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ABSTRACT
In this paper, we focus on the problem of searching sorted,
in-memory datasets. This is a key data operation, and Binary
Search is the de facto algorithm that is used in practice. We
consider an alternative, namely Interpolation Search, which
can take advantage of hardware trends by using complex cal-
culations to savememory accesses. Historically, Interpolation
Search was found to underperform compared to other search
algorithms in this setting, despite its superior asymptotic com-
plexity.Also, Interpolation Search is known toperformpoorly
on non-uniform data. To address these issues, we introduce
SIP (Slope reuse Interpolation), an optimized implementation
of Interpolation Search, and TIP (Three point Interpolation), a
new search algorithm that uses linear fractions to interpolate
on non-uniform distributions. We evaluate these two algo-
rithms against a similarly optimized Binary Search method
using a variety of real and synthetic datasets. We show that
SIP is up to 4 times faster on uniformly distributed data and
TIP is 2-3 times faster on non-uniformly distributed data in
some cases. We also design a meta-algorithm to switch be-
tween these differentmethods to automate picking the higher
performing search algorithm, which depends on factors like
data distribution.
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• Information systems→ Point lookups;Main memory
engines.
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Figure 1: Speed comparison of representative pro-
cessor and main memory technologies [27]. The
performance of processors is measured in FLOPS. The
performance of main memory is measured as peak
FLOPS to sustained memory bandwidth (GFLOP/sec) /
(Words/sec) and peak FLOPS per idle memory latency
(GFLOP/sec) ∗ sec. In the conventional von Neumann
architectural path, main memory speed is poised to
become (relatively) slower compared to the speed of
computing inside processors.

1 INTRODUCTION
Searching in-memory, sorted datasets is a fundamental data
operation [23]. Today, Binary Search is the de facto search
method that is used in practice, as it is an efficient and asymp-
totically optimal in the worst case algorithm. Binary Search
is a primitive in many popular data systems and frameworks
(e.g. LevelDB [25] and Pandas [30]).

Designing algorithms around hardware trends can yield
significant performance gains. A key technological trend is
the diverging CPU and memory speeds, which is illustrated
in Figure 1. This trend favors algorithms that can use more
computation to reduce memory accesses [4, 6, 16, 21, 27, 38].
The focus of this paper is on exploring the impact of this trend
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Figure 2: Speedup achieved by Interpolation Search
methods over Binary Search on real datasets. The first
two dataset UaR and fb_ids are uniformly distributed
datasets, where as fal-1.05 and freq1 are skewed
datasets. 8 Byte record are used. These datasets are
described in detail in Section 5.1.3.

for Interpolation Search [31], a search algorithm that trades
off computation to reduce memory accesses.
Interpolation Search has been studied in the past and de-

spite its superior asymptotic complexity it has not seen broad
adoption as a search algorithm for in-memory datasets. Inter-
polation Search has been found to underperform other search
methods in practice due to its use of computationally expen-
sive calculations [15]. Additionally, Interpolation Search was
originally designed to search uniformly distributed data. It
assumes a linear relationship between the values of the sorted
data and their position within the dataset. This assumption
enables theuseof a linear interpolation, but it hurts theoverall
performance for datasets that don’t follow such a distribution,
namely non-uniformly distributed data.
This paper introduces two search algorithms to address

the two shortcomings of the original Interpolation Search
algorithm. Specifically, we introduce SIP (Slope reuse Inter-
polation) search, a collection of optimization techniques that
includes re-using specific slope-related calculations, switch-
ing to fixed-point arithmetic from floating-point arithmetic
(safely), and switching to a simpler search method on small
ranges. These optimizations generally reduce the overall
cost of Interpolation Search. SIP exploits hardware improve-
ments [19] that accelerate the arithmetic operations. Essen-
tially, SIP exploits the trend (shown in Figure 1) of the increas-
ing divide between the costs of computation and memory
accesses, with memory access poised to become relatively
more expensive over time. SIP exploits this trend by using
more complicated arithmetic to reduce the relatively more
expensivememory accesses.As a result, SIP ismore efficiently
than Binary Search on uniformly distributed data.
We also introduce TIP (Three point Interpolation) search,

an interpolation based search algorithm that uses a non-linear
interpolation method to handle non-uniformly distributed
data. It accurately estimates the position of the record(s) being
searched on a broad range of non-uniform distributions by
fitting linear fractions [20] to the distribution of the dataset.

WeevaluateSIPandTIPoveravarietyofdatasets against an
optimized Binary Search implementation. Figure 2 highlights
a key result by comparing the speedup of SIP, TIP and Interpo-
lation Search to Binary Search on real and synthetic datasets.
When searching the uniformly distributed datasets (UaR and
fb_ids) all the interpolation-based search algorithms (Inter-
polation Search, SIP, TIP) outperform Binary Search, which
is the baseline. SIP achieves a speedup of up to 4X. In the case
of the non-uniformly distributed datasets (fal-1.05 and freq1),
SIP and Interpolation Search are dramatically slower than Bi-
nary Search, and do not show up in the chart as they are more
than 6000X slower than Binary Search. TIP, on the other hand,
outperforms Binary Search, and in one case by ∼3X. SIP and
TIP successfully capitalize on the diverging memory and pro-
cessor speeds to outperform Binary Search.We expect the im-
provement of our algorithms to increase over time as the gap
between memory and processor speeds continues to increase.
We also note that each algorithm (Binary Search, SIP and

TIP) may outperform the others based on aspects such as
dataset and hardware characteristics. To address this issue,
we propose a sampling-based meta-algorithm to automati-
cally switch between these methods.
The remainder of this paper is organized as follows: We

review Interpolation Search in § 2. The SIP and TIP methods
are described in §3 and §4, and evaluated in §5. Related work
is presented in §6, and our concluding remarks are in §7.

2 INTERPOLATION SEARCH
In this section we describe Interpolation Search and present
the shortcomings of the algorithm.

Algorithm 1 Interpolation Search
Input: V ,y∗ ▷ V: sorted array of size n,y∗: the target value
Output: position x∗ of valuey∗

1: le f t← 0
2: riдht← n−1
3: while le f t < riдht do
4: if V [le f t] ==V [riдht] then
5: if V [le f t]==y∗ then return left
6: else return NotFound

7: slope←(riдht - le f t) / (V [riдht] −V [le f t])
8: expected← ⌊le f t + (y∗ −V [le f t]) ∗ slope⌋

9: if V [expected] < y∗ then
10: le f t← expected + 1
11: else if y∗ <V [expected] then
12: riдht← expected − 1
13: else
14: return expected

15: return NotFound



Given a sorted collection of values,V , and a target value,
y∗, a search algorithm returns the position x∗, s.t.V [x∗]=y∗.
Interpolation Search, Algorithm 1, iteratively reduces the
search interval. The search interval is the part of the original
collection that may contain the target value, possible contain-
ment can be checked as the values are sorted. For the first
iteration, the search interval is initialized to contain the entire
collection (lines: 1, 2). In each iteration Interpolation Search
picks an expected position, expected (lines: 7-8), compares its
value to the target value y∗ and reduces the search interval
accordingly (lines: 9-14). Each subsequent iteration considers
only the reduced search interval. Lines: 4-6 handle the case
where the reduced interval contains only one distinct value,
this is a modification not usually included in Interpolation
Search papers [31]. This algorithm is different from Binary
Search in the way expected position is calculated.

Binary Search uses the middle position of the search inter-
val, (le f t −riдht)÷ 2, as the expected position. An interpo-
lation based search fits a function f toV to characterize the
distribution of the values and approximate the expected po-
sitions. Interpolation Search uses a linear function (line: 8 in
Algorithm1). It solves the equationy∗=ax+b forx for the line
that passes through the leftmost (smallest) and the rightmost
(biggest) values in the search interval. The expected position,
x , is calculated as :

expected=le f t+(y∗−V [le f t])
riдht−le f t

V [riдht]−V [le f t]
(1)

Throughout this paper, we describe collections by the dis-
tribution of their values. To discover the distribution of values,
we correlate each value with its position in the sorted collec-
tion and plot them in two dimensions. For they coordinate
we use the value and for the x coordinate we use the posi-
tion. In this method of visualization, a perfectly uniformly
distributed collection of values appears as a diagonal line.
Imperfections, like missing values, in uniformly distributed
collections produce visualizations like the one shown in Fig-
ure 3. Conversely, a non-uniformdataset has points “far away”
from the diagonal line. Interpolation Search assumes a linear
relationship between the values and their positions within
the sorted collection.

For the data visualized in the left in Figure 3, Interpolation
Search will fit the line shown in the right in that figure. Algo-
rithm 1 uses this line to calculate the expected position. In the
first iteration, it computesexpected as point 1 (whichhappens
to have the value 5). The next step is to access the value of
the collection at the expected position, namely x =expected
(point 2). If the value at that position equalsy∗ then the algo-
rithm returns, otherwise it reduces the search interval and
continues the search. The new search interval will use the
expected position as one of its endpoints and will include the
appropriate part of the previous search interval.
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Figure 3: Left: a collection of values, Right: linear
interpolation when searching fory∗=341 and x∗=6.

2.1 Performance for uniform data
Multiple analyses [31, 39] show that Interpolation Search per-
forms an expected loglogN +O(1) iterations on values drawn
from a uniform distribution, whereN is the number of values
in a collection. In the worst case (with non-uniform distribu-
tions), Interpolation Search is anO(N ) algorithm. In contrast,
Binary Search is worst case optimal and performs logN iter-
ations. Comparing the complexities of the two algorithms,
one expects Interpolation Search to be faster on average as
its complexity grows more slowly with N .
This asymptotic analysis considers only the number of

memory accesses, as one iteration corresponds to one mem-
ory access. In an in-memory setting, the overhead of addi-
tional branches, arithmetic, and work that is done outside of
the loop is significant. Interpolation Search performs more
complex arithmetic and its control flow ismore elaborate than
that of Binary Search. Informally, this implies that if cI is the
average cost of an iteration in Interpolation Search and cB is
the average cost of an iteration in Binary Search, then a key
ratio is c = cI

cB
. Since, in general, Interpolation Search has to

do more work per iteration, c is expected to be greater than 1.
This extra work can wipe out the asymptotic advantage over
Binary Search. Thus a key practical goal for Interpolation
Search is to reduce cI (and consequently c). In Section 3, we
present various optimizations to address this issue, and build
them into the SIP algorithm in Section 4.1.

2.2 Non-Uniformly Distributed Values
When values do not follow a uniform distribution, Interpola-
tion Search can degenerate to searching values sequentially.
Figure 4 shows the progression of Interpolation Search on
a non-uniform collection of values. The expected positions
(points 1 through 6) are calculated in each iteration. The
progress made at each iteration is minimal as the use of linear
interpolation is a poor approximation of the data distribu-
tion. To address this issue, we introduce a new interpolation
algorithm called TIP in Section 4.2.
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3 FASTER INTERPOLATION SEARCH
This sectionpresents optimizations that address the shortcom-
ings of Interpolation Search identified in Sections 2.1 and 2.2.
In Section 4, these optimizations are use to design the SIP and
TIP algorithms.

3.1 Guard
The algorithmic advantage of Interpolation Search comes
from its ability to quickly guide the search towards the target
value by using information about the distribution of the data.
The expected positions calculated by initial interpolations
quickly converge to the target record, but themarginal benefit
of further interpolations gradually diminishes. It is beneficial
to stop interpolating when the progress made towards the
target value does not warrant the cost of performing further
interpolations. At that point, we can switch to a computation-
ally cheaper searchmethod, since we expect to be very “close”
to the target record.

In this case, we choose to switch to using Sequential Search.
Sequential Search visits every value and returns when it en-
counters the target key or when it determines that the target
key is not contained in the dataset. Despite being a naive
algorithm, it can be extremely fast when searching a very
small number of records [9] by taking advantage of the spatial
locality of its accesses and CPU parallelism.

An example of this behavior is shown in Figure 4. The first
three interpolations (points 1-3) move the expected position
close to the target position (point 6). But three more inter-
polations are required to find the target value. The progress
made by the last three iterations does not justify the cost of
interpolating, and switching to Sequential Search after the
first three interpolations can be more efficient.

3.1.1 Optimizing Sequential Search. Wecan further optimize
Sequential Search for the commoncaseof searchinga small set
of elements. The key optimizationwe used are: loop unrolling
and sentinels.

Loop unrolling takes several iterations of a loop and du-
plicates the code in each iteration, thus reducing the number
of jumps and branch conditions, which in turn improves out-
of-order execution. Overall, this method can improve the
throughput/speed of the loop evaluation.
For each value that Sequential Search visits, it checks if

the target is found and if the end of the data is reached. Sen-
tinels are special values placed on either side of the data being
searched. These values are chosen such that the condition
that detects if the target key has been found can also be used
to detect when the end of the collection has been reached,
saving a comparison and branch in the loop of the algorithm.
This technique requires a constant space overhead, but it only
works if sentinel values are available, such aswhen the values
in the dataset do not span the entire domain.
We evaluated the improvement of the two optimizations,

loop unrolling and sentinels, using a microbenchmark de-
signed to simulated the case of searching small arrays. The
microbenchmark uses an array of 4096 elements and per-
forms searches that search through 32 elements until they
find the target. Combined the two optimizations improve the
performance of Sequential Search by 150%.

3.2 Slope Reuse
As illustrated in Figure 3, each iteration during a search using
a linear interpolation-based searchmethod fits a line between
the leftmost and the rightmost elements of the search interval.
A line is characterized by its slope and intercept (Algorithm 1,
lines: 7, 8). We can accelerate the interpolation computations
by reusing the slope calculated in the first interpolation (Fig-
ure 14 in the Appendix illustrates the difference).
An alternative approach is to calculate a new slope every

k iterations, instead of reusing the same slope throughout a
search. In general, even for a very large collection of values,
Interpolation Search performs a small number of iterations;
e.g. loglog109≈5 iterations for 1 billion values. Furthermore,
approaches like this integrate multiple phases into the core
loop and introduce additional branches, overhead and code
size. This approach not only adds computational and control
overhead, but it also impacts the degree to which loops can
be overlapped due to the larger code footprint. In general,
smaller loops are preferred for better cache efficiency and
loop throughput [16].

3.3 3-Point Interpolation
Linear interpolation was designed and can successfully fit
values that follow a uniform distribution. A more flexible in-
terpolation method is necessary for an Interpolation Search
algorithm to perform well on non-uniform distributions. The
flexibility of fitting a variety of distributions will entail a



higher computational cost. However, if now fewer iterations
are needed, then the overall search time can be improved.
We experimented with classical interpolating and spline

fitting methods [1, 8], and we explored search as a root find-
ing problem. For example, Interpolation Search is the regula
falsi method described in [28, 34]. Polynomial functions, like
cubic functions, are a common choice in numerical approx-
imation [1], however, polynomial interpolation is not able to
effectively fit fast growing distributions.
Jarratt and Nudds [20] describe a 3-point iterative root

finding method using linear fractions, that fits a curve to the
values of a dataset using three points. We combine Jarratt
and Nudds’s 3-point formula with bracketing, and introduce
3-Point Interpolation. To the best of our knowledge, this ap-
proach has not been proposed before, and as we show later,
our new interpolation approach is able to fit a variety of non-
uniform datasets.
Bracketing: A bracketing method maintains a search interval
such that the target is contained within the interval. In each
iteration, the search interval is reduced. Interpolation Search
and Binary Search are examples of bracketing methods. The
solid lines shown in Figure 15 in the Appendix, visualize how
the 3-Point Interpolation method can fit non-uniformly dis-
tributed data and adapt to the relevant part of the data in each
iteration.
During each iteration, the 3-Point Interpolation method

fits a curve to three points of the search interval and calculates
an expected position using Equation 2:

expected=x1+
y1(x1−x2)(x1−x0)(y2−y0)

y2(x1−x2)(y0−y1)+y0(x1−x0)(y1−y2)
(2)

yi =V [xi ]−y
∗,with V a sorted collection

The formula uses three points from the dataset that is being
searched, namely (position in the dataset, value): (x0,V [x0]),
(x1,V [x1]), (x2,V [x2]).

3.4 Fixed-point arithmetic
Multiplication by the slope of the interpolation line (the frac-
tion in Equation (1)) accounts for most of the arithmetic cost
in Interpolation Search. Equation (1) calculates the expected
position, an integer. The slope can be represented as a floating-
pointnumber toavoidusing integerdivisionwhich is slow[19].
But, while floating-point multiplication is fast, the keys must
be converted to floating-point and the product must be con-
verted to an integer to use as an index. The calculation can
be accelerated by using fixed-point arithmetic which saves
conversion to and from floating-point. Fixed-point arithmetic
may be less precise and requires the calculation of an approx-
imation term. We can tolerate the loss of precision because
interpolation is speculative, and we eliminate the calculation
cost of the approximation term by only using fixed-point

arithmetic in the first iterationwhere the approximation term
can be precomputed.
Fixed-point arithmetic approximatesmultiplication by an arbi-
trary fraction with multiplication by a fraction with a known
denominator. We use the symbol ⊗ for the approximation in
Equation 4. Multiplication followed by division by 264 can be
fused together and done more quickly than multiplication by
an arbitrary fraction. We exploit this behavior by finding an
approximation, s ′=p ′÷264, for an arbitrary fraction s=p÷q
such that s ′ ≈ s . We multiply y by s ′ by returning the high
word of the product of p ′ and y. The product of two 64-bit
integers is a 128-bit integer with a high 64-bit word and a low
64-bit word. Returning the highword is equivalent to division
by 264. To find p ′ wemultiply p by 264 and divide by q as seen
in Equation 3.

y∗s=y∗
p

q
≈ ⌊y∗⌈

264p
q
⌉÷264⌋

= ⌊y∗p ′÷264⌋, p ′= ⌈
264p
q
⌉ (3)

=y⊗s ′ (4)

The calculation ofp ′ is too expensive to do in the core loop.
For the first interpolation, we can pre-compute the value ofp ′
using 128-bit arithmetic without loss of precision.We assume
that s < 1, so p ′ fits in a 64-bit integer. This assumption is
realistic because the denominator comes from the values in
the array, which can be scaled if necessary, and the numera-
tor comes from the length of the array, which is likely to be
smaller than the maximum value of q = 264.

4 SIP ANDTIP
This section introduces two new interpolation based search
algorithms SIP and TIP. These algorithms address the short-
comings of the original Interpolation Search, by employing
various optimizations (described in Section 3), as outlined in
the following table:

Optimization SIP TIP
Guard ✓ ✓

Slope Reuse ✓
3 Point Interpolation ✓
Fixed-point arithmetic ✓

Both algorithms use Guard conditions. SIP, or Slope reuse
InterPolation Search, uses the Slope Reuse and fixed-point
arithmetic optimizations to reduce the cost of each iteration.
TIP, or Three point InterPolation Search, uses the 3-Point
interpolation method to fit a variety of datasets with non-
uniformly distributed values.

The following subsections present how each optimization
is incorporated into the two algorithms. We also quantify
the benefits of each optimization in isolation by comparing
the speedup that SIP or TIP achieves against a version of the



same algorithmwith the evaluated optimization disabled. For
this evaluation, we borrow the settings from Section 5.1.2,
which includes executing each method mutiple times, and
we use the UaR dataset. This dataset contains records with
keys chosen uniformly at random from the interval [1,263].
(Section 5.1.3 describes this dataset in more detail.) We use
the best configuration of guard size for each algorithmwhich
is decided empirically.

4.1 SIP: Slope Reuse Interpolation Search
SIP aims to optimize the cost of linear interpolation, address-
ing the first shortcoming of Interpolation Search, its poor per-
formance when searching in-memory, uniformly distributed,
datasets. SIP reduces the cost of each interpolation iteration.

Algorithm 2 Slope reuse Interpolation Search (SIP)
Input: V ,y∗, дuard_size , slope ▷V : sorted array of size n
Output: position o f value y∗ ▷y∗: the target value
1: le f t = 0 ▷ slope: precomputed slope
2: riдht = n−1 ▷ ⊗: fixed-point arithmetic multiplication
3: expected = le f t + ⌊(y∗ −V [le f t]) ⊗ slope⌋
4: while true do
5: if V [expected] < y∗ then
6: le f t = expected + 1
7: else if V [expected] > y∗ then
8: riдht = expected − 1
9: else
10: return expected

11: if left == right then
12: return NotFound

13: expected = expected + ⌊(y∗ −V [expected]) ⊗ slope⌋

14: if expected + дuard_size ≥ riдht then
15: return sequential_search(V ,y∗, riдht)
16: else if expected − дuard_size ≤ le f t then
17: return sequential_search(V ,y∗, le f t)

SIP,Algorithm2, uses the same linear interpolationmethod
asAlдorithm 1 and assumes a linear relationship between the
values and their positions. It iteratively calculates expected
positions (lines: 3, 13) and reduces the search interval by com-
paring the corresponding values to the target value (lines: 5-
10). SIP achieves a speedup of 1.5 to 3.7X against Interpolation
Search on the UaR dataset for different dataset sizes, while
Figure 2 presents the speedup achieved by SIP against Interpo-
lation Search and Binary Search for the fb_ids dataset (details
about the datasets can be found in Section 5.1.3).
Next, in subsections 4.1.1– 4.1.3, we present the optimiza-

tions employed by SIP. A detailed evaluation can be found in
Appendix A.3.

4.1.1 Guard in SIP. We incorporateGuard conditions in each
interpolation iteration (lines: 14, 16) thatmonitor the progress
made towards the target record. If thenewsearch intervaldoes
not differ significantly, the algorithm switches to sequential
search from the endpoint of the search interval that violated
the guard condition (line:15, 17). SIP achieves a speedup from
1.2X up to 3.7X when Guard is used compared to a variant
of SIP without the Guard. The chosen дuard_size for SIP, is
empirically derived.
Guard, also, protects from the worst case of Interpolation

Search, when the search degenerates to examining almost
every record in the dataset sequentially, like in Figure 4.

4.1.2 Reuse Slope in SIP. SIP reuses the slope of the line fit-
ted during the first iteration for every subsequent iteration
(line: 13), like in Figure 14. This slope does not change when
searching for different values over the same dataset, as it only
depends on the search interval and for every first iteration,
this search interval is the whole dataset, thus allowing us to
precompute this slope for each dataset. When reusing the
slope SIP achieves a speedup from 1.25X to 1.4X.

4.1.3 Fixed-point arithmetic in SIP. Linear interpolation is
described in Equation 1 and calculates the expected position
during each iteration. Linear interpolation can be split into
the calculation of the slope:

slope=
riдht−le f t

V [riдht]−V [le f t]
(5)

and of the expected position, which uses the slope:
expected=expected+(y∗−V [expected])∗slope (6)

We consider integer arithmetic, floating-point arithmetic, and
fixed-point arithmetic. Using integer arithmetic, we would
have to rewrite the calculations as:
expected=expected+(y∗−V [expected])÷

V [riдht]−V [le f t]

riдht−le f t
(7)

This is necessary since r iдht−lef t
V [r iдht ]−V [lef t ] truncates to zero be-

cause the denominator is larger. With integer arithmetic,
we need to perform two slow integer divisions to find the
expected position.

Floating-point multiplication is preferable to integer divi-
sion because, depending on the number of queued operation,
it requires close to 5 cycles, while integer division requires
around 80 cycles [19]. If floating-point arithmetic is used,
then we can use Equation 6, which is faster, but the necessary
conversions to and fromfloating-point are on the critical path.
Fixed-point arithmetic transforms the division in the cal-

culation of the expected position into a cheap multiplication
by an approximation (line: 13). Because SIP reuses the same
slope in each dataset, the divisor does not change, and the
approximation can be precomputed. The Intel Architecture
Code Analyzer [18] reveals that we begin loading the first



record in the search 24% sooner using fixed-point arithmetic
rather than floating-point arithmetic.

Essentially, we amortize the cost of calculating the approx-
imation of the fixed-point arithmetic by precomputing it, and
we trade off accuracy for speed by eliminating floating-point
conversions and division. SIP achieves a speedup of up to 5.5X
when using fixed-point arithmetic compared to using integer
arithmetic and up to 1.4X compared to using floating-point
arithmetic.

4.2 TIP: Three Point Interpolation Search
Although SIP reduced the cost of each interpolation compared
to Interpolation Search, the use of linear interpolation hurts
the algorithm’s performance on non-uniform distributions.
We introduce anewsearch algorithm, calledThreePoint Inter-
polation Search (TIP), that employs the 3-Point Interpolation
method to effectively characterize and interpolate on a variety
of non-uniform distributions.

Algorithm 3 Three point Interpolation Search (TIP)
Input: V ,y∗, дuard_size ▷ V: sorted array of size n
Output: position o f value y∗ ▷y∗: the target value
1: le f t← 0
2: riдht← n−1
3: mid← n÷2
4: expected← interpolateR (y

∗,le f t ,mid,riдht) ▷ Eq. 8
5: while true do
6: if abs(expected−mid)<дuard_size then
7: return sequential_search(V ,y∗, expected)
8: if V [mid] ,V [expected] then
9: ifmid <expected then
10: le f t←mid
11: else
12: riдht←mid

13: if expected + дuard_size ≥ riдht then
14: return sequential_search(V ,y∗, riдht)
15: else if expected − дuard_size ≤ le f t then
16: return sequential_search(V ,y∗, le f t)
17: mid←expected
18: expected← interpolate JN (y

∗,le f t ,mid,riдht) ▷ Eq. 2

TIP follows the general structure of an Interpolation Search
algorithm. It iteratively calculates expected positions (lines:4,
18) and reduces the search interval by comparing the value
corresponding to the current expected position to the target
value (lines: 9-12). Fiдure 2 presents the speedup achieved by
TIP compared to Binary Search and Interpolation Search for
the fal and freq1 datasets.

4.2.1 Guard Condition in TIP. In TIP, Guard conditions are
used in each iteration (lines: 6, 13, 15). The conditionsmonitor

the progress made towards the target record and switch to
sequential search if they progress is not significant (cf. Sec-
tion 4.1.1). The дuard_size is derived empirically.

4.2.2 3-Point Interpolation method in TIP. In addition to the
Jarratt andNudds formula, described in Section 3.3, TIP uses a
simplification of the same formula, described by Ridders [36],
which is easier to compute, but works only when the middle
point is equidistant from the left and the right points.

TIP initializes the three interpolation points to the leftmost,
mid and rightmost positions (lines: 1-3). We combine the two
3-Point formulas as follows: in the core loop (line: 18) we
use the formula described by Jarratt and Nudds, Equation 2,
because it allows us to reuse the most recent interpolation
point and perform one memory access per iteration (mid at
line:17 is assigned the value that expected had in the previous
iteration). Ridder’s formula requires two random memory
accesses per iteration. For the first interpolation (line: 4), we
use Ridder’s simplified formula, Equation: 8. This method is
cheaper to calculate but requires the three points to be equi-
distant, which can make it harder to produce them. But since
we only use this formula for the first interpolation, we are
able to precompute the three points.

expected=x1+
y1(x1−x0)(1+

y0−y1
y1−y2
)

y0−y2
y0−y1
y1−y2

(8)

yi =V [i]−y
∗

Duplicate values can affect the 3-Point interpolation method.
TIP protects against this case by not changing the endpoints
of the search interval ifV [mid]=V [expected]. Without this
condition, one of the endpoints (le f t , riдht ) would be set to
mid (lines: 10, 12). This would result in two of the three points
having the same value sincemid ← expected (line: 17). A
curve calculated using 3 points with 2 distinct values would
not be able to fit non uniform datasets effectively.

4.3 Discussion
To create SIP and TIP, we explored how the optimizations
described in Section 3 could be combined to address the short-
coming of Interpolation Search.
Fixed-point arithmetic which accelerates divisions in SIP

is not applicable to TIP because the formulas that TIP uses
to calculate the expected positions contain fractions with the
target value present in both the numerator and the denomina-
tor. The approximation required by the fixed-point arithmetic
transformationwould have to be calculated every time,which
is a significant overhead.

We also investigated a simplification of the 3-point method
that reuses calculations in subsequent interpolations, like
what Slope Reuse does for SIP. We were not successful in



coming up with such a simplification, but we believe this is
likely an interesting direction for future work.

Neither SIP nor TIP parallelize the search for a single value,
as it does not yield any benefit. Parallelizing a single search
requires partitioning the data to be searched and distributing
them across multiple threads. Consequently, only one thread
would have the segment of the original data that contains
the target value. Because the data is sorted checking for con-
tainment is cheap, so none of the threads except one would
contributeanythingtowardsfindingthe targetvalue.Searches
for multiple values can be parallelized by assigning different
search values to different threads, which is synergistic with
our core task of speeding up the search task in each thread.

5 EVALUATION
In this section,wepresent results fromanempirical evaluation
of various in-memory search algorithms.

5.1 Experimental Setup andMethodology
5.1.1 Setup. The experiments presented in this paper were
performed on a CloudLab1 hosted server with two Intel(R)
Xeon(R) CPU E5-2630 v3 running at 2.40GHz with 20MB of
L3 cache, based on the Haswell architecture, and 128GB of
mainmemory. TheCPUGovernor setting [5] is set to the "Per-
formance" option. All algorithms were implemented in C++
and compiled using Clang 5.0.1 with maximum optimization
settings, including unsafe floating-point math that assumes
typical algebraic rules and similar arithmetic optimizations
which might not comply with the standard. Our implemen-
tation is available on GitHub2.

5.1.2 Experiments Methodology. In our experiments, we use
datasets containing records sorted on an 8 Byte integer key.
Each record contains an 8Byte key and afixed-length payload.
The records simulate searchingoverdatabase tableswhere the
payload represents columns not participating in the search
key.Wepopulate our arrayswith different numbers of records
and differently-sized fixed-length payloads. By varying these
parameters, we vary the part of the dataset that fits in each
cache level, and the number of records that fit into a cache line,
consequently changing the cost of memory accesses during
search.

In Section 5.1.3, we describe how the values of the keys are
chosen, we use real and synthetic datasets with uniform and
non-uniformdistributions.Wevary the lengthof the synthetic
datasets from 103 to 109, and the record size (key+payload)
from8 to 128Bytes. The total size of the datasetsweuse ranges
from 8KB to 32GB.

1https://www.cloudlab.us/
2https://github.com/UWHustle/Efficiently-Searching-In-Memory-Sorted-
Arrays

Record Size

Dataset Size 8 Bytes 32 Bytes 128 Bytes

103 10% 4% 3%
104 7% 4% 4%
105 1% 1% 1%
106 4% 5% 3%
107 6% 5% 3%
108 2% 3% 2%

Table 1: Variance in the measurements: 90% of IQRs
are below 10%.

We initialize the randomly-generated synthetic datasets
with multiple seeds to account for the variability of random
processes. In our results, we report this variance by showing
the upper and lower quartiles of the measurements as error
bars.
To measure the performance of an algorithm for a given

dataset, we randomly permute the keys contained in the
dataset and search for all of them, this is called a run. We
measure the overall time to search subsets of 1,000 keys and
collect at least 1,000,000 searches. We repeat this process mul-
tiple times to reduce variability across different runs.
To reduce possible variance in our measurements due to

the contents of the cache and other hardware factors, we dis-
card the first 30% of runs we perform for each experiment.
We evaluate our measurement strategy by measuring 90th
percentile interquartile range between multiple runs of the
same experiment, and present the difference between runs
for all algorithms and datasets grouped by dataset and record
size in Table 1. The small variance across our measurements
strengthens the confidence in our results.

In our evaluation, we compare the algorithms based on the
time to perform one search. This is calculated as the median
of the measured times of the multiple runs. The search time
for each run is an average over the time to search each subset.

5.1.3 Datasets. We experiment with eight different datasets
that can be split into two groups. In the first group, the values
of the datasets follow a uniform distribution. In the second
group, the values of the datasets follow a non-uniform distri-
bution. Both groups contain synthetic and real datasets. The
values contained in thedatasets range from1 to263.Duplicates
exist in the datasets.
Uniformly Distributed Datasets: The uniform group contains
three datasetsUaR, gap, and fb_ids. The fb_ids dataset [11, 12]
contains a uniform sampling of the ids of Facebook users. We
used a subset of the dataset containing 289,000 records, as the
rest of the dataset contains sequential values that can be fitted
perfectly by a linear interpolation and thus does not provide
any insights regarding the performance of the algorithm. The
dataset gap is a synthetic dataset that captures the result of
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Figure 5: Comparison of SIP, TIP andBinary Search on
the f b_ids dataset, over different record sizes.

a process where sequential ids are initially used, but gaps are
created when records are removed uniformly at random. Us-
ing the shape parameter, we can choose how close the values
are to perfectly sequential. The UaR (Uniform at Random)
dataset contains values that are chosen uniformly at random
from the interval [1, 263].
Non-uniformly Distributed Datasets:We use three synthetic
datasets, fal, cfal, lognormal and two real datasets freq1 and
freq2. The two real datasets describe the frequencies of words
found in corpora. The freq1dataset contains the frequencies of
the 2,076,000 unique words found inWikipedia articles 3. The
freq2 dataset lists the frequencies of 233,000 words from the
dataset “BagofWords”byNewman 4.Values inboth frequency
datasets follow a Zipf distribution, which is observed in nu-
merous real world phenomena, including population of cities,
corporation sizes, andwebsite visits [7, 26, 33]. The fal dataset
also models values that follow a Zipf distribution. In the re-
lated dataset is cfal, the distance between consecutive values
follows a Zipf distribution [32]. For the fal and cfal datasets,
we specify how quickly the values grow by using a shape
parameter, z. The shape parameter allows us to model distri-
butions ranging from uniform to hyperbolic. Both fal and cfal
are created using the original generator from [10], in which
fal: N /r z , cfal: CumulativeSum(fal), where N=size of dataset,
r = position in the sorted dataset, and z = shape. For our ex-
periments we use multiple shapes like in [2]. Figure 21 in
the Appendix visualizes the fal and cfal datasets for three
different shapes. The values in the log-normal dataset fol-
low the log-normal distribution. This distribution has been
found to model various natural phenomena, such as the time
spent by users reading articles online [40] and the size of liv-
ing tissue [17]. To generate the log-normal values, we draw
samples from a log-normal distribution. We parameterize the
distribution with µ=0, σ =2 as in [24].

5.1.4 Baseline Algorithm. To evaluate the performance of
SIP and TIP, we compare them against Binary Search. We
3https://en.wikipedia.org/wiki/Wikipedia:Database_download
4https://archive.ics.uci.edu/ml/datasets/bag+of+words

carefully looked at various optimizations that are possible
over a textbook implementation of Binary Search and created
an optimized Binary Search method. This optimized Binary
Search method is described in more detail in Appendix A.2,
and is used in all the subsequent experiments. The optimized
version was significantly faster in many cases. For example,
it was about 4X faster for small datasets with 1000 records.

5.2 Searching UniformDatasets
This section evaluates SIP and compares it to Interpolation
Search, TIP and Binary Search when searching datasets con-
taining uniformly distributed keys. Figure 5 shows the time
required to search for a key in the real dataset fb_ids, which
contains keys from a uniform sampling of the ids of Facebook
users. We evaluate the three algorithms over three different
record sizes. SIP is more than twice as fast as Binary Search
and TIP and around 50% faster than Interpolation Search.

The optimizationswe introduced and applied to SIP, reduce
the arithmetic cost of each iteration significantly relative to In-
terpolationSearchandallowSIP tooutperform it.The reduced
iteration cost allows SIP to exploit the superior complexity
of linear interpolation and outperforms Binary Search. The
linear interpolation used by SIP is cheaper than the three-
point fractional interpolation used by TIP which allows SIP
to outperform TIP.

5.2.1 SIP on Uniformly Distributed Data. We evaluate how
the speedup achieved by SIP against Binary Search general-
izes as the cost of memory access/record change, which we
indirectly control by using different dataset and record sizes.
Larger datasets and bigger records increase the cost of each
memory access (per record) as fewer records fit in each cache
level and in each cache line.More expensivememory accesses
benefit SIP because it uses more expensive calculations to
save memory accesses.
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Figure 6: Speedupof SIP compared toBinarySearch for
different dataset and record sizes, on the UaR dataset.
109 records of size 128B exceed thememory capacity.



Figure 6 presents the speedup of SIP compared to Binary
Search on theUaR dataset across multiple datasets and record
sizes. We can observe that the speedup of SIP increases for
bigger record sizes and for bigger dataset sizes. The error bars
report the variability due to the multiple seeds used for the
generation of the dataset. SIP achieves an up to 4X speedup,
the results and trends for the gap dataset are similar. Cross-
ing cache boundaries makes the graph "noisy" for smaller
datasets, and a more clear pattern appears when the number
of records grows relatively large.
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Figure 7: Time to perform a search for SIP and Binary
Search for different dataset sizes, for the UaR dataset
and record size = 32 Bytes.

Figure 7 plots the search times of SIP and Binary using the
same data as shown in Figure 6, but just for the 32B record
size. We would expect Binary Search, anO(logN ) algorithm,
to show as a straight line on a log-linear plot. The increasing
slope of Binary Search is a result of the increasing cost of each
memory access. Memory accesses are gettingmore expensive
as the size of the dataset increases and consequently the part
of the working set that fits in each cache level decreases. Our
observation that the slope of SIP is decreasing suggests that
we are realizing the theoreticalO(loglogN ) behavior in prac-
tice. We omit plotting the search times for all record sizes as
they are similar.
SIP is able to outperform Binary Search on the uniform

dataset across all records sizes, and successfully addresses the
first shortcoming of the original Interpolation Search (namely,
the poor performance of Interpolation Search). SIP benefits
whenmemory accesses becomemore expensive as it accesses
memory fewer times. We expect the performance difference
between Binary Search and SIP to increase according to hard-
ware trends, described in Figure 1, which bodes well for the
future of SIP for such datasets.

5.2.2 Interpolation-SequentialSearch. Aninterpolation-based
search method uses information about the distribution of the
data to calculate the expected position of the target value.
An ideal interpolation method would be able to fit the data

perfectly and with a single interpolation find the target value.
Realistically we expect a very effective Interpolation Search
method to guide us very close to the target at the first inter-
polation. The more effective the interpolation is, the smaller
is the distance between the expected position and the target
position, this distance is the error of the interpolation. When
the error is small, a second interpolationwould likely not offer
any improvement that would warrant the computational cost.

Gonnet andRogers [14] give ananalysis of an Interpolation-
Sequential search algorithm by Price [35] that uses a sin-
gle interpolation to guide a subsequent sequential search
which shows the expected number of sequential steps after
the first interpolation to be O(

√
N ). We have implemented

Interpolation-Sequential Search which performs one inter-
polation and switches immediately to Sequential Search. As
noted before, Sequential Search is generally faster than SIP,
TIP, or Binary Search on very small numbers of records.

Interpolation-Sequential search can outperform SIP, if the
first interpolation has a small error, such as when the values
are nearly sequential. To evaluate this property, we use the
gap dataset and vary the shape parameter. The shape param-
eter determines the number of elements that are randomly
removed from a set of sequential elements; the bigger the
shape parameter, the closer the dataset is to a collection of
sequential values. Figure 8 shows the dataset size at which
the performance of SIP and Interpolation-Sequential Search
equalize. For smaller sizes, Interpolation-Sequential is faster.
However, for larger sizes, SIP is faster for different record sizes.
The equalization point changes as the record size changes.
Different record sizes change the cost of memory access, as
fewer records fit into a lower cache level and a cache line.
When the shape parameter is 99.999% (in this case, the values
are practically sequential), Interpolation-Sequential is faster
for datasets with up to ten million records.
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Figure 8: The dataset size (Number of Records) where
SIP becomes faster than Interpolation-Sequential. For
smaller sizes, Interpolation-Sequential is faster, for
larger sizes, SIP is faster.
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Figure 9: Time to perform a search for TIP and Binary Search for different dataset sizes on synthetic, non-uniform
datasets. Record size is 8 Byte records, the results for other record sizes are similar and we omit them (X axis is in
log scale).

Weobserve that theerrorof thefirst interpolationdecreases
with the dataset size. This suggests that even when the dis-
tribution is “less ideal,” Interpolation-Sequential will outper-
form SIP because the absolute search distance is still small.
SIP would have the same logical behavior when searching
small datasets as Interpolation-sequential, but SIPwould have
to perform two interpolations so that the guard conditions
could identify that the progress was not significant before
switching to Sequential Search. The overhead of this extra
work is substantial, especially when we expect searches to
be compute bound. In Figure 10 we compare Interpolation
Sequential to SIP for progressively smaller subset of the fb_ids
dataset. Interpolation-Sequential is faster than SIP for small
dataset sizes even if the fit in not ideal.
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Figure 10: SIP compared to Interpolation-sequential
for various sizes of the fb_ids dataset.

5.3 Searching Non-UniformDatasets
This section evaluates TIP and compares its performance to
Binary Search using datasets with values that follow non-
uniform distributions.We designed TIP to address the second
shortcomingof InterpolationSearch, its inability to effectively
fit non-uniform distributions.

5.3.1 TIPonNon-UniformlyDistributedData. Ashighlighted
in Figure 2 and discussed in Section 4, SIP is notwell-suited for
non-uniformly distributed datasets. On the other hand, TIP is
designed to target this setting. TIP fits a range of distributions
using a 3-point interpolation method instead of the linear
interpolation used by Interpolation Search. We evaluate the
ability of TIP to fit a wide range of distributions by using
the fal and cfal datasets. These two datasets can represent a
variety of distributions by varying their shape parameter.

Figure 9 compares TIP and Binary Search over different
shapes and dataset sizes on fal. We use 4 shapes: 0.5, 1.05, 1.25,
1.5, similar to [2], which change the skew of dataset values as
seen in Figure 21. For large numbers of records, TIP achieves
up to a 2-3X speedup on some of the fal and cfal datasets (e.g.
fal with shape parameter of 1.05).
We observe that Binary Search is faster on small dataset

sizes, but that TIP stays competitive across all sizes and out-
performs Binary Search across all shapes for datasets larger
than 108. For the lognormal distribution we observe the same
results, TIP is faster for sizes larger than 108 records. As de-
scribed in Section 5.2.1, we would expect the performance
of Binary Search to appear as a straight line when the time
axis is linear and the dataset size increases logarithmically.



For TIP, the decreasing rate of increase shown in Figure 9 sug-
gests sub-logarithmic runtime behavior in practice, similar to
theO(loglogN ) behavior expected from Interpolation Search
when it fits the distribution of the data.

We conducted further experiments across small dataset and
record sizes to empirically determine when TIP starts becom-
ing faster than Binary Search. Binary Search is faster than TIP
on small data where the more costly arithmetic of the three-
point interpolation ismore expensive than additional random
accesses. TIP becomes faster than Binary Search for datasets
over 16KB, given the memory overhead for the benchmark,
a 32KB L1 cache and cache conflicts this is likely when the
working set exceeds the L1 cache.
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Figure 11: TIP compared to Binary Search on the f req1
(left) and f req2 (right) datasets for different record
sizes.

Figure 11 shows the search duration of TIP and Binary
Search on the f req1 and f req2 datasets, the keys of these
two datasets describe the frequency of words found in cor-
pora (Section 5.1.3). TIP outperforms Binary Search on these
datasets even though they are still relatively small. Dataset
f req1 contains 10 times more values than f req2 but exhibits
shorter search times. This is likely caused by the relative dom-
inance of duplicate entries in f req1. The number of unique
frequencies is similar for the two datasets despite the 10X
size difference. TIP benefits more than Binary Search from
duplicate entries. TIP’s use of sequential search allows it to
terminate the sequential search earlier when a duplicate en-
try is encountered. On the other hand, our Binary Search is
largely unaffected because it performs a constant number of
iterations and a shorter sequential search.

5.4 Search time variance within a dataset
Because Binary Search reduces the search interval by half
in each iteration, it performs a consistent number of itera-
tions regardless of the distribution of the data. Interpolation
methods are more susceptible to anomalies in the distribu-
tions of the data. This occurs when the data deviates from the
interpolation function or when duplicates are present.

Record Size
Dataset Algorithm 8 Bytes 32 Bytes 128 Bytes

fb_ids SIP 1% 1% 2%
Binary Search 1% 1% 1%

freq1 TIP 4% 5% 4%
Binary Search 3% 3% 3%

freq2 TIP 2% 3% 4%
Binary Search 2% 1% 2%

Table 2: Variance in searching for different keys.

In Table 2, we present the differences we measured across
the times to search subsets of 1,000 keys, our base unit of mea-
surements, within the same dataset, for all of our real datasets.
The values we report refer to the differences of the upper
and lower quartiles of our measurements. By studying this
variance we can understand how anomalies in the distribu-
tions of the values affect the behavior of each algorithm. This
summary shows consistent performance across searching for
different keys. Duplicates in freq1 and freq2 explain higher
variance in the duration of TIP searches.

5.5 Behavior Analysis of SIP
SIP combines two search methods, Interpolation Search and
Sequential Search and switches between the two methods
using Guard conditions. SIP employs twomore optimizations
(slope reuse and fixed-point arithmetic), as described in Sec-
tion 4.1. Figure 12, presents the time SIP requires to search for
one record and breaks down the time into the average number
of interpolation iterations and average number of sequential
steps performed for each dataset size. Each sequential step
corresponds to examining one record by Sequential Search.
The UaR dataset with record size 8B is used. This experiment
allows us to compare the behavior of SIP with the theoretical
analysis of Interpolation Search presented in Section 2. We
observe that the increase of the number of interpolation iter-
ations in relation to the size of the dataset is close to loglogN ,
which is the expected behavior according to the theoretical
analysis of Interpolation Search [31].
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Figure 12: Time to search for one record, number of
interpolations and sequential steps for SIP.



5.6 Alternativememory layouts
Binary and Interpolation Search require the data to be in ar-
ranged in sorted order. An alternative approach is to change
the data layout for higher performance. Khunong et al [22]
describe a method in which the data is viewed as being stored
in a complete binary search tree. The values of the nodes in
the tree are placed in an array in a left-to-right breadth-first
traversal order. This format is called Eytzinger and the search
algorithmsimulates a search in this implicit binary search tree.
The authors conclude that for small datasets binary search is
faster, but for large datasets the proposed layout and search
algorithm are faster. We implemented the two variations of
the search algorithm proposed in [22] and compared them to
SIP and TIP.We validate the results presented in [22]with our
implementation of Binary Search. We replicated the exper-
iments presented in Sections 5.2 and 5.3, and found that for
uniformly distributed datasets when the Eytzinger layout is
faster than Binary search, SIP is faster than both, outperform-
ing Eytzinger by 10-250% depending on the dataset, number
of records, and record size. For non-uniformly distributed
datasets, Eytzinger and TIP are faster for different data distri-
butions distribution, dataset and record sizes. The Eytzinger
format can be faster up to 24% in some cases and TIP can be
faster by up to 59%. Essentially, when Binary Search beats SIP
and TIP, the Eytzinger also beats SIP and TIP.

An important point to note is that while the Eytzinger for-
mat offers performance improvements for “point” queries (in
some cases), that format is not well-suited for range queries.
Range queries need to scan (a portion of the sorted) data se-
quentially and the binary-tree based layout is not efficient for
this access pattern. To investigate this aspect quantitatively,
we created datasets containing from 103 up to 109 recordswith
8B keys and total record sizes ranging from 8B to 1024B. Then,
wemeasured the performance to scan 102 to 107 records, start-
ing from the middle record. The speedup achieved by using
the sorted layout ranges from 1.6X to 3.8X, and shows that
alternative memory layouts are disadvantaged when range
queries are involved.

5.7 Integration with Numpy and LevelDB
We have also integrated SIP and TIP in Numpy [29] (version
1.16), which is used by Pandas [30], and LevelDB [25].

In Numpy, we extended the implementation of the search-
sorted5method to use SIP andTIP in addition to Binary search.
The searchsortedmethod returns the position a record should
be inserted so that an array remains sorted. In the case of dupli-
cates, an argument controls if the position at the end (or start)
of the duplicates is returned. We compared SIP and TIP to
Numpy’s Binary Search by using all the datasets described in

5https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.
searchsorted.html

Figure 13: Left: Search times for the cfal, shape=1.05.
Right: SpeedupofNumpywithSIPandTIPondifferent
sizes of theUaR dataset and on the fb_ids dataset.

Section 5.1.3. For the synthetic datasets we varied the number
of records from 103 to 109. The results validate our previous
experiments and inmost cases offer even better improvement
as the Binary Search implementation used in Numpy is miss-
ing some of the optimizations present in our Binary Search
(cf. Section A.2). SIP is up to 4.8 times faster when searching
uniformly distributed datasets and TIP is up to 3 times faster
when searching non-uniformly distributed datasets. Indica-
tively, the right panel in Figure 13 shows the speedup for the
UaR and fb_ids datasets for different dataset sizes, record size
is 8B. The left panel in Figure 13 shows the results for the same
experiment shown in Figure 9 for the cfal, shape=1.05 dataset
and shows similar trends and performance improvement. (We
omit detailed presentation of the reset of the experiments as
they are similar to the ones presented earlier.) We note that
TIP performs worse than Binary Search for the freq datasets
by 15% to as high as 5X in one case, asNumpyhandles the pres-
ence of duplicate values differently than our standalone im-
plementation. With high number of duplicates, and Numpy’s
duplicatehandling semantics, BinarySearch is preferred. (The
meta-algorithm in Section 5.8 can pick this case.)
We also integrated our search method into LevelDB [25].

LevelDB provides a benchmark 6, which we used in this eval-
uation. The dataset used in the benchmark follows a uniform
distributions so only SIP was used in this experiment. We
modified the block size to 217 and also added 24 bytes and
one key to each block to save reading the first and last keys
in the compressed format. We run the readrandom LevelDB
benchmark until the performance stabilizes and report the
average of multiple runs after. For a database size of ∼9GB,
the benchmark performance improved by 38%, indicating that
search time, which accounted for 56% of total execution time
when using Binary search, improved by 146%. For a database
size of ∼35GB, the benchmark performance improved by 7%,
indicating that search time, which accounted for 31% of total
execution time when using Binary search, improved by ∼3X.

6https://github.com/google/leveldb#performance

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.searchsorted.html
https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.searchsorted.html
https://github.com/google/leveldb#performance


5.8 Choosing a search algorithm
Since each algorithmhas a performance sweet spot, we need a
method to choose between them.One approach is use amodel
of eachmethod to predict the optimal algorithm. This exercise
can be challenging as it requires accurately modeling data
and hardware characteristics (and hardware characteristics
are not easily exposed by hardware vendors).
Motivated by the the low variance in the search times of

SIP and TIP (cf. Table 2), we propose a sampling-based meta-
algorithm to select an appropriate search algorithm.When a
newdataset is createdweperforma small number (e.g. 10) ran-
dom searches for each search algorithm, and pick the fastest
for subsequent searches. The performance of Binary search is
measured first and used as a threshold for the other methods.
Appendix A.6 presents the algorithm.

During the lifetime of a dataset, records can be added or
removed, potentially altering the distribution of the values,
i.e. a uniformly distributed dataset may follow a non-uniform
distribution after many updates/inserts. We implemented a
safeguard for this case: we monitor the performance of the
searches, and if they exceed a threshold (set to the difference
between the performance of Binary Search and the fastest al-
gorithm) we re-run the sampling algorithm.We implemented
this meta-algorithm in Numpy and performed 10 searches
(for the sampling component). The new meta-algorithm is
able to select the fastest search algorithm for all the datasets
that we presented in this paper. This method is effective as
the time to perform each search is fast (tens to hundreds of
nanoseconds) and the additional cost of sampling is negligible
for workloads with a large number of search queries.

6 RELATEDWORK
Searching sorted data is a fundamental problem in Computer
Science. It is also a key data operation in databases systems
and is used when traversing indices, accessing sorted files,
etc. The most prominent algorithms, Binary and Sequential
Search, have been studied extensively [23]. Sequential search
examines all the elements of a dataset sequentially. It can be
fast for searching smaller datasets and offers benefits when
used in the final stages of more advanced methods [9, 13].

Interpolation Search has been used in database systems in
special cases when the data exhibit a perfect distribution [15].
Binary Search is the de facto algorithm for searching over
sorted datasets. It has predictable performance and its per-
formance is independent of the distribution of the dataset,
as it always reduces the search interval by half in each it-
eration. Previous work has explored hybrid methods that
combine Interpolation Search with Binary Search to achieve
the theoretical guarantees of Binary Search with the speed
of Interpolation Search [3, 15, 37]. These methods have not
been supported by experimental evaluations.

One could think indexing and searching methods as in-
terchangeable solutions to the same problem, i.e. locating a
record in a dataset. However, searching has advantages that
an index can not offer: no space overhead, no preprocessing
time, not affected by updates. Additionally, improving search
methods can directly benefit the performance of an index.
Indices use search methods to locate the target records at the
final stage, i.e. inside a B-Tree node or as themodel used at the
final stage of a learned index [24]. Thus, these are separate
problems, both worth independent examination.

7 CONCLUSIONAND FUTUREWORK
Binary Search is the de facto algorithm for searching sorted
data in-memory and a primitive in many systems. Diverg-
ing CPU and memory speeds motivate the use of algorithms
that trade off computation for fewer memory accesses. In-
terpolation Search uses more complex arithmetic to reduce
the number of memory accesses but is not widely used due
to a number of shortcomings, including high computation
overhead in each inner loop and poor behavior with non uni-
form data distributions. In this paper, we revisit Interpolation
Search and introduce two new interpolation based search
algorithms that address the shortcomings of the original al-
gorithm. SIP and TIP, the two new algorithms, are designed
to search data following uniform and non-uniform distribu-
tions respectively. Through a comprehensive experimental
evaluation, we showed that SIP can be up to 4 times faster and
TIP 2-3 times faster than a similarly optimized Binary Search
implementation. The performance speedup of SIP and TIP
over Binary Search is poised to increase as the gap between
computation and memory access speeds widens.
There are a number of exciting directions for future work.

NVMe storage devices (i.e. Intel Optane) are at the forefront
of storage technology. They offer many benefits and can re-
place DRAM, but they offer slower access times. It will be
interesting to examine the impact of our algorithms when
data is stored primarily in these devices.

SIP, TIP, Sequential and Binary Search each have their per-
formance sweet spots,which can changeas the search interval
changes. A dynamic algorithm that can adapt and use the best
search method for the relevant part of the data (i.e. switch
from one algorithm to the other in the same search), is also
an interesting direction for future work.
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A APPENDIX
A.1 Faster Interpolation Search
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Figure 14: The lines of thefirst two interpolationwhen
slope is reused andwhen it is not.

Figure 14 illustrates the lines of the first two linear inter-
polations when slope is reused and when it is not. The first
interpolation line is the dotted-dashed, if the slope is reused
the second line is parallel to the first (solid line), otherwise a
new slope is used (dotted line).
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Figure 15: When the 3-Point interpolation method
searches the x2 distribution for y∗ = 322 it will use the
(solid line) curvespresented in thisfigure tofit thedata.
Each subplot presents the curve fitted during each step
of the search. The last plot present the progression of
the expected positions until the target is found.

Figure 15 presents the steps performed by the 3-Point inter-
polation method during a search and the progression of the
expected positions. The two plots at the top show the curves

that the 3-Point interpolation method will fit to the x2 distri-
bution when we search for y∗ = 322. The (solid line) curves
are used to calculate the expected positions. We can observe
that the curve fitted during the first interpolationmatches the
general distribution of the data but there are some areas for
which the curve slightly diverges from the dataset, i.e. from
position 0 to 35. The first interpolation guides the search near
the target position. The second interpolation uses 3 points
locatedmuch closer to the target position to fit a curve, which
better matches the part of the dataset that contain the target
value, and it locates the target value. For the same dataset and
target value, the linear interpolation method used by Interpo-
lation Search required 6 iterations to locate the target value,
(Figure 4), while the 3-Point Interpolation method required 2
iterations (Figure 15 bottom, points 1, 2).

A.2 Optimized Binary Search

Algorithm 4Optimized Binary Search
Input: V ,y∗, num_iterations ▷ V: sorted array of size n
Output: position o f value y∗ ▷y∗: the target value
1: le f t← 0
2: t← n
3: for i← 0; i < num_iterations; i++ do
4: mid← ⌊ t2 ⌋
5: if V [mid] ≤ y∗ then
6: le f t←mid

7: n← ⌈ t2 ⌉

8: return sequential_search(V ,y∗,le f t+ ⌊ t2 ⌋)

Algorithm 4, is the optimized implementation of Binary
Search. It maintains the search interval implicitly as:

[le f t , le f t +
t

2
]

instead of explicitly tracking it, as [left, right] like in [23]. This
saves one conditional evaluation because, instead of choosing
which endpoint to update at every iteration, we update only
le f t .
Guard in Binary Search:We terminate Binary Search with a
Sequential Search, like in SIP and TIP. Instead of dynamically
choosing when to switch to Sequential Search, we calculate
the number of Binary Search iterations, num_iterations , to
be performed before switching to Sequential Search. This
is possible because the size of the search interval after each
iteration is known. The search interval is reduced by half
in each iteration. We empirically calculate, similarly to Sec-
tion 4.1.1, the size of the search interval where it is beneficial
to switch toSequential Search,basecase_size .Weprecompute
the number of iterations to be performed by Binary Search
using basecase_size as:

num_iterations= ⌈logN −logbasecase_size⌉ (9)



where N is the number of records.
We also experimented with a prologue before the loop

which reduced the size of the interval to a power of 2, saving
the ceiling function in the core loop (line: 7). We found this
degraded performance in all but the smallest dataset sizes.

A.3 SIP Optimizations
This section evaluates in detail the effect of the optimizations
applied to SIP, Section 4.1. The UaR dataset and a record size
of 8B are used for the evaluation.
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Figure 16: Speedup of SIP vs Interpolation Search (IS),
Algorithm 1, onUaR.

Figure 16 presents the speedup of SIP against Interpola-
tion Search for the UaR dataset for different dataset sizes,
while Figure 2 presents the speedup achieved by SIP against
Interpolation Search and Binary Search for the fb_ids dataset.
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Figure 17: Evaluation of the effect of Guard on SIP. Pre-
sented is the speedup achieved by a version of SIPwith
Guard compared to a version of SIP without Guard.

Figure 17 present the improvement of SIP with the Guard
condition by comparing it to a version of SIP without it. To
set the дuard_size , we measure the performance of SIP for
various datasets and record sizes, like in Figure 18. Record
sizes increase the cost of memory accesses because fewer
records can fit in the processor’s cache and in each cache line.
This impacts the performance of the algorithm. We choose

a guard size of 8 for SIP because it was the best all-around
performer across the range of our experiments.
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Figure 18: Performance comparison with different
guard widths, for different record sizes.
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Figure19: SpeedupofSIPwhenslope is reused, onUaR.

Figure 19 present the improvement of SIP when the slope
is reused compared to a variant of SIP which does not reuse
the slope.
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Figure 20: Speedup of SIP when fixed-point arithmetic
is used compared to floating-point and integer arith-
metic, onUaR.

Figure 20 compares the speedup in overall execution time
of SIPwhen using fixed-point arithmetic to floating-point and
integer arithmetic.



A.4 fal and cfal datasets visualized.
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Figure 21: fal (left column) and cfal (right column) dis-
tributions. Each row presents datasets with a different
shape: 0.2, 1.05, 1.5

A.5 Parallel Performance
SIP and TIP can be parallelized by searching for multiple
records concurrently, as discussed in Section 4.3. To assess
the impact of concurrent searches, we search for each record
in a single dataset and vary the number of threads. Figure 22,
presents the time to search for one record using SIP, using
the UaR dataset (Section 5.1.3) with 100 million records and
record size 8B. The time is the average of all the searches
across all threads.We vary the number of threads from 1 to 32.
We omit the corresponding experiment for TIP as the results
are similar.

While the thread count increases to 16, SIP’s performance is
not affected.Almost allmemoryaccesses are containedwithin
the cache. Whenmore than 16 threads are used, the time to
search for one record increases.We believe that storing all the
profiling information causes the performance degradation,
up to a certain point. As we increase the thread count and the
size of the dataset, we collect more data that has to be moved
to memory. Smaller datasets, that produce less profiling infor-
mation, present a smaller or noperformancedegradation after
16 threads. For all datasets and records sizes, the performance
of SIP and TIP is affected significantly less than Binary Search
whenwe usemore threads. Thememory access pattern of SIP
and TIP likely help them perform better.
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A.6 SamplingMeta-Algorithm
The Meta-Algorithm, Algorithm 5, picks the fastest search
methodbetweenBinarySearch,SIPandTIP foragivendataset.
The Meta-Algorithm is executed when a dataset is created
and potentially in the case where the dataset’s distribution
changes after a significant number of updates, deletions or
inserts. The algorithm’s usage is described in Section 5.8.

Algorithm 5Meta-Algorithm
Input: V , noSamples ▷ V: sorted array
Output: fastestAlgorithm
1: randVals← noSamples random values from V
2: \\ Sample Binary Search
3: execTime← 0
4: for y in randVals do
5: execTime += time_d(BinarySearch(V, y),∞)
6: algorithmPerformance.add("BS", execT time

noSamples )
7: \\ Sample SIP, TIP
8: deadline← algorithmPerformance.get("BS")
9: for algo in SIP, TIP do
10: execTime← 0
11: for y in randValues do
12: exec_time +=
13: time_d(alдo(V ,y),deadline)
14: algorithmPerformance.add(algo, execT time

noSamples )

15: fastestAlgorithm←min(algorithmPerformance)
16: return fastestAlgorithm

Function time_d(func, deadline) executes the function func
and returns its execution time, if the execution time exceeds
the deadline func is stopped and∞ is returned.
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