A Relational Approach to Complex Dataflows

Yannis Chronis

Alexandros
Papadopoulos

Yannis Foufoulas

Lefteris
Stamatogiannakis

Vaggelis Nikolopoulos
Christoforos Svingos

Yannis loannidis
{i.chronis, johnfouf, vgnikolop, alpap, estama, c.sviggos, yannis}@di.uoa.gr
MaDgIK Lab, Dept. of Informatics and Telecom., University of Athens, Greece.

ABSTRACT

Clouds have become an attractive platform for highly scal-
able processing of Big Data, especially due to the concept of
elasticity, which characterizes them. Several languages and
systems for cloud-based data processing have been proposed
in the past, with the most popular among them being based
on MapReduce [6]. In this paper, we present Exareme, a
system for elastic large-scale data processing on the cloud
that follows a more general paradigm. Exareme is an open
source project [1]1. The system offers a declarative language
which is based on SQL with user-defined functions (UDFs)
extended with parallelism primitives and an inverted syn-
tax to easily express data pipelines. Exareme is designed
to take advantage of clouds by dynamically allocating and
deallocating compute resources, offering trade-offs between
execution time and monetary cost.

1. INTRODUCTION

Modern applications face the need to process large amount
of data using complex functions. Examples include complex
analytics [13], similarity joins [11], and extract-transform-
load (ETL) processes [14]. Such rich tasks are typically
expressed using high-level APIs or languages [15] and are

transformed into data intensive workflows, or simply dataflows.

Exareme uses a master-worker architecture. Our language is
based on SQL to express both intra-worker and inter-worker
dataflows. We use UDFs and a inverted syntax to easily
express local pipelines and complex computations. Inter-
worker dataflows are described with simple parallelism prim-
itives. These abstractions allow users to fine tune dataflows
for different applications. All of the basic components of
Exareme are designed to support the elastic properties of
cloud infrastructures. We provide comparisons to other state

IThe research leading to these results has received fund-
ing from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreements 318338
project ”Optique”, 600932 project "MD PAEDIGREE”,
604102 project "Human Brain”.

(©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

of the art systems.

2. SYSTEM OVERVIEW

The system architecture is shown in Figure 1. From a
user’s point of view, the system is used as a traditional
database system: create / drop tables or indexes, import
external data, issue queries. The queries are expressed in
ExaDFL. ExaDFL is transformed into data processing flows
(dataflows) represented as directed acyclic graphs (DAGs)
that have arbitrary computations (operators) as nodes and
producer-consumer interactions as edges between the nodes.
The typical queries we target are complex data-intensive
transformations that are expensive to execute, queries may
run for several minutes or hours.

Exareme is separated into the following components: The
Master, is the main entry point, through the gateway, to
the system and is responsible for the coordination of the rest
of the components. The Execution Engine communicates
with the resource manager and schedules the operators of the
query respecting their dependencies in the dataflow graph
and the available resources. It also monitors the dataflow
execution and handles failures.

Compute Cloud

Parser

Gateway

Storage Cloud

Execution Engine Registry

Resource Manager | | @ptimization Engine

Figure 1: Exareme’s architecture

All the information related to the data and the allocated
VMs is stored in the Registry. The Resource Manager
is responsible for the allocation and deallocation of VMs
based on the demand. The Optimization Engine trans-
lates ExaDFL query into the distributed machine code of the
system (similar to [12]) and creates the final execution plan
by assigning operators to workers (Section 4.1). Finally,
the Worker executes operators (relational operators and
UDFs) and transfers intermediate results to other workers.
Each worker fetches the partitions needed for the execution
and caches them to its local disk for subsequent usage.
Madis is the core engine of the Worker[2], it is an extension of

Elastic Infrastructure Time/Money Trade-offs

Resources Time

Skyline of Solutions
Allocated Resources .

o /

I
| ¢ /e
D¢ d °
_ Deman ¢ "

Time Money

Figure 2: Dynamic infrastucture elasticities

SQLite, based on the APSW wrapper. It executes the com-
putations described by ExaQL (3.1). Madis processes the
data in a streaming fashion and performs pipelining when
possible, even for UDFs. The UDF's are executed inside the
database along with the relational operators to push them
as close to the data as possible.

2.1 Data Model

Exareme adopts the relational data model and extends it
with:
Complex Field Types: JSON, CSV, and TSV.
Table Partitions: A table is defined as a set of partitions
and a partition is defined as a set of records having a par-
ticular property, i.e. the hash value of a column.
Partitioning: If the database has multiple tables as it hap-
pens in data warehouses, the largest tables are partitioned
and all others are replicated along with the partitions. Data
placement is crucial for performance and elasticity. We use a
modification of consistent hashing [10], because it offers good
theoretical bounds and can be accurately modeled. To in-
crease flexibility and efficiency we use over-partitioning and
replication. This way, changing the size of the virtual in-
frastructure will cause only data transfer and not the com-
putation of a new partitioning.

2.2 Money/Time Trade-Offs

Exareme can express money/time trade-offs by examining
variations of an execution plan, we refer to this notion as
eco-elasticity [8] [7]. Exareme’s scheduler creates different
execution plans based on the algorithm described in 4.1.
Along with every query the user can specify an SLA. Using
the SLAs the scheduler chooses the execution plan based on
its time and money requirements.

3. LANGUAGE

Queries are issued to Exareme using ExaDFL. ExaDFL is
a dataflow language that describes DAGs and it’s based on
SQL extended with UDFs and data parallelism primitives.
ExaDFL allows fine control, but requires an understanding
of partitioning and data placement.
We are currently working on an optimizer that will pro-
duce ExaDFL from UDF extended SQL by applying clas-
sic database optimizations and transforming functions with
their distributed version when it is necessary.
In this section we firstly present the language that describes
intra-worker dataflows. Then we present the data paral-
lelism primitives and at the end we present the language as
one.

We use the following subset of TPC-H [3] : lineitem(l orderkey,

L comment), orders(o_orderkey,o_clerk). Both are hash par-
titioned to 4 parts on their keys.

3.1 ExaQL

ExaQL is based on the SQL-92 standard. The relational
primitives of SQL are a good way to express relations and
data combinations. We use SQL to combine data and pro-
cess them with UDFs, whenever the SQL abstractions are
not sufficient or efficient to use. We enhanced the syntax of
ExaQL to easily combine virtual table functions (UDTFs)
into data pipelines.

Suppose we want to find the most frequent words that some
clerks use in their comments when they buy or sell products.
We have the names of the clerks in a compressed XML file
that is accessible via HTTP. In ExaQL, we can express it as
follows:
select word, count(x) as count
from(select STRSPLITV (l_comment) as word

from lineitem, orders, (XMLPARSE ’[’/name”]’

FILE ’http://../clerk.xml.gz’) as clerk

where Lorderkey = o_orderkey and o_clerk = name) as words

group by word
order by count desc;

The query uses the FILE UDTF to fetch, uncompress, and
load the data on-the-fly from the HTTP server specified. It
is not needed to import or create temporary tables, all the
details are handled automatically by the system. The out-
put of FILE is given to the XMLPARSE UDTF that parses
the XML content and produces a table with the names of the
clerks. Row function STRSPLITV takes a string as input
and produces one nested table for each comment by splitting
the words into rows. Notice that this behaviour is different
from the row functions typically supported by database sys-
tems which produce a single value. This is an extension of
Exareme for row and aggregate functions.

3.2 Data Parallelism Primitives

The support of simple primitives declaratively express po-
tential data parallelism in the dataflow language itself and
let the system decide the actual degree of parallelism at run-
time. This is very helpful since the queries are expressed
independently of the parallelism used.

3.2.1 Input Primitives

Figure 3 (top) shows the types of combinations supported
on two partitioned tables R and S, where a query Q is ex-
ecuted on each partition pair indicated, as well as the type
of reduction supported on a single partitioned table.
Direct : This combines two (or more) tables that either
(a) both have been partitioned in the way required by the
combination specified, e.g., a distributed join on tables hash-
partitioned on the join attribute, or (b) one has been fully
replicated and the other has been partitioned in some fash-
ion, e.g., a join between a small table replicated to the loca-
tions of the partitions of much larger table.

Cartesian product: This combines two (or more) tables
that have been partitioned in ways unrelated to the combi-
nation specified.

Tree: This performs a multi-level tree reduction on a sin-
gle table, generalizing the two-level (combine and reduce)
reduction of MapReduce. This is used when Q has aggre-
gate functions that are algebraic or distributive and has been
shown to exhibit very good performance in practice.

3.2.2 Output Primitives

Figure 3 (bottom):
Same: The default mode does, the output number of par-
titions is determined by the input.

Direct Cartesian Product Tree
out out out

/;,\/L Ole
¢ N\
NN\

R S

5 1
)Fa QO Qra
T T T T
in in in

in in in
Same Re-Partition Broadcast
out out out
i R N i N
ONONORON I } parttion \ 7/} broadcast
A A 1

Figure 3: Input Partitioning (top), Output Parti-
tioning (bottom)

Partition: Hash partitioning is used. This requires two
steps: 1) partition each of the input parts and ii) union each
of the sub-partitions into the final output.

Broadcast: This creates full replicas of the output file, first
broadcasting each partition to all relevant workers and then
performing their union at each worker.

3.3 ExaDFL

All of the above compose ExaDFL according to the fol-
lowing grammar:

ExaDFL = (<query>)+
query := <parallelism> <ExaQL> ;
parallelism := create distributed [temp]
table <name> [<output_comb>]
as [<input_comb>]
output := [to <number>] [(hash | range)]

partition on <name>(,<name>)x
input := direct | cprod | tree | extern
(the rest is omitted due to space)

Two or more queries form a script. Each query has two
semantically different parts: parallelism and ExaQL. The
first part describes the input and output data parallelism
used and the second part the computations that get executed
on each input combination. The following ExaDFL dataflow
is equivalent to the ExaQL query of our example:

// Query 1
create distributed temp table clerk to 4 as extern
select name
from (XMLPARSE ’[”/name”]’ FILE ’http://../clerk.xml.gz’);
// Query 2
create distributed temp table words as direct
select word, count(x) as count_partial
from (select STRSPLITV (Lcomment) as word
from lineitem, orders, clerk
where 1 orderkey = o_orderkey
and o_clerk = name)
group by word;
// Query 3
create distributed table result as tree
select word, sum(count_partial) as count
from wordcount
group by word
order by count desc;

The first query is executed to download and parse the
XML file. The extern directive declares that the query uses
an external source and only one instance of the query should
be created. The result is a table called clerk that is repli-
cated to 4 partitions. The second query combines tables
lineitem, orders, and clerk using the direct input combina-
tion. Notice that the result of the join is correct since tables

lineitem and orders are partitioned on the join column and
table clerk is replicated. Finally, the third query is used to
create table result using a tree aggregation. This is possible
because the aggregate function sum is distributive. All the
temporary tables are deleted automatically at the end of the
script.

4. QUERY OPTIMIZATION

In principle, the optimization process could proceed in
one giant step, examining all execution plans that could an-
swer the query and choosing the optimal that satisfies the
required constraints. Given the size of the alternatives space
in our setting, this approach is infeasible. Instead, our op-
timization process proceeds in multiple smaller steps, each
one operating at some level and making assumptions about
the levels below. This is in analogy to query optimization in
traditional databases but with the following differences. The
operators may represent arbitrary operations and may have
performance characteristics that are not known. Further-
more, optimality may be subject to QoS or other constraints
and may be based on multiple criteria, e.g., monetary cost
of resources, quality of data, etc., and not just solely on
performance.The resources available for the execution of a
dataflow are not fixed a-priori but flexible and reservable on
demand.

4.1 Sky

The dataflow scheduler we use, takes as input the dataflow
DAG and assigns its nodes (operators) to workers. It does
so by taking into account two types of constraints i) the

dataflow (DAG) implied constraints based on the inter-operator

dependencies captured by its edges, ii) the execution en-
vironment implied constraints due to resource limitations.
In that respect, we categorize resources as time-shared and
space-shared [9]. Time-shared resources can be used by mul-
tiple operators concurrently at very low overhead. Concur-
rent use of space-shared resources implies high overheads
beyond workers limits of resources. We consider memory as
the only space-shared resource, whereas CPU and network
as time-shared resources. Constraints are imposed only by
space-shared resources in every worker, at any given mo-
ment, memory must be sufficient for the execution of the
running operators. The scheduling algorithm we propose is
Dynamic Skyline (Sky) and is shown in Algorithm 1.

Sky is an iterative algorithm that incrementally computes
the skylines of schedules, Figure 2. The algorithm begins
by scheduling the operators from producers to consumers
as defined by the DAG. Each operator with no inputs is a
candidate for assignment. An operator is a candidate as
soon as all of its inputs are available. The scheduler con-
siders assigning every operator at an existing worker or at
a new worker by adding a new VM. The result is a skyline
of schedules (Figure 2). The final execution plan can be se-
lected either manually or automatically based on SLAs. [16]
The scheduler uses the following heuristics regarding data
transferring. It transfers only intermediate results and, if
possible, does not move original tables. Intermediate results
are usually smaller than the original tables because queries
with a single input usually contain filters and queries with
multiple inputs usually join the tables using equi-joins. This
type of join reduces the size of the output table. Some type
of queries are executed very efficiently this way, especially
when the small tables fit in memory. This is the usual case

Algorithm 1 Dynamic Skyline

Input: G: A dataflow graph.
Output: skyline: The skyline schedules.

1: ready <{operators in G that have no dependencies}
2: op1 < maxRunningTime(ready)

3: vmy < allocateNewV M ()

4: scheduley + {assign(op1,vmi,—, —)}

5: skyline < {schedule; }

6: while ready # © do

7: next < maxRunningTime(ready); S < @

8 for s € skyline do

9: if next is pinned then
10: S <+ S U{s + assign(next, next.pin_loc, —, —)}
11: else
12: for all containers c of s do
13: S < SU{s + assign(nezt,c,—, —)}
14: end for
15: // Consider allocating a new VM
16: new_vm < allocateNewV M()
17: S < S U {s + assign(next, new_vm, —, —)}
18: releaseNotNeeded(s)
19: end if
20: end for

21: /] Only skyline schedules (i.e., prune search space)

22: skyline < skyline of S

23: ready < ready — {next} U {operators in G that de-
pendency constraints no longer exist}

24: end while

25: return skyline

for OLAP workloads with star or snowflake schema. An-
other benefit with this approach is the exploitation of in-
dexes if they exists on the original tables. In addition, we
add gravity operators pinned to the location of the tables,
so the movement of the original tables out of their initial
location becomes an optimization choice.

S. EXPERIMENTAL EVALUATION

Environment: We used up to 64 VMs, each with 1 CPU,
4 GB of memory, and 20 GB of disk, provided by Okeanos?.
The average network speed measured was 150 Mbps.
Datasets: We generated a total of 256 GB of the following
tables, using the TPC-H benchmark [3]. (in the parenthesis
we note the number of partition and the partitioning key)
region(1), partsupp(1, ps_partkey), orders(128, o_orderkey),
lineitem(128, lorderkey), customer(1l, c_custkey), part(1,
p-partkey), nation(1), and supplier(1).
Measurements: We run each query 4 times and report the
average of the last 3 measurements. We compared Exareme
with Hive [15] (with both MR [4] and Tez [5] as backend,
formerly known as Stinger) and System X (an industry lead-
ing commercial system). Figure 4 shows the results, to save
space we have omitted some results, but only if Exareme is
faster. Hive-stinger was always faster than Hive. The ver-
sions of the systems we used are Hive 0.13.1, Hadoop 2.5.1,
Tez 0.5.0 (intermediate results are compressed (Snappy)).
System X is faster for queries 1 and 6 that involve aggrega-
tions on the largest table (lineitem). We were not able to
execute queries 8 and 9 on System X because of memory lim-
its (System X is an in-memory system). Overall, we observe
that Exareme is faster in most cases than the state-of-the
art systems.

2okeanos.grnet.gr

TPC-H with 64GB on 32 VMs (Impala, Hive and Exareme)

1000
10000
800

System X
Hive-Stinger
Exareme

1000

Time (sec)
s o
s 3
s &

100

Time (sec, log-scale)

~
=3
S

10 0 +— L s} I g
Ql Q2 a8 Q9 Q10 Ql Q3 Q@6 Q7 Q10

Figure 4: TPC-H with 64GB data and 32 VMs on
System X, Hive and Exareme

Comparison wth Static Infrastructure
2000

1500

Revenue

OHHHHH

Elastic Static Small ~ Static Medium Static Large

Money ($)
S
8
8

I
S
3

Figure 5: configuration with eco-elasticity vs. static
layouts.

Figure 5 show the profit that is gained when exploiting eco-
elasticity. As a baseline we use three static infrastructures
that do not change over time small with 15 VMs, medium
with 30 VMs, large with 60 VMs. We run the system for
one hour using a client that issue Q1 in three phases, each
of 1 hour duration. In the first and third phase, the Pois-
son parameter A is set to 60 and in the second phase to 30
(the rate is doubled). The elastic layout allocator produces
a better-fitted layout that adapts to the workload changes
and yields the highest profit compared to all static choices.

6. ACKNOWLEDGEMENTS

The authors would like to thank Herald Kllapi and Mano-
lis T'sangaris.

7. REFERENCES
[1] Exareme. http://www.exareme.org/.
[2] Madis. https://github.com/madgik/madis.
[3] TPC-H Benchmark, http://www.tpc.org/tpch/.
[4] Apache. Hadoop, http://hadoop.apache.org/.
[5] Apache. Tez, http://tez.apache.org/.
[6] J. Dean and S. Ghemawat. "MapReduce: Simplified Data
Processing on Large Clusters”. In OSDI, 2004.
[7] E. Deelman et al. The cost of doing science on the cloud: the
montage example. In IEEE/ACM SC, 2008.
[8] K. et al. Schedule optimization for data processing flows on the
cloud. SIGMOD ’11, page 289, 2011.
[9] M. Garofalakis and Y. Ioannidis. Parallel query scheduling and
optimization with time- and space-shared resources. VLDB ’97.
[10] D. R. Karger et al. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In STOC, pages 654-663, 1997.
[11] H. Kllapi, B. Harb, and C. Yu. Near neighbor join. In ICDE.
[12] M. J. Litzkow et al. "Condor - A Hunter of Idle Workstations”.
In ICDCS, pages 104-111, 1988.
[13] S. Melnik et al. Dremel: Interactive analysis of web-scale
datasets. PVLDB, 3(1):330-339, 2010.
[14] A. Simitsis. Modeling and managing etl processes. In VLDB
PhD Workshop, 2003.
[15] A. Thusoo et al. "Hive - a petabyte scale data warehouse using
Hadoop”. In ICDE, 2010.
[16] H. R. Varian. "Intermediate Microeconomics : A Modern
Approach”.

