To increase resource utilization, users may also submit multiple dataflows for
execution concurrently. Traditionally, building fair schedules (schedules where the
slowdown of all dataflows due to resource sharing is similar) while achieving good
performance is a major concern. However, considering fairness in the cloud com-
puting setting where monetary cost is part of the optimization objectives significantly
increases the difficulty of the scheduling problem. This paper proposes an algorithm
for the scheduling of multiple dataflows on heterogeneous clouds that identifies Pareto-
optimal solutions (schedules) in the three-dimensional space formed from the different
trade-offs between overall execution time, monetary cost and fairness. The results show
that in most cases the proposed approach can provide solutions with fairer schedules
without significantly impacting the quality of the execution time to monetary cost sky-
line compared to the state of the art where the fairness of a solution is not taken into
account.

Keywords: Cloud computing, multiple dataflows, fairness, dataflow scheduling

1. Introduction

Big data applications may require the execution of expensive queries with the pro-
cessing of large volumes of data. Such dataflow queries (or dataflows) can be modelled
as a Directed Acyclic Graph (DAG) to describe operators (large-scale computations)
and data flow dependencies between them. In a quest for performance optimization,
distributed systems have been extensively used for the execution of dataflows allowing
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users to take advantage of their degree of parallelism and run independent operators
(operators without any data dependencies between them) simultaneously. On that ac-
count, optimization of application performance has been a major focus of research on
dataflow scheduling.

With cloud computing gaining popularity for the execution of complex, scalable
applications by offering a flexible environment to provision resources on demand on a
pay-per-use basis, monetary cost has become an equally important optimization objec-
tive to consider when selecting from the number of resources on which to schedule a
dataflow. Optimization objectives may often be conflicting resulting in a large space of
solutions with diverse trade-offs. For example, using a large number of resources will
usually lead to better performance at the expense of a higher monetary cost, compared
to executing all operators in a single resource. Often, a slightly longer execution time
may be tolerated when it comes with significant cost savings. Exploring configurations
with good trade-offs between the conflicting objectives is the aim of multi-objective
query optimization (MOQO). The complexity of the MOQO problem may further in-
crease with cloud providers offering heterogeneous resources which may differ in their
characteristics in terms of price and performance; different combinations of resource
types, each with a different number of virtual machines (VMs), can be chosen. Al-
though leading to a significantly larger space of alternative solutions compared to the
homogeneous case, heterogeneous configurations may be preferred in several cases
exhibiting better trade-offs.

In a distributed environment, a user may also submit for execution several indepen-
dent dataflow queries (DAGs) at the same time to share resources between them. Such
DAGs can be interleaved at a single execution schedule to better utilize the resources,
exploiting idle slots for the execution of different DAGs. However, as these DAGs
compete for the same resources, their performance may be affected compared to the
scenario of isolated execution (each single DAG being executed alone), e.g. by assign-
ing several operators to later slots or using less resources in a DAG. When scheduling
multiple dataflows, providing fair schedules (schedules where all co-scheduled DAGs
experience similar slowdown due to resource sharing) while achieving overall good
performance are important optimization objectives [1, 2]. The structure and charac-
teristics between different DAGs may significantly differ. For example, several DAGs
may have a larger degree of parallelism, a smaller number of operators or much shorter
operator runtimes. Such factors need to be considered when determining the order that
operators from different DAGs are scheduled as they can significantly impact the fair-
ness achieved in a schedule [3]. Achieving fairness in the Cloud when monetary cost
is an additional concern in the optimization problem for the scheduling of multiple
dataflows makes decision making even more difficult.

In this work, we present "Homogeneous to Heterogeneous Dataflow Scheduling
with Fairness” (HHDS-F), a fairness-aware scheduling algorithm for the execution of
multiple dataflows on heterogeneous clouds. The algorithm tries to identify Pareto-
optimal trade-offs between overall execution time, monetary cost and fairness explor-
ing the solution space in an efficient way. To the best of our knowledge, this is the first
work that deals with the scheduling of multiple dataflows to achieve Pareto-efficient
solutions in the three-dimensional space formed by the different trade-offs between
overall execution time, monetary cost and fairness.



The main contributions of this work are the following:

e We develop a two-stage heuristic for the scheduling of multiple dataflows on het-
erogeneous cloud resources to investigate Pareto-efficient solutions with respect
to overall execution time, monetary cost and fairness.

e We present a novel pruning method to select a number of respresentative solu-
tions distributed along the Pareto curve by favoring points at sharper parts of the
curve and leaving fewer points at flatter parts.

e We present a prioritization scheme to rank operators that come from DAGs with
different characteristics and determine the order they are scheduled so that fair-
ness can be promoted.

e We provide an experimental evaluation and comparison with the state of the art
to show the effectiveness of the proposed approach to provide a better and more
divergent skyline of solutions using realistic dataflows.

The remainder of the paper is organized as follows. Related work is presented
in Section 2. Problem description follows in Section 3. The proposed approach is
described in Section 4. The experimental evaluation and its results are discussed in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

DAG scheduling [4] on distributed environments like grids and clouds has been
extensively studied, traditionally aiming at optimizing execution time or monetary cost
[5, 6,7, 8,9, 10, 11]. Several single-objective or constrained multi-objective opti-
mization algorithms have been proposed [5, 8, 9], while others [6, 12] formulate the
multi-objective optimization problem as a weighted single-objective problem incorpo-
rating user preference parameters into the objective function to balance the trade-off
between the different objectives.

Our work is more related to Pareto-based approaches [7, 10, 13] that follow the
concept of Pareto dominance to generate a set of non dominated solutions (skyline)
and achieve different trade-offs between execution time and monetary cost when there
is no single schedule that optimizes all the objectives. MOHEFT [10] extends HEFT
[5], a well-known scheduling heuristic for the minimization of overall execution time
on heterogeneous resources, by keeping at each step a set of partial solutions as op-
posed to a single schedule where the task is assigned to the slot with the earliest finish
time. The selection of solutions to be kept is based on the crowding distance metric that
tries to measure the surrounding area of each skyline point where no other skyline point
exists. Different pruning schemes for the selection of a number of representative points
in the skyline have been investigated [14, 15]. The maximum coverage representative
skyline is computed in [14] selecting points that maximize the area of dominant solu-
tions (dominance area), while the dominance power-inverse dominance power metric
is introduced in [15] to favor solutions which dominate more genuine points, points
that are dominated by fewer points.



Most of the aforementioned DAG scheduling approaches consider single dataflows.
The problem of multiple DAG scheduling has also been studied [16, 2, 17, 1, 18]. Mul-
tiple DAGs with similar or different structures can be scheduled in different ways, such
as one after the other, merged into a composite DAG with a common entry or in turns
interleaving the tasks of different DAGs in the schedule [2, 1]. Fairness, defined by the
slowdown of each DAG experienced due to resource sharing with other DAGs [1], is
an important aspect in multiple DAG scheduling and several algorithms that account
for fairness have been proposed and evaluated [2, 1, 19, 16, 18, 3]. The RANK_HYBD
algorithm in [16] prioritizes jobs with larger upward ranks when they come from the
same DAG (same as HEFT [5]) and smaller upward ranks when they come from dif-
ferent DAGs to favor jobs closer to the exit nodes or less complex jobs. The dynamic
scheduler in [18] ranks the tasks of different DAGs based on the percentage of unsched-
uled tasks of the DAG and its critical path length with the aim to prioritize DAGs that
are almost completed or only have few tasks to execute. Our work is more related to
static algorithms that optimize both execution time and fairness like [1]. However, our
work focuses on fairness in the Cloud when financial costs are part of the optimization
problem. Thus, we also consider the monetary cost in decision making to explore dif-
ferent trade-offs for the scheduling of multiple DAGs of a single user that come at the
same time. A considerable body of work considers multi-resource fairness to allocate
proper resource shares (e.g., CPU and bandwidth) to users depending on the different
job resource demands [20]. Our work focuses on the impact of operator assignments
to different resource slots on the makespan of each dataflow in the solutions built.

Finally, multi-objective query optimization (MOQO) approaches like [21, 22] fo-
cus on determining the join orders of the operators to develop a set of Pareto-optimal
query plans based on multiple cost metrics in addition to execution time. The work
in [22] proposes approximation schemes to solve the optimization problem in cloud
environments. Such MOQO schemes are complementary to our work, as they focus on
a different level of query plan optimization.

3. Problem Description

Varying the assignments of dataflow operators may result in solutions with diver-
gent trade-offs, among which several solutions may be better than others with respect
to one or more objectives. A single optimal solution that outperforms all others may
not exist, as the objectives may be conflicting. Following the principle of Pareto domi-
nance [23], the set of non-dominated solutions comprises a Pareto front (skyline). This
work focuses on the scheduling of multiple dataflows on the Cloud which are ready for
execution at the same time with the aim to build fair schedules while optimizing overall
execution time and monetary cost.

3.1. Application model

The dataflows under study can be modelled as a Directed Acyclic Graph (DAG),
where the nodes represent operators (computations) and the edges flows of data trans-
fers between them. We consider store-and-forward operators like in [24] where the
execution of an operator can only start after all the input data from its predecessors are



available. The simplified performance model of Equation 1 is assumed with operator
runtimes being inversely proportional to the computational speed of the VM assigned:

sizeop

ey

runtime,, = speeduy’
where size,, is the size of operator op in millions instructions and speed,,, is the pro-
cessing capability (computational speed) of the VM type given in millions instructions
per second. In reality, performance may vary for jobs with different resource charac-
teristics, such as CPU-intensive or I/O-bound jobs. The performance model can be
easily extended to account for performance variation between operators with different
resource characteristics and use more accurate runtime estimates.

Cloud Model. Cloud providers offer resources in the form of VMs which may differ
in their characteristics, such as performance and price. We consider a model similar to
Amazon Elastic Compute Cloud (EC2) [25] with VMs being provisioned on demand
for as much time as needed. The user is charged for the whole time quanta leased with
partial time units rounded to the full time units. For example, a VM is charged as a
full hour even if it is only used for several minutes. A VM is considered to be active
during a time quantum when one or more operators run on it. Also, we only consider
the computing service, assuming that the storage service is accessible from each VM
at the same cost (network bandwidth). A shared cloud storage system, such as Amazon
S3 [26], is used to store and retrieve data. Input data required for the execution of an
operator are retrieved if needed and stored locally at the assigned VM. Data transfer
between operators that run on the same VM is 0O like in [24]. After the execution
of an operator completes, its output data are stored to the storage system used. The
execution of an operator may overlap with data transfers from/to the storage service,
however, operators do not run concurrently on a VM, but have exclusive access to it,
like in [27].

Multi-objective Model. As mentioned earlier, a user may submit multiple DAGs to be
scheduled at a given time. The dataflows may differ in their characteristics such as the
number of operators and DAG structure. An obvious concern for the user is achieving
overall good performance, e.g. incur overall low cost and execution time. However, the
performance of each single dataflow may also be of great importance. We quantify the
quality of an execution schedule based on its overall makespan, monetary cost and fair-
ness achieved. Overall makespan (or schedule length) is the time required to complete
the execution of the set of the DAGs and can be computed as the maximum completion
time between all the operators of the co-scheduled dataflows [18]. Similarly, overall
monetary cost is the cost required to run all the DAGs in the schedule and is given by
the summation of the number of time quanta each VM in the schedule is leased multi-
plied by its price. The quality of a schedule with respect to fairness is quantified using
an unfairness metric that measures the difference between the slowdown of the DAGs
that experience due to co-scheduling. The slowdown (or stretch) of a DAG is given
by the level of performance (i.e., makespan) achieved when DAGs are co-scheduled



divided by the level of performance achieved when each DAG is scheduled alone [19]:

Makespanscheduled

Slowdowny =

Makespan gy, )
where Makespancpequie, is the makespan of DAG d in the schedule and Makespanyn,
is the makespan when DAG d is scheduled alone. Lower values of Equation 2 indicate
better performance in the presence of multiple dataflows (smaller slowdown). The
inverse of the standard definition of the slowdown is also used in the literature [1].
Unfairness is defined as the average absolute value of the difference between the stretch

(or slowdown) of each DAG d, Slowdown,, and the average stretch (slowdown) per
DAG, AvgSlowdown [19]:

Unfairness = Z |Slowdowny — AvgSlowdown)|. 3)
Vdedags

Lower values of unfairness (close to 0) indicate fairer schedules where the slowdown
of all DAGs is similar while larger values of unfairness indicate schedules where the
slowdown of each DAG varies. In this work, the standard definition of slowdown
(Equation 2) is used in decision making to build fair schedules where dataflow perfor-
mance is affected as less as possible.

4. Algorithm Description

In this section a multi-objective scheduling algorithm, Homogeneous to Heteroge-
neous Dataflow Scheduling with Fairness (HHDS-F), that iteratively builds a skyline
of solutions for the execution of a set of dataflows on suitable VMs is presented. The
algorithm extends HHDS in [28] to compute Pareto-efficient solutions in the three di-
mensional space formed by the different trade-offs between execution time, monetary
cost and unfairness for multiple dataflows. HHDS-F uses a new ranking scheme to
prioritize operators that come from different DAGs so that fairness is achieved and
extends the knee-based pruning method to explore good trade-offs between execution
time, monetary cost and unfairness. Similarly with HHDS [28], HHDS-F works in two
stages; in the first stage, it tries to explore homogeneous solutions close to the optimal
Pareto front for each available VM type, iteratively assigning the operators to poten-
tial idle slots. Based on their unified skyline, the algorithm explores heterogeneous
configurations with lower execution time, monetary cost and/or unfairness in the sec-
ond stage, gradually changing the type of VMs at each schedule when newly created
solutions improve the obtained skyline.

4.1. Computation of Homogeneous Skyline Stage

The first stage of HHDS-F is shown in Alg. 1. The algorithm initially ranks the
operators following the procedure described in Section 4.2 to determine the order in
which they will be scheduled, providing a local ordering for operators within a DAG
and a global ordering for operators from different DAGs. Next, for each VM type avail-
able, the algorithm iteratively builds the skyline of homogeneous solutions, assigning



the next ready operator (the operator with the highest priority) to all potential slots in
each partial solution considered. These include both idle slots at already used VMs
and slots at newly added VMs which meet the data dependency constraints (lines 6-
9). The solutions built at the end of the step (i.e., the partial schedules built with
the newly added operator) are then pruned to discard dominated solutions that do not
belong to the skyline. The skyline is further pruned (line 12) when the number of non-
dominated solutions is larger than the predefined parameter k (the desired number of
solutions to keep) using the approach described in Section 4.2.3. Finally, a parame-
ter (vmU pgrading) to indicate whether the type of the VM used at a schedule can be
upgraded, degraded or both in the second stage (line 6) is assigned for each solution
kept.

4.2. Operator Ordering

The algorithm assigns the operators to available slots using a top-down approach
with each operator being ready for scheduling when all of its predecessors have already
been assigned. The selection of the operator to be scheduled next from the list of
ready operators is based on their ranking. The following procedure is used to assign
priorities: operators within each DAG are ranked based on their mean slack and level
like in [29] to obtain an ordered list for each DAG (local ordering) and then the separate
lists are interleaved to generate a global ordering and prioritize operators that may come
from different DAGs: the first operator from the ordered list of each DAG is selected
and among them the operator with the largest global rank is prioritized. In brief, the
operator with the highest local priority in the DAG with the highest global rank is
prioritized.

4.2.1. Local ordering of operators from a single DAG
Operators within a DAG are initially divided into levels (stages) based on the data
dependencies between them. The level of each operator is given by its longest path

Algorithm 1 Homogeneous Skyline Computation Algorithm

1: procedure GENERATEHOMOSKYLINE(dags,vmType, k)

2: readyOps <+ operators from all dags with no dependencies

3: while readyOps # 0 do

4: op <+ ready.pollFirst() > operator with maximum local priority from the DAG with the highest

global rank

5 for p € skylinePlans do

6: candPlans < allocateNewV M (vmType,vinU pgrading)
7 for Yvm € p do

8: p' « p+assign(op,vm)

9: candPlans.add(p')
10: end for
11: end for
12: skylinePlans < get PrunedSkyline (candPlans)
13: Update readyOps
14: end while
15: return skylinePlans

16: end procedure




from an entry node of the dataflow (dag), computed as the maximum level of its pre-
decessors, preds,),, increased by 1:

levely), = maxpe preds,,levely + 1, (@)

with the level of each entry node (operators without any predecessors) being 0. Opera-
tors in lower levels are assigned a higher priority. Between operators of the same level
more critical operators are prioritized. The criticality of an operator is indicated by
its mean slack on the different VM types, computed based on the summation of their
upward and downward ranking (the longest path from an exit and entry node, respec-
tively) like in [27]. A larger summation indicates more critical operators (a smaller
slack). The upward rank is computed recursively starting from an exit node as:

uRankyp = Wop +maxsesuces,, (URanks +comCostyp ), 5)

where comCost,,_. is the communication cost between operators op and s. The up-
ward rank of an exit node is equal to its mean execution time W,,. The downward rank
is computed recursively starting from an entry node as:

dRank,, = maxpepreds,, (Wp + dRank, + comC 0Stp—0p)- 6)
The weight (rank) of the operator op is then given by Equation 7:
rank,, = uRank,, + dRank,,. 7

An operator op is considered to be on the critical path if rank,, = maxv;cqq, rank; [27].
Hence, operators with larger weights are assigned a higher priority.

4.2.2. Global ordering of operators from different DAGs
The idea is to alternate operators from different DAGs so that the scheduling of
operators from DAGs that have a larger percentage of remaining operators or a larger
percentage of the critical path to complete are prioritized. This is opposed to the goal
of dynamic scheduling in [18] to prioritize DAGs that are almost completed or have a
few tasks to run assigning ranks based on the inverse of the percentage of remaining
operators and the percentage of the critical path. Thus, we use Equation 8 to assign
priorities (global rank) between operators that belong to different DAGs so that fairness
is achieved:
gRank,,, = remOpsPercy - remPathPercy, (8)

where remOpsPerc, is the percentage of unordered operators in DAG d of operator op
and remPathPerc,p, is the longest path from the operator to an exit node (upward rank)
divided by the critical path of the DAG computed using Equation 9.

uRank;

remPathPercg, = ————,
maxyjedag rank;

©))
with uRank; and rank; computed using Equations 5 and 7, respectively. Note that
communication cost is considered in the notion of the path (included in the computation
of the ranks) as the impact of data transfers on data-intensive flows may be significant.



4.2.3. Skyline Pruning

The number of different execution schedules built at each step may be large and
exhaustive search (keeping all the potential solutions) may not be feasible. To reduce
the search space, the skyline of partial solutions is computed and pruned at each step to
keep only a number of representative solutions that outperform in terms of execution
time, monetary cost or unfairness.

The knee-based pruning method proposed in [28] is extended to select representa-
tive points in the three-dimensional space of trade-offs between execution time, mon-
etary cost and unfairness when the number of skyline solutions is large (more than the
predefined parameter k).

As solutions are only partially built and overall makespan is not known until all
operators from the DAGs are scheduled, the notion of partial unfairness is introduced
to select partial solutions that can lead to schedules where fairness can be promoted.
We compute partial unfairness based on Equation 3 by setting the slowdown of each

DAG to:
Makespanpartiald

Slowdowng = (10)

MakespanpartialOwnd ’
where Makespan aytiq;, is computed as the maximum completion time between the
already scheduled operators of DAG d based on the operator assignments in the partial
solution built and Makespan ,q,tiaiown, is the maximum completion time between the
scheduled operators in the case of isolated execution of the DAG which is computed as
the maximum downward rank of Equation 6 between the already scheduled operators
based on the structure of the DAG !. The idea is to compare the makespan achieved in
the partial solution built with a partial critical path, as the schedule is not fully built.
Knee-based pruning aims to identify the knees of the Pareto curve, i.e. skyline
points which differ significantly in terms of time, money or unfairness from solutions
close to them offering more interesting trade-offs. Such solutions may be important as
they can result in high savings compared with other solutions. For example, significant
savings in monetary cost may be achieved with a small increase in execution time and
unfairness. Thus, skyline points at the knees of the Pareto curve have a higher proba-
bility of being selected. To do so, we compute the average value 8", of the discrete
second partial derivatives 6r¢”, and Ouc”, of each skyline point sp of execution time
and unfairness with respect to monetary cost, respectively. The discrete second par-
tial derivative 8¢c”, is approximated as the difference between the first order partial
derivative of execution time with respect to cost of sp and its adjacent left and right
skyline points, and Ouc” ), is similarly computed for unfairness. We consider a skyline
point to be a knee if ", is more than or equal to the mean of all the skyline points. Fi-
nally, points that are distant from the knees also have a higher probability to be kept so
that the representative skyline can cover a wider area of solutions. The procedure fol-
lowed to prune the skyline of solutions in each step is described next. The two extreme
points which correspond to the cheapest and most expensive plans in the sorted skyline

"Note that we consider the mean execution time Wop of each operator op in the DAG and the average
communication cost in the computation of the partial critical path as the set of critical operators may vary in
different configurations (VM types and number of VMs) in the heterogeneous environment.



are kept and k — 2 solutions are additionally selected based on the scoring function of
Equation 11 (knee-based metric):

scoregp, = Gl/sp - distyp n, (11)

where 0", is the average value of the discrete second partial derivatives of skyline
point sp of execution time and unfairness with respect to monetary cost and dist,, i, is
its euclidean distance from its nearest knee kn of the Pareto curve. Skyline points with
larger scores are preferred. Parameters 0” sp and distsp 1, of Equation 11 are normal-
ized by their maximum value; the maximum second derivative between all the skyline
points and the maximum distance between the two extreme skyline points, respectively.
Distance distqp, k, is set to 1 for skyline points that are knees.

4.3. Computation of Heterogeneous Skyline Stage

After computing the unified skyline from the homogeneous configurations obtained
for the available VM types (line 4 of Alg. 2), the algorithm tries to explore heteroge-
neous configurations that improve the skyline with better and more diverse trade-offs.
This is done by gradually upgrading or degrading the VM types used at the obtained
configurations according to the value of the parameter vinU pgrading assigned to each
solution. For homogeneous solutions with the parameter set to ascending/descending
indicating that both directions (upgrading the VMs or degrading the VMs) can be fol-
lowed, the algorithm keeps two copies of the plan in the skyline and changes the param-
eter of the copies to ascending and descending, respectively, to explore configurations

Algorithm 2 Heterogeneous Skyline Computation Algorithm

1: procedure GENERATEHETEROSKYLINE(dags,vmTypes, k)
2: Order the operators from all dags globally
3: pareto.add(generateHomoSkyline(dags,vmType,k)),YvmType € vmTypes
4 plansToU pgrade < getPrunedSkyline (pareto)
> If vmU pgrading = asc./desc. keep a copy for each value

5: while plansToU pgrade # 0 do
6: for plan € plansToU pgrade do
7: getSlackTime (op), Yop € p
8: vmSorted < sort VMs in plan based on their average slack
> asc. or desc. order based on vinU pgrading
9: while vmSorted # 0 do
10: vmToU pgrade < vmSorted.pollFirst()
11: nextVMType < getnextV MType(vinToU pgrade)
12: newPlan < update schedule of plan for nextVMType
13: if newplan is dominated by plan > no improvement on time, cost or partialUnfairness
14: break
15: else
16: modifiedPlans.add(newPlan)
17: end if
18: end while
19: end for
20: pareto < getPrunedSkyline (pareto UmodifiedPlans,k)
21: plansToU pgrade < V' plan € modifiedPlans N pareto
22: end while
23: Return pareto

24: end procedure

10



with larger VM types (first copy) and smaller VM types (second copy). The procedure
that follows is repeated to modify the current plans and improve the skyline. For each
plan, the slack time of each operator, the time the execution of the operator can be
delayed without extending overall dataflow execution time, is computed as:

slackTime,, = Ist,p, — estyp. (12)

In contrast to mean slack defined in Section 4.2 which is independent of the op-
erator assignments to VMs, the computation of the slack time in Equation 12 ac-
counts for both the structure of the DAG and the specific assignments in the plan.
The earliest start time of each operator op at the plan is computed recursively as:
estop = Maxpe predsop(est,, + runtime, + comCostyp_,p), Where preds,, includes both
the predecessors of the operator in the DAG and the VM assigned. The latest start time
of op is given by: Ist,, = minsemcesop(lsts — comCost,p—s — runtime,p), with succs,
including both the successors in the DAG and the VM assigned. For each VM of the
plan the mean slack time of the operators assigned to it is computed and the VMs are
sorted accordingly (line 8). The VM with the largest/smallest mean slack time is se-
lected to be degraded/upgraded (based on the plan’s vinU pgrading value) and the slots
assigned to operators are updated. The monetary cost and the execution time of the
newly generated plan are computed and the plan is kept when savings in monetary cost
and/or execution time can be achieved (line 16). Otherwise, the plan is rejected and the
algorithm continues with the next plan in the list (line 14). After updating all the plans
in the list, the algorithm computes and prunes (if needed) the new skyline rejecting
dominated and non-representative solutions (line 20). The algorithm continues to the
next iteration following the same procedure for the newly created plans in the represen-
tative skyline to upgrade/degrade the VMs to the next available VM type and generate
new solutions. The algorithm terminates when no new solutions are kept in the com-
puted representative skyline or the smallest/largest VM type is reached for every plan
returning the obtained skyline.

5. Experimental Evaluation

In this section, the skyline obtained using the proposed algorithm HHDS-F is eval-
uated and compared with the state of the art based on simulations for two different
dataflow families.

5.1. Methodology

The simulator of the Exareme distributed dataflow processing engine [24, 30] was
modified and used to implement and evaluate the proposed approach [31]. Differ-
ent VM types are assumed using five Amazon EC2 instance types, namely, m1.small,
ml.large, m2.xlarge, m2.2xlarge and m2.4xlarge, to cover different instance families.
The time required for the execution of each operator at the different VM types is mod-
elled based on the CloudHarmony Compute Units?. The communication cost between

Zhttps://cloudharmony.com/
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operators assigned to different VMs is computed assuming a network of 1Gbps, while
it is considered to be 0 between operators that run on the same VM. HHDS [28] is used
as a baseline to evaluate the performance of the proposed approach HHDS_F modelling
the set of dataflows to be scheduled as a DAG of independent subdags that can start at
the same time (common entry). Pruning parameter k, which indicates the number of
solutions to be kept in the representative skyline at each step, is set to 10. Synthetic
data (operator runtimes and data sizes) of two real scientific applications, Montage [32]
and LIGO [33], are used. Montage is an astronomy dataflow application used to gen-
erate image mosaics of the sky. LIGO is used to analyze galactic binary systems for
the detection of gravitational waves in the universe. A set of 20 dataflows with mixed
sizes (50 and 100 operators) is used with dataflows obtained by the workflow generator
in [34]; an equal number of dataflows for each application and size is used. Finally,
the labels “multiObj” and ”biObj” refer to the pruning schemes where fairness is con-
sidered or not in decision making (HHDS-F and HHDS, respectively), while the labels
”dagMerge” and “commonEntry” refer to the ranking schemes where operators from
different subDAGs are prioritized or not (HHDS-F and HHDS, respectively).

Comparison of skylines for different pricing schemes. Initially, the skylines obtained
using the baseline algorithm HHDS and the proposed variant HHDS_F are compared.
Figures la-1b and Figures 1c-1d show the results for per second and per hour pricing,
respectively. As HHDS does not account for multiple dataflows, the dataflow ensemble
is considered as a single DAG (superDAG) of subDAGs with different entry nodes.
Also, in the case of hourly pricing, multipliers are used for the operator runtimes and
data sizes (100, 100, respectively) to generate dataflows with longer execution times
(order of hours), similarly to [28]. Overall, HHDS-F keeps schedules with lower values
of unfairness sometimes at the expense of monetary cost or execution time, while there
is a single solution obtained by HHDS-F which is dominated by a solution obtained
using HHDS in the case of hourly pricing. This may be due to the fact that HHDS takes
into account resource utilization to select between plans with similar execution time
and cost while HHDS-F favors partial plans with lower values of partial unfairness.

Impact of pruning scheme. As mentioned earlier, the main differences between the
algorithm HHDS and its variant HHDS-F are the pruning and prioritization schemes
used. In this section, we investigate the impact of the pruning scheme in the quality of
the obtained skyline (Figure 2). Pruning used by HHDS-F (labelled as multiObj) takes
into account unfairness in decision making to also keep fair schedules where the delay
in the execution of different subDAGs depends on their characteristics. For example,
the makespan for subDAGs with shorter critical paths will be smaller (resulting in a
similar slowdown). In contrast, HHDS may select solutions with low monetary cost or
execution time where all the subDAGs have similar makespan although they may sig-
nificantly differ in their characteristics. For example, the execution of operators from
longer subDAGs which belong to lower levels may be favored delaying the execution
of operators that belong to shorter subDAGs but a higher level. As a result, incorpo-
rating fairness in decision making leads to keeping solutions which may be dominated
by other solutions in terms of execution time and cost (Figure 2a) but lead to fairer
schedules (Figure 2b).
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Figure 1: Comparison of skylines obtained for different pricing schemes.
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Figure 2: Impact of pruning on the obtained skyline (per-second pricing).

Impact of prioritization scheme. We also investigate the impact of the prioritization
scheme used on the quality of the obtained skyline (Figure 3). The skyline solutions
obtained using the prioritization scheme of HHDS-F (labelled as dagMerge) are com-
pared with the solutions obtained using HHDS to indicate the importance of global
ranking for fairness. Although unfairness is not considered in decision making, priori-
tizing between operators from different DAGs may greatly affect the obtained skyline
identifying in several cases more expensive but fairer execution schedules. There is a
single solution obtained by prioritizing between operators from different DAGs which
is dominated by a solution obtained using HHDS.

13



9 . . . . 2600 | . . .
biObj commonEntry (HHDS) A biObj commonEntay (HHDS) &
8 - biObj dagMerge  * . 2400 - biObj dagMerge ¥ L
74 L
2200 # +
X A
~ 61 L
< 5 2000 S
E 57 L g A
2 £ 1800 ] A 8
E 4 F £ 3
< * > 1600 4 F
i} N
& 3 N r *
] L 1400 4 % % L
2 -
14 X A L 1200 1y N =
0 T T T T T T 1000 T T T T T T
13000 13500 14000 14500 15000 15500 16000 16500 13000 13500 14000 14500 15000 15500 16000 16500
Total Money ($) Total Money ($)
(a) Cost-time trade-offs (b) Unfairness-cost trade-offs

Figure 3: Impact of ranking on the obtained skyline (per-second pricing).

Selecting solutions based on user-defined constraints. The set of skyline solutions can
be presented to users to manually select the configuration that better fits to their re-
quirements. Alternatively, users may specify their preferences in advance to refine the
solution space constraining the scheduling problem, such as setting the objective to
maximize fairness while meeting specific deadline and budget constraints. Although
by adding the constraints the solution space to be explored may be reduced, the quality
of the solutions obtained may also be affected. In this section, we investigate the ef-
fectiveness of the algorithm to handle such scenarios in order to generate solutions that

Algorithm 3 Minimize unfairness under budget and deadline constraints

1: procedure GENERATESOLUTION(dags,vmTypes,k,budget,deadline)
2: Order the operators from all dags globally
3: pareto.add(generateHomoSkyline(dags,vmType,k)),YvmType € vmTypes
4 plansToU pgrade < getPrunedSkyline (pareto)
> If vmU pgrading = asc./desc. keep a copy for each value

5: while plansToU pgrade # 0 do
6: for plan € plansToU pgrade do
7: getSlackTime (op), Yop € p
8: vmSorted < sort VMs in plan based on their average slack
> asc. or desc. order based on vinU pgrading
9: while vmSorted # 0 do
10: vmToU pgrade < vmSorted.pollFirst()
11: nextVMType < getnextV MType(vinToU pgrade)
12: newPlan < update schedule of plan for nextVMType
13: if newplan is dominated by plan > no improvement on time, cost or partialUnfairness
14: break
15: else
16: modifiedPlans.add(newPlan)
17: end if
18: end while
19: end for
20: pareto < getPrunedSkylineWithinConstraints (pareto U modifiedPlans,k,budget ,deadline)
21: plansToU pgrade < Vplan € modifiedPlans N pareto
22: end while
23: Return pareto.getMinUn fairnessPlan

24: end procedure
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meet the user-defined objectives. To do so, we modified Algorithm 2 so that solutions
that exceed the makespan and cost constraints are not considered in the computation
of the pruned skyline (line 20), while the plan that minimizes unfairness is selected
from the solutions obtained in the final skyline (line 23), as shown in Algorithm 3.
Table 1 shows the results for different combinations of time and cost constraints cov-
ering scenarios with shorter/longer deadlines and lower/higher budgets. In most cases,
the variant of the algorithm (Algorithm 3) returns solutions within the constraints. All
of the solutions belong to the skyline obtained in Figure 1 of Algorithm 2 where no
constraints are considered. In the case of the short deadline (2 mins) and low budget
(13.5x10°$), there is no solution found that meets the constraints.

Table 1: Solutions for fairness under different budget and deadline constraints (per-second pricing).

Constraints Solution with min unfairness Difference from skyline
Budget | Deadline || Cost Makespan | Unfair- Cost | Makespan | Unfair-
(x10%$) | (min) (x10%$) | (min) ness (%) | (%) ness (%)
13.5 2.0 no solution found 0 0 0

13.5 5.0 132 3.0 19.2 0 0 0

13.5 8.0 13.2 3.0 19.2 0 0 0

15.0 2.0 14.0 1.3 32.5 0 0 0

15.0 5.0 13.2 3.0 19.2 0 0 0

15.0 8.0 13.5 5.2 8.0 0 0 0

16.5 2.0 14.0 1.3 32.5 0 0 0

16.5 5.0 13.2 3.0 19.2 0 0 0

16.5 8.0 135 52 8.0 0 0 0

6. Conclusion

The work in this paper addressed the problem of scheduling multiple dataflows on
heterogeneous clouds to identify Pareto-optimal schedules in the solution space formed
by the different trade-offs between overall execution time, monetary cost and fairness.
The proposed algorithm extends previous work by incorporating a ranking scheme to
prioritize between operators that belong to different dataflows and a pruning method
to account for fairness in addition to execution time and monetary cost introducing the
notion of partial unfairness. Our proposed approach is static considering the scheduling
of multiple DAGs submitted by a single user. Future work could deal with multiple
DAGs that come at different times. Finally, improving the knee-based metric to better
approximate the knees of the Pareto curve using all partial derivatives and investigating
its impact on the quality of the skyline could be another direction of future work.
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