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1 Introduction

Consider the following nonlinear programming problem:

(1) min f(x) subject to h(x) = 0, c(x) ≤ 0,

where x ∈ IR
n and f : IR

n → IR, c : IR
n → IR

m, and h : IR
n → IR

p are twice
continuously differentiable functions.

In this paper, we examine identification of active inequality constraints—
the components of c for which equality holds at a local solution x∗—using
information available at a point x near x∗. We focus on identification schemes
that do not require good estimates of the Lagrange multipliers to be available
a priori. Rather, in some cases, such estimates are computed as an adjunct to
the identification technique. In most of our results, we relax the “standard”
nondegeneracy assumptions at x∗ to allow linearly dependent active con-
straint gradients and weakly active constraints. We consider three schemes
that require solution of linear programs and one that requires solution of a
mixed integer program. We analyze the effectiveness of these schemes and dis-
cuss computational issues of solving the linear and mixed-integer programs.
Finally, we present results obtained on randomly generated problems and on
degenerate problems from the CUTEr test set [13].

One area in which identification schemes are useful is in “EQP” ap-
proaches to sequential quadratic programming (SQP) algorithms, in which
each iteration consists of an estimation of the active set followed by solution
of an equality constrained quadratic program that enforces the apparently ac-
tive constraints and ignores the apparently inactive ones. The “IQP” variant
of SQP, in which an inequality constrained subproblem is solved (thereby
estimating the active set implicitly), has been more widely studied in the
past two decades, but the EQP variant has been revived recently by Byrd et
al. [5] [6].

1.1 Assumptions and Background

We describe here the notation and assumptions used in the remainder of the
paper.

The Lagrangian for (1) is

(2) L(x, µ, λ) = f(x) + µTh(x) + λT c(x),

where µ ∈ IR
p and λ ∈ IR

m are Lagrange multipliers. First-order necessary
conditions for x∗ to be a solution of (1), assuming a constraint qualification,
are that there exist multipliers (µ∗, λ∗) such that

∇xL(x∗, µ∗, λ∗) = 0,(3a)

h(x∗) = 0,(3b)

0 ≥ c(x∗) ⊥ λ∗ ≥ 0,(3c)
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where the symbol ⊥ denotes vector complementarity; that is, a ⊥ b means
aT b = 0. We define the “dual” solution set as follows:

(4) SD
def
= {(µ∗, λ∗) satisfying (3)},

while the primal-dual solution set S is

S def
= {x∗} × SD.

The set of active inequality constraints at x∗ is defined as follows:

A∗ = {i = 1, 2, . . . ,m | ci(x∗) = 0}.

The weakly active inequality constraints A∗
0 are those active constraints i for

which λ∗i = 0 for all optimal multipliers (µ∗, λ∗); that is,

(5) A∗
0 = {i ∈ A∗ |λ∗i = 0 for all (µ∗, λ∗) ∈ SD}.

The constraints A∗ \ A∗
0 are said to be the strongly active inequalities.

In this paper, we make use of the following two constraint qualifications
at x∗. The linear independence constraint qualification (LICQ) is that

(6) {∇hi(x
∗), i = 1, 2, . . . , p} ∪ {∇ci(x∗), i ∈ A∗} is linearly independent.

The Mangasarian-Fromovitz constraint qualification (MFCQ) is that there
is a vector v ∈ IR

n such that

∇ci(x∗)T v < 0, i ∈ A∗; ∇hi(x
∗)T v = 0, i = 1, 2, . . . , p,(7a)

{∇hi(x
∗), i = 1, 2, . . . , p} is linearly independent.(7b)

In some places, we use the following second-order sufficient condition:
Defining

C def
= {v | ∇ci(x∗)T v = 0, i ∈ A∗ \ A∗

0, ∇ci(x∗)T v ≤ 0, i ∈ A∗
0,(8)

∇hi(x
∗)T v = 0, i = 1, 2, . . . , p},

we require that

(9) vT∇2
xxL(x∗, µ∗, λ∗)v > 0 for all v ∈ C \ {0} and all (µ∗, λ∗) ∈ SD.

The following notation is used for first derivatives of the objective and
constraint functions at x:

g(x) = ∇f(x), J(x) = [∇hi(x)
T ]i=1,2,...,p, A(x) = [∇ci(x)T ]i=1,2,...,m.

We use Ai(x) = ∇ci(x)T to denote the ith row of A(x), while for any index
set T ⊂ {1, 2, . . . ,m}, we use AT (x) to denote the |T | × n submatrix cor-
responding to T . In some subsections, the argument x is omitted from the
quantities c(x), A(x), Ai(x), and AT (x) if the dependence on x is clear from
the context. In some instances, we also use ∇c∗i , g∗, etc., to denote ∇ci(x∗),
g(x∗), etc., respectively.



4 Christina Oberlin, Stephen J. Wright

Given a matrix B ∈ IR
n×q we denote

range [B] = {Bz | z ∈ IR
q}, pos[B] = {Bz | z ∈ IR

q, z ≥ 0}.

The norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ all appear in the paper. When the
subscript is omitted, the Euclidean norm ‖ · ‖2 is intended.

We use the usual definition of the distance function dist (·, ·) between sets,
that is

(10) dist (S1,S2) = inf
s1∈S1,s2∈S2

‖s1 − s2‖.

(Distance between a point and a set is defined similarly.)
For a vector z, function max(z, 0) (defined componentwise) is denoted

by z+, while z− denotes max(−z, 0). We use the notation e throughout the
paper to denote the vector (1, 1, . . . , 1)T . (The dimension of e is not specified
but is clear from the context.)

In assessing the accuracy of an active set estimate, a false positive is an
index i that is identified as active by our scheme but which actually does
not belong to A∗, while a false negative is an index i ∈ A∗ which is wrongly
identified as inactive.

1.2 Related Work

Some previous works have studied the behavior of nonlinear programming
algorithms in identifying active constraint sets, more or less as a byproduct
of their progress toward a solution. Other papers have described the use
of these active-set estimates to speed the convergence of the algorithm in
its final stages. We mention several works of both types here, in nonlinear
programming and in the context of other optimization and complementarity
problems.

Bertsekas [1] proposed a two-metric algorithm for minimizing a nonlinear
function subject to bound constraints on the components of x. A key aspect
of this method is estimation of the active bounds at the solution. (Different
second-order scalings are applied to the apparently active components and
the free components.) Strongly active constraints are identified for all feasible
x in a neighborhood of x∗. The latter result is also proved by Lescrenier [16]
for a trust-region algorithm.

Burke and Moré [3,4] take a geometric approach, assuming the constraints
to be expressed in the form x ∈ Ω for a convex set Ω. This set can be
partitioned into faces, where a face F is defined to be a subset of Ω such
that every line segment in Ω whose relative interior meets F is contained in
F . In this context, active set identification corresponds to the identification
of the face that contains the solution x∗. In [3], it is shown that “quasi-
polyhedral” faces are identified for all x close to x∗ provided that a geometric
nondegeneracy condition akin to strict complementarity is satisfied. (Quasi-
polyhedrality is defined in [3, Definition 2.5]; curved faces are not quasi-
polyhedral.) Burke [2] takes a partly algebraic viewpoint and shows that the
set of active indices of a linear approximation to the problem at x near x∗
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are sufficient for the objective gradient to be contained in the cone of active
constraint gradients—a result not unlike Theorem 3 below.

Wright [21] also uses a hybrid geometric-algebraic viewpoint and consid-
ers convex constraint sets Ω with (possibly curved) boundaries defined by
(possibly nonlinear) inequalities. The concept of a “class-Cp identifiable sur-
face” is defined and it is shown that this surface is identified at all x close to
x∗ provided that a nondegeneracy condition is satisfied. Hare and Lewis [15]
extend these concepts to nonconvex sets, using concepts of prox-regularity
and partly smooth functions developed elsewhere by Lewis [17] and others.

Facchinei, Fischer, Kanzow [10] describe a technique based on the alge-
braic representation of the constraint set, that uses estimates of the Lagrange
multipliers (µ, λ) along with the current x to obtain a two-sided estimate of
the distance of (x, µ, λ) to the primal-dual solution set. This estimate is used
in a threshold test to obtain an estimate of A∗. We discuss this technique
further in Section 2.

Conn, Gould, and Toint [8, Chapter 12] discuss the case of convex con-
straints, solved with a trust-region algorithm in which a “generalized Cauchy
point” is obtained via gradient projection. They prove that when assump-
tions akin to strict complementarity and LICQ hold at the solution x∗, their
approach identifies the active set once the iterates enter a neighborhood of
x∗; see for example [8, Theorem 12.3.8].

Active constraint identification has played an important role in finite
termination strategies for linear programming. Ye [25] proposed such a strat-
egy, which determined the active set estimate by a simple comparison of the
primal variables with the dual slacks. (An equality constrained quadratic
program, whose formulation depends crucially on the active set estimate, is
solved in an attempt to “jump to” an optimal point.) El-Bakry, Tapia, and
Zhang [9] discuss methods based on “indicators” for identifying the active
constraints for linear programming.

Similar active identification and finite termination strategies are avail-
able for monotone linear complementarity problems; see for example, the
paper of Monteiro and Wright [18]. For monotone nonlinear complementar-
ity problems, Yamashita, Dan, and Fukusmima [24] describe a technique for
classifying indices (including degenerate indices) at the limit point of a prox-
imal point algorithm. This threshold is defined similarly to the one in [10],
while the classification test is similar to that of [18].

1.3 Organization of the Paper

In Section 2, we review a technique for identifying the active set using an
estimate (x, µ, λ) of the primal-dual optimum. This technique provides the
basis for the identification techniques of Subsections 3.2 and 3.3. Section 3
describes the main techniques for identifying the active set without assum-
ing that reliable estimates of the Lagrange multipliers (µ, λ) are available.
Subsection 3.1 describes a technique used by Byrd et al. [5] [6] along with a
dual variant; Subsection 3.2 describes a technique based on minimizing the
primal-dual measure of Section 2, which can be formulated as a mixed inte-
ger program; Subsection 3.3 derives a linear programming approximation to
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the latter technique. In all cases, we prove results about the effectiveness of
these schemes and discuss their relationship to each other. In Section 4, we
describe our implementation of the identification schemes and present results
obtained on randomly generated problems (with controlled degeneracy) and
on degenerate problems from the CUTEr test set. Some conclusions appear
in Section 5.

2 Identification from a Primal-Dual Point

In this section, we suppose that along with an estimate x of the solution x∗,
we have estimates of the Lagrange multipliers (µ, λ). We describe a threshold
test based on the function ψ defined as follows:

(11) ψ(x, µ, λ) =

∥

∥

∥

∥

∥

∥





∇xL(x, µ, λ)
h(x)

min(λ,−c(x))





∥

∥

∥

∥

∥

∥

1

,

where the min(·, ·) is taken componentwise. (Other norms could be used in
this definition, including weighted norms, but the ℓ1 norm is convenient for
computation in later contexts.) The test based on ψ provides the starting
point for the LPEC scheme of Subsection 3.2, where we fix x and choose
(µ, λ) to minimize ψ, rather than assuming that (µ, λ) are given.

The following result shows that for (x, µ, λ) close to S, this function pro-
vides a two-sided estimate of the distance to the solution. (See Facchinei, Fis-
cher, and Kanzow [10, Theorem 3.6], Hager and Gowda [14], and Wright [22,
Theorem A.1] for proofs of results similar or identical to this one.)

Theorem 1 Suppose the KKT conditions (3), the MFCQ (7), and the second-
order condition (9) are satisfied at x∗. There are constants ǫ ∈ (0, 1] and
C > 0 such that, for all (x, µ, λ) with λ ≥ 0 and dist ((x, µ, λ),S) ≤ ǫ, we
have

(12) C−1ψ(x, µ, λ) ≤ dist ((x, µ, λ),S) ≤ Cψ(x, µ, λ).

(The upper bound of 1 in the definition of ǫ is needed to simplify later
arguments.)

For future reference, we define L to be a Lipschitz constant for the func-
tions g, c, h, A, and J in the neighborhood ‖x− x∗‖ ≤ ǫ, for the ǫ given in
Theorem 1. In particular, we have

(13)

‖g(x)− g(x∗)‖ ≤ L‖x− x∗‖, ‖c(x)− c(x∗)‖ ≤ L‖x− x∗‖,
‖A(x) −A(x∗)‖ ≤ L‖x− x∗‖, ‖h(x)− h(x∗)‖ ≤ L‖x− x∗‖,
‖J(x)− J(x∗)‖ ≤ L‖x− x∗‖, for all x with ‖x− x∗‖ ≤ ǫ.

We define a constant K1 such that the following condition is satisfied:

(14) K1 = max

(

‖c(x∗)‖∞, max
(µ∗,λ∗)∈SD

‖(µ∗, λ∗)‖∞
)

+ 1,

(Note that finiteness of K1 is assured under MFCQ.)
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The active set estimate is a threshold test, defined as follows for a given
parameter σ ∈ (0, 1):

(15) A(x, µ, λ) = {i | ci(x) ≥ −ψ(x, µ, λ)σ},

The following result is an immediate consequence of Theorem 1. It has
been proved in earlier works (see, for example, [10]), but since the proof is
short and illustrative, we repeat it here.

Theorem 2 Suppose that the KKT conditions (3), the MFCQ (7), and the
second-order condition (9) are satisfied at x∗. Then there is ǭ1 > 0 such
that for all (x, µ, λ) with λ ≥ 0 and dist ((x, µ, λ),S) ≤ ǭ1, we have that
A(x, µ, λ) = A∗.

Proof. First set ǭ1 = ǫ, where ǫ is small enough to satisfy the conditions in
Theorem 1. Taking any i /∈ A∗, we can decrease ǭ1 if necessary to ensure that
the following inequalities hold for all (x, µ, λ) with dist ((x, µ, λ),S) ≤ ǭ1:

ci(x) < (1/2)ci(x
∗) ≤ −ψ(x, µ, λ)σ ,

thus ensuring that i /∈ A(x, µ, λ).
We can reduce ǭ1 again if necessary to ensure that the following relation

holds for all i ∈ A∗ and all (x, µ, λ) with dist ((x, µ, λ),S) ≤ ǭ1:

|ci(x)| ≤ L‖x− x∗‖ ≤ L dist ((x, µ, λ),S) ≤ LCψ(x, µ, λ) ≤ ψ(x, µ, λ)σ ,

where L is the Lipschitz constant defined in (13). We conclude that i ∈
A(x, µ, λ).

High-quality estimates of the optimal Lagrange multipliers may be avail-
able in primal-dual interior-point algorithms and augmented Lagrangian al-
gorithms. In SQP algorithms, an estimate (µ, λ) may be available from the
QP subproblem solved at the previous iteration, or from an approximation
procedure based on the current estimate of the active set (which usually
also derives from the QP subproblem). However, the use of devices such
as trust regions or ℓ1 penalty terms in the subproblem may interfere with
the accuracy of the Lagrange multiplier estimates. Moreover, in many algo-
rithms, there is not a particularly strong motivation for obtaining accurate
estimates of (µ, λ). For instance, in SQP algorithms that use exact second
derivatives, rapid convergence of the primal iterates to x∗ can be obtained
even when (µ, λ) do not converge to SD; see Theorem 12.4.1 of Fletcher [11]
and the comments that follow this result. The QP subproblem of the primal-
dual algorithms in the Knitro software package may return only the primal
variables, in which case the multipliers must be approximated using primal
information [7].

Even in cases in which an estimate of (µ, λ) is available from the algo-
rithm, it may be desirable to seek alternative values of (µ, λ) that decrease
the value of ψ(x, µ, λ), thereby tightening the tolerance in the threshold test
(15). This approach forms the basis of the techniques described in Subsec-
tions 3.2 and 3.3, which provide asymptotically accurate estimates of the
Lagrange multipliers as well as of the active set A∗.
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3 Identification from a Primal Point

We describe a number of techniques, for estimating A∗ for a given x near
the solution x∗. We discuss the relationships between these techniques and
conditions under which they provide asymptotically accurate estimates of
A∗.

3.1 Linear Programming Techniques

We describe here techniques based on a linearization of the ℓ1-penalty formu-
lation of (1). A linearized trust-region subproblem is solved and an estimate
of A∗ is extracted from the solution. One of these techniques is used by Byrd
et al. [5] [6] as part of their SQP-EQP approach. (The idea of a linearized
trust-region subproblem was proposed initially by Fletcher and Sainz de la
Maza [12].)

The following subproblem forms the basis of the techniques in this section:

(16) min
d

gTd+ ν‖Jd+ h‖1 + ν‖(c+Ad)+‖1 subject to ‖d‖∞ ≤ ∆,

where ν is a penalty parameter,∆ is the trust-region radius, and all functions
are assumed to be evaluated at x. This problem can be formulated explicitly
as a linear program by introducing auxiliary variables r, s, and t, and writing

min(d,r,s,t) g
Td+ νeT r + νeT s+ νeT t, subject to(17a)

Ad+ c ≤ r, Jd+ h = t− s, −∆e ≤ d ≤ ∆e, (r, s, t) ≥ 0,(17b)

where, as mentioned in the introduction, we have e = (1, 1, . . . , 1)T . The dual
of this problem is as follows:

min(λ,µ,u,v) −cTλ− hTµ+∆eTu+∆eT v, subject to(18a)

ATλ+ JTµ+ g = u− v, 0 ≤ λ ≤ νe, −νe ≤ µ ≤ νe, (u, v) ≥ 0.(18b)

This formulation can be written more compactly as follows:

min(λ,µ) −cTλ− hTµ+∆‖ATλ+ JTµ+ g‖1, subject to(19a)

0 ≤ λ ≤ νe, −νe ≤ µ ≤ νe.(19b)

The formulations above are feasible and bounded. Moreover, they admit
some invariance to scaling the constraints. Suppose for some constraint ci,
we have that the λi component of the dual solution is strictly less than its
upper bound of ν. By duality, we then have ri = 0 at the solution of (17).
If we scale constraint ci by some σi > 0 (that is, we set ci ← σici and
Ai ← σiAi), constraints (17b) and (18b) continue to be satisfied, while the
objectives (17a) and (18a) remain unchanged (and therefore optimal) if we
set λi ← λi/σi, provided that λi/σi ≤ ν. Similar comments apply regarding
the components of h.
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The active set estimate can be derived from the solution of these linear
programs in different ways. We mention the following three possibilities:

Ac(x) = {i |Aid+ ci ≥ 0},(20a)

Aλ(x) = {i |λi > 0},(20b)

AB(x) = {i |λi is in the optimal basis for (18)}.(20c)

The first of these activity tests (20a) cannot be expected to identify weakly
active constraints except when x = x∗. The second test (20b) will generally
not identify weakly active constraints, and will also fail to identify a strongly
active constraint i if the particular multiplier estimate used in the test hap-
pens to have λi = 0. The third test (20c) does not attempt to estimate
the full active set, but rather a “sufficient” subset of it that can be used in
subsequent calculations requiring a nonsingular basis matrix for the active
constraint gradients.

For the remainder of this section, we focus on Ac(x). The following simple
lemma shows that, for x sufficiently near x∗ and ∆ sufficiently small, this
activity test does not contain false positives.

Lemma 1 There are positive constants ǭ2 and ∆̄ such that when ‖x−x∗‖ ≤
ǭ2 and ∆ ≤ ∆̄, we have Ac(x) ⊂ A∗.

Proof. We first choose ǭ2 small enough such that for any x with ‖x −
x∗‖ ≤ ǭ2 and any i /∈ A∗ we have ci(x) ≤ 1

2ci(x
∗) < 0. By decreasing ∆̄ if

necessary, we also have, for any ‖d‖∞ ≤ ∆ ≤ ∆̄ with ‖x − x∗‖ ≤ ǭ2, that
i /∈ A∗ ⇒ Ai(x)d + ci(x) < 0. The result follows from the definition (20a) of
Ac(x).

When the trust-region radius ∆ is bounded in terms of ‖x − x∗‖ and a
constraint qualification holds, we can show that the set identified by (20a) is
at least extensive enough to “cover” the objective gradient g∗.

Theorem 3 If MFCQ holds at x∗, for any ζ ∈ (0, 1), there are positive
constants ν̄, ǭ2, and ∆̄ such that whenever the conditions ν ≥ ν̄, ‖x−x∗‖ ≤ ǭ2,
and ∆ ∈ [‖x− x∗‖ζ , ∆̄] are satisfied, we have

(21) −g∗ ∈ range [∇h∗] + pos[(∇c∗i )i∈Ac(x)].

Proof. We start by defining ǭ2 and ∆̄ as in Lemma 1. For these values
(and any smaller values) we have immediately that Ac(x) ⊂ A∗.

We require ν ≥ ν̄, where

(22) ν̄
def
= max ({‖(µ∗, λ∗)‖∞ | (µ∗, λ∗) ∈ SD}) + 1.

Note that ν̄ is well-defined because the KKT and MFCQ conditions guarantee
the nonemptiness and boundedness of SD.

For any (µ∗, λ∗) ∈ SD, the dual problem (18) at x∗ with (µ, λ, u, v) =
(µ∗, λ∗, 0, 0) has objective value 0 because of the complementarity condition
(3c). For the problem with x 6= x∗, we obtain a feasible point for (18) by
setting

(µ, λ, u, v) =
(

µ∗, λ∗, (ATλ∗ + JTµ∗ + g)+, (A
Tλ∗ + JTµ∗ + g)−

)

.
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The objective at this point is

−cTλ∗ − hTµ∗ +∆‖ATλ∗ + JTµ∗ + g‖1
= (c(x∗)− c(x))Tλ∗ + (h(x∗)− h(x))Tµ∗

+∆‖(A(x∗)T −A(x)T )λ∗ + (J(x∗)T − J(x)T )µ∗ + (g(x∗)− g(x))‖1
= O(‖x− x∗‖).(23)

The first equality is due to (3), while the second is due to the continuous
differentiability of f , c, and h and the boundedness of SD. The optimal point
for (18) must therefore have an objective value that is bounded above by a
positive number of size O(‖x − x∗‖).

Suppose for contradiction that regardless of how small we choose ǭ2, there
is an x with ‖x−x∗‖ ≤ ǭ2 such that the active setAc(x) has the property that
−g∗ /∈ range [∇h∗] + pos[(∇c∗i )i∈Ac(x)]. Since there are only a finite number
of possible sets Ac(x), we pick one of them for which this property holds for x
arbitrarily close to x∗, and call it A1. The set range [∇h∗]+pos[(∇c∗i )i∈A1 ] is
finitely generated and is therefore closed; see Rockafellar [19, Theorem 19.1].

Using the definition for dist (·, ·) (10), we have that τ defined by

(24) τ
def
= (0.5)dist (−g∗, range [∇h∗] + pos[(∇c∗i )i∈A1 ])

is strictly positive. After a possible reduction of ǭ2, we have that

(25) dist (−g(x), range [∇h(x)] + pos[(∇ci(x))i∈A1 ]) ≥ τ,

for the given A1 and all x with ‖x− x∗‖ ≤ ǭ2. (The proof of the latter claim
makes use of standard arguments and appears in Appendix A.)

Given x with Ac(x) = A1, let the solutions to the problems (17) and (18)
at x be denoted by (dx, rx, sx, tx) and (µx, λx, ux, vx), respectively. For all
i /∈ A1, we have by (20a) and complementarity that Aidx + ci < 0, (rx)i = 0,
and

(26) (λx)i = 0, for all i /∈ A1.

We now consider the objective of the dual problem (18) in two parts. We
have by using the property (26) that

∆eTux +∆eT vx ≥ ∆ min
λ≥0,µ

‖g + JTµ+
∑

i∈A1

λi∇ci‖1

= ∆dist (−g, range [∇h] + pos[(∇ci)i∈A1 ])

≥ ∆τ.

From ν ≥ ν̄ and (22), we also have

−cTλx − hTµx ≥ −ν‖c+‖1 − ν‖h‖1.

By substituting these relations into the dual objective (18), we have

−cTλx − hTµx +∆eTux +∆eT vx ≥ ∆τ − ν‖c+‖1 − ν‖h‖1.
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Finally, we decrease ǭ2 further if necessary so that

∆τ − ν‖c(x)+‖1 − ν‖h(x)‖1 ≥ (τ/2)‖x− x∗‖ζ,

for ‖x−x∗‖ ≤ ǭ2. We note that such a choice is possible since ∆ ≥ ‖x−x∗‖ζ
and h(x) and (c(x))+ are both O(‖x − x∗‖). Hence the optimal objective
in (18) is bounded below by (τ/2)‖x − x∗‖ζ . This bound contradicts our
earlier observation in (23) that the optimal objective is bounded above by a
multiple of ‖x−x∗‖. We conclude that τ = 0 in (24), so −g∗ ∈ range [∇h∗]+
pos[(∇c∗i )i∈Ac(x)], as claimed.

When the assumptions are made stronger, we obtain the following result.

Corollary 1 If LICQ holds at x∗, for any ζ, ǭ2, ∆, ν, and x satisfying the
conditions of Theorem 3, A∗ \ A∗

0 ⊂ Ac(x) ⊂ A∗. If strict complementarity
also holds at x∗, then Ac(x) = A∗.

Proof. When LICQ holds at x∗, the multiplier (µ∗, λ∗) which satisfies
equations (3) is unique, and λ∗i > 0 for all i ∈ A∗ \ A∗

0. For ζ, ǭ2, ∆, and
ν defined in Theorem 3, we must have i ∈ Ac(x) whenever λ∗i > 0, since
otherwise (21) would not hold. Thus, A∗ \ A∗

0 ⊂ Ac(x). Lemma 1 supplies
Ac(x) ⊂ A∗. The final statement follows trivially from the equivalence of
strict complementarity with A∗

0 = ∅.
The implementation of SQP-EQP known as Active [5] [6], which is

contained in the Knitro package, solves the formulation (17) using variants of
the simplex method. It is observed (Waltz [20]) that many simplex iterations
are spent in resolving the trust-region bounds −∆e ≤ d ≤ ∆e. This effort
would seem to be wasted; we are much more interested in the question of
which linearized inequality constraints from (1) are active at the solution of
(17) (and, ultimately, of (1)) than in the trust-region bounds. The authors
of Active have tried various techniques to terminate the solution of (17)
prematurely at an inexact solution, but these appear to increase the number
of “outer” iterations of the SQP algorithm.

Because there is no curvature, trust-region bounds in (16) may be active,
regardless of the size of ∆, even when x is arbitrarily close to x∗. The the-
orems above highlight the importance of choosing ∆ large enough to allow
constraints in A∗ to become active in (16) but small enough to prevent in-
active constraints (those not in A∗) becoming active in (16). Byrd et al. [5,
Section 3] describe a heuristic for Active in which ∆ is adjusted from its
value at the previous iteration of the outer algorithm according to success
of the QP step, the norms of the QP step and the solution d of (16), and
whether or not the minimizer of the quadratic model in this direction d lies
at the boundary of the trust region.

The performance of these schemes also depends strongly on the value of
ν in (16) and (19). The bound

(27) ν ≥ max

(

max
j

λ∗j ,max
k
|µ∗

k|
)

ensures global convergence. However, excessively large estimates of ν can
slow convergence. The heuristic used in Active [5, Section 9] re-solves the
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LP for increasing values of ν whenever a substantial decrease in infeasibility
is possible. In addition, ν is decreased whenever the bound (27) (using the
current multiplier estimates) is inactive for several consecutive successful,
feasible LP iterations.

Theorem 3 and Corollary 1 suggest that the approaches of this section
may give false negatives for constraints that are weakly active, or which may
have an optimal Lagrange multiplier of zero. However, it is not obvious that
failure to identify such constraints would adversely affect the performance
of nonlinear programming algorithms. To first order, they are not critical to
satisfying the KKT conditions.

3.2 A Technique Based on the Primal-Dual Estimate

Here we describe a scheme based on explicit minimization of ψ(x, µ, λ) in (11)
with respect to (µ, λ) for λ ≥ 0. We show that this minimization problem can
be formulated as a linear program with equilibrium constraints (LPEC), one
that is related to the linear programs discussed in Subsection 3.1. However, in
contrast to this earlier approach, we use a threshold test like (15) to estimate
the active set, rather than active set or Lagrange multiplier information from
the subproblem.

The LPEC subproblem is as follows:

(28) ω(x)
def
= min

λ≥0,µ

m
∑

i=1

|min(λi,−ci)|+ ‖h‖1 + ‖ATλ+ JTµ+ g‖1.

The activity test Alpec is defined as

(29) Alpec(x) = {i | ci(x) ≥ −(βω(x))σ},

where β > 0 and σ ∈ (0, 1) are constants.
The problem (28) can be formulated as the following LPEC:

ω(x)
def
= min(λ,µ,s,u,v) e

T s+
∑

ci≥0 ci + ‖h‖1 + eTu+ eT v, subject to(30a)

0 ≤ (−c)+ − s ⊥ λ− s ≥ 0,(30b)

ATλ+ JTµ+ g = u− v, (λ, s, u, v) ≥ 0.(30c)

By introducing a large constant M and binary variables yi, i = 1, 2, . . . ,m
(which take on the value 0 if the minimum in min(−ci, λi) is achieved by
−ci and 1 if it is achieved by λi), we can write (30) as the following mixed
integer (binary) program:

ω(x)
def
= min(λ,µ,s,y,u,v) e

T s+ ‖h‖1 + eTu+ eT v, subject to(31a)

−ci − si ≤ −ciyi, i = 1, 2, . . . ,m,(31b)

λi − si ≤M(1− yi), i = 1, 2, . . . ,m,(31c)

ATλ+ JTµ+ g = u− v,(31d)

(λ, u, v) ≥ 0, s ≥ (c)+, yi ∈ {0, 1}, i = 1, 2, . . .m.(31e)
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The validity of this formulation for (28) is based on the nonnegativity of λ
and the minimization of the eT s term. The large parameter M is necessary
for (31c) but not for (31b), because −c is a parameter while λ is a variable
in the program.

There are notable similarities between the formulation (28) of the LPEC
subproblem and the dual formulation (19) of the previous subsection. First,
the term ‖ATλ+ JTµ+ g‖1 appears in both objectives, though in (19) it is
weighted by the trust-region radius ∆. Second, the term ‖h‖1 in (28) (which
is constant in (28) and (31a)) corresponds to the rather different term −µTh
in (19). Third, the parameter ν which penalizes constraint violation does
not appear in (28). Fourth, and perhaps most interestingly, the minimum
|min(−ci, λi)| in (28) is replaced by the product (−ci)λi in (19). While the
use of the minimum may lead to stronger identification properties (see be-
low), it is responsible for the presence of equilibrium constraints in (28) and
therefore makes the subproblem much harder to solve. In addition, the at-
tractive scale invariance property possessed by the −ciλi term is lost. If we
multiply ci and Ai by some σi > 0 and replace λi ← λi/σi to maintain con-
stancy of the product Aiλi, the minimum |min(−ci, λi)| will be replaced by
|min(−σici, λi/σi)|, which has a different value in general.

We now show that ω(x) defined in (28) provides a two-sided estimate of
the distance to the solution and that the identification scheme (29) eventually
is successful, under appropriate assumptions.

Theorem 4 Suppose that the KKT conditions (3), the MFCQ (7), and the
second-order condition (9) are satisfied at x∗, and let ǫ be as defined in The-
orem 1. Then there are positive constants ǭ ∈ (0, ǫ/2] and C̄ such that for all
x with ‖x− x∗‖ ≤ ǭ, we have that

(i) the minimum in (28) is achieved at some (µ, λ) with dist ((µ, λ),SD) ≤
ǫ/2;

(ii) C̄−1ω(x) ≤ ‖x− x∗‖ ≤ C̄ω(x); and
(iii) Alpec(x) = A∗.

Proof.
(i) Note first that for any (µ∗, λ∗) ∈ SD and any x with ‖x − x∗‖ ≤ ǫ, we
have that

ω(x) ≤ ψ(x, µ∗, λ∗)

=
m

∑

i=1

|min(λ∗i ,−ci(x))| + ‖h(x)‖1 + ‖A(x)T λ∗ + J(x)Tµ∗ + g(x)‖1

≤
m

∑

i=1

|ci(x) − ci(x∗)|+ ‖h(x)− h(x∗)‖1

+‖(A(x)−A(x∗))Tλ∗ + (J(x) − J(x∗))Tµ∗ + (g(x) − g(x∗))‖1
≤ C1‖x− x∗‖,(32)

for some constantC1. (In the second-last inequality, we used min(λ∗i ,−ci(x∗)) =
0, which follows from (3c).) Hence, if the minimum in (28) occurs outside the
set {(µ, λ)|λ ≥ 0, dist ((µ, λ),SD) ≤ ǫ/2} for x arbitrarily close to x∗, we
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must be able to choose a sequence (xk, µk, λk) with xk → x∗, λk ≥ 0, and
dist ((µk, λk),SD) > ǫ/2 such that

ψ(xk, µk, λk) ≤ ψ(xk, µ∗, λ∗) ≤ C1‖xk − x∗‖, for all k.

In particular we have ψ(xk, µk, λk) → 0. Consider first the case in which
(µk, λk) is unbounded. By taking a subsequence if necessary, we can assume
that

‖(µk, λk)‖ → ∞, (µk, λk)

‖(µk, λk)‖ → (µ∗, λ∗), ‖(µ∗, λ∗)‖ = 1, λ∗ ≥ 0.

For any i /∈ A∗, we have by taking a further subsequence if necessary that
ci(x

k) < (1/2)ci(x
∗) < 0, for all k. Since |min(λk

i ,−ci(xk))| ≤ ψ(xk, µk, λk)→
0, we have that λk

i → 0 and thus λ∗i = 0 for all i /∈ A∗. We also have that
A(xk)Tλk + J(xk)Tµk + g(xk) → 0, so when we divide this expression by
‖(µk, λk)‖ and take limits, we obtain

A(x∗)Tλ∗ + J(x∗)Tµ∗ = AA∗(x∗)Tλ∗A∗ + J(x∗)Tµ∗ = 0.

We can now use the usual argument based on the MFCQ property (7) (see
Appendix A) to deduce that λ∗A∗ = 0 and then µ∗ = 0, contradicting
‖(µ∗, λ∗)‖ = 1. Hence, the sequence (µk, λk) must be bounded.

By taking a subsequence if necessary, we can define a vector (µ̂, λ̂) such
that

(µk, λk)→ (µ̂, λ̂), λ̂ ≥ 0.

The limit ψ(xk, µk, λk)→ 0 thus implies that ψ(x∗, µ̂, λ̂) = 0, which in turn

implies that (µ̂, λ̂) ∈ SD, contradicting dist ((µk, λk),SD) > ǫ/2. Thus, there
is some ǭ such that for all x with ‖x−x∗‖ ≤ ǭ the minimum occurs in the set
{(µ, λ)|λ ≥ 0, dist ((µ, λ),SD) ≤ ǫ/2}. Since this set is compact (boundedness
of SD follows from the MFCQ (7)), we conclude that the minimum in (28)
is attained by some (µ, λ) in this set.

(ii) The left-hand inequality is already proved by (32). We now show that,
for the ǭ ∈ (0, ǫ/2] determined in part (i), we have

(33) ‖x− x∗‖ ≤ Cω(x) for all x with ‖x− x∗‖ ≤ ǭ,
for C defined in Theorem 1. First note that for any (µ, λ) with dist ((µ, λ),SD) ≤
ǫ/2, we have

dist ((x, µ, λ),S) ≤ ‖x− x∗‖+ dist ((µ, λ),SD) ≤ ǭ+ ǫ/2 ≤ ǫ,
so that from Theorem 1 we have

(34) ‖x− x∗‖ ≤ dist ((x, µ, λ),S) ≤ Cψ(x, µ, λ),

for all (µ, λ) with dist ((µ, λ),SD) ≤ ǫ/2 and λ ≥ 0. We showed in part (i)
that the minimum of ψ(x, µ, λ) is attained in this set, for sufficiently small
choice of ǭ. Hence, we have

‖x− x∗‖ ≤ C min
λ≥0,dist ((µ,λ),SD)≤ǫ/2

ψ(x, µ, λ) = Cω(x),
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as required. The result follows by taking C̄ = max(C,C1), where C1 is from
(32).

(iii) The proof of this final claim follows from an argument like that of The-
orem 2.

We note that an exact solution of (28) (or (31)) is not needed to estimate
the active set. In fact, any approximate solution whose objective value is
within a chosen fixed factor of the optimal objective value will suffice to
produce an asymptotically accurate estimate. Computationally speaking, we
can terminate the branch-and-bound procedure at the current incumbent
once the lower bound is within a fixed factor of the incumbent objective
value. Moreover, we can derive an excellent starting point for (31) from the
solution of the dual subproblem (18) of the previous subsection or from the
linear programming subproblem of the next section. (As our experiments of
Section 4 show, the branch and bound procedure often terminates at the
root node, without doing any expansion of the branch-and-bound tree at all.
When this occurs, the main computational cost is the cost of solving a single
linear programming relaxation of (31)).

The main differences between the schemes of this subsection and the
previous one can be summarized as follows:

– When a second-order sufficient condition holds, the scheme of this sub-
section accurately estimates A∗ (including the weakly active constraints),
whereas the schemes of the previous subsection may only identify those
active constraints that are instrumental in satisfying the first KKT con-
dition (3a).

– Effectiveness of the techniques of the previous subsection depends criti-
cally on the choice of trust-region radius ∆, whereas no such parameter
is present in this subsection. However, the practical performance of the
latter approach may depend on the scaling of the constraints ci and their
multipliers λi. Performance may be improved for some problems by chang-
ing the relative weightings of the terms ‖h‖1 and ‖ATλ + JTµ + g‖1 in
ω(x). However, it is difficult to determine a choice of weights that works
reliably for a range of problems.

3.3 A Linear Programming Approximation to the LPEC

In this section, we describe a technique that has the same identification prop-
erties as the scheme of the previous subsection, as described in Theorem 4,
but requires only the solution of a linear program, rather than an LPEC.
The key to the scheme is to obtain a two-sided bound on ω(x), defined in
(28), that can be obtained by solving a single linear program.

We start by defining the following functions:

ρ(x, µ, λ)
def
=

∑

ci<0

−ciλi +
∑

ci≥0

ci + ‖h‖1 + ‖ATλ+ JTµ+ g‖1,(35)

ρ̄(x, µ, λ)
def
=

∑

ci<0

(−ciλi)
1/2 +

∑

ci≥0

ci + ‖h‖1 + ‖ATλ+ JTµ+ g‖1.(36)
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These functions are related in the following elementary fashion.

Lemma 2 For any (µ, λ) with λ ≥ 0, we have

ρ̄(x, µ, λ) ≤ ρ(x, µ, λ) +
√
mρ(x, µ, λ)1/2.

Proof.

ρ̄(x, µ, λ) =

∥

∥

∥

∥

[

(−ciλi)
1/2

]

ci<0

∥

∥

∥

∥

1

+
∑

ci≥0

ci + ‖h‖1 + ‖ATλ+ JTµ+ g‖1

≤ √m
∥

∥

∥

∥

[

(−ciλi)
1/2

]

ci<0

∥

∥

∥

∥

2

+
∑

ci≥0

ci + ‖h‖1 + ‖ATλ+ JTµ+ g‖1

=
√
m

[

∑

ci<0

(−ciλi)

]1/2

+
∑

ci≥0

ci + ‖h‖1 + ‖ATλ+ JTµ+ g‖1

≤ √mρ(x, µ, λ)1/2 + ρ(x, µ, λ).

The next result defines the relationship between ρ, ρ̄, and the proximality
measure ψ defined in (11).

Lemma 3 Let K2 ≥ 1 be given. Then for all (x, µ, λ) with λ ≥ 0 and

(37) ‖c‖∞ ≤ K2, ‖λ‖∞ ≤ K2,

we have that

(38) K−1
2 ρ(x, µ, λ) ≤ ψ(x, µ, λ) ≤ ρ̄(x, µ, λ).

Proof. For ci < 0 and λi ≥ 0, we have

(39) −ciλi = min(−ci, λi)max(−ci, λi) ≥ min(−ci, λi)
2,

and also

(40) −ciλi ≤ K2 min(−ci, λi).

From (39) we have

ψ(x, µ, λ) =
∑

ci<0

|min(−ci, λi)|+
∑

ci≥0

ci + ‖h‖1 + ‖g +ATλ+ JTµ‖1

≤
∑

ci<0

(−ciλi)
1/2 +

∑

ci≥0

ci + ‖h‖1 + ‖g +ATλ+ JTµ‖1

= ρ̄(x, µ, λ),

thereby proving the right-hand inequality in (38).
For the left-hand inequality, we have from (40) and K2 ≥ 1 that

ψ(x, µ, λ) ≥ K−1
2

∑

ci<0

(−ciλi)+
∑

ci≥0

ci+‖h‖1+‖ATλ+JTµ+g‖1 ≥ K−1
2 ρ(x, µ, λ),
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as required.
We are particularly interested in the solution (µx, λx) to the program

(41) min
µ,0≤λ≤K1e

ρ(x, µ, λ),

whereK1 is the constant defined in (14). The problem of determining (µx, λx)
can also be expressed as the following linear program:

min(λ,µ,u,v)

∑

ci<0(−ciλi) +
∑

ci≥0 ci + ‖h‖1 + eTu+ eT v, subject to(42a)

ATλ+ JTµ+ g = u− v, 0 ≤ λ ≤ K1e, (u, v) ≥ 0.(42b)

We define the activity test associated with ρ̄ as follows:

(43) Aρ̄(x) = {i = 1, 2, . . . ,m | ci(x) ≥ −(βρ̄(x, µx, λx))σ̄},

for given constants β > 0 and σ̄ ∈ (0, 1).
We now prove a result similar to Theorem 4, showing in particular that

under the same assumptions as the earlier result, the identification scheme
above is asymptotically successful.

Theorem 5 Suppose that the KKT conditions (3), the MFCQ (7), and the
second-order condition (9) are satisfied at x∗, and let ǫ be as defined in The-
orem 1. Then there exists a positive constant ǫ̂ ∈ (0, ǫ/2] such that for all x
with ‖x− x∗‖ ≤ ǫ̂, we have

(i) the minimum in (42) is attained at some (µ, λ) with dist ((µ, λ),SD) ≤
ǫ/2;

(ii) K−1
1 ρ(x, µx, λx) ≤ ω(x) ≤ ρ̄(x, µx, λx), where K1 is the constant defined

in (14); and
(iii) Aρ̄(x) = A∗.

Proof.
(i) Note that for any (µ∗, λ∗) ∈ SD and any x with ‖x− x∗‖ < ǫ, we have

ρ(x, µ∗, λ∗)

=
∑

ci<0

−ci(x)λ∗i +
∑

ci≥0

ci(x) + ‖h(x)‖1 + ‖A(x)Tλ∗ + J(x)Tµ∗ + g(x)‖1

≤
∑

ci<0

(ci(x
∗)− ci(x))λ∗i +

∑

ci≥0

(ci(x)− ci(x∗)) + ‖h(x)− h(x∗)‖1

+‖(A(x)−A(x∗))Tλ∗ + (J(x) − J(x∗))Tµ∗ + (g(x) − g(x∗))‖1
≤ C2‖x− x∗‖,

for some constant C2. (In the first inequality above, we used the fact λ∗i c
∗
i = 0

for all i to bound the first summation, and the fact that c∗i ≤ 0 for all i to
bound the second summation.) Note that since ‖(µ∗, λ∗)‖∞ ≤ K1, we have
0 ≤ λ∗ ≤ K1e, so that (µ∗, λ∗) together with an obvious choice of (u, v), is

feasible for (42). We note also that any (µ̂, λ̂) for which ρ(x∗, µ̂, λ̂) = 0 and

λ̂ ≥ 0 satisfies (µ̂, λ̂) ∈ SD. Using these observations, the remainder of the
proof closely parallels that of Theorem 4 (i), so we omit the details.
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(ii) Reduce ǫ̂ if necessary to ensure that ǫ̂ ≤ ǭ ≤ ǫ/2, where ǭ is defined in
Theorem 4. Reduce ǫ̂ further if necessary to ensure that ‖c(x)‖∞ ≤ K1 for
all x with ‖x − x∗‖ ≤ ǫ̂. Note that by Theorem 4(i), the minimizer of (28)
has dist ((µ, λ),SD) ≤ ǫ/2, and therefore ‖λ‖∞ ≤ ‖λ∗‖∞ + 1 ≤ K1 for any
(µ∗, λ∗) ∈ SD.

Using the result of Lemma 3 (with K1 replacing K2), we have that

K−1
1 ρ(x, µx, λx)

= min
µ,0≤λ≤K1e

K−1
1 ρ(x, µ, λ) ≤ min

µ,0≤λ≤K1e
ψ(x, µ, λ) ≤ ψ(x, µx, λx) ≤ ρ̄(x, µx, λx).

However, as we showed in Theorem 4(i), the minimizer of ψ(x, µ, λ) over
the set of (µ, λ) with λ ≥ 0 is attained at values of (µ, λ) that satisfy the
restriction ‖λ‖∞ ≤ K1, so we can write

K−1
1 ρ(x, µx, λx) ≤ min

µ,0≤λ
ψ(x, µ, λ) ≤ ρ̄(x, µx, λx),

which yields the result, by (28).

(iii) We have from Lemma 2, Theorem 4(ii), and part (ii) of this theorem that
ρ̄(x, µx, λx)→ 0 as x→ x∗. Therefore, using continuity of ci, i = 1, 2, . . . ,m,
we can decrease ǫ̂ if necessary to ensure that for ‖x− x∗‖ ≤ ǫ̂, we have

ci(x) < (1/2)ci(x
∗) ≤ −(βρ̄(x, µx, λx))σ̄, for all i /∈ A∗.

Hence, i /∈ Aρ̄(x) for all such x.
For i ∈ A∗, we have for the Lipschitz constant L defined in (13), and

using Theorem 4(ii) and part (ii) of this theorem that

|ci(x)| ≤ L‖x− x∗‖
= L‖x− x∗‖1−σ̄‖x− x∗‖σ̄
≤ L‖x− x∗‖1−σ̄C̄σ̄ω(x)σ̄

≤
[

L‖x− x∗‖1−σ̄C̄σ̄/βσ̄
]

(βρ̄(x, µx, λx))σ̄

≤ (βρ̄(x, µx, λx))σ̄ ,

for ǫ̂ sufficiently small. Hence, we have i ∈ Aρ̄(x) for all x with ‖x−x∗‖ ≤ ǫ̂.
Near the solution, ω(x) may be (and often is) much smaller than ρ̄(x, µx, λx),

because of the looseness of the estimate (39). To compensate for this differ-
ence, we set σ̄ in the definition of Aρ̄ (43) to be larger than σ in the definition
of Alpec (29) in the tests described in the next section.

A referee has pointed out that some interesting insights are available from
examination of the dual of the subproblem (42). Ignoring the upper bound
λ ≤ K1e, we can write the dual as

min gTd, subject to

Aid+ ci ≤ 0 for i with ci < 0,

Aid ≤ 0 for i with ci ≥ 0,

Jd = 0, −e ≤ d ≤ e.
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LP-D LP-P LPEC-A LPEC
Rows n m + p n 5m + n

Columns m + 2n + p m + n + 2p m + 2n + p 4m + 2n + p

Table 1 Problem dimensions as a function of the number of inequalities (m),
variables (n), and equalities (p).

It is not difficult to construct examples for which Aid+ ci = 0 for an inactive
constraint i, even when x is arbitrarily close to x∗. (The referee gave the
example of minimizing a scalar x2 subject to −x − 0.5 ≤ 0, for x slightly
greater than the optimum x∗ = 0.) Thus, if the active set estimate were
obtained from formulae such as (20), it may not be asymptotically accurate.
Hence, the use of the threshold test (43) in place of activity tests (20) are
key to the effectiveness of the approach of this section. In this vein, it can
be shown that if the (µ, λ) components of the solution of the earlier linear
programming problem (18) are inserted into the threshold test (43) in place
of (µx, λx), an asymptotically accurate estimate is obtained, under certain
reasonable assumptions. We omit a formal statement and proof of this claim,
as we believe (µx, λx) to be a better choice of the Lagrange multipliers,
because their calculation does not depend on the parameters ν and ∆ that
appear in (18).

4 Computational Results

In this section, we apply the techniques of Section 3 to a variety of problems
in which x is slightly perturbed from its (approximately) known solution
x∗. The resulting active-set estimate is compared with our best guess of the
active set at the solution. We report the false positives and false negatives
associated with each technique, along with the runtimes required to execute
the tests.

The linear programming techniques of Subsection 3.1 are referred to as
LP-P for the primal formulation (17) and LP-D for the dual formulation (18).
For these formulations, we use both activity tests Ac and Aλ of (20), mod-
ified slightly with activity thresholds. We also implement the LPEC scheme
of Subsection 3.2 and the linear programming approximation scheme of Sub-
section 3.3, which we refer to below as LPEC-A. We implemented all tests
in C, using the CPLEX callable library (version 9.0) to solve the linear and
mixed integer programs.

The times required to implement the tests are related to the size and
density of the constraint matrix for each formulation. The matrix dimensions
for each formulation are given in Table 1. Except for problems with many
equality constraints, the LPEC formulation has the largest constraint matrix.
Further, it is the only formulation with binary variables.

Subsection 4.1 discusses some specifics of the formulations, such as the
choice of parameters and tolerances in the identification procedures. In Sub-
section 4.2, we apply the identification techniques to a set of random prob-
lems, for which we have control over the dimensions and amount of degen-
eracy. In Subsection 4.3, we consider a subset of constrained problems from
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the CUTEr test set, a conglomeration of problems arising from theory, mod-
eling, and real applications [13]. While the random problems are well scaled
with dense constraint Jacobians, the CUTEr problems may be poorly scaled
and typically have sparse constraint Jacobians. Subsection 4.4 contains some
remarks about additional testing.

4.1 Implementation Specifics

4.1.1 Choosing Parameters and Tolerances

The following implementation details are common to both random and CUTEr
test sets. We bound the ℓ∞ norm of the perturbation x from the (approx-
imately) optimal point x∗ by a noise parameter noise. Denoting by φ a
random variable drawn from the uniform distribution on [−1, 1], we define
the perturbed point x as follows:

(44) xi = x∗i +
noise

n
φ, i = 1, 2, . . . , n.

A second parameter DeltaFac controls the bound on the trust-region radius
for the LP-P and LP-D programs. We set

∆ = DeltaFac
noise

n
,

so that when DeltaFac ≥ 1, the trust region is large enough to contain the
true solution x∗. For the results tabulated below, we use DeltaFac = 4. This
value is particularly felicitous for the LP-P and LP-D schemes, as it yields a
∆ large enough to encompass the solution yet small enough to exclude many
inactive constraints. The number of false positives therefore tends to be small
for LP-P and LP-D in our tables. The relatively small trust region also allows
the CPLEX presolver to streamline the linear programming formulations
before calling the simplex code, thus reducing the solve times for the linear
programs in LP-P and LP-D. (Specifically, for each inequality constraint that
is inactive over the entire trust region, the LP-P subproblem is reduced by
one row and column, while the LP-D subproblem is reduced by one column.)
It is unlikely that a nonlinear programming algorithm that uses LP-P or LP-
D as its identification technique could choose a value of ∆ as nice as the one
used in these tests in practice.

The activity tests Ac (20a) and Aλ (20b) were modified to include a
tolerance, as follows:

(45) Ac(x) = {i |Aid+ ci ≥ −ǫ0}

and

(46) Aλ(x) = {i |λi ≥ ǫ0},

with ǫ0 = 10−4.
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In the tests Alpec(x) (29) for LPEC and Aρ̄ (43) for LPEC-A, we set
β = 1/(m+n+p). The value 0.75 is used for σ in Alpec (29), while the larger
value 0.90 is used for σ̄ in Aρ̄ (43).

By default, the mixed-integer solver in CPLEX makes use of various cut
generation schemes, including flow covers, MIR cuts, implied bound cuts,
and Gomory fractional cuts. We disabled these schemes because, given our
usually excellent starting point for the LPEC test, the cost of cut generation
is excessive compared to the cost of solving the root relaxation. However, for
all tests, we allowed both linear and mixed-integer solvers to perform their
standard presolving procedures, as they generally improved the performance.
For the mixed-integer solver in LPEC, we accept the solution if it is within
a factor of 2 of the lower bound.

For both linear and integer programming solvers, we tightened the general
feasibility tolerance eprhs from 10−6 to 10−9 because problems in the CUTEr
test set (notably BRAINPC0 and BRAINPC3) report infeasibilities after
scaling for LPEC-A under the default tolerance. In addition, we observed LP-
P objective values that were too negative when using default eprhs values.
Specifically, for some of the constraints Aid+ ci − ri ≤ 0 in (17), the solver
would find a d with Aid+ ci slightly positive, while setting ri to zero. Thus,
the constraint would be satisfied to the specified tolerance, while avoiding
the larger value of gTd that would be incurred if it were satisfied exactly.

4.1.2 Formulation Details

For all test problems, the parameter ν of the LP-P and LP-D programs is
assigned a value large enough to ensure that the known optimal multipli-
ers (µ∗, λ∗) are feasible for (19). The results of this paper, theoretical and
computational, are otherwise insensitive to the choice of ν. (However, the
choice of ν appears to be important for global convergence of the nonlinear
programming algorithm, as discussed in Byrd et al. [6].)

The computational efficiency of the LPEC mixed integer program (31) is
sensitive to the magnitude of M . Recall that the formulation (31) is identical
to the LPEC (30) provided that M is sufficiently large, in particular, larger
than ‖c+λ∗‖∞, where λ∗ is an optimal multiplier. However, excessively large
M values may result in long runtimes. We observed runtime reductions of
as much as 50% when we replaced heuristically-chosen values of M with
near-minimal values.

We describe some heuristics for setting M and ν in the following subsec-
tions.

In solving LPEC, we use a starting point based on the solution for LPEC-
A. Specifically, we set λ, µ, u, and v to their optimal values from (42); set
yi = 0 if −ci < λi and yi = 1 otherwise; and set si = |min(−ci, λi)|. In most
cases, this starting point is close to an acceptable solution for LPEC and
little extra work is needed beyond solving an LP relaxation of the LPEC at
the root node and verifying that the starting point is not far from the lower
bound obtained from this relaxation. The solution to LP-D also provides a
useful starting point for LPEC in most cases.
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For LPEC and LPEC-A, no attempt is made to scale the constraints ci or
the components of the threshold functions ω(x) and ρ̄(x, µx, λx). Heuristics to
adjust such weightings may improve the performance of LPEC and LPEC-A
techniques.

4.2 Random Problems

We generate random problems involving dense Jacobians J and A to mimic
the behavior of a nonlinear program near a local solution x∗. Besides choosing
the dimensions n, m, and p, we influence the amount of degeneracy in the
problem by specifying the row rank of J and A and the proportion of weakly
active constraints.

4.2.1 Problem Setup

Parameters specific to the random problem setup are fStrong and fWeak
(approximate proportion of strongly and weakly active inequality constraints,
respectively) and degenA and degenJ (proportional to the ranks of the null
spaces of A and J , respectively). We first fill out the first (1 − degenA)m
rows of the optimal inequality constraint Jacobian A∗ with components 5φ
(where, as above, φ represents a random variable uniformly distributed in
[−1, 1]). We then set the last (degenA)m rows of A∗ to be random linear
combinations of the first (1 − degenA)m rows, where the coefficients of the
linear combinations are chosen from φ. A similar process is used to choose
the optimal equality constraint Jacobian J∗ using the parameter degenJ.

We set the solution to be x∗ = 0. Recall that x is a perturbation of
x∗ (44). First, we set each component of µ∗ to 1

2φ(φ + 1). Next, we ran-
domly classify each index i ∈ {1, 2, . . . ,m} as “strongly active,” “weakly
active,” or “inactive,” such that the proportion in each category is approx-
imately fStrong, fWeak, and (1 − fStrong − fWeak), respectively. For the
inactive components, we set c∗i = − 5

2 (φ + 1)2, while for the strongly active

components, we set λ∗i = 5
2 (φ + 1)2. Other components of c∗ and λ∗ are

set to zero. To make the optimality condition (3a) consistent, we now set
g∗ = −(A∗)Tλ∗ − (J∗)Tµ∗. Naturally, h∗ = 0.

In accordance with the assumed Lipschitz properties, we set

gi = g∗i + (noise/n)φ, i = 1, 2, . . . ,m,

Aij = A∗
ij + (noise/n)φ, i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

Jij = J∗
ij + (noise/n)φ, i = 1, 2, . . . , p; j = 1, 2, . . . , n.

Since c(x) = c∗ +A∗(x − x∗) +O(‖x− x∗‖2) = c∗ +A∗x+O(‖x‖2), we set

ci = c∗i +A∗
i x+ (noise/n)2φ, i = 1, 2, . . . ,m.

A similar scheme is used to set h.
The data thus generated is consistent to first order, but there is no explicit

assurance that the second-order condition holds. (This condition is required
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m n fStrong LP-D LP-P LPEC-A LPEC
Ac Aλ Ac Aλ

50 200 0.10 0/0 0/0 0/0 0/0 1/0 1/0
50 200 0.50 0/0 0/0 0/0 0/0 0/0 0/0
50 1000 0.10 0/0 0/0 0/0 0/0 0/0 0/0
50 1000 0.50 0/0 0/0 0/0 0/0 0/0 0/0
100 200 0.10 0/0 0/0 0/0 0/0 0/0 0/0
100 200 0.50 0/0 0/0 0/0 0/0 1/0 0/0
100 1000 0.10 0/0 0/0 0/0 0/0 0/0 0/0
100 1000 0.50 0/0 0/1 0/0 0/1 0/0 0/0
400 200 0.10 0/0 0/0 0/0 0/0 2/0 1/1
400 1000 0.10 1/0 0/0 1/0 0/0 3/0 1/0
400 1000 0.50 1/0 0/0 1/0 0/0 4/0 3/0

Table 2 Nondegenerate Random Problems: False Positives/False Negatives. p =
n/5, noise= 10−3, fWeak= 0.00, degenA= 0.00, DeltaFac= 4.00.

m n fStrong LP-D LP-P LPEC-A LPEC

50 200 0.10 0.07 0.03 0.11 0.16
50 200 0.50 0.09 0.05 0.11 0.13
50 1000 0.10 7.08 4.61 7.34 7.94
50 1000 0.50 7.73 4.79 6.98 7.85
100 200 0.10 0.08 0.03 0.19 0.26
100 200 0.50 0.13 0.10 0.18 0.26
100 1000 0.10 7.05 4.46 9.35 9.99
100 1000 0.50 8.84 6.77 9.41 10.40
400 200 0.10 0.15 0.11 0.47 8.05
400 1000 0.10 9.80 5.59 20.70 171.24
400 1000 0.50 17.87 18.17 21.57 26.35

Table 3 Nondegenerate Random Problems: Time (secs). p = n/5, noise= 10−3,
fWeak= 0.00, degenA= 0.00, DeltaFac= 4.00.

for Theorems 4 and 5 concerning the exact identification properties of the
LPEC and LPEC-A schemes.)

By setting ν to the large value 100, we ensure that solutions of LP-P and
LP-D have r = 0 and s = t = 0. For the LPEC problem (31), we define
M = 5 maxj(|cj |). This value is large enough to secure local optimality of
the LPEC programs of our test problems.

4.2.2 Nondegenerate Problems

Results for a set of random nondegenerate problems are shown in Table 2,
with runtimes in Table 3. Nondegeneracy is assured by setting fWeak = 0,
degenA = 0, and degenJ = 0. The number of equality constraints p is n/5
and we set noise = 10−3. Each entry in Table 2 shows the numbers of
false positives and false negatives for the problem and test in question. For
LP-P and LP-D, we report both active sets Ac (45) and Aλ (46). The case
m = 400, n = 200, fStrong=0.50 does not appear because the expected
number of degrees of freedom (n− p− (fStrong+ fWeak)m) is nonpositive.

The identification techniques are accurate on these problems. Because
the LICQ conditions hold (to high probability), even the LP-P and LP-D
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m n fWeak degenA LP-D LP-P LPEC-A LPEC
Ac Aλ Ac Aλ

50 200 0.05 0.0 1/1 0/2 1/1 0/2 1/0 1/0
50 200 0.05 0.1 0/2 0/2 0/2 0/2 0/0 0/1
50 200 0.05 0.3 0/0 0/2 0/0 0/2 0/0 0/0
50 200 0.20 0.0 1/3 0/6 1/3 0/6 1/0 1/0
50 200 0.20 0.1 0/2 0/6 0/2 0/6 0/0 0/0
50 200 0.20 0.3 0/4 0/6 0/4 0/6 0/0 0/0
50 1000 0.05 0.0 0/0 0/2 0/0 0/2 0/0 0/0
50 1000 0.05 0.1 0/2 0/2 0/2 0/2 0/0 0/0
50 1000 0.05 0.3 0/2 0/2 0/2 0/2 0/1 0/1
50 1000 0.20 0.0 0/3 0/6 0/3 0/6 0/0 0/0
50 1000 0.20 0.1 0/3 0/6 0/3 0/6 0/0 0/0
50 1000 0.20 0.3 0/4 0/6 0/4 0/6 0/2 0/1
400 200 0.05 0.0 0/10 0/19 0/10 0/19 2/0 1/0
400 200 0.05 0.1 1/5 0/19 1/5 0/19 7/0 3/5
400 200 0.05 0.3 1/11 0/19 1/11 0/19 6/1 2/6
400 1000 0.05 0.0 2/8 0/19 2/9 0/19 3/0 1/0
400 1000 0.05 0.1 1/8 0/19 1/8 0/19 1/0 0/1
400 1000 0.05 0.3 4/7 0/19 4/7 0/19 6/0 5/7
400 1000 0.20 0.0 1/25 0/77 1/25 0/77 4/0 1/0
400 1000 0.20 0.1 0/22 0/77 0/22 0/77 1/0 0/6
400 1000 0.20 0.3 1/28 0/77 1/28 0/77 4/2 2/10

Table 4 Degenerate Random Problems: False Positives/False Negatives: p = n/5,
noise= 10−3, fStrong= 0.20, DeltaFac= 4.00

procedures are guaranteed to be asymptotically correct. Indeed, the LP-P
and LP-D schemes generally perform best; the LPEC-A and LPEC schemes
show a few false positives on the larger examples. For these problems, it is
not necessary for the LPEC to search beyond the root node in the branch-
and-bound tree, except in the case m = 400, n = 200, fStrong = 0.10, for
which one additional node is considered.

In agreement with the theory of Section 3, the false positives reported in
LPEC-A and LPEC results disappear for smaller noise values. In particular,
for noise = 10−7 the identification results are perfect for the LPEC-A and
LPEC methods, while the LP-D and LP-P methods still give some errors.

Runtimes are shown in Table 3. The differences between the approaches
are not significant, except for two of the n = 400 cases, for which LPEC is
substantially slower than LPEC-A.

4.2.3 Degenerate Problems

Results for a set of random degenerate problems are shown in Table 4, with
runtimes in Table 5. In these tables, we fixed fStrong = 0.2, noise = 10−3,
degenJ = 0, and p = n/5. The values of fWeak and degenA were varied,
along with the dimensions m and n.

All methods perform well when m = 50. The LPEC and LPEC-A ap-
proaches rarely make an identification error on these problems, whereas LP-P
and LP-D record a few false negatives. For the problems with 400 inequality
constraints, the numbers of errors made by LPEC-A and LPEC are lower
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m n fWeak degenA LP-D LP-P LPEC-A LPEC

50 200 0.05 0.0 0.08 0.04 0.11 0.15
50 200 0.05 0.1 0.08 0.04 0.10 0.15
50 200 0.05 0.3 0.08 0.04 0.12 0.16
50 200 0.20 0.0 0.06 0.04 0.10 0.13
50 200 0.20 0.1 0.09 0.05 0.11 0.16
50 200 0.20 0.3 0.09 0.04 0.11 0.38
50 1000 0.05 0.0 7.51 4.05 6.99 7.81
50 1000 0.05 0.1 7.26 4.70 6.71 7.70
50 1000 0.05 0.3 7.08 4.47 7.22 17.15
50 1000 0.20 0.0 7.54 4.43 7.47 8.04
50 1000 0.20 0.1 8.11 4.28 6.80 7.75
50 1000 0.20 0.3 7.52 4.80 7.28 17.04
400 200 0.05 0.0 0.23 0.28 0.41 2.71
400 200 0.05 0.1 0.27 0.28 0.41 9.69
400 200 0.05 0.3 0.22 0.30 0.39 3.81
400 1000 0.05 0.0 12.06 7.99 21.35 71.89
400 1000 0.05 0.1 10.99 9.73 21.99 29.76
400 1000 0.05 0.3 11.36 9.71 22.78 138.38
400 1000 0.20 0.0 15.59 12.33 20.98 141.82
400 1000 0.20 0.1 13.97 10.94 22.39 29.67
400 1000 0.20 0.3 13.47 11.24 22.56 131.26

Table 5 Degenerate Random Problems: Time (secs). p = n/5, noise= 10−3,
fStrong= 0.20, DeltaFac= 4.00.

than those made by LP-P and LP-D. The misidentifications for LP-D and
LP-P tend to be false negatives, and their numbers increase with the num-
ber of weakly active constraints. This experience is in accordance with the
theory of Subsection 3.1, which gives no guarantee that the weakly active
constraints will be identified. The numbers of false negatives are larger for
test Aλ than for Ac—nearly as large as the number of degenerate constraints.
(For m = 400, fWeak = 0.05 there are 20 such constraints while for m = 400
and fWeak = 0.20 there are 80.) This observation indicates that the mul-
tiplier (µ, λ) determined by the LP-P and LP-D solution is similar to the
optimal multiplier (µ∗, λ∗) to the original problem, for which λ∗i = 0 when
constraint i is weakly active. The errors for LPEC-A and LPEC contain both
false positives and false negatives, indicating that the values of σ and σ̄ and
the factor β that we use in the activity test are appropriate. (For larger values
of σ and σ̄, the numbers of false negatives increase dramatically.)

The methods can usually be ranked in order of speed as LP-P, LP-D,
LPEC-A, and LPEC. The differences between LP-P and LP-D are likely
due to problem size reductions by the presolver, which are greater for LP-P,
and which are significant because the matrix is dense. As expected (see our
discussion in Subsection 4.1.1), we observed size reductions corresponding to
the number of inactive constraints. In contrast, no presolver reductions were
observed for LPEC-A.

For the mixed-integer program arising in the LPEC test, an additional
node beyond the root node of the branch-and-bound tree is considered only
for the casem = 400, n = 200, fWeak = 0.05, and degenA = 0.1. We observed
large initial scaled dual infeasibilities and runtimes that are sensitive to the
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LPEC parameterM . For the casem = 400, the relative slowness of the LPEC
method may be due to the relatively large size of the matrix generated by
the LPEC (see Table 1).

4.3 CUTEr Problems

We now consider a subset of constrained minimization problems from the
CUTEr test set [13]. The subset contains degenerate problems of small or
medium size for which the Interior/Direct algorithm of Knitro 4.x ter-
minates successfully within 3000 iterations (with default parameter values).
From the output of this code, we obtain approximations x∗ to a solution and
(µ∗, λ∗) to the optimal Lagrange multipliers.

The format of the CUTEr test problems differs from that of (1) in that
bound constraints are treated separately from general constraints and all
constraints are two-sided, that is, they have both lower and upper bounds.
We implemented alternative formulations for our four tests which treated
the bounds explicitly and combined them with the trust-region constraints,
thereby reducing the total number of constraints and/or variables. We found
that these formulations gave little or no improvement in performance, so we
do not report on them further. For the results below, we rewrite the CUTEr
test problems in the format (1), treating bound constraints in the same way
as general inequality constraints.

4.3.1 Determining the “True” Active Set

In contrast to the random problems of Section 4.2, the true active set A∗ is
not known, but must be estimated from the solution determined by Interior/Direct.
Inevitably, this solution is approximate; the code terminates when constraint-
multiplier product for each inequality constraint falls below a given toler-
ance, set by default to 10−6 (see Byrd et al. [7]). If one of λi or −ci is
much smaller than the other, classification of the constraint is easy, but in
many cases these two quantities are of comparable magnitude. For example,
the Interior/Direct solutions of problems such as CAR2, BRAINPC*, and
READING1 (when formulated as (1)) display patterns in which −ci increases
steadily with i while λi decreases steadily, or vice versa. It is difficult to tell
at which index i the line should be drawn between activity and inactivity.

In our tables below, we define A∗ by applying the LPEC-A test (43) with
σ̄ = .75 and β = 1/(m+ n+ p) to the solution returned by Knitro . (LPEC
could be used in place of LPEC-A to estimate A∗ because both schemes are
theoretically guaranteed to return the true active set for x close enough to
x∗.) We also wish to determine the weakly active inequality set A∗

0, defined
by (5). Procedure ID0 from [23, Section 3], which involves repeated solution
of linear programs, could be used to determine this set. However, for purposes
of Table 6, we populated A∗

0 with those indices in the estimated A∗ that fail
the test (46) when applied to the multipliers returned by LPEC-A at x∗.
Note that this technique produces a superset of A∗

0 in general.
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4.3.2 Implementation Details

The penalty parameter in the LP-P and LP-D formulations is defined by

ν = 1.5 max(max
j

(λ∗j ),max
k

(|µ∗
k|), 1),

where (µ∗, λ∗) are the approximately optimal multipliers that were reported
by
Interior/Direct. This heuristic guarantees that these particular multipliers
(µ∗, λ∗) are feasible for the LP-D formulation (18) at the Interior/Direct
approximate solution x∗. For the parameter M in (31) we use

M = 3 max(max
j

(λ∗j ),max
j

(|cj(x)|)).

Function and gradient evaluations are obtained through the Fortran and
C tools contained in the CUTEr distribution, and through a driver modeled
after the routine loqoma.c (an interface for the code LOQO), which is also
contained in CUTEr.

4.3.3 Test Results and Runtimes

Results for noise = 10−3 are shown in Table 6. The numbers of elements
in our estimate of the optimal active set A∗ and weakly active set A∗

0 are
listed as |A∗| and |A∗

0|. Each entry in the main part of the table contains the
false positive/false negative count for each combination of test problem and
identification technique. Table 7 shows the dimensions of each problem in the
formatm/n/p, with the main part of the table displaying runtimes in seconds.
The LPEC column additionally reports the number of nodes beyond the root
needed to solve the LPEC to the required (loose) tolerance. For many of the
problems, the root node is within a factor of two of the optimal solution, and
the reported number is therefore zero. If the LPEC test exceeds our time
limit of 180 seconds, we qualify the approximate solution with the symbol
“†”.

Trends In Table 6, the LP-D and LP-P results are nearly identical, indicat-
ing that the two methods usually find the same solution. The errors for both
these tests are mostly false negatives, which is expected, because the theory
of Section 3.1 gives no guarantee that weakly active constraints will be iden-
tified. Further, false positives are unlikely because the nice value of ∆ (set
up by the choice of parameter DeltaFac = 4) excludes most inactive con-
straints from the trust region. The number of false negatives for the Aλ test
is usually higher than for Ac, because weakly active constraints will generally
fail the Aλ test (46), while they may pass the Ac test (45). This behavior
is highlighted in the results for the problems GMNCASE4 and OET7. Their
numbers of false negatives for the Aλ test correspond exactly to |A∗

0|, while
the corresponding numbers of false negatives for the Ac test are much lower.

In contrast to the results for LP-D and LP-P, the results for LPEC-A
and LPEC show a mixture of false positives and false negatives. Further, the
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results for LPEC-A and LPEC are similar for most problems. For several
problems, for example, TWIRIMD1 and ZAMB2, the results for LPEC-A
agree with those for LPEC but not with those for LP-D and LP-P.

The runtimes given in Table 7 are typically much shorter than for the
random problems in Tables 3 and 5 because the constraint Jacobians in the
CUTEr problems are usually sparse (OET7 is an exception). The LP-D times
are similar to the LP-P times, and LPEC-A times are generally comparable.
With few exceptions, LPEC requires more execution time than LPEC-A. In
cases for which LPEC requires significantly more time than LPEC-A, the
LPEC identification performance is not better in general.

The LPEC method is usually the slowest, despite initialization from a
good starting point. (The use of this starting point reduced significantly the
solve time and the number of searched nodes for several problems, including
HANGING, NGONE, SMMPSF, TRIMLOSS, and TWIRISM1.)

Anomalies For several problems, the numbers of false negatives for LP-D
and LP-P with test Aλ are larger than |A∗

0|; see for example SREADIN3.
This may happen because the LP-P and LP-D programs find a sparse λ, one
that has many more zeros than the λ∗ that we used to form our estimate of
A∗

0 as described above.
For certain problems, all methods return large numbers of false neg-

atives. These problems often contain many bound constraints; for exam-
ple C-RELOAD, READING1, SREADIN3, TRIMLOSS, TWIRIMD1, and
ZAMB2. We note that these errors still occurred when we reformulated the
tests to treat the bound constraints explicitly.

For LPEC-A and LPEC, the BRAINPC* and OET7 problems have many
false positives, as a result of many inactive constraints having values of ci(x)
close to zero, below the threshold for determining activity.

For the problem SOSQP1, a quadratic program, only the LPEC method
detects any active constraints; in fact, it makes no identification errors. A
smaller choice for the parameter σ̄ in the LPEC-A identification test would
produce perfect identification for the LPEC-A technique also.

We remark on a few more of the anomalies in Table 7. Runtimes for
HANGING are especially large, given its size. The LP solvers performed
many perturbations and the MIP solver for the LPEC test reports trouble
identifying an integer solution. For LPEC, an extremely large number of
iterations and nodes are reported for C-RELOAD, again due to difficulty
finding feasible integer solutions. Allowing the use of heuristics by the MIP
solver yielded a large reduction in the number of considered nodes for this
problem, but the runtime did not change significantly.

4.4 Additional Remarks

We conclude this section with some general comments on the numerical re-
sults and on additional testing not reported above.

In general, the LP-P and LP-D tests give similar identification results,
with a tendency to underestimate the active set (that is, false negatives).
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Problem |A∗|/|A0
∗| LP-D LP-P LPEC-A LPEC

Ac Aλ Ac Aλ

A4X12 191/88 0/21 0/122 0/21 0/122 6/0 0/32
AVION2 21/5 0/6 0/9 0/6 0/10 7/0 4/0

BIGBANK 0/0 0/0 0/0 0/0 0/0 0/0 0/0
BRAINPC0 3/3 0/0 0/1 0/0 0/3 65/0 67/0
BRAINPC1 3/3 4/0 0/2 4/0 0/3 33/0 38/0
BRAINPC3 3/3 0/0 0/1 0/0 0/3 67/0 69/0
BRAINPC4 9/9 6/0 0/9 6/0 0/9 22/0 56/0

CAR2 883/1 0/312 0/883 0/321 0/883 0/112 53/0†

CORE1 21/3 0/0 0/7 0/0 0/7 0/0 0/0
CORKSCRW 505/6 0/3 0/190 0/3 0/189 0/3 0/6
C-RELOAD 136/7 0/38 0/124 0/38 0/124 0/19 0/18†

DALLASM 3/1 0/0 0/1 0/0 0/1 0/0 0/0
DALLASS 1/0 0/0 0/1 0/0 0/1 0/0 0/0
DEMBO7 21/8 0/1 0/7 0/1 0/11 0/0 0/1

FEEDLOC 20/19 0/0 0/19 0/0 0/19 0/7 0/0
GMNCASE4 350/175 0/0 0/175 0/0 0/175 0/0 0/0
GROUPING 100/100 0/0 0/44 0/0 0/44 0/8 0/0
HANGING 2310/40 0/48 0/72 0/48 0/72 0/12 0/68
HELSBY 8/2 0/0 0/5 0/0 0/1 0/0 0/0

HIMMELBK 20/10 0/0 0/10 0/0 0/9 0/0 1/0
HUES-MOD 277/0 0/1 0/78 0/1 0/78 0/1 0/277
KISSING2 181/87 0/0 0/88 0/0 0/88 0/0 0/2
LISWET10 1999/0 0/2 0/237 0/2 0/254 1/0 0/6

LSNNODOC 3/1 0/0 0/1 0/0 0/1 0/0 0/0
MAKELA3 20/19 0/0 0/19 0/0 0/19 0/0 0/20
MINPERM 0/0 0/0 0/0 0/0 0/0 0/0 0/0

NET1 7/2 0/0 0/2 0/0 0/2 0/0 0/0
NGONE 102/0 0/0 0/86 0/0 0/86 0/0 0/5
OET7 110/105 0/15 0/105 0/15 0/105 38/21 86/20

POLYGON 105/4 0/0 0/4 0/0 0/4 0/0 0/17
PRIMALC8 505/2 0/4 0/505 0/4 0/505 0/0 0/0
PRODPL0 39/0 0/0 0/0 0/0 0/0 0/0 0/0

QPCBLEND 80/42 0/24 0/45 0/24 0/45 0/12 0/24
QPCBOEI1 309/49 0/0 0/47 0/0 0/49 4/0 0/18
QPCSTAIR 163/20 0/50 0/59 0/50 0/56 20/0 0/51
READING1 174/147 0/173 0/174 0/173 0/174 0/141 0/86†

SARO 675/2 0/43 0/675 0/43 0/675 0/44 0/58†

SAROMM 343/0 0/0 0/343 0/0 0/343 0/0 0/10†

SMBANK 0/0 0/0 0/0 0/0 0/0 0/0 0/0
SMMPSF 481/1 0/5 0/66 0/5 0/66 0/1 0/10
SOSQP1 2500/2500 0/2500 0/2500 0/2500 0/2500 0/2500 0/0

SREADIN3 180/154 0/180 0/180 0/180 0/180 0/146 0/104†

SSEBNLN 133/25 0/2 0/35 0/2 0/25 0/0 0/2
STEENBRA 381/95 0/0 0/55 0/0 0/51 0/0 0/0
TRIMLOSS 94/51 1/69 0/93 0/67 0/93 0/7 0/33
TRUSPYR2 8/1 0/0 0/1 0/0 0/0 0/0 4/0
TWIRIMD1 660/80 0/257 0/659 0/258 0/659 0/56 0/56†

TWIRISM1 140/29 0/15 0/83 0/15 0/84 0/15 0/18
ZAMB2 1259/0 0/673 0/1259 0/673 0/1259 0/102 0/102†

Table 6 CUTEr problems: False Positives/False Negatives. noise= 10−3, σ =
0.75, σ̄ = 0.90, DeltaFac= 4.00

.
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Problem m/n/p |A∗|/|A0
∗| LP-D LP-P LPEC-A LPEC/nodes

A4X12 384/ 130/ 16 191/ 88 0.02 0.03 0.01 5.62/66
AVION2 98/ 49/ 15 21/ 5 0.00 0.00 0.00 0.03/5

BIGBANK 3844/2230/1420 0/ 0 0.42 0.17 0.12 1.16/0
BRAINPC0 6905/6907/6902 3/ 3 3.98 6.82 22.52 31.47/0
BRAINPC1 6905/6907/6902 3/ 3 4.84 18.81 0.44 1.44/0
BRAINPC3 6905/6907/6902 3/ 3 2.87 6.64 25.42 58.82/0
BRAINPC4 6905/6907/6902 9/ 9 4.06 5.98 8.75 2.95/0

CAR2 4997/5999/4004 883/ 1 5.13 0.54 0.65 189†/7065
CORE1 139/ 65/ 41 21/ 3 0.00 0.00 0.00 0.01/0

CORKSCRW 4500/4506/3009 505/ 6 0.92 0.80 0.19 93.25/1
C-RELOAD 684/ 342/ 200 136/ 7 0.10 0.07 0.04 181†/40420
DALLASM 392/ 196/ 151 3/ 1 0.01 0.01 0.00 0.13/0
DALLASS 92/ 46/ 31 1/ 0 0.00 0.00 0.00 0.03/0
DEMBO7 53/ 16/ 0 21/ 8 0.00 0.00 0.00 0.03/1
FEEDLOC 462/ 90/ 22 20/ 19 0.00 0.00 0.00 0.18/0

GMNCASE4 350/ 175/ 0 350/ 175 0.05 0.08 0.04 0.12/0
GROUPING 200/ 100/ 125 100/ 100 0.00 0.00 0.00 0.01/0
HANGING 2330/3600/ 12 2310/ 40 27.40 44.70 6.46 10.04/0
HELSBY 685/1408/1399 8/ 2 0.22 0.20 0.03 0.50/0

HIMMELBK 24/ 24/ 14 20/ 10 0.00 0.00 0.00 0.00/0
HUES-MOD 5000/5000/ 2 277/ 0 1.34 0.15 0.24 1.08/0
KISSING2 625/ 100/ 6 181/ 87 0.01 0.02 0.01 14.89/492
LISWET10 2000/2002/ 0 1999/ 0 0.31 0.12 0.31 20.04/0

LSNNODOC 6/ 5/ 4 3/ 1 0.00 0.00 0.00 0.01/0
MAKELA3 20/ 21/ 0 20/ 19 0.00 0.00 0.00 0.00/0
MINPERM 1213/1113/1033 0/ 0 0.20 0.06 0.11 15.55/0

NET1 65/ 48/ 43 7/ 2 0.00 0.00 0.00 0.01/0
NGONE 5246/ 200/ 3 102/ 0 0.02 0.03 0.02 21.18/1
OET7 1002/ 7/ 0 110/ 105 0.01 0.02 0.00 0.29/0

POLYGON 5445/ 200/ 2 105/ 4 0.02 0.03 0.02 28.98/1
PRIMALC8 511/ 520/ 0 505/ 2 0.04 0.03 0.01 0.11/0
PRODPL0 69/ 60/ 20 39/ 0 0.00 0.00 0.00 0.02/0

QPCBLEND 114/ 83/ 43 80/ 42 0.01 0.01 0.00 0.50/141
QPCBOEI1 971/ 384/ 9 309/ 49 0.03 0.02 0.02 17.07/26
QPCSTAIR 532/ 467/ 291 163/ 20 0.05 0.03 0.02 2.65/38
READING1 8002/4002/2001 174/ 147 0.61 0.36 0.22 192†/2600

SARO 2920/4754/4025 675/ 2 3.17 4.57 2.67 182†/347
SAROMM 2920/5120/4390 343/ 0 4.68 7.13 1.71 182†/19
SMBANK 234/ 117/ 64 0/ 0 0.01 0.00 0.00 0.02/0
SMMPSF 743/ 720/ 240 481/ 1 0.11 0.04 0.03 4.82/255
SOSQP1 10000/5000/2501 2500/2500 0.08 0.08 0.30 7.94/0

SREADIN3 8004/4002/2001 180/ 154 0.80 0.32 0.23 187†/2385
SSEBNLN 384/ 194/ 74 133/ 25 0.01 0.01 0.01 0.03/0

STEENBRA 432/ 432/ 108 381/ 95 0.02 0.01 0.01 0.44/1
TRIMLOSS 319/ 142/ 20 94/ 51 0.00 0.00 0.01 0.45/31
TRUSPYR2 16/ 11/ 3 8/ 1 0.00 0.00 0.00 0.01/0
TWIRIMD1 2685/1247/ 521 660/ 80 3.86 0.97 1.02 182†/110
TWIRISM1 775/ 343/ 224 140/ 29 0.09 0.06 0.04 18.87/501
ZAMB2 7920/3966/1446 1259/ 0 0.50 0.14 0.21 190†/2025

Table 7 CUTEr problems: Time (secs). noise= 10−3, σ = 0.75, σ̄ = 0.90,
DeltaFac= 4.00..
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The primal activity test Ac is superior to the dual activity test Aλ for these
methods. LP-P tended to take less time to solve, probably because of the
greater reductions due to presolving.

We tested the effect of using a much larger ∆ in the LP-P and LP-D
formulations for the random test problems. Runtimes were slightly longer on
the largest problems, and the time advantage that LP-P has for smaller ∆
disappears. The Aλ activity test returned the same poor underestimate of
the active set as for the smaller ∆, while the Ac activity test made many
more identification errors.

The LPEC-A test obviously should be used in preference to LPEC, as the
results are similar (with the anomalies easily explained) and the runtimes are
sometimes much shorter. We note that it might be possible to improve the
performance of these methods by better scaling of the constraints.

We used a noise value of 10−3 in all reported results, but performed
additional experiments with other values of this parameter. For smaller val-
ues of noise, LP-P and LP-D tend to have similar false positive counts, but
show higher false negative counts in some cases. LPEC and LPEC-A show
an overall improvement; for example, at noise = 10−7 the BRAINPC* prob-
lems’ results for LPEC and LPEC-A are nearly perfect. However, more false
negatives are reported on some CUTEr problems. These difficult problems
are the ones for which our estimate of the true active set A∗ is sensitive to the
parameters β, σ, and σ̄ used in the threshold test (see Subsection 4.3.1), and
for which the estimate of the true active set changes significantly if we use
LPEC in place of LPEC-A. Specifically, on problems LISWET10, OET7, and
READING1, the additional false negatives that were reported when noise
was decreased from 10−3 to 10−7 disappeared when σ̄ was changed or when
LPEC was used in place of LPEC-A in the determination of A∗.

As expected, the results of the random problems in Tables 2 and 3 for the
LPEC and LPEC-A techniques are nearly perfect for noise = 10−7. (noise
must be decreased to an even smaller value to remove a single false positive
in some cases; this identification error is caused by a constraint that is only
very slightly inactive.)

For values of noise larger than 10−3, LP-P and LP-D report more false
positives on the random problems and fewer false negatives on the CUTEr
problems. The LPEC and LPEC-A tests tend to give more false positives,
while the false negative count decreases on the CUTEr problems and increases
on the random problems.

Following a suggestion of a referee, and in line with the discussion at the
end of Section 3, we obtained a new identification technique by inserting the
solution of (18) in place of (µx, λx) in the threshold test (43). We found that,
indeed, this “threshold LP-D” estimate of the active set was more accurate
than those obtained from (20a) and (20b), as is done in the standard LP-D
technique. On the random problem set, the results for threshold LP-D for
noise = 10−7 are identical to those for LPEC-A, in accordance with our
claim that both techniques are asymptotically exact.
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5 Conclusions

We have described several schemes for predicting the active set for a nonlinear
program with inequality constraints, given an estimate x of a solution x∗. The
effectiveness of some of these schemes in identifying the correct active set for
x sufficiently close to x∗ is proved, under certain assumptions. In particular,
the scheme of Subsection 3.3 has reasonable computational requirements and
strong identification properties and appears to be novel. Computational tests
are reported which show the properties of the various schemes on random
problems and on degenerate problems from the CUTEr test set.

Knowledge of the correct active set considerably simplifies algorithms for
inequality constrained nonlinear programming, as it removes the “combina-
torial” aspect from the problem. However, it remains to determine how the
schemes above can be used effectively as an element of a practical algorithm
for solving nonlinear programs. It may be that reliable convergence can be
obtained in general without complete knowledge of the active set; some “suf-
ficient subset” may suffice. What are the required properties of such a subset,
and can we devise inexpensive identification schemes, based on the ones de-
scribed in this paper, that identify it? We leave these and other issues to
future research.
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A Proof of (25)

We prove this statement by contradiction. Suppose that there is a sequence {xk}

with xk → x∗ such that

(47) dist
“

−g(xk), range [∇h(xk)] + pos[(∇ci(x
k))i∈A1 ]

”

< τ,

for all k. By closedness, there must be vectors zk and yk ≥ 0 such that the

dist
“

−g(xk), range [∇h(xk)] + pos[(∇ci(x
k))i∈A1 ]

”

=

‚

‚

‚

‚

‚

∇h(xk)zk +
X

i∈A1

∇ci(x
k)yk

i + g(xk)

‚

‚

‚

‚

‚

≤ τ,

for all k. If {(zk, yk)} is unbounded, we have by compactness of the unit ball, and by
taking a subsequence if necessary, that ‖(zk, yk)‖ ↑ ∞ and (zk, yk)/‖(zk, yk)‖ →
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(z∗, y∗) with ‖(z∗, y∗)‖ = 1 and y∗ ≥ 0. Hence, by dividing both sides in the
expression above by ‖(zk, yk)‖ and taking limits, we have

(48) (∇h∗)z∗ +
X

i∈A1

(∇c∗i )y∗
i = 0.

From Lemma 1, we have A1 ⊂ A∗, so that the MFCQ condition (7) holds at x∗ for
A1 replacing A∗. Hence, for the vector v in this condition, we have that ∇h(x∗) has
full column rank, and that (∇h∗)T v = 0 and ∇(c∗i )

T v < 0 for all i ∈ A1. By taking
inner products of (48) with v, we can deduce first that y∗ = 0 and subsequently
that z∗ = 0, by a standard argument, contradicting ‖(z∗, y∗)‖ = 1. Therefore, the
sequence {(zk, yk)} must be bounded. Since the sequence remains in a ball about
the origin (that is, a compact set), it has an accumulation point.

By taking a subsequence again if necessary, suppose that (zk, yk) → (ẑ, ŷ). We
then have that
‚

‚

‚

‚

‚

∇h(xk)ẑ +
X

i∈A1

∇ci(x
k)ŷi + g(xk)

‚

‚

‚

‚

‚

≤

‚

‚

‚

‚

‚

∇h(xk)zk +
X

i∈A1

∇ci(x
k)yk

i + g(xk)

‚

‚

‚

‚

‚

+ ‖∇h(xk)‖‖zk − ẑ‖ +
X

i∈A1

‖∇ci(x
k)‖ |yk

i − ŷi|

≤ τ + o(1),

for all k sufficiently large. By taking limits in this expression, we deduce that

dist (−g∗, range [∇h∗] + pos[(∇c∗i )i∈A1 ]) ≤ τ,

which contradicts the definition of τ , for τ > 0. Hence, a sequence {xk} with the
property (47) cannot exist, so (25) holds for all ǭ2 sufficiently small.
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