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Abstract—Elasticity makes cloud computing an attractive plat-
form for executing complex large-scale expensive dataflows, as it
enables different trade-offs between execution time and monetary
cost, by varying the number of resources to be provisioned. With
cloud providers offering heterogeneous types of resources with
different performance and price characteristics, the problem of
identifying the various trade-offs available is a great challenge,
as the number of possible alternative configurations increases
significantly compared to a homogeneous environment, which is
itself already computationally difficult. This paper proposes a
novel algorithm for dataflow scheduling on heterogeneous clouds
that identifies solutions (schedules) close to the optimal pareto
front, by exploring the search space in an efficient way. The
results of an experimental comparison with the state of the art
show that, in several cases, the proposed algorithm provides
a richer, more diverse set of solutions, several of which are
characterized by significantly better time-money trade-offs.

Index Terms—multi-objective optimization; dataflow schedul-
ing; heterogeneous clouds

I. INTRODUCTION

Big data applications may often involve execution of ex-
pensive queries and processing of large amounts of data. Such
queries are often represented as dataflows that describe large-
scale computations (operators) and data flow dependencies
between them. Distributed platforms have been widely used for
the execution of this type of applications. Among these, cloud
computing is rather popular as it allows resource provisioning
on demand, on a pay-per-use basis. As cloud providers offer to
users the flexibility to select from the number of resources on
which to schedule their dataflows, the challenge of optimizing
both application performance and monetary cost has emerged.

Distinct optimization objectives may often be conflicting.
For example, using a large number of resources to execute
independent operators (operators without any data dependen-
cies between them) will usually lead to better performance
but higher cost than using a single resource to execute every-
thing. Hence, different configurations can be chosen to obtain
different time-money trade-offs.

In terms of performance and price characteristics, het-
erogeneity of resources makes the scheduling problem even
more complex; the possible combinations of different resource
types, each with a different number of virtual machines (VMs)
of each type used, result in a significantly larger space of
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alternative trade-off solutions than the homogeneous case.
Nevertheless, heterogeneous configurations may also lead to
faster and/or cheaper execution schedules (plans) compared to
homogeneous configurations. Multi-objective query optimiza-
tion (MOQO) aims at exploring the space of potential solutions
to identify schedules that exhibit the best trade-offs between
conflicting objectives.

In this paper, we present ”Homogeneous to Heterogeneous
Dataflow Scheduling” (HHDS), a scheduling algorithm for
executing dataflows on heterogeneous clouds. The algorithm
tries to identify a set of solutions close to the optimal pareto
front with diverse time-money trade-offs exploring the search
space in an efficient way. In contrast to related work, the
algorithm starts with the space of homogeneous configurations
to identify an initial set of schedules with good trade-offs
and gradually moves towards heterogeneous configurations
to further improve the current pareto front (skyline). As the
number of skyline solutions may be large, a pruning method is
developed to identify several representative schedules. Pruning
aims at distributing the points across the skyline so that there
are more solutions to the knees of the pareto curve and a
fewer number of solutions further away from the knees. The
efficiency of the proposed approach to provide a better and
more divergent skyline is demonstrated through the results of
an experimental evaluation and comparison with the state of
the art.

The remainder of the paper is organized as follows. Related
work is included in Section 2. The problem description follows
in Section 3 and the proposed algorithm is presented in Section
4. The experimental evaluation and its results are described in
Section 5, while Section 6 concludes the paper.

II. RELATED WORK

Dataflow scheduling and resource provisioning on dis-
tributed computing environments like cluster, grid and cloud
computing is the focus of many studies which address different
optimization goals [1]–[5]. Among these, execution time and
monetary cost minimization has received considerable atten-
tion. Several algorithms focus on single-objective optimization
or constrained single-objective optimization [3], [6]. Hetero-
geneous Earliest Finish Time (HEFT) algorithm [6] is a well
known heuristic that maps tasks to heterogeneous resources
selecting the slot with the earliest finish time. Other studies



[1], [7] propose multi-objective approaches that address the
optimization problem as a weighted single-objective problem.

The work proposed in this paper is more related to pareto-
based approaches for the scheduling of dataflows [2], [5], [8]
which generate a set of trade-off solutions when no single
schedule that optimizes all the objectives exists. MOHEFT
[5] is a heuristic that extends HEFT by keeping a set of
partial solutions at each step instead of a single allocation
considering heterogeneous resources. The skyline is pruned
based on the crowding distance metric which tries to measure
the surrounding area of each skyline point where no other
skyline point exists. Pruning schemes to select a number
of appropriate (representative) pareto-efficient solutions have
been the focus of several studies [9], [10]. The algorithm
in [9] aims to efficiently compute the maximum coverage
representative skyline and select points that maximize the
area of dominant solutions (dominance area). Finally, MOQO
approaches like [11], [12] are complementary to our work,
focusing on a different level of optimization for query plans
(the join orders of the operators).

In contrast to related work, the approach proposed in this
work tries to explore an important part of the solution space,
addressing the optimization problems of resource provisioning
and task assignment in separate steps. Starting from a set of
homogeneous configurations the algorithm updates the VM
types of the solutions assessing the impact of the changes
on the execution of the whole dataflow in order to identify
heterogeneous configurations that further improve the skyline.
The pruning of the solutions is based on a novel metric that
considers the sharper areas of the skyline as more important.

III. PROBLEM DESCRIPTION

The problem considered in this work is determining the
number and type of VMs to provision for the execution of
dataflows on a cloud computing platform with the aim to
optimize both application performance and the related mone-
tary costs. Assigning dataflow operators to different VM slots
leads to a set of (partial) solutions which differ in execution
time and cost. Some solutions may be dominated by others
in the sense that lower execution time and monetary cost are
achieved. The diversity of solutions may be more profound
when heterogeneous resources are considered; although a
single VM type can be used for the execution of a dataflow,
heterogeneous configurations may often result in solutions
with lower execution time, monetary costs and richer trade-
offs. Following the principle of pareto dominance [13], more
efficient solutions can be identified. The set of non-dominated
solutions comprises a pareto front (skyline). The final skyline
solutions can be presented to users to manually select the
option that better fits to their requirements. Alternatively, the
best trade-off solution may be automatically selected based
on predefined user preferences, e.g. weights that show the
importance of different objectives.

1) Application and Performance Model: The paper con-
siders dataflow queries modeled as a Directed Acyclic Graph
(DAG). The nodes represent operators (computations) and the

edges flows of data transfers between them. An operator can
only start after the execution of its predecessors completes. It is
assumed that each operator is store-and-forward (all the input
data of an operator must be available before its execution)
[14]. The runtime of operator op at vm type vm is given by:
runtimeop =

sizeop
speedvm

, where the length of the operator, sizeop,
is given in millions instructions and the processing capability
(computational speed) of the VM type used, speedvm, is given
in millions instructions per second. For simplicity, in the model
considered it is assumed that operator runtime is inversely
proportional to the VM’s computational speed. Although this
assumption may hold for CPU-bound jobs, performance may
vary for jobs with different resource characteristics. However,
the performance model can be easily extended to incorporate
modeling of performance variation for operators with different
resource characteristics.

2) Cloud Model: Cloud providers may offer heterogeneous
VM types with different characteristics in terms of perfor-
mance and price. A model similar to Amazon Elastic Compute
Cloud (EC2) is assumed with VMs being provisioned on
demand. The user is charged for each VM instance used by
time unit (quantum), such as in an hourly billing basis. A VM
is considered to be active during a time quantum when one
or more operators run on it. Partial time units are rounded
to the full time units. For example, a VM is charged as a
full hour even if it is only used for several minutes. In this
work, we only consider the computing service, assuming that
the storage service is accessible from each VM at the same
cost (network bandwidth). Also, it is assumed that a shared
cloud storage system, such as Amazon S3, is used to store
and retrieve data. Input data required for the execution of
an operator are retrieved and stored locally at the assigned
VM. Communication cost between operators running on the
same VM is considered 0 [14]. After the execution of an
operator, its output data are stored to the storage system used.
The execution of an operator may overlap with data transfers
from/to the storage service. However, operators do not run
concurrently on a VM, but have exclusive access to it [15].

IV. ALGORITHM DESCRIPTION

In this section a bi-objective scheduling algorithm that
iteratively computes the skyline of potential solutions (sched-
ules) for the mapping of dataflow operators to suitable VMs
is described. The output of the algorithm is a set of non-
dominated solutions that achieve different trade-offs between
execution time and monetary cost.

The approach proposed in this paper is based on the idea
that the mapping of operators to VMs and the provisioning
of proper VM types can be considered as two complementary
problems to be addressed. The algorithm works in two stages.
It initially tries to explore homogeneous configurations close to
the optimal pareto front for each available VM type (Section
IV-A), assigning operators to idle slots. In the second stage
(Section IV-B), the algorithm combines the pareto-efficient
solutions identified for each VM type. Based on their unified
skyline, heterogeneous configurations are explored to create



schedules that improve the skyline. The algorithm iteratively
upgrades or degrades the type of VMs at each schedule, taking
into account the slack time of operators (the time the execution
of an operator can be delayed without extending its critical
path), to generate and add new solutions when the skyline can
be improved. Decision making is based on the impact of the
changes on the whole dataflow schedule, gradually exploring
heterogeneous configurations with lower execution time and/or
monetary cost.

A. Computation of Homogeneous Skyline Stage

The algorithm initially assigns weights (ranks) to the op-
erators to determine the order in which they are scheduled,
as described in Section IV-A1. Then, the algorithm iteratively
builds the skyline of the solutions (schedules) for each VM
type separately and keeps their unified skyline. To do so, the
algorithm builds the skyline of solutions for a single VM type
by adding at each step the next ready operator to be assigned to
all the possible available slots at each partial solution (Alg. 1).
These include all the idle slots in the existing resources (VMs)
that meet the data dependency constraints but also slots at
newly created resources (lines 6-9). At the end of each step
the pareto front of the partial schedules is computed (line 12).
When the number of solutions is large only the k most
representative solutions are kept using the pruning method
described in Section IV-A2. Also, the algorithm assigns a
parameter for each schedule (plan), vmU pgrading, depending
on the VM type used, which indicates whether the type of
each VM used at the plan can be later upgraded/degraded or
both, in the next stage (line 6).

1) Operator Ordering: Dataflow operators can be divided
into levels (stages) according to the data dependencies between
them. Mean slack on different VM types, computed based on
the structure of the DAG, is used to indicate the criticality of an
operator. The operators are ranked based on their mean slack
and level, so that data dependencies are met, and operators
with smaller slack (more critical operators) are prioritized like
in [16]. The algorithm assigns the operators to available slots
using a top-down approach with each operator being ready
for scheduling when all of its predecessors have already been
assigned.

Algorithm 1 Homogeneous Skyline Computation Algorithm
1: procedure GENERATEHOMOSKYLINE(dag,vmType,k)
2: readyOps← operators in dag with no dependencies
3: while readyOps 6= /0 do
4: op← ready.pollFirst() . operators sorted based on ranking
5: for p ∈ skylinePlans do
6: candPlans← allocateNewV M (vmType,vmU pgrading)
7: for ∀vm ∈ p do
8: p′← p+assign(op,vm)
9: candPlans.add(p′)

10: end for
11: end for
12: skylinePlans← getPrunedSkyline(candPlans)
13: Update readyOps
14: end while
15: return skylinePlans
16: end procedure

To do so, the operators are divided into levels based on
their longest path from an entry node of the dataflow (dag).
The level of each operator is computed as the maximum level
of its predecessors, predsop, increased by 1 with the level of
each entry node (operators without any predecessors) being 0.
For operators of the same level, operators with smaller slack
are prioritized by assigning weights based on the summation
of their upward and downward ranking [15], the longest path
from an exit and entry node, respectively. The upward rank is
computed recursively starting from an exit node as:

uRankop = wop +maxs∈succsop(uRanks + comCostop→s), (1)

where comCostop→s is the communication cost between oper-
ators op and s. The upward rank of an exit node is equal to
its mean execution time wop. The downward rank is computed
recursively starting from an entry node as:

dRankop = maxp∈predsop(wp +dRankp + comCostp→op). (2)

The weight (rank) of operator op is then given by Eq. 3:

rankop = uRankop +dRankop. (3)

An operator op is considered to be on the critical path if
rankop = max∀i∈dag ranki [15]. Hence, larger weights indicate
more critical operators (smaller slack).

2) Skyline Pruning: The number of partial solutions gen-
erated at each step may be large and keeping all the possible
schedules, which result in an exhaustive search, may be
infeasible. To reduce the space of solutions, at each step
the skyline of the partial solutions is computed keeping only
solutions that are not dominated by any other solution. When
two solutions do not differ in any of the targeted objectives
(i.e. execution time and monetary cost), the schedule with the
highest resource utilization is kept. The skyline of the partial
solutions is further pruned when the number of skyline points
is large (more than the predefined parameter k), selecting the
most representative ones.

Pruning is based on the discrete second derivative, θ′′sp, of
each skyline point sp and its euclidean distance, distsp,kn, from
its nearest knee kn of the pareto curve, hence the name knee-
based pruning. The discrete second order derivative, θ′′sp, is
approximated as the difference between the first order partial
derivative of sp and its adjacent left and right skyline points.
With the term knee we refer to skyline points which differ
significantly (in terms of time or money) from solutions close
to them offering more interesting trade-offs. A skyline point is
considered to be a knee if its discrete second derivative is more
than or equal to the mean discrete second derivative of all the
skyline points. In each step the two extreme skyline points
which correspond to plans with minimum time or money at
the pareto front are kept and k−2 solutions between the two
extreme points are selected based on the scoring function of
Eq. 4 (knee-based metric):

scoresp = θ
′′

sp ·distsp,kn, (4)

The idea is that skyline points at the knees of the pareto curve
have a higher probability of being selected as representative



points. Such solutions are considered to be important as they
can result in high savings compared with other solutions. For
example, a significant decrease in execution time may be
achieved with a small increase in cost. Additionally, points
that are distant from the knees have a higher probability to
be kept. In that way, the representative skyline covers a wider
area of solutions. Parameters θ′′sp and distsp,kn of Eq. 4 are
normalized by their maximum value; the maximum second
derivative between all the skyline points and the maximum
distance between the two extreme skyline points, respectively.
Distance distsp,kn is set to 1 for skyline points that are knees.

B. Computation of Heterogeneous Skyline Stage

After generating the unified skyline from homogeneous
configurations (line 4 of Alg. 2), the algorithm tries to explore
heterogeneous configurations with different trade-offs in the
pareto front. For plans where the type of the VMs can
be either upgraded or degraded (indicated using the value
ascending/descending), the algorithm keeps two copies of the
plan in the skyline and updates the parameter vmU pgrading
for each plan to ascending and descending, respectively, so
that plans with heterogeneous configurations (using larger or
smaller VMs accordingly) will be explored.

The procedure followed for each plan to be modified is
described next. The slack time of each operator, which in-
dicates the delay the execution time of an operator can be
stretched without extending overall dataflow execution time,
is computed as: slackTimeop = lstop − estop. In contrast to
mean slack in Section IV-A1 which is independent of the
assignments of the operators to VMs, the computation of the
slack time at the plan is based on both the structure of the
DAG and the assignments of the operators to the VMs. The
earliest start time of each operator op is computed recursively

Algorithm 2 Heterogeneous Skyline Computation Algorithm
1: procedure GENERATEHETEROSKYLINE(dag,vmTypes,k)
2: Rank operators at the dag . based on level and mean slack
3: pareto.add(generateHomoSkyline(vmType)),∀vmType ∈ vmTypes
4: plansToU pgrade← getPrunedSkyline(pareto)

. If vmU pgrading≡ asc./desc. keep a copy for each value
5: while plansToU pgrade 6= /0 do
6: for plan ∈ plansToU pgrade do
7: getSlackTime(op), ∀op ∈ p
8: vmSorted← sort VMs in plan based on their average slack

. asc. or desc. order based on vmU pgrading
9: while vmSorted 6= /0 do

10: vmToU pgrade← vmSorted.pollFirst()
11: nextV MType← getnextV MType(vmToU pgrade)
12: newPlan← update schedule of plan for nextV MType
13: if newPlan.cost > plan.cost&&newPlan.time > plan.time
14: break
15: else
16: modi f iedPlans.add(newPlan)
17: end if
18: end while
19: end for
20: pareto← getPrunedSkyline(pareto∪modi f iedPlans,k)
21: plansToU pgrade←∀plan ∈ modi f iedPlans∩ pareto
22: end while
23: Return pareto
24: end procedure

as: estop = maxp∈predsop(estp + runtimep + comCostp→op). The
predecessors predsop include all the predecessors in the DAG
and the VM assigned. The latest start time of op is given
by: lstop = mins∈succsop(lsts− comCostop→s− runtimeop). The
successors succsop of the operator considered include both the
successors in the DAG and the successor at the VM assigned.
Then, for each VM of the plan the mean slack time of the
operators assigned to it is computed and the VMs are sorted
accordingly (line 8). The VM with the largest/smallest mean
slack time is selected to be degraded/upgraded. The slots of
the operators are updated and the new plan is generated. The
monetary cost and the execution time for the new plan are
computed and the plan is kept if the monetary cost and/or
the execution time are reduced (line 16). Otherwise, the plan
is rejected and the algorithm continues with the next plan in
the list (line 14). After updating all the plans in the list, the
algorithm computes (and prunes if needed) the new skyline
rejecting dominated (non-representative) solutions (line 20).
The same procedure continues for the newly created plans
kept at the representative skyline with the aim to further
upgrade/degrade the VMs at the next iteration and generate
new solutions. The algorithm terminates and returns the final
computed skyline when there are no new solutions kept at the
skyline or the smallest/largest VM type is reached for every
plan.

V. EXPERIMENTAL EVALUATION

In this section, the efficiency of the proposed algorithm is
evaluated and compared with the state of the art through sim-
ulation using three different dataflow families. The dataflow
characteristics and cloud model parameters used are described
below.

A. Methodology

The ADP simulator [14] of Exareme [17], a distributed
dataflow processing system, was modified and used to im-
plement and validate the proposed algorithm. MOHEFT [5]
is used as the baseline approach to evaluate the efficiency
of the proposed algorithm. Five Amazon EC2 instance types
(m1.small, m1.large, m2.xlarge, m2.2xlarge and m2.4xlarge)
that cover different instance families are used. The execution
time of each operator at the different VM types is modeled
based on the CloudHarmony Compute Units1. A network of
1Gbps is assumed to compute the communication cost between
operators assigned to different VMs and parameter k, the
number of solutions kept at each pruning step, is set to 30
unless stated otherwise. Synthetic data (operator runtimes and
data sizes) of three families of dataflows, namely Montage
[18], LIGO [19] and Lattice [14], are used. Montage and LIGO
are real scientific applications; Montage is used to generate
image mosaics of the sky, while LIGO is used to analyze
galactic binary systems for the detection of gravitational waves
in the universe. Dataflows of 100 operators are generated
using the workflow generator in [20]. Lattice is a synthetic

1https://cloudharmony.com/
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Fig. 1: Comparison of the algorithms for the case of per second pricing.

dataflow originally used in [14] to model typical Map-Reduce
applications. Two Lattice dataflows with height and branching
factor pairs of 3-11 and 5-21, respectively (485 operators each)
are used similarly to [14].

B. Quality of Skyline

1) Per second pricing: Initially, we compare the efficiency
of the proposed algorithm, HHDS, with the baseline algorithm,
MOHEFT, for heterogeneous resources priced by second.
Apart from the case of Montage, where both algorithms
identify solutions at the combined pareto front, the skyline
obtained by HHDS is more disperse, identifying solutions
with cheaper or faster configurations (Fig. 1). Overall, HHDS
results in plans with a smaller number of VM types compared
to MOHEFT. This may be due to the fact that HHDS starts
with homogeneous configurations and updates the VM types
assessing the impact of the changes on the whole schedule.

The Jaccard distance [21] is used to quantitatively evaluate
the quality of the solutions obtained and compare the different
skylines. The metric tries to capture the similarity between
the skyline obtained from each algorithm and the common

skyline resulted by combining the individual skylines of the
two compared algorithms. The Jaccard distance for each
algorithm a, jDista, is the subtraction of the Jaccard index
from 1, taking values between 0 (when the common skyline,
Sc, and the skyline of the algorithm, Sa, are identical) and
1 (when algorithm a does not explore any solutions in Sc).
The Jaccard index is computed as: jIndexa = |Sc∩Sa|

|Sc∪Sa| , where
|Sc∩Sa| is the number of plans (schedules) in the intersection
between the common skyline and the skyline of the evaluated
algorithm a, while |Sc ∪ Sa| is the number of plans in their
union. We also compare the fastest and cheapest solutions
identified in the different skylines. Table I summarizes the
results for the metrics used. It can be seen that the Jaccard
distance is significantly smaller for the proposed algorithm
HHDS. Also, the fastest and cheapest solutions obtained by
the baseline algorithm are generally less efficient than the
proposed algorithm HHDS. More specifically, for Montage the
fastest solution identified by MOHEFT is 2.32 times slower
than HHDS. Similarly, for LIGO the fastest solution identified
by MOHEFT is 6.3 times the value of HHDS. For Lattice11-

TABLE I: Metrics for the comparison of the skyline quality for per second pricing.

Montage LIGO LATTICE 11-3 LATTICE 5-21
Metric HHDS MOHEFT HHDS MOHEFT HHDS MOHEFT HHDS MOHEFT
jDist 0.30 0.84 0.0 1.0 0.0 1.0 0.0 1.0

Fast(s) 3.4 7.9 43.5 273.4 8.0 30.5 3.4 15.8
Cheap($) 86.7 91.01 1548.12 1549.18 395.58 407.67 395.58 411.15
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Fig. 2: Comparison of the algorithms for the case of hourly pricing.

3, the fastest solution identified by MOHEFT is 3.8 times
slower than the solution of HHDS. For Lattice5-21, the fastest
solution identified by MOHEFT is 4.64 times the value of
HHDS, In all cases, the cost of the cheapest solution identified
by MOHEFT is slightly higher than the cost of the cheapest
solution obtained by HHDS. Overall, the plans identified by
HHDS cover a more divergent set of solutions in all scenarios
examined.

2) Hourly pricing: In this section, we compare the effi-
ciency of the proposed algorithm, HHDS, with the baseline
algorithm, MOHEFT, for heterogeneous resources priced by
the hour. Multipliers are used for the operator runtimes and
data sizes (100, 100, respectively) to generate dataflows with
longer execution times (order of hours). The obtained results
are presented in Fig. 2. It can be seen that HHDS outperforms
MOHEFT in all cases. A richer and more diverse skyline is
obtained for Montage and LIGO, while in the case of the
Lattice dataflows the number of pareto solutions is smaller.

Table II shows the results for the metrics used. It can be
seen that the Jaccard distance is significantly smaller for the

proposed algorithm HHDS. For Montage, the fastest solution
identified by MOHEFT is 2.03 times the value of HHDS, while
the cost of the cheapest solution is 7.18 times the value of
HHDS. For LIGO, the fastest solution identified by MOHEFT
is 5.05 times the value of HHDS, while the cost of the cheapest
solution is slightly better compared to the solution of HHDS
(0.98 times the value of HHDS). For Lattice11-3, the fastest
solution identified by MOHEFT is 3.35 times the value of
HHDS, while the cost of the cheapest solution is close to the
value of HHDS (1.03 times the value of HHDS). For Lattice5-
21, the fastest solution identified by MOHEFT is 4.38 times
the value of HHDS, while the cost of the cheapest solution is
only 1.04 times the value of HHDS.

Finally, the overhead imposed by our scheduler, the time
required to generate the skyline compared to the time required
to run the fastest plan, is less than 6% (and less than 1% in
most cases), while there is room for optimization by paralleliz-
ing HHDS. Overall, both algorithms required a few seconds
(smaller dataflows) to tens of minutes (more computationally
demanding runs).

TABLE II: Metrics for the comparison of the skyline quality for hourly pricing.

Montage LIGO LATTICE 11-3 LATTICE 5-21
Metric HHDS MOHEFT HHDS MOHEFT HHDS MOHEFT HHDS MOHEFT
jDist 0.0 1.0 0.11 0.91 0.23 0.88 0.0 1.0

Fast(s) 340.0 692.1 4373.2 22081.3 29889.2 100020.0 11611.2 50901
Cheap($) 2.68 19.24 45.6 44.56 395.6 409.23 395.58 412.4



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20  40  60  80  100  120  140  160  180

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
in

)

Cost ($)

k=10
k=20
k=30

(a) Montage

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 80  90  100  110  120  130  140  150  160

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
in

)

Cost ($)

k=10
k=20
k=30

(b) LIGO

Fig. 3: Different k values.

C. Varying the number of representative skyline points

In this experiment, we compare the efficiency of the pro-
posed algorithm when varying the number of representative
points at the pareto front; runs with k equal to 10, 20 and 30 for
per hour pricing are used. The results for the two real scientific
dataflows, LIGO and Montage, where the number of solutions
is quite large, are presented in Fig. 3. In the case of the Lattice
dataflows the skyline consists of a smaller number of points
(16 and 23 solutions for Lattice 11-3 and 5-21, respectively).
The execution time and data sizes of the dataflows are scaled
up (by 200, 200 for LIGO and 1000, 300 for Montage) to
generate longer data-intensive dataflows. In the case of LIGO
all the solutions at the final skyline are kept for k = 30 as 26
pareto-efficient schedules are computed. Overall, the efficiency
of the algorithm is not greatly affected for different values of
k. Although by decreasing k a smaller number of solutions is
kept at the resulted pareto front, the quality of the skyline does
not change significantly. Different dataflows are not equally
sensitive to the number of representative skyline solutions
kept. For example, LIGO is more sensitive to parameter k.

D. Comparison of Pruning Methods

In this experiment, we compare the efficiency of the pro-
posed knee-based pruning metric with two state of the art

metrics, the crowding distance [5] and the dominance area [9].
Fig. 4 shows the results for the Montage and LIGO dataflows
for the case of per hour pricing. The execution times and data
sizes are scaled up (by 200, 200 for LIGO and 1000, 300 for
Montage). The results for k = 20 are presented so that pruning
is applied (since there are only 26 pareto plans for LIGO).

Crowding distance based pruning [5] tries to evenly dis-
tribute the solutions across the skyline selecting points which
have a larger surrounding area with no other pareto-efficient
solutions. It can be seen that using the crowding distance may
result on keeping fewer solutions at the knees of the skyline,
where divergent trade-offs may occur. Also, a larger number
of solutions is kept while moving to faster but more expensive
plans in the case of Montage. This may be due to the fact that
the values of the objectives are not normalized.

Dominance-based pruning aims to select points which dom-
inate a larger number of solutions and whose dominated areas
differ so that the number of points dominated by the represen-
tative skyline is maximized. However, uneven distribution of
solutions in the solution space may lead to uneven distribution
of skyline points. It can be seen that the skyline includes a
large number of expensive plans. This may be due to the large
concentration of solutions at that point.

On the other hand, knee-based pruning keeps more solutions
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Fig. 4: Different pruning methods used.



at the knee of the curve where more interesting trade-offs
appear. While moving to the extreme cases (minimum time
or money), fewer points are chosen as they may not differ
greatly in terms of money or cost, especially for expensive
plans.

E. Discussion

The pruning method used in pareto-based multi-objective
approaches may affect the efficiency of the algorithm depend-
ing on the dataflow. Most pruning methods try to identify the
most representative points at the skyline based on several (e.g.
distance or dominance based) criteria. However, the number
and space of partial solutions generated may differ between
iterations. For example, the number of solutions gets signif-
icantly larger for later iterations. Also, the selection of good
solutions may not be equally important for the assignment
of different operators. Different assignments of more critical
operators may lead to more diverse schedules. Determining
the number and quality of solutions required at each iteration
based on the dataflow characteristics or the distribution of
the solution space may be an interesting direction for future
work. Additionally, in several scenarios taking into account
dominated partial solutions may improve the skyline. The
pruning methods examined in this work only consider sky-
line solutions. Identifying important non-dominated solutions
which could lead to better execution schedules could be
another challenging direction. The algorithm does not change
the number of VMs at each homogeneous solution considered
in the second stage. Hence, the efficiency of the algorithm
depends on the quality and diversity of the initial skyline of
homogeneous configurations. Future work could investigate
how its efficiency could be improved in such cases to explore
heterogeneous configurations with varied number of VMs.
Finally, communication costs and startup overhead may vary
for heterogeneous VM types. A possible research direction
could study their impact on the heterogeneity of skyline
solutions for applications with a large amount of input data.

VI. CONCLUSION

This work considered the problem of money-time trade-off
optimization for dataflow scheduling on the Cloud, exploiting
resource heterogeneity to map the operators to proper VMs.
The algorithm identifies a set of pareto-efficient schedules,
while using a novel pruning method to select representative
solutions when the number of schedules is very large. The
results show that, in several cases, the proposed approach can
lead to a better and more diverse set of trade-off solutions.

Future work could try to improve the algorithm from prun-
ing partial schedules by identifying and including dominant
yet important solutions that may improve the skyline. Also,
the algorithm can be extended for multiple dataflows; prelim-
inary results are promising and provide schedules with good
utilization. Finally, the performance of the proposed algorithm
could be evaluated on the Exareme platform on real scenarios.
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