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1 Introduction

Consider a mapping F : IR
n → IR

n, and let x∗ ∈ IR
n be a solution to F (x) = 0.

We consider the local convergence of Newton’s method when the solution x∗

is singular (that is, kerF ′(x∗) 6= {0}) and when F is once but possibly
not twice differentiable. We also consider an accelerated variant of Newton’s
method that achieves a fast linear convergence rate under these conditions.
Our technique can be applied to a nonlinear-equations formulation of non-
linear complementarity problems (NCP) defined by

(1) NCP(f): 0 ≤ f(x), x ≥ 0, xT f(x) = 0,

where f : IR
n → IR

n. At degenerate solutions of the NCP (solutions x∗ at
which x∗i = fi(x

∗) = 0 for some i), this nonlinear-equations formulation is not
twice differentiable at x∗, and the weaker smoothness assumptions considered
in this paper are required. Our results show that (i) the simple approach
of applying Newton’s method to the nonlinear-equations formulation of the
NCP converges inside a starlike domain centered at x∗, albeit at a linear
rate if the solution is singular; (ii) a simple technique can be applied to
accelerate the convergence in this case to achieve a faster linear rate. The
simplicity of our approach contrasts with other nonlinear-equations-based
approaches to solving (1), which are either nonsmooth (and hence require
nonsmooth Newton techniques whose implementations are more complex;
see for example Josephy [14] and the discussion in Facchinei and Pang [6,
p. 663-674]) or else require classification of the indices i = 1, 2, . . . , n into
those for which x∗i = 0, those for which fi(x

∗) = 0, or both.
Around 1980, several authors, including Reddien [19], Decker and Kel-

ley [3], and Griewank [8], proved linear convergence for Newton’s method to
a singular solution x∗ of F from special regions near x∗, provided that F is
twice Lipschitz continuously differentiable and a certain 2-regularity condi-
tion holds at x∗. (The “2” emphasizes the role of the second derivative of F
in this regularity condition.)

In the first part of this work, we show that Griewank’s analysis, which
gives linear convergence from a partial neighborhood of x∗ known as a starlike
domain, can be extended to the case in which F ′ is strongly semismooth at
x∗; see Section 4. In Section 5, we consider a standard acceleration scheme
for Newton’s method, which “overrelaxes” every second Newton step. By
assuming that F ′ is at least strongly semismooth at x∗ and that a 2-regularity
condition holds, we show that this technique yields arbitrarily fast linear
convergence from a partial neighborhood of x∗.

In the second part of this work, beginning in Section 6, we consider a
particular nonlinear-equations reformulation of the NCP and interpret the
regularity conditions for this formulation as conditions on the NCP. We show
that they reduce to previously known NCP regularity conditions in certain
special cases. We conclude in Section 7 by presenting computational results
for some simple NCPs, including a number of degenerate examples.

We start with certain preliminaries and definitions of notation and termi-
nology (Section 2), followed by a discussion of prior relevant work (Section 3).
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2 Definitions and Properties

For G : Ω ⊆ IR
n → IR

p we denote the derivative by G′ : Ω → IR
p×n, that is,

(2) G′(x) =







∂G1

∂x1
. . . ∂G1

∂xn

...
...

∂Gp

∂x1
. . .

∂Gp

∂xn






.

For a scalar function g : Ω → IR, the derivative g′ : Ω → IR
n is the vector

function

g′(x) =







∂g
∂x1

...
∂g

∂xn






.

The Euclidean norm is denoted by ‖ · ‖, and the unit sphere is S = {t | ‖t‖ =
1}.

For any subspace X of IR
n, dimX denotes the dimension of X . The kernel

of a linear operator M is denoted kerM , the image or range of the operator
is denoted rangeM . rankM denotes the rank of the matrix M , which is the
dimension of rangeM .

A starlike domain with respect to x∗ ∈ IR
n is an open set A with the

property that x ∈ A ⇒ λx+ (1 − λ)x∗ ∈ A for all λ ∈ (0, 1). A vector t ∈ S
is an excluded direction for A if x∗ + λt /∈ A for all λ > 0.

2.1 Smoothness Conditions

We now list various definitions relating to the smoothness of a function.

Definition 1 Directionally differentiable. Let G : Ω ⊆ IR
n → IR

p, with
Ω open, x ∈ Ω, and d ∈ IR

n. If the limit

(3) lim
t↓0

G(x + td)−G(x)

t

exists in IR
p, we say that G has a directional derivative at x along d and we

denote this limit by G′(x; d). If G′(x; d) exists for every d in a neighborhood
of the origin, we say that G is directionally differentiable at x.

Definition 2 B-differentiable. ([6, Definition 3.1.2]) G : Ω ⊆ IR
n → IR

p,
with Ω open, is B(ouligand)-differentiable at x ∈ Ω if G is Lipschitz contin-
uous in a neighborhood of x and directionally differentiable at x.

Definition 3 Strongly semismooth. ([6, Definition 7.4.2]) Let G : Ω ⊆
IR

n → IR
p, with Ω open, be locally Lipschitz continuous on Ω. We say that

G is strongly semismooth at x̄ ∈ Ω if G is directionally differentiable near x̄
and

lim supx̄6=x→x̄

‖G′(x;x− x̄)−G′(x̄;x− x̄)‖

‖x− x̄‖2
<∞.

Further, if G is strongly semismooth at every x̄ ∈ Ω, we say that G is strongly
semismooth on Ω.
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IfG is (strongly) semismooth at x̄, then it is B-differentiable at x̄. Further,
if G is B-differentiable at x̄, then G′(x̄; ·) is Lipschitz continuous [18]. Hence,
for F ′ : IR

n → IR
n×n strongly semismooth at x∗, there is some Lx∗ such that

(4) ‖(F ′)′(x∗;h1)− (F ′)′(x∗;h2)‖ ≤ Lx∗‖h1 − h2‖.

Provided F ′ is strongly semismooth at x∗ and ‖x − x∗‖ is sufficiently
small, we have the following crucial estimate from equation (7.4.5) of [6].

(5) F ′(x) = F ′(x∗) + (F ′)′(x∗;x− x∗) +O(‖x− x∗‖2).

(We use p = n2 in order to apply Definition 3 to F ′.)

2.2 2-regularity

For F : IR
n → IR

n, suppose x∗ is a singular solution of F (x) = 0 and F ′ is
strongly semismooth at x∗. We define N := kerF ′(x∗). Let N⊥ denote the
complement of N, such that N ⊕N⊥ = IR

n, and let N∗ := kerF ′(x∗)T with
complement N∗⊥. We denote by PN , PN⊥

, PN∗
, and PN∗⊥

the orthogonal
projections onto N , N⊥, N∗, and N∗⊥ respectively, while (·)|N denotes the
restriction map to N . Let m := dimN > 0.

We say that F satisfies 2-regularity for some d ∈ IR
n at a solution x∗ if

(6) (PN∗
F ′)′(x∗; d)|N is nonsingular.

The 2-regularity conditions of Reddien [19], Decker and Kelley [3], and Griewank [8]
require (6) to hold for certain d ∈ N . In fact, this property first appeared in
the literature as (PN∗

F ′′(x∗)d)|N ; the form in (6) was introduced by Izmailov
and Solodov in [11]. By applying PN∗

to F ′ before taking the directional
derivative, the theory of 2-regularity may be applied to problems for which
PN∗

F ′ is directionally differentiable but F ′ is not [13].
Decker and Kelley [3] and Reddien [19] use the following definition of

2-regularity, which we call 2∀-regularity.

Definition 4 2∀-regularity. 2∀-regularity holds for F at x∗ if (6) holds for
every d ∈ N \ {0}.

For F twice differentiable at x∗, 2∀-regularity implies (geometric) isolation
of the solution x∗ [19,3] and limits the dimension of N to at most 2 [4].

Next, we define a weaker 2-regularity that can hold regardless of the
dimension of N or whether x∗ is isolated.

Definition 5 2ae-regularity. 2ae-regularity holds for F at x∗ if (6) holds
for almost every d ∈ N .

The following example due to Griewank [9, p. 542] shows that a 2ae-regular

solution need not be isolated, when dimN > 1. Let F : IR
2 → IR

2 be defined
as

(7) F (x1, x2) =

[

x2
1

x1x2

]

,
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with roots {(x1, x2) ∈ IR
2 | x1 = 0}. It can be verified that the origin is a 2ae-

regular root of this function. First note that N ≡ IR
2 ≡ N∗. By Definition 5,

2ae-regularity holds if F ′′(x∗)d is nonsingular for almost every d = (d1, d2)
T ∈

N . By direct calculation, we have

F ′′(x∗)d =

[

2d1 0
d2 d1

]

,

which is nonsingular whenever d1 = 0, that is, for almost every d ∈ IR
2.

Weaker still is the condition we call 21-regularity.

Definition 6 21-regularity. 21-regularity holds for F at x∗ if (6) holds for
some d ∈ N .

For the case in which F is twice Lipschitz continuously differentiable, Griewank
shows that 21-regularity and 2ae-regularity are actually equivalent [8, p. 110].
This property fails to hold under the weaker smoothness conditions of this
work. For example, the smooth nonlinear equations reformulation (9) of the
nonlinear complementarity problems quad2 and affknot1 (defined in Ap-
pendix C) are 21-regular but not 2ae-regular at their solutions.

Izmailov and Solodov introduce a regularity condition and prove that
it implies that x∗ is an isolated solution, provided that PN∗

F ′(x∗) is B-
differentiable [11, Theorem 5(a)]. The following form of this condition, which
we call 2T -regularity, is specific to our case F : IR

n → IR
n and is due to

Daryina, Izmailov, and Solodov [1, Def. 2.1]. Consider the set

(8) T2 := {d ∈ N | (PN∗
F ′)′(x∗; d)d = 0}.

Definition 7 2T-regularity [1, Def. 2.1]. 2T -regularity holds for F at x∗

if T2 = {0}.

As can be seen from Table 1 in Section 7, neither 2T -regularity nor 2ae-
regularity implies the other. If dim N = 1, then 2T -regularity is equivalent
to 2∀-regularity (which is trivially equivalent to 2ae-regularity in this case).
For completeness, we verify this claim. Suppose N = span v, for v ∈ S.
By positive homogeneity of the directional derivative, 2T -regularity holds
if (PN∗

F ′)′(x∗; v)v 6= 0 and (PN∗
F ′)′(x∗;−v)(−v) 6= 0. Similarly, the defi-

nition of 2∀-regularity requires (PN∗
F ′)′(x∗; v)|N and (PN∗

F ′)′(x∗;−v)|N to
be nonsingular. By linearity, we need to verify only that (PN∗

F ′)′(x∗; v)v 6= 0
and (PN∗

F ′)′(x∗;−v)(−v) 6= 0, equivalently, that 2T -regularity is satisfied.
By definition, 2∀-regularity implies the other three regularity conditions.

Therefore, since 2T -regularity implies isolation of the solution under our
smoothness conditions, so must 2∀-regularity.

3 Prior Work

In this section, we summarize briefly the prior work most relevant to this
paper.



6 Christina Oberlin, Stephen J. Wright

2-regularity Conditions. 2-regularity has been applied to a variety of uses
including error bounds, implicit function theorems, and optimality conditions
[11,13]. We focus on the use of 2-regularity conditions to prove convergence
of Newton-like methods to singular solutions. As explained in Subsection 2.2,
such conditions concern the behavior of the directional derivative of F ′ on
the null spaces N and N∗ of F ′(x∗) and F ′(x∗)T , respectively.

The 21-regularity condition (Definition 6) was used in [20] by Reddien
and in [10] by Griewank and Osborne. The proofs therein show convergence
of Newton’s method (at a linear rate of 1/2) only for starting points x0 such
that x0−x

∗ lies approximately along the particular direction d for which the
nonsingularity condition (6) holds.

The more stringent 2∀-regularity condition (Definition 4) was used by
Decker and Kelley [3] to prove linear convergence of Newton’s method from
starting points in a particular truncated cone around N . The convergence
analysis given for 2∀-regularity [19,3,2] is much simpler than the analysis
presented in Griewank [8] and in the current paper.

Griewank [8] proves convergence of Newton’s method from all starting
points in a starlike domain with respect to x∗. If 21-regularity holds at x∗,
then the starlike domain is nonempty. As mentioned in Subsection 2.2, 21-
regularity is equivalent to 2ae-regularity when F is twice Lipschitz continu-
ously differentiable at x∗. In this case, 2ae-regularity implies that the starlike
domain is “dense” near x∗ in the sense that the set of excluded directions has
measure zero—a much more general set than the cones around N analyzed
prior to that time.

Acceleration Techniques. When iterates {xk} generated by a Newton-like
method converge to a singular solution, the error xk − x∗ lies predominantly
in the null space N of F ′(x∗). Acceleration schemes typically attempt to stay
within a cone around N while lengthening (“overrelaxing”) some or all of the
Newton steps.

We discuss several of the techniques proposed in the early 1980s. All re-
quire starting points whose error lies in a cone around N , and all assume
three times differentiability of F . Decker and Kelley [4] prove superlinear
convergence for an acceleration scheme in which every second Newton step
is essentially doubled in length along the subspace N . Their technique re-
quires 2∀-regularity at x∗, an estimate of N , and a nonsingularity condition
over N on the third derivative of F at x∗. Decker, Keller, and Kelley [2]
prove superlinear convergence when every third step is overrelaxed, provided
that 21-regularity holds at x∗ and the third derivative of F at x∗ satisfies
a nonsingularity condition on N . Kelley and Suresh [16] prove superlinear
convergence of an accelerated scheme under less stringent assumptions. If
21-regularity holds at x∗ and the third derivative of F at x∗ is bounded over
the truncated cone about N , then overrelaxing every other step by a factor
approaching 2 results in superlinear convergence.

By contrast, the acceleration technique that we analyze in Section 5 of
our paper does not require the starting point x0 to be in a cone about N ,
and requires only strong semismoothness of F ′ at x∗. On the other hand, we
obtain only fast linear convergence. We believe, however, that our analysis
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can be extended to use a scheme like that of Kelley and Suresh [16], increasing
the overrelaxation factor to achieve superlinear convergence.

Smooth Nonlinear-Equations Formulation of the NCP. In the latter part of
this paper, we discuss a nonlinear-equations formulation of the NCP Ψ based
on the function ψs(a, b) := 2ab − (min(0, a + b))2, which has the property
that ψs(a, b) = 0 if and only if a ≥ 0, b ≥ 0, and ab = 0. The function
Ψ : IR

n → IR
n is defined by

(9) Ψi(x) := 2xifi(x) − (min(0, xi + fi(x)))
2, i = 1, 2, . . . , n.

This formulation is apparently due to Evtushenko and Purtov [5] and was
studied further by Kanzow [15]. The first derivative Ψ ′ is strongly semismooth
at a solution x∗ if f ′ is strongly semismooth at x∗. At a solution x∗ for which
x∗i = fi(x

∗) = 0 for some i, x∗ is a singular root of Ψ and Ψ fails to be twice
differentiable.

Recently, Izmailov and Solodov [11–13] and Daryina, Izmailov, and Solodov [1]
have investigated the properties of the mapping Ψ and designed algorithms
around it. (Some of their investigations, like ours, have taken place in the
more general setting of a mapping F for which F ′ has semismoothness prop-
erties.) In particular, Izmailov and Solodov [11,13] show that an error bound
for NCPs holds whenever 2T -regularity holds. Using this error bound to clas-
sify the indices i = 1, 2, . . . , n, Daryina, Izmailov, and Solodov [1] present
an active-set Gauss-Newton-type method for NCPs. They prove superlinear
convergence to singular points which satisfy 2T -regularity as well as another
condition known as weak regularity, which requires full rank of a certain
submatrix of f ′(x∗). These conditions are weaker than those required for su-
perlinear convergence of known nonsmooth-nonlinear-equations formulations
of NCP. In [12], Izmailov and Solodov augment the formulation Ψ(x) = 0 by
adding a nonsmooth function containing second-order information. They ap-
ply the generalized Newton’s method to the resulting function and prove
superlinear convergence under 2T -regularity and another condition called
quasi-regularity. The quasi-regularity condition resembles the 2-regularity
condition for the NCP; their relationship is discussed in Subsection 6.3 be-
low.

In contrast to the algorithms of [1] and [12], the approach we present
in this work has fast linear convergence rather than superlinear conver-
gence. Our regularity conditions are comparable and may be weaker in some
cases. (For example, the problem munson4 in Appendix C satisfies both
2T -regularity and 2ae-regularity but not weak regularity.) We believe that
our algorithm has the advantage of simplicity. Near the solution, it modifies
Newton’s method only by incorporating a simple check to detect linear con-
vergence and possibly overrelaxing every second step. There is no need to
classify the constraints, add “bordering” terms, or switch to a different step
computation strategy in the final iterations.
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4 Convergence of the Newton Step to a Singularity

Griewank [8] extended the work of others [19,3] to prove local convergence
of Newton’s method from a starlike domain R of a singular solution x∗ of
F (x) = 0. Specialized to the case of k = 1 (Griewank’s notation), he as-
sumes that F ′′(x) is Lipschitz continuous near x∗ and that x∗ is a 21-regular
solution. Griewank’s convergence analysis shows that the first Newton step
takes the initial point x0 from the original starlike domain R into a simpler
starlike domain Ws, a wedge around a certain vector s in the null space
N . The domain Ws is similar to the domains of convergence found in ear-
lier works (Reddien [19], Decker and Kelley [3]). Linear convergence is then
proved inside Ws.

For F twice continuously differentiable, the convergence domain R is
much larger than Ws. In fact, the set of directions excluded from R−x∗ has
zero measure. As a result, the error in the initial iterate with respect to x∗

need not lie near the null space N [8].
In this section, we weaken the smoothness assumption of Griewank in

replacing the second derivative of F in (6) by a directional derivative of F ′.
Our assumptions follow:

Assumption 1 For F : IR
n → IR

n, x∗ is a singular, 21-regular solution of
F (x) = 0 and F ′ is strongly semismooth at x∗.

We show that Griewank’s convergence results hold under this assumption.

Theorem 1 Suppose Assumption 1 holds. There exists a starlike domain R
about x∗ such that, if Newton’s method for F (x) is initialized at any x0 ∈ R,
the iterates converge linearly to x∗ with rate 1/2. If the problem is converted
to standard form (10) and x0 = ρ0t0, where ρ0 = ‖x0‖ > 0 and t0 ∈ S, then
the iterates converge inside a cone with axis g(t0)/‖g(t0)‖, for g defined in
(32).

Only a few modifications to Griewank’s proof [8] are necessary. We use
the properties (4) and (5) to show that F is smooth enough for the main
steps in the proof to hold. Finally, we make an insignificant change to a
constant required by the proof due to a loss of symmetry in R. (Symmetry is
lost in moving from derivatives to directional derivatives because directional
derivatives are positively but not negatively homogeneous.) The proof in
[8] also considers regularities larger than 2, for which higher derivatives are
required. We restrict our discussion to 2-regularity because we are interested
in the application to a nonlinear-equations reformulation of NCP, for which
such higher derivatives are unavailable.

For completeness, we work through the details of the proof in the remain-
der of this section and in Section A in the appendix, highlighting the points
of departure from Griewank’s proof as they arise.

4.1 Preliminaries

For simplicity of notation, we start by standardizing the problem. The New-
ton iteration is invariant with respect to nonsingular linear transformations
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of F and nonsingular affine transformations of the variables x. As a result,
we can assume that

(10) x∗ = 0, F ′(x∗) = F ′(0) = (I − PN∗
), and N∗ = IR

m × {0}n−m.

(We revoke assumption (10) in our discussion of an equation reformulation
of the NCP in Sections 6 and 7.)

For x ∈ IR
n \ {0}, we write x = x∗ + ρt = ρt, where ρ = ‖x‖ is the 2-norm

distance to the solution and t = x/ρ is a direction in the unit sphere S. From
the third assumption in (10), we have

PN∗
=

[

Im×m 0m×n−m

0n−m×m 0n−m×n−m

]

,

where I represents the identity matrix and 0 the zero matrix, with subscripts
indicating their dimensions. By substituting in the second assumption of (10),
we obtain

(11) F ′(0) =

[

0m×m 0m×n−m

0n−m×m In−m×n−m

]

.

Since F ′(0) is symmetric, the null space N is identical to N∗.
Using (10), we partition F ′(x) as follows:

F ′(x) =

[

PN∗
F ′(x)|N PN∗

F ′(x)|N⊥

PN∗⊥
F ′(x)|N PN∗⊥

F ′(x)|N⊥

]

=:

[

B(x) C(x)
D(x) E(x)

]

.

In conformity with the partitioning in (11), the submatrices B,C,D, and E
have dimensions m×m,m×n−m,n−m×m, and n−m×n−m, respectively.
Using x∗ = 0, we define

B̄(x) = B̄(x− x∗) = (PN∗
F ′)′(x∗;x− x∗)|N = (PN∗

F ′)′(0;x)|N ,(12a)

C̄(x) = C̄(x− x∗) = (PN∗
F ′)′(x∗;x− x∗)|N⊥

= (PN∗
F ′)′(0;x)|N⊥

.(12b)

From x = ρt, the expansion (5) with x∗ = 0 yields

B(x) = B̄(x) +O(ρ2) = ρB̄(t) +O(ρ2),

C(x) = C̄(x) +O(ρ2) = ρC̄(t) +O(ρ2),(13)

D(x) = O(ρ), and E(x) = I +O(ρ).

Note that the constants that bound the O(·) terms in these expressions can
be chosen independently of t, by compactness of S. This is the first difference
between our analysis and Griewank’s analysis; we use (5) to arrive at (13),
while he uses Taylor’s theorem.

For some rb > 0, E is invertible for all ρ < rb and all t ∈ S, with
E−1(x) = I +O(ρ). Invertibility of F ′(x) is equivalent to invertibility of the
Schur complement of E(x) in F ′(x), which we denote by G(x) and define by

G(x) := B(x) − C(x)E(x)−1D(x).
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This claim follows from the determinant formula

det(F ′(x)) = det(G(x))det(E(x)).

By reducing rb if necessary to apply (13), we have

(14) G(x) = B(x) +O(ρ2) = ρB̄(t) +O(ρ2).

Hence,

det(F ′(x)) = ρmdetB̄(t) +O(ρm+1).

As in the proof of [8, Lemma 3.1 (iii)], we note that all but the smallest m
singular values of F ′(x) are close to 1 in a neighborhood of x∗. Letting ν(s)
denote the smallest singular value of F ′(s), we have by the expression above
that

(15) ν(ρt) = O((detF ′(ρt))1/m) =

{

O(ρ), if B̄(t) is nonsingular,

o(ρ), if B̄(t) is singular.

For later use, we define γ to be the smallest positive constant such that

‖G(x) − ρB̄(t)‖ ≤ γρ2, for all x = ρt, all t ∈ S, and all ρ < rb.

Following Griewank [8], we define the function σ(t) to be the minimum
of 1 and the L2 operator norm of the smallest singular value of B̄(t), that is,

(16) σ(t) :=

{

0 if B̄(t) is singular
min(1, ‖B̄−1(t)‖−1) otherwise.

It is a fact from linear algebra that the individual singular values of a matrix
vary continuously with respect to perturbations of the matrix [7, Theorem
8.6.4]. By (4), B̄(t) is Lipschitz continuous in t, so that σ(t) is continuous in
t. This is the second difference between our analysis and Griewank’s analysis:
We require (4) to prove continuity of the singular values of B̄(t), while he uses
the fact that B̄(t) is linear in t which holds under his stronger smoothness
assumptions.

Let

(17) Π0(d) := detB̄(d), for d ∈ IR
n.

In contrast to the smooth case considered by Griewank, Π0(d) is not a ho-
mogeneous polynomial in d, but rather a positively homogeneous, piecewise-
smooth function. Hence, 21-regularity does not necessarily imply 2ae-regularity.
Since the determinant is the product of singular values, we can use the same
reasoning as for σ(t) to deduce that Π0(t) is continuous in t for t ∈ S.
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4.2 Domains of Invertibility and Convergence

In this section we define the domainsWs and R. The definitions ofWs andR
depend on several functions that we first introduce. If we define min(∅) = π,
the angle

(18) φ(s) :=
1

4
min{cos−1(tT s) | t ∈ S ∩Π0

−1(0)}, for s ∈ N ∩ S

is a well defined, nonnegative continuous function, bounded above by π
4 . For

the smooth case considered by Griewank, if t ∈ Π0
−1(0), then −t ∈ Π0

−1(0)
and the maximum angle if Π0

−1(0) 6= ∅ is π
2 . This assertion is no longer true

in our case; the corresponding maximum angle is π. Hence, we have defined
min(∅) = π (instead of Griewank’s definition min(∅) = π

2 ) and the coefficient

of φ(s) is 1
4 instead of 1

2 . This is the third and final difference between our

analysis and Griewank’s analysis. Now, φ−1(0) = N ∩ S ∩Π0
−1(0) because

the set {s ∈ S |Π0(s) 6= 0} is open in S since Π0(·) is continuous on S, by
(4).

In [8, Lemma 3.1], Griewank defines the auxiliary starlike domain of in-
vertibility R̄,

(19) R̄ := {x = ρt | t ∈ S, 0 < ρ < r̄(t)},

where

(20) r̄(t) := min

{

rb,
1

2
γ−1σ(t)

}

.

Note that the excluded directions, t ∈ S for which σ(t) = 0, are the directions
along which the smallest singular value of the determinant of F ′(ρt) is o(ρ) by
(15) and (16). Even if σ(t) 6= 0 for some t ∈ S, the set of excluded directions
may have positive measure in S. This is the case for the the smooth nonlin-
ear equations reformulation (9) of the nonlinear complementarity problems
quad2 (defined in Appendix C). For this problem, σ(t) 6= 0 for almost every
t = (t1, t2)

T ∈ S with t1 < 0 and t2 6= 0, while σ(t) = 0 for any t ∈ S with
t1 > 0.

As in [8, Lemma 5.1], we define

(21) r̂(s) := min{r̄(t) | t ∈ S, cos−1(tT s) ≤ φ(s)}, for s ∈ N ∩ S

and

(22) σ̂(s) := min{σ(t) | t ∈ S, cos−1(tT s) ≤ φ(s)}, for s ∈ N ∩ S.

These minima exist and both are nonnegative and continuous on S ∩N with
σ̂−1(0) = r̂−1(0) = φ−1(0). Note that since σ(t) ≤ 1 by definition, we have
σ̂(s) ≤ 1 for s ∈ N ∩ S.

Let c be the positive constant defined by

(23) c := max{‖C̄(t)‖ + σ(t) | t ∈ S}.
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In the following, we use the abbreviation

(24) q(s) :=
1

4
sinφ(s) ≤

1

4
, for s ∈ N ∩ S.

We define the angle φ̂(s), for which 0 ≤ φ̂(s) ≤ π/2, by the equality

(25) sin φ̂(s) := min

{

q(s)

c/σ̂(s) + 1− q(s)
,

2δr̂(s)

(1− q(s))σ̂2(s)

}

, for s ∈ N ∩ S,

where δ is a problem-dependent, positive number to be specified in the Ap-
pendix in (144). We now define

(26) ρ̂(s) :=
(1− q(s))σ̂2(s)

2δ
sin φ̂(s), for s ∈ N ∩ S.

Both φ̂ and ρ̂ are nonnegative and continuous on N ∩ S with

(27) φ̂−1(0) = ρ̂−1(0) = φ−1(0) = Π−1
0 (0) ∩N ∩ S.

Now we can define the starlike domain Ws,

(28) Ws := {x = ρt | t ∈ S, cos−1(tT s) < φ̂(s), 0 < ρ < ρ̂(s)},

and the starlike domain Is,

(29) Is := {x = ρt | t ∈ S, cos−1(tT s) < φ(s), 0 < ρ < ρ̂(s)}.

By the first inequality in (25), sin φ̂(s) ≤ sinφ(s). Since both φ̂(s) and

φ(s) are acute angles, we have φ̂(s) ≤ φ(s) and thus Ws ⊆ Is. For s ∈ S ∩N,
Ws = ∅ if and only if Π0(s) = 0. The second implicit inequality in the

definition of sin φ̂(s), ensures that ρ̂(s) satisfies

(30) ρ̂(s) ≤ r̂(s) ≤ r̄(t) ≤ rb, for all t ∈ S with cos−1 tT s ≤ φ(s).

It follows that

(31) Is ⊂ R̄, for all s ∈ S ∩N \Π−1
0 (0).

(The justification given in [8] that r̂(s) ≤ r̄(s) is insufficient.)
Consider the positively homogeneous vector function g : (IRn \Π−1

0 (0))→
N ⊆ IR

n,

(32) g(x) = ρg(t) =

[

I B̄−1(t)C̄(t)
0 0

]

x.

It is shown in (145) of Appendix A that the Newton iteration from a point x
near x∗ is, to first order, the map x∗ + 1

2g(x), provided g(x) is defined at x.
The starlike domain of convergence R, which lies inside the domain of

invertibility R̄, is defined as follows (where x = ρt as usual):

(33) R := {x = ρt | t ∈ S, 0 < ρ < r(t)},
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where

(34) r(t) := min

{

r̄(t),
σ2(t)ρ̂(s(t))

2δrb + cσ(t) + σ2(t)
,
‖g(t)‖σ2(t) sin φ̂(s(t))

2δ

}

,

where we define

s(t) :=
g(t)

‖g(t)‖
∈ N ∩ S,

and δ is the constant to be defined in (144) in the Appendix. (The factor
of 2, or k + 1 for the general case, is missing from the denominator of the
second term in the definition of r(t) in [8] but should have been included, as
it is necessary for the proof of convergence.)

The remaining details of the proof of Theorem 1 appear in an appendix
(Appendix A), which picks up the development at this point.

The Excluded Directions of R. We conclude this section by characterizing the
excluded directions of R, that is, t ∈ S for which r(t) = 0. By the definition
of r(t) (34), these are directions for which at least one of r̄(t), σ(t), ‖g(t)‖,

ρ̂(s(t)), or sin φ̂(s(t)) is zero. Let us inspect each of these possibilities. By
definition, r̄(t) (20) is zero if and only if σ(t) is zero. If σ(t) is nonzero, that
is, t /∈ Π−1

0 (0) then g(t) is well defined. If additionally ‖g(t)‖ 6= 0, then s(t)

is well defined. Since s(t) ∈ N ∩S, by (27) ρ̂(s(t)) or sin φ̂(s(t)) is zero if and
only if s(t) ∈ Π−1

0 (0). To summarize, r(t) is zero for t ∈ S if and only if one
of the following conditions is true:

(35) t ∈ Π−1
0 (0), g(t) = 0, or g(t)/‖g(t)‖ ∈ Π−1

0 (0).

The first condition fails if F satisfies 2-regularity (6) for t. Likewise, the third
condition fails if F satisfies 2-regularity (6) for g(t)/‖g(t)‖. Let us consider
the second condition. For d ∈ IR

n \ Π−1
0 (0), by the definition of g (32) we

have

g(d) = 0⇔ B̄(d)dN + C̄(d)dN⊥
= 0,

where dN is the orthogonal projection of d onto N and dN⊥
is the orthogonal

projection of d onto N⊥. By the definitions (12a) and (12b), we have

(36) g(d) = 0⇔ (PN∗
F ′)′(x∗; d)d = 0, for d ∈ IR

n \Π−1
0 (0).

The right-hand side of this condition is identical to the condition defining the
set T2 (8), though the domain of d differs. Due to the limited smoothness of
F , it is possible for either Π0, g, or Π0(g(·)) to map a set of positive measure
in IR

n to 0. This is despite the facts that Π0 g, and Π0(g(·)) may be nonzero
elsewhere, Π0 and g are continuous and positively homogeneous, and g is
the identity on its range N . Hence, the set of excluded directions can be of
positive measure.
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5 Acceleration of Newton’s Method

Overrelaxation is known to improve the rate of convergence of Newton’s
method converging to a singular solution [9]. The overrelaxed iterate is

(37) xj+1 = xj − αF
′(xj)

−1F (xj),

where α is some fixed parameter in the range [1, 2). (Of course, α = 1 corre-
sponds to the usual Newton step.)

If every step is overrelaxed, it can be shown that the condition α < 4
3

must be satisfied to ensure convergence and, as a result, the rate of linear
convergence is no faster than 1

3 .
In this section, we focus on a technique in which overrelaxation occurs

only on every second step; that is, standard Newton steps are interspersed
with steps of the form (37) for some fixed α ∈ [1, 2). Broadly speaking, each
pure Newton step refocuses the error along the null space N . Kelley and
Suresh prove superlinear convergence for this method when α is systemati-
cally increased to 2 as the iterates converge [16]. However, their proof requires
the third derivative of F evaluated at x∗ to satisfy a boundedness condition
and assumes a starting point x0 that lies near a 21-regular direction in N .

We state our main result here and prove it in the remainder of this section.
The major assumptions are that 21-regularity holds at x∗ and that x0 ∈ Rα,
where Rα is a starlike domain defined in (50) whose excluded directions are
identical to those of R defined in Section 4 but whose rays are shorter. In
fact, as α is increased to 2, the rays of the starlike domain Rα shrink in
length to zero.

Theorem 2 Suppose Assumption 1 holds and let α ∈ [1, 2). There exists a
starlike domain Rα ⊆ R about x∗ such that if x0 ∈ Rα and for j = 0, 1, 2, . . .
we have

x2j+1 = x2j − F
′(x2j)

−1F (x2j) and(38)

x2j+2 = x2j+1 − αF
′(x2j+1)

−1F (x2j+1),(39)

then the iterates {xi} for i = 0, 1, 2, . . . converge linearly to x∗ and

lim
j→∞

‖x2j+2 − x
∗‖

‖x2j − x∗‖
=

1

2

(

1−
α

2

)

.

The remainder of this section contains the proof of the theorem.

5.1 Definitions

We assume the problem is in standard form (10). We define the positive

constant δ̃ as follows:

(40) δ̃ := δmax(c, α),

where δ is defined in (144) and c is defined in (23). Note that

(41) δ̃ ≥ δ.
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We introduce the following new parameters:

(42) qα(s) :=
1− α/2

4
sinφ(s), for s ∈ N ∩ S,

(from which it follows immediately that qα(s) ≤ (1/8) sinφ(s) ≤ 1/8). We

define the angle φ̃α(s), for which 0 ≤ φ̃α(s) ≤ π/2, by the equality
(43)

sin φ̃α(s) := min

{

qα(s)

c/σ̂(s) + 1− qα(s)
,

2δr̂(s)

(1 − qα(s))σ̂2(s)

}

, for s ∈ N ∩ S.

Since α ≥ 1, a comparison of (24) and (42) yields

(44) qα(s) ≤
1

2
q(s).

The definition of sin φ̃α (43) is simply that of sin φ̂ (25) with q replaced by qα.

By (44), the numerators in the definition of sin φ̃α are smaller or the same as

those in the definition of sin φ̂ and the denominators are larger or the same.
As a result, we have

(45) sin φ̃α(s) ≤ sin φ̂(s) ≤ sinφ(s),

and therefore

(46) φ̃α(s) ≤ φ(s).

We further define

(47) ρ̃α(s) :=
(1 − α/2− qα(s))σ̂3(s)

4δ̃
sin φ̃α(s) for s ∈ N ∩ S,

(48) Ws,α := {x = ρt | t ∈ S, cos−1(tT s) < φ̃α(s), 0 < ρ < ρ̃α(s)},

and

(49) Is,α := {x = ρt | t ∈ S, cos−1(tT s) < φ(s), 0 < ρ < ρ̃α(s)}.

(Note that (46) implies that Ws,α ⊆ Is,α.) We will show that the following
set is a starlike domain of convergence:

(50) Rα := {x = ρt | t ∈ S, 0 < ρ < rα(t)},

where
(51)

rα(t) := min

{

r̄(t),
σ2(t)ρ̃α(s(t))

2δrb + cσ(t) + σ2(t)
,
‖g(t)‖σ2(t)(1 − α/2) sin φ̃α(s(t))

8δ

}

and s(t) = g(t)/‖g(t)‖ ∈ N ∩ S.
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We now establish that Rα ⊆ R ⊆ R̄ and Is,α ⊆ Is ⊆ R̄. We first show
that

(52) ρ̃α(s) ≤ ρ̂(s),

where ρ̂(s) is defined in (26). Because of (45), it suffices for (52) to prove
that

(1− α/2− qα(s))σ̂3

4δ̃
≤

1− q(s)

2δ
σ̂2.

The truth of this inequality follows from α ∈ [1, 2), q(s) ∈ [0, 1
4 ], qα(s) ∈

[0, 1
4−

α
8 ], σ̂ ≤ 1, and (41). Using (45) and (52) together with (41), a compari-

son of rα(t) (51) and r(t) (34) yields rα(t) ≤ r(t). We conclude by comparing
(33) with (50) that Rα ⊆ R. The relation R ⊆ R̄ follows easily from the
definitions of r (34) and r̄ (20) together with (33) and (19). By (52), we also
have Is,α ⊆ Is, upon comparing their definitions (49) and (29). The relation
Is ⊆ R̄ was demonstrated in (31).

As in Section 4, we denote the sequence of iterates by {xi}i≥0 and use
the notation (146), that is,

ρi = ‖xi‖, ti = xi/ρi, σi = σ(ti), si = g(xi)/‖g(xi)‖,

where g(·) is defined in (32). We use the following abbreviations throughout
the remainder of this section:

(53) ρ̃α ≡ ρ̃α(s0), φ̃α ≡ φ̃α(s0), φ ≡ φ(s0), σ̂ ≡ σ̂(s0).

5.2 Basic Error Bounds and Outline of Proof

Since the problem is in standard form, we have from (145) that the Newton
step (38) satisfies the following relationships for x2k ∈ R̄:

(54) x2k+1 =
1

2

[

I B̄(t2k)−1C̄(t2k)
0 0

]

x2k + e(x2k) =
1

2
g(x2k) + e(x2k),

for all k ≥ 0, where g(·) is defined in (32) and the remainder term e(·) is
defined in (143). As in (144), we have

(55) ‖e(x2k)‖ ≤ δ
ρ2
2k

σ2
2k

.

For the accelerated Newton step (39), we have for x2k+1 ∈ R̄ that

(56) x2k+2 =

[

(1− α
2 )I α

2 B̄(t2k+1)
−1C̄(t2k+1)

0 (1 − α)I

]

x2k+1 + αe(x2k+1),

for all k ≥ 0, which from (144) yields

‖x2k+2 − (1 − α/2)x2k+1‖ ≤

∥

∥

∥

∥

[

0 α
2 B̄(t2k+1)

−1C̄(t2k+1)
0 −α

2 I

]

t2k+1

∥

∥

∥

∥

ρ2k+1 + αδ
ρ2
2k+1

σ2
2k+1

≤

∥

∥

∥

∥

[

0 α
2 B̄(t2k+1)

−1C̄(t2k+1)
0 −α

2 I

]

t2k+1

∥

∥

∥

∥

ρ2k+1 + δ̃
ρ2
2k+1

σ2
2k+1

,(57)
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where δ̃ is defined in (40).
By substituting (54) into (56), we obtain

x2k+2 =
1

2

[

(1 − α
2 )I α

2 B̄(t2k+1)
−1C̄(t2k+1)

0 (1− α)I

] [

I B̄(t2k)−1C̄(t2k)
0 0

]

x2k(58)

+ ẽα(x2k, x2k+1),

where
(59)

ẽα(x2k, x2k+1) =

[

(1− α
2 )I α

2 B̄(t2k+1)
−1C̄(t2k+1)

0 (1 − α)I

]

e(x2k) + αe(x2k+1).

Therefore,

x2k+2 =
1

2

(

1−
α

2

)

[

I B̄(t2k)−1C̄(t2k)
0 0

]

x2k + ẽα(x2k, x2k+1)

=
1

2

(

1−
α

2

)

g(x2k) + ẽα(x2k, x2k+1),(60)

To bound the remainder term, note that |1− α
2 |+ |1− α| =

α
2 for α ∈ [1, 2).

Hence, we have from (59) that

‖ẽα(x2k, x2k+1)‖ ≤
α

2

(

1 + ‖B̄(t2k+1)
−1‖‖C̄(t2k+1)‖

)

‖e(x2k)‖+ α‖e(x2k+1)‖

≤

(

σ2k+1 + ‖C̄(t2k+1)‖

σ2k+1

)

δ
ρ2
2k

σ2
2k

+ αδ
ρ2
2k+1

σ2
2k+1

from α < 2, (16), and (144)

≤ cδ
ρ2
2k

σ2k+1σ2
2k

+ αδ
ρ2
2k+1

σ2
2k+1

from (23)

≤ δ̃
ρ2
2k + ρ2

2k+1

µ3
2k

,(61)

where

(62) µ2k := min(σ2k, σ2k+1)

and δ̃ is defined as in (40). By combining (60) with (61), we obtain

(63)

∥

∥

∥

∥

x2k+2 −
1

2

(

1−
α

2

)

g(x2k)

∥

∥

∥

∥

≤ δ̃
ρ2
2k + ρ2

2k+1

µ3
2k

.

In other words, if x2k = ρ2kt2k with t2k ∈ S and x2k+1 = ρ2k+1t2k+1 with
t2k+1 ∈ S are sufficiently close to x∗ and σ(t2k) and σ(t2k+1) are bounded
below by a positive number, then the accelerated Newton iterate x2k+2 sat-
isfies

x2k+2 =
1

2
(1−

α

2
)g(x2k) +O(‖x2k‖

2).
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The proof provides a single positive lower bound for σ(t2k) and σ(t2k+1) for
all subsequent iterates. Hence, 1

2 (1 − α
2 )g(x2k) is a first order approxima-

tion to the double step achieved by applying a Newton step followed by an
accelerated Newton step from x2k.

Before proceeding with the proof, we state the definitions of certain quan-
tities that appear in the appendix. The angle between iterate xi and the null
space N is denoted by θi, while ψi denotes the angle between xi and s0
(147). The proof of Theorem 2 is by induction. The induction step consists
of showing that if

ρ2k+ι < ρ̃α, θ2k+ι < φ̃α, and ψ2k+ι < φ,

for ι ∈ {1, 2}, all k with 0 ≤ k < j,(64)

then

ρ2j+ι < ρ̃α, θ2j+ι < φ̃α, and ψ2j+ι < φ for ι ∈ {1, 2},(65)

where ρ̃α, φ̃α, and φ are defined in (53). For all i = 1, 2, . . . , the third property
in (64) and (65)—ψi < φ—implies the crucial fact that σi ≥ σ̂ > 0; see (22)
and (157). By the first and third properties, the iterates remain in Is0,α.
Since Is0,α ⊆ R̄, the bounds of Subsection A.1 together with (54) and (56)
are valid for our iterates. The convergence rate claimed in the theorem is a
byproduct of the proof of the induction step.

The anchor step of the induction argument consists of showing that for
x0 ∈ Rα, we have x1 ∈ Ws0,α and x2 ∈ Is0,α with θ2 < φ̃α. Indeed, these
facts yield (64) for j = 1, as we now verify. By the definition of (48) (with

s := s0), x1 ∈ Ws0,α implies that ρ1 < ρ̃α and ψ1 < φ̃α. Because of (46) and

the elementary inequality θ1 ≤ ψ1, we have θ1 ≤ ψ1 < φ̃α ≤ φ. Therefore,
the inequalities in (64) hold for k = 0 and ι = 1. Since x2 ∈ Is0,α, we have

from (49) that ρ2 < ρ̃α and ψ2 < φ. With the additional fact that θ2 < φ̃α,
we conclude that the inequalities in (64) hold for k = 0 and ι = 2. Hence,
(64) holds for j = 1.

5.3 The Anchor Step

We begin by proving the anchor step. The proof of Theorem 1 shows that
if x0 ∈ R then x1 ∈ Ws0 . We show in a similar fashion that if x0 ∈ Rα

then x1 ∈ Ws0,α. Since the first step is a Newton step from x0 ∈ Rα and
since Rα ⊆ R, the inequalities of Section 4 and Appendix A remain valid.
In particular, we can reuse (155) and write

(66) ρ1 ≤ ρ0

(

1

2

(

1 +
c

σ0

)

+ δ
ρ0

σ2
0

)

=
1

2
ρ0
σ2

0 + cσ0 + 2δρ0

σ2
0

.

Since x0 ∈ Rα, we have ρ0 < rα(t0) by (50). In addition, since rα(t0) ≤
r̄(t0) ≤ rb (which follows from (20) and (51)), we have ρ0 < rb. Hence, from
(66), we have

ρ1 <
1

2
rα(t0)

σ2
0 + cσ0 + 2δrb

σ2
0

.
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By using the second part of the definition of rα (51), we thus obtain

(67) ρ1 <
1

2
ρ̃α < ρ̃α.

As noted above, the inclusion Rα ⊆ R implies that inequality (150) is valid
here, that is,

sinψ1(s0) ≤

(

1

2
‖g(t0)‖

)−1

δ
ρ0

σ2
0

.

Since ρ0 < rα(t0), we can apply the third inequality implicit in the definition
of rα (51) to obtain

(68) sinψ1(s0) ≤
1− α/2

4
sin φ̃α(s0) < sin φ̃α(s0).

It is shown in Appendix B that ψ1 ≤ π/2, and thus ψ1(s0) < φ̃α(s0). The
bounds (67) and (68) together show that x1 ∈ Ws0,α. We note that (68) and

(46) imply that ψ1 < φ̃α ≤ φ, which implies σ1 ≥ σ̂(s0) = σ̂, by the definition
of σ̂ (22).

Next we show that if x0 ∈ Rα, then x2 ∈ Is0,α. We begin by showing
that ρ2 < ρ1, from which ρ2 < ρ̃α follows from (67). From (56) for k = 0, we
have by decomposing x1 into components in N and N⊥ that

ρ2 ≤

(

(

1−
α

2

)

cos θ1 +

(

α‖C̄(t1)‖

2σ1
+ α− 1

)

sin θ1 + αδ
ρ1

σ2
1

)

ρ1

from (16), (55), and (144) with x = x1

≤

(

1−
α

2
+

(

α

2

‖C̄(t1)‖+ σ1

σ1
+
α

2
− 1

)

sin θ1 + δ̃
ρ1

σ2
1

)

ρ1

from cos θ1 ≤ 1 and (40)

≤

(

1−
α

2
+
(α

2

c

σ̂
+
α

2
− 1
)

sin θ1 + δ̃
ρ̃α

σ̂2

)

ρ1

from (23), σ1 ≥ σ̂, and ρ1 < ρ̃α(67)

<

(

1−
α

2
+
α

2

( c

σ̂
+ 1− qα

)

sin φ̃α + δ̃
ρ̃α

σ̂2

)

ρ1

from α ∈ [1, 2), qα <
1
8 , and θ1 ≤ ψ1 < φ̃α (68).

By replacing sin φ̃α with the first inequality implicit in its definition (43) and
using the definition of ρ̃α (47), we have

ρ2 <

(

1−
α

2
+
α

2
qα +

(1− α/2− qα)σ̂

4
sin φ̃α

)

ρ1.

By the first inequality implicit in (43), the definition of c (23), and qα < 1
8 ,

we have

(69) sin φ̃α <
qα

2− (1/8)
< qα.
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We can apply this bound to simplify our bound for ρ2 as follows:

ρ2 <

(

1−
α

2
+
α

2
qα +

(1 − α/2− qα)σ̂

4
qα

)

ρ1

≤

(

1−
α

2
+
α

2
qα +

(1 − α/2)

4
qα

)

ρ1 using qα > 0 and σ̂ ≤ 1

≤

(

1

2
+ qα +

1

8
qα

)

ρ1 using α ∈ [1, 2)

< ρ1 using qα <
1
8 .

Next, we show that ψ2 < φ. As in Subsection A.3, we define ∆ψi to be
the angle between consecutive iterates xi and xi+1, so that ψ2 ≤ ψ1 +∆ψ1.

In addition, from (68), (46), and (18), we have ψ1 ≤ φ̃α ≤ φ ≤ π/4. In
Appendix B, we demonstrate that ∆ψ1 < π/2. Thus, using (68), we have

(70) sinψ2 ≤ sinψ1 + sin∆ψ1 ≤
1− α/2

4
sin φ̃α + sin∆ψ1.

Since ∆ψ1 ≤ π/2, we also have

(71) sin∆ψ1 ≡ min
λ∈IR
‖λx2 − t1‖.

By (57) with k = 0, we have

‖x2 − (1− α/2)x1‖(72)

≤

(

∥

∥

∥

∥

[

0 α
2 B̄

−1(t1)C̄(t1)
0 −α

2 I

]

t1

∥

∥

∥

∥

+
δ̃ρ1

σ2
1

)

ρ1

≤

(

α

2

c

σ1
sin θ1 +

δ̃ρ1

σ2
1

)

ρ1

by (16) and (23)

<
α

2

(

c

σ̂
sin φ̃α + 2

δ̃ρ̃α

σ̂2

)

ρ1

by σ1 ≥ σ̂, sin θ1 < sin φ̃α, ρ1 < ρ̃α, and α ≥ 1

=
α

2

(

c

σ̂
sin φ̃α +

(1− α/2− qα)σ̂

2
sin φ̃α

)

ρ1

by (47)

≤
α

2

( c

σ̂
+ 1− qα

)

sin φ̃αρ1

by α ≥ 0, q ≤ 1, and σ̂ ≤ 1

≤
α

2
qαρ1

by the first inequality in (43).
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The inequality (72) provides a bound on sin∆ψ1 in terms of qα(s):

(73) sin∆ψ1 = min
λ∈IR
‖λx2 − t1‖ ≤

∥

∥

∥

∥

x2

(1− α/2)ρ1
− t1

∥

∥

∥

∥

<
α

2(1− α/2)
qα.

By substituting (73) into (70) and using (42), we find that

(74) sinψ2 ≤
(1− α/2)

4
sin φ̃α+

α

2(1− α/2)
qα =

(1 − α/2)

4
sin φ̃α+

α

8
sinφ.

From (69), (42), and (1− α/2) ∈ (0, 1/2], we have

(75) sin φ̃α <
8

15
qα ≤

1

15
sinφ.

Therefore, we have

(76) sinψ2 <

(

(1 − α/2)

4

1

15
+
α

8

)

sinφ <

(

1

8

(

1

15

)

+
α

8

)

sinφ < sinφ.

By definition, we have φ ≤ π
4 , from which it follows that sinφ ≤ 1√

2
. By

(76), we also have sinψ2 ≤
1√
2
. This implies either ψ2 ≤

π
4 or ψ2 ≥

3π
4 .

However, we know that jψ2 ≤ ψ1 +∆ψ1, and we have shown that ψ1 ≤ φ̃α

and ∆ψ1 <
π
2 . By (46), we have φ̃α ≤ φ ≤ π

4 and therefore ψ2 <
3π
4 . Hence,

it must be the case that ψ2 ≤
π
4 . As a result, the inequality in (76) remains

valid upon removing the sine functions, that is, ψ2 < φ. This completes the
proof of our claim that x2 ∈ Is0,α.

To complete the anchor argument, we need to show that sin θ2 < sin φ̃α.
From the second row of (56) with k = 0, and using (144) with x = x1 and
(40), we have

ρ2 sin θ2 ≤ ρ1(α− 1) sin θ1 + αδ
ρ2
1

σ2
1

< ρ1

(

(α − 1) sinψ1 + δ̃
ρ̃α

σ̂2

)

,

where the second inequality follows from θ1 ≤ ψ1, αδ ≤ δ̃, ρ1 < ρ̃α, and
σ1 ≥ σ̂. Using (68) and the definition of ρ̃α (47), we have

ρ2 sin θ2 < ρ1

(

(α− 1)
(1− α/2)

4
sin φ̃α +

(1 − α/2− qα)σ̂

4
sin φ̃α

)

(77)

≤ ρ1

(

α
(1− α/2)

4
sin φ̃α

)

< ρ1
(1 − α/2)

2
sin φ̃α,

with the second inequality following from qα > 0 and σ̂ ≤ 1 and the third
inequality a consequence of α ∈ [1, 2).

To utilize (77), we require a lower bound on ρ2 in terms of a fraction of
ρ1. By applying the inverse triangle inequality to (72), we obtain

|ρ2 − (1− α/2)ρ1| ≤ ‖x2 − (1 − α/2)x1‖ <
α

2
qαρ1.
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Therefore, using (42), we obtain

ρ2 ≥ ρ1

((

1−
α

2

)

−
α

2
qα

)

=
(

1−
α

2

)

ρ1

(

1−
α

8
sinφ

)

>
1

2

(

1−
α

2

)

ρ1,

where the final inequality follows from α < 2 and sinφ ≤ 1. By combining
this inequality with (77), we find that

ρ2 sin θ2 < ρ2 sin φ̃α.

If θ2 is bounded above by π
2 , this inequality is valid without the sine functions.

Combining the fact that, by definition, θ2 ≤ ψ2 with the above relationship
ψ2 <

π
2 , we find that θ2 <

π
2 . Hence θ2 < φ̃α as desired.

5.4 The Induction Step

In the remainder of this proof, we provide the argument for the induction
step: If (64) holds for some j, then (65) holds as well.

5.4.1 Iteration 2j + 1

We show in this subsection that if (64) holds, that is,

(78) ρi < ρ̃α, θi < φ̃α, ψi < φ, for i = 1, 2, . . . , 2j,

then after the step from x2j to x2j+1, which is a regular Newton step, we
have (65) for ι = 1, that is,

(79) ρ2j+1 < ρ̃α, θ2j+1 < φ̃α, ψ2j+1 < φ.

Consider k ∈ {1, 2, . . . , j}. In the same manner that the inequalities (151)
and (153) follow from equation (149), we have the following nearly identical
inequalities (80) and (81) following from equations (54) and (55):

(80) sin θ2k+1 = min
y∈N
‖t2k+1 − y‖ ≤ δ

ρ2
2k

σ2
2kρ2k+1

and
∥

∥

∥

∥

x2k+1 −
1

2
x2k

∥

∥

∥

∥

≤

(

1

2

c

σ2k
sin θ2k + δ

ρ2k

σ2
2k

)

ρ2k.(81)

By dividing (81) by ρ2k and applying the reverse triangle inequality, we
have

∣

∣

∣

∣

ρ2k+1

ρ2k
−

1

2

∣

∣

∣

∣

≤

(

1

2

c

σ2k
sin θ2k + δ

ρ2k

σ2
2k

)

.(82)
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Further, from (64), we can bound (81) as follows, for all k = 1, 2, . . . , j:

∥

∥

∥

∥

x2k+1 −
1

2
x2k

∥

∥

∥

∥

(83)

<

(

1

2

c

σ̂
sin φ̃α + δ

ρ̃α

σ̂2

)

ρ2k using σ2k ≥ σ̂, θ2k < φ̃α, ρ2k < ρ̃α

≤

(

1

2

c

σ̂
sin φ̃α +

(1 − α/2− qα)σ̂

4
sin φ̃α

)

ρ2k by (41) and (47)

<
1

2

(

c

σ̂
+

(1− α/2)

2

)

ρ2k sin φ̃α using qα > 0 and σ̂ ≤ 1

<
1

2

( c

σ̂
+ 1− qα

)

ρ2k sin φ̃α using qα <
1
8 and α ≥ 1

≤
qα
2
ρ2k by the first part of (43).

Dividing by ρ2k and applying the reverse triangle inequality, we have

(84)

∣

∣

∣

∣

ρ2k+1

ρ2k
−

1

2

∣

∣

∣

∣

<
qα
2
.

Therefore,

(85)
1− qα

2
≤
ρ2k+1

ρ2k
≤

1 + qα
2

.

From the right inequality, qα <
1
8 , and the induction hypothesis, we have

(86) ρ2k+1 < ρ2k < ρ̃α.

In particular, since k is any index in {1, 2, . . . , j}, we have ρ2j+1 < ρ̃α. From
the left inequality and (80), we have

sin θ2k+1 ≤ δ
2ρ2k

σ2
2k(1− qα)

(87)

< δ
2ρ̃α

σ̂2(1− qα)
using ρ2k < ρ̃α and σ2k ≥ σ̂

=
(1 − α/2− qα)σ̂

2(1− qα)
sin φ̃α by (41) and (47)

< sin φ̃α using σ̂ ≤ 1,

so that sin θ2j+1 < sin φ̃α.
In the remainder of the subsection we prove that ψ2j+1 < φ. We consider

k ∈ {2, 3, . . . , j}.
We have from (78) and (22) that

(88) σi ≥ σ̂, i = 1, 2, . . . , 2j,
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so it follows from the definition (62) that

(89) µ2k−2 ≥ σ̂, k = 2, 3, . . . , j.

Since g(x2k−2) ∈ N , we have

sin θ2k = min
y∈N
‖t2k − y‖(90)

≤ δ̃
ρ2
2k−2 + ρ2

2k−1

µ3
2k−2ρ2k

from (63), with k ← k − 1

≤ 2δ̃
ρ2
2k−2

µ3
2k−2ρ2k

from (86), with k ← k − 1.

From (152) with j = 2k − 2, we can deduce using earlier arguments that

‖x2k−2 − g(x2k−2)‖ ≤
c

σ2k−2
ρ2k−2 sin θ2k−2.

By combining this bound with (63) (with k ← k − 1), we obtain

∥

∥

∥

∥

x2k −
1

2

(

1−
α

2

)

x2k−2

∥

∥

∥

∥

(91)

≤

∥

∥

∥

∥

x2k −
1

2

(

1−
α

2

)

g(x2k−2)

∥

∥

∥

∥

+
1

2

(

1−
α

2

)

‖x2k−2 − g(x2k−2)‖

≤ δ̃
ρ2
2k−2 + ρ2

2k−1

µ3
2k−2

+
1

2

(

1−
α

2

) c

σ2k−2
ρ2k−2 sin θ2k−2

≤ 2δ̃
ρ2
2k−2

µ3
2k−2

+
1

2

(

1−
α

2

) c

σ2k−2
ρ2k−2 sin θ2k−2

from (86)

≤

[

2δ̃
ρ̃α

σ̂3
+

1

2

(

1−
α

2

) c

σ̂
sin φ̃α

]

ρ2k−2

from (78), (89), and (88)

=

[

1

2

(

1−
α

2
− qα

)

+
1

2

(

1−
α

2

) c

σ̂

]

sin φ̃αρ2k−2

from (47)

≤
1

2

(

1−
α

2

)

[

1−
qα

1− α/2
+
c

σ̂

]

sin φ̃αρ2k−2

≤
1

2

(

1−
α

2

) [

1− qα +
c

σ̂

]

sin φ̃αρ2k−2

from 0 < 1− α/2 < 1 and qα > 0

≤
1

2

(

1−
α

2

)

qαρ2k−2 from (43).
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Upon dividing by ρ2k−2 and applying the reverse triangle inequality, we find
from the fourth line of (91) that

(92)

∣

∣

∣

∣

ρ2k

ρ2k−2
−

1

2

(

1−
α

2

)

∣

∣

∣

∣

≤ 2δ̃
ρ2k−2

µ3
2k−2

+
1

2

(

1−
α

2

) c

σ2k−2
sin θ2k−2,

while from the last line of (91), we have

(93)

∣

∣

∣

∣

ρ2k

ρ2k−2
−

1

2

(

1−
α

2

)

∣

∣

∣

∣

≤
1

2

(

1−
α

2

)

qα.

We can restate this inequality as follows:

(94)
1

2

(

1−
α

2

)

(1− qα) ≤
ρ2k

ρ2k−2
≤

1

2

(

1−
α

2

)

(1+ qα), for k = 2, 3, . . . , j.

From the right inequality in (94), we obtain

(95) ρ2k ≤

[

1

2

(

1−
α

2

)

(1 + qα)

]k−1

ρ2,

while by substituting the left inequality into (90) and using (89), we obtain

sin θ2k ≤ 2δ̃
ρ2
2k−2

µ3
2k−2ρ2k

(96)

≤ 4δ̃
ρ2k−2

σ̂3

1

(1 − α/2)(1− qα)

≤ 4δ̃
ρ2k−2

σ̂3

1

1− α/2− qα
for k = 2, 3, . . . , j.

We now define ∆2ψi to be the angle between xi and xi+2. Recalling our
earlier definition of ∆ψi as the angle between xi and xi+1, we have

(97) ψ2j+1 ≤ ψ2 +

j
∑

k=2

∆2ψ2k−2 +∆ψ2j .

From the fourth line of (91), we have

sin∆2ψ2k−2 = min
λ∈IR
‖λx2k − t2k−2‖(98)

=
2

(1 − α/2)ρ2k−2
min
λ∈IR
‖λx2k −

1

2

(

1−
α

2

)

x2k−2‖

≤
4δ̃

(1 − α/2)

ρ2k−2

µ3
2k−2

+
c

σ2k−2
sin θ2k−2

≤
4δ̃ρ2k−2

(1 − α/2)σ̂3
+
c

σ̂
sin θ2k−2,
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by (88) and (89). We show that ∆2ψ2k−2 ≤ π/2 for k ∈ {2, 3, . . . , j} in
Appendix B; this fact justifies the first equality in (98). From (95), we have

j
∑

k=2

ρ2k−2 ≤

j−2
∑

k=0

[

1

2

(

1−
α

2

)

(1 + qα)

]k

ρ2(99)

≤

[

1−
1

2

(

1−
α

2

)

(1 + qα)

]−1

ρ2

=

[

1

2
−

1

2
qα +

α

4
+
α

4
qα

]−1

ρ2

≤

[

1

2
−

1

2
qα +

α

4

]−1

ρ2

<
2

1 + (α/2)− qα
ρ̃α from (78)

=
1

2δ̃

1− (α/2)− qα
1 + (α/2)− qα

σ̂3 sin φ̃α from (47).

From (96) and (99) we have

j
∑

k=2

sin θ2k−2 ≤ sin θ2 +

j−1
∑

k=2

sin θ2k

(100)

≤ sin φ̃α +
4δ̃

σ̂3

1

1− (α/2)− qα

j−1
∑

k=2

ρ2k−2

≤ sin φ̃α +
2

1 + (α/2)− qα
sin φ̃α

≤ sin φ̃α +
2

11/8
sin φ̃α since 1 + α

2 − qα ≥ 1 + 1
2 −

1
8 = 11

8

=
27

11
sin φ̃α.

By summing (98) over k = 2, 3, . . . , j and using (99) and (100), we obtain

j
∑

k=2

sin∆2ψ2k−2(101)

≤
4δ̃

(1− α/2)σ̂3

σ̂3

2δ̃

1− (α/2)− qα
1 + (α/2)− qα

sin φ̃α +
c

σ̂

27

11
sin φ̃α

≤

[

2

1 + (α/2)− qα
+

27

11

c

σ̂

]

sin φ̃α

≤

[

16

11
+

27

11

c

σ̂

]

sin φ̃α,
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where we used qα > 0 for the second-last inequality and 1+(α/2)−qα ≥ 11/8
for the final inequality. For a bound on the term ∆ψ2j of (97), we use the
second-last line of (83) with k = j to obtain

sin∆ψ2j = min
λ∈IR
‖t2j − λx2j+1‖(102)

=
2

ρ2j
min
λ∈IR

∥

∥

∥

∥

1

2
x2j − λx2j+1

∥

∥

∥

∥

≤
2

ρ2j

∥

∥

∥

∥

1

2
x2j − x2j+1

∥

∥

∥

∥

≤
( c

σ̂
+ 1− qα

)

sin φ̃α.

The equality in (102) follows from the fact that ∆ψ2j < π/2, as shown in
Appendix B.

Since each of the angles in the right-hand side of (97) is bounded above
by π/2, from reasoning similar to that of Section A.3, we have

(103) sinψ2j+1 ≤ sinψ2 +

j
∑

k=2

sin∆2ψ2k−2 + sin∆ψ2j .

By substituting (76), (101), and (102) into (103), we obtain

sinψ2j+1 ≤

[

1

120
+
α

8

]

sinφ+

[

16

11
+

27

11

c

σ̂

]

sin φ̃α +
[ c

σ̂
+ 1− qα

]

sin φ̃α

(104)

≤
2

7
sinφ+

16
11 + 27

11
c
σ̂

1− qα + c
σ̂

qα + qα

from (43) and α < 2

≤
2

7
sinφ+

16
11 + 27

11
c
σ̂

7
8 + c

σ̂

qα + qα

from qα <
1
8

≤
2

7
sinφ+

(

27

11
+ 1

)

qα

≤
2

7
sinφ+

38

11

1

8
sinφ

< sinφ.

Note that ψ2j+1 ≤ ψ2j +∆ψ2j . By the induction assumption (78), we have
ψ2j < φ ≤ π

4 , and from above we have ∆ψ2j <
π
2 . Hence, ψ2j+1 <

3π
4 . As

argued after (76), this inequality combined with (104) yields ψ2j+1 < φ, as
required. Further, since θ2j+1 ≤ ψ2j+1 by their definitions, inequality (87)

with k = j also remains valid without the sine functions, that is, θ2j+1 < φ̃α.
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5.4.2 Iteration 2j + 2

We now show that

ρ2j+2 < ρ̃α, θ2j+2 < φ̃α ψ2j+2 < φ,

by using some of the bounds proved above: ρ2j < ρ̃α, ρ2j+1 < ρ2j , θ2j < φ̃α,
ψ2j < φ, and ψ2j+1 < φ. The last two assumptions guarantee that µ2j ≥ σ̂.
The analysis in the latter part of Subsection 5.4.1 (starting from (89)) can
therefore be applied for k = j+1. In particular, from (95) we have ρ2j+2 < ρ̃α.
From (96) with k = j + 1, using ρ2j < ρ̃α, µ2j ≥ σ̂, and the definition of
ρ̃α (47) we have

sin θ2j+2 ≤ 4δ̃
ρ2j

σ̂3(1− α/2− qα)
< 4δ̃

ρ̃α

σ̂3(1 − α/2− qα)
= sin φ̃α.

The argument for sinψ2j+1 < sinφ is easily modified to show sinψ2j+2 <
sinφ. We simply increase the upper index in the sum in (103) to j+1 (ignoring
the final nonnegative term) to give

(105) sinψ2j+2 ≤ sinψ2 +

j+1
∑

k=2

sin∆2ψ2k−2.

The bounds (95), (96), and (98) continue to hold for k = j + 1, while (99)
and (100) continue to hold if the upper bound on the summation is increased
from j to j + 1, so (101) also continues to hold if the upper bound of the
summation is increased from j to j + 1. Hence, similarly to (104), we obtain
sinψ2j+2 < sinφ. Further, we can extend the argument in Appendix B that
∆2ψ2k−2 < π/2 to k = j + 1. Adding this fact to ψ2j+2 ≤ ψ2j +∆2ψ2j and
ψ2j < φ ≤ π

4 , we have ψ2j+2 <
3π
4 . Repeating the argument following (76),

this allows us to conclude that ψ2j+2 < φ. Finally, since θ2j+2 ≤ ψ2j+2, we

similarly conclude that sin θ2j+2 < sin φ̃α implies θ2j+2 < φ̃α.
Our proof of the induction step is complete.

5.5 Convergence Rate

As j → ∞, we have ρ2j → 0 by (95) and ρ2j+1 → 0 by (86). From (96), we
also have θ2j → 0. By combining these limits with (88) and (89), we see that
the right-hand-side of (92) goes to zero as j →∞, and

(106) lim
j→∞

ρ2j+2

ρ2j
=

1

2

(

1−
α

2

)

.

From the discussion above and (82), we also have limj→∞
ρ2j+1

ρ2j
= 1/2, so

that convergence is stable between the accelerated iterates.
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6 Application to Nonlinear Complementarity Problems

The nonlinear complementarity problem for the function f : IR
n → IR

n, de-
noted by NCP(f), is as follows: Find an x ∈ IR

n such that

0 ≤ f(x), x ≥ 0, xT f(x) = 0.

Let x∗ be a solution of NCP(f). We assume throughout this section and
the next that f ′ is well defined and strongly semismooth at x∗. at x∗. We
apply a nonlinear-equations reformulation to the NCP. We do not standardize
the resulting equations (as we did earlier in (10) to simplify the discussions
of Sections 4 and 5), as the rescaling and shifting needed to enforce this
assumption would complicate this section considerably.

In this section, we tailor the convergence theorems, Theorems 1 and 2,
to this formulation, interpret the 2-regularity condition for the NCP(f), and
provide conditions under which the starlike domain of convergence is “direc-
tionally dense” at the solution.

6.1 NCP Notation, Definitions, and Properties

For any matrixM ∈ IR
p×q and any sets U ⊆ {1, 2, . . . , p} and V ⊆ {1, 2, . . . , q},

we writeMU ,V to denote the submatrix ofM whose rows lie in U and columns
lie in V . The row submatrix corresponding to indices in the set U is denoted
by MU . We denote the number of elements in any set U by |U|. Let ei denote
the ith column of the identity matrix. In this section, we use the notation
〈·, ·〉 to denote the inner product between two vectors. For any x ∈ IR

n, we
use diagx to denote the IR

n×n diagonal matrix formed from the components
of x.

We define the inactive, biactive, and active index sets, α, β, and γ re-
spectively, at a solution x∗ as follows,







i ∈ α, if x∗i = 0, fi(x
∗) > 0,

i ∈ β, if x∗i = 0, fi(x
∗) = 0,

i ∈ γ, if x∗i > 0, fi(x
∗) = 0.

6.2 The Nonlinear-Equations Reformulation

We recall the nonlinear-equations reformulation Ψ (9) of the NCP (1), and
consider the use of Newton’s method for solving Ψ(x) = 0. In this section, we
establish the structure of null space N and the form of 2-regularity (6) for the
NCP function f with the reformulation Ψ , then tailor the local convergence
results of Sections 4 and 5 to f with the reformulation Ψ .

Taking the derivative of Ψ , we have

Ψ ′
i(x) = 2{(fi(x)−min(0, xi + fi(x)))ei(107)

+ (xi −min(0, xi + fi(x)))f
′
i(x)}, for i = 1, 2, . . . , n.
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It can be seen that Ψ ′ is strongly semismooth when f ′ is strongly semismooth
by applying the following two facts: From [6, Proposition 7.4.4], the compo-
sition of strongly semismooth functions is strongly semismooth, and from [6,
Proposition 7.4.7], every piecewise-affine map is strongly semismooth.

At the solution x∗, Ψ ′
i simplifies to

Ψ ′
i(x

∗) = 2{fi(x
∗)ei + x∗i f

′
i(x

∗)}.

By inspection, we have






Ψ ′
i(x

∗) = 2fi(x
∗)ei, i ∈ α,

Ψ ′
i(x

∗) = 0, i ∈ β,
Ψ ′

i(x
∗) = 2x∗i f

′
i(x

∗), i ∈ γ.

The null space of Ψ ′(x∗) (whose ith row is the transpose of Ψ ′
i) is

(108) N ≡ kerΨ ′(x∗) = {ξ ∈ IR
n | f ′

γ(x∗)ξ = 0, ξα = 0},

so that
dim N = dimker f ′

γ,β∪γ(x∗).

In particular, if β 6= ∅, then dim N > 0 and x∗ is a singular solution of
Ψ(x) = 0. The null space of Ψ ′(x∗)T is

N∗ = {ξ ∈ IR
n | ξα = −(diag fα(x∗))−1(f ′

γ,α(x∗))T (diagx∗γ)ξγ ,(109)

f ′
γ,β∪γ(x∗)T (diag x∗γ)ξγ = 0}.

If rank f ′
γ,β∪γ(x∗) = |γ|, then N∗ = {ξ ∈ IR

n | ξα = 0, ξγ = 0}.
The 2-regularity condition (6) for Ψ at x∗ and d ∈ IR

n is

(110) (PN∗
Ψ ′)′(x∗; d)|N is nonsingular.

By direct calculation, we have

1

2
(Ψ ′)′i(x; d) = (〈f ′

i(x), d〉−ηi)ei+(di−ηi)f
′
i(x)+(xi−min(0, xi+fi(x)))(f

′
i )

′(x; d),

where ηi := min(0, xi +fi(x))
′(x; d). We can calculate this directional deriva-

tive using the result [6, Proposition 3.1.6] for the composition of B-differentiable
functions:

ηi =







min(0, di + 〈f ′
i(x), d〉), if xi + fi(x) = 0,

0, if xi + fi(x) > 0,
di + 〈f ′

i(x), d〉, if xi + fi(x) < 0.

At a solution x∗, we have ηi = 0 for i ∈ α∪γ, and ηi = min(0, di+〈f
′
i(x

∗), d〉)
for i ∈ β. Hence, we have

(111)
1

2
(Ψ ′

i)
′(x∗; d) =











〈f ′
i(x

∗), d〉ei + dif
′
i(x

∗), i ∈ α,
(〈f ′

i(x
∗), d〉 −min(0, di + 〈f ′

i(x
∗), d〉))ei

+ (di −min(0, di + 〈f ′
i(x

∗), d〉))f ′
i(x

∗), i ∈ β,
〈f ′

i(x
∗), d〉ei + dif

′
i(x

∗) + x∗i (f
′
i)

′(x∗; d), i ∈ γ.
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By noting that for any scalars s1, s2 we have

s1−min(0, s2) = s1 +max(0,−s2) = max(s1, s1− s2) = −min(−s1, s2− s1),

we can rewrite (111) as follows
(112)

1

2
(Ψ ′

i)
′(x∗; d) =







〈f ′
i(x

∗), d〉ei + dif
′
i(x

∗), i ∈ α,
max(〈f ′

i(x
∗), d〉,−di)ei −min(〈f ′

i(x
∗), d〉,−di)f

′
i(x

∗), i ∈ β,
〈f ′

i(x
∗), d〉ei + dif

′
i(x

∗) + x∗i (f
′
i)

′(x∗; d), i ∈ γ.

Using the notation

r = rank f ′
γ,β∪γ(x∗),

we define an orthonormal matrix Z of dimension |γ|×r such that the columns
of Z span range f ′

γ,β∪γ(x∗), and another orthonormal matrix Z⊥ of dimen-

sions |γ| × (|γ| − r) such that the columns of Z⊥ span ker f ′
γ,β∪γ(x∗)T . Note

that [Z |Z⊥] is an orthogonal matrix of dimensions |γ|×|γ|. We note that the
matrices Z and Z⊥ are not uniquely defined by the conditions above; there
are infinitely many possible choices in general for orthonormal matrices that
span the subspaces in question. However the properties discussed below are
independent of the particular choices for these matrices.

In the remainder of this section, we often drop the argument x∗ from f
and f ′, for clarity.

Proposition 1 2-regularity (110) holds for d ∈ IR
n at a solution x∗ of

Ψ(x) = 0 if and only if the matrix

(113)













[

eT
i

]

i∈α

[max(〈f ′
i , d〉,−di)ei −min(〈f ′

i , d〉,−di)f
′
i ]

T
i∈β

ZT f ′
γ

ZT
⊥

[

(f ′
γ)′(x∗; d) +

[

1
x∗

i

〈f ′
i , d〉e

T
i

]

i∈γ
− 〈f ′

γ,α,
(

diag
dj

fj

)

j∈α
f ′

α〉

]













is nonsingular. Further, for d ∈ N , 2-regularity holds if and only if the sim-
pler matrix

(114)









[

eT
i

]

i∈α

[max(〈f ′
i , d〉,−di)ei −min(〈f ′

i , d〉,−di)f
′
i ]

T
i∈β

ZT f ′
γ

ZT
⊥(f ′

γ)′(x∗; d)









is nonsingular.

Proof Consider any d ∈ IR
n. The claim that (PN∗

Ψ ′)′(x∗; d)|N is nonsingular for some d ∈
IR

n (110) is equivalent to

PN∗
(Ψ ′)′(x∗; d)v = 0 and v ∈ N ⇒ v = 0.
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For v ∈ N , we have from (108) and (112) that

1

2
(Ψ ′

i)
′(x∗; d)v =







di〈f ′
i , v〉, i ∈ α

max(〈f ′
i , d〉,−di)vi −min(〈f ′

i , d〉,−di)〈f ′
i , v〉, i ∈ β

〈f ′
i , d〉vi + x∗i 〈(f

′
i)

′(x∗; d), v〉, i ∈ γ.

(115)

Since N∗ is defined in (109) to have the form {ξ ∈ IR
n |Aξ = 0} for some

matrix A, we have that PN∗
w = 0 if and only if w = AT z for some z. That

is,

(116)
1

2
(Ψ ′)′(x∗; d)v =





diag fα 0 0
0 0 0

(diagx∗γ)f ′
γ,α (diagx∗γ)f ′

γ,β (diagx∗γ)f ′
γ,γ









zα

zβ

zγ



 ,

for some z ∈ IR
n. Hence, by matching components from this expression and

(115), we have that PN∗
(Ψ ′)′(x∗; d)v = 0 if for some z ∈ IR

n we have

di〈f
′
i , v〉 = zifi, i ∈ α,

0 = max(〈f ′
i , d〉,−di)vi −min(〈f ′

i , d〉,−di)〈f
′
i , v〉, i ∈ β,

〈f ′
i , d〉vi + x∗i 〈(f

′
i)

′(x∗; d), v〉 = x∗i
[

f ′
i,αzα + f ′

i,βzβ + f ′
i,γzγ

]

, i ∈ γ.

Rearranging the first equation above yields an expression for zα, which can
be substituted into the third equation to give the following equivalent ex-
pressions.

0 = max(〈f ′
i , d〉,−di)vi −min(〈f ′

i , d〉,−di)〈f
′
i , v〉, i ∈ β,(117a)

〈f ′
i , d〉vi + x∗i 〈(f

′
i)

′(x∗; d), v〉 − x∗i

〈

f ′
i,α, diag (dj/fj)j∈α 〈f

′
α, v〉

〉

= x∗i
[

f ′
i,βzβ + f ′

i,γzγ

]

, i ∈ γ.(117b)

Using the definition of the orthonormal matrix Z, we can rewrite (117b) as
follows:
[

(1/x∗i )〈f
′
i , d〉vi + 〈(f ′

i)
′(x∗; d), v〉 −

〈

f ′
i,α, diag (dj/fj)j∈α 〈f

′
α, v〉

〉]

i∈γ
= Zt,

for some t ∈ IR
r, so that

(118) ZT
⊥

[

1

x∗i
〈f ′

i , d〉e
T
i + (f ′

i)
′(x∗; d)− 〈f ′

i,α, diag

(

dj

fj

)

j∈α

f ′
α〉

]

i∈γ

v = 0.

Since v ∈ N , we have from (108) that

vα = 0,(119a)

f ′
γ,αvα + f ′

γ,βvβ + f ′
γ,γvγ = 0.(119b)

The second condition (119b) is equivalent to

(120)

[

ZT

ZT
⊥

]

[

f ′
γ,α f

′
γ,β f

′
γ,γ

]

v = 0.
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Because

ZT
⊥
[

f ′
γ,α f

′
γ,β f

′
γ,γ

]

v =
[

ZT
⊥f

′
γ,α 0 0

]

v = ZT
⊥f

′
γ,αvα

and vα = 0, the second block row in the system (120) does not add any
information and can be dropped. Hence, we can write (119) equivalently as

(121) vα = 0, ZT
[

f ′
γ,α f

′
γ,β f

′
γ,γ

]

v = 0.

By gathering the conditions equivalent to v ∈ N and PN∗
(Ψ ′)′(x∗; d)v = 0,

namely, (117a), (118), and (121), we have











[

eT
i

]

i∈α

[max(〈f ′
i , d〉,−di)ei −min(〈f ′

i , d〉,−di)f
′
i ]

T
i∈β

ZT f ′
γ

ZT
⊥

[

(f ′
γ)′(x∗; d) +

[

(1/x∗i )〈f
′
i , d〉e

T
i

]

i∈γ
− 〈f ′

γ,α, diag (dj/fj)j∈α f
′
α〉
]











v = 0,

from which we deduce that v = 0 whenever the coefficient matrix in this
expression is nonsingular. Hence x∗ is 2-regular for Ψ with respect to d ∈ IR

n

if the matrix (113) is nonsingular. For d ∈ N , we have by the definition
of N (108) that 〈f ′

i , d〉 = 0 for i ∈ γ and dα = 0. Upon applying these
simplifications to the above matrix, we have precisely the matrix (114).

Recall that Ψ (9) is 21-regular (6) at x∗ if (PN∗
Ψ ′)′(x∗; d)|N is nonsingular

for some d in N , that is, if the matrix (114) is nonsingular for some d ∈ N .
The following theorem specializes Theorems 1 and 2 for applying New-

ton’s method to the nonlinear-equations reformulation Ψ(x) of NCP(f).

Theorem 3 Consider a solution x∗ of NCP(f) for f : IR
n → IR

n with f ′

strongly semismooth at x∗. Suppose that x∗ is a singular solution in the sense
that N = ker f ′

γ,β∪γ(x∗) is nontrivial. Suppose also that the matrix (114) is
nonsingular for some d ∈ N . Then there exists a starlike domain R about x∗,
such that, if Newton’s method for the nonlinear-equations reformulation Ψ(x)
is initialized at any x0 ∈ R, the iterates converge linearly to x∗ with rate 1/2.
Furthermore, if Newton’s method is accelerated according to (38) and (39) for
some α ∈ [1, 2), then there exists a starlike domain Rα ⊆ R about x∗, such
that if x0 ∈ Rα then the accelerated iterates {xi} for i = 0, 1, 2, . . . , converge
linearly to x∗ and

lim
j→∞

‖x2j+2 − x∗‖

‖x2j − x∗‖
=

1

2

(

1−
α

2

)

.

6.3 2-regularity Conditions for Special Cases of the NCP

In this section we show that the regularity conditions (113) and (114) simplify
to more familiar regularity conditions in special cases of the NCP.
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Nondegenerate NCP. Considering now the special case of nondegenerate
NCP, we obtain a simpler regularity condition, related to 2-regularity for
nonlinear equations, that ensures that 2-regularity holds for some d ∈ N ,
and hence that the conditions of Theorem 3 are satisfied.

Theorem 4 Suppose that β = ∅. Then the NCP satisfies 2-regularity for
d ∈ N at the solution x∗ if and only if

(122) PNf
∗γ

(f ′
γ,γ)′(x∗; d)|Nf

γ

is nonsingular for d ∈ N , where

Nf
γ = {ξγ ∈ IR

|γ| | f ′
γ,γξγ = 0}, Nf

∗γ = {ξγ ∈ IR
|γ| | (f ′

γ,γ)T ξγ = 0}.

Proof Let the orthonormal matrices Z⊥ and Z be as in (114), and define two
additional orthonormal matrices Z̄ and Z̄⊥ such that the columns of Z̄⊥ span
ker f ′

γ,γ (and hence the space Nf
γ ) and the columns of Z̄ span range (f ′

γ,γ)T .

We have that Z̄ ∈ IR
|γ|×r and that Z̄⊥ ∈ IR

|γ|×(|γ|−r) and, by the funda-
mental theorem of linear algebra, that

[

Z̄ | Z̄⊥
]

is orthogonal. Specializing
2-regularity for d ∈ N (114) to the case of β = ∅, we have that 2-regularity
is equivalent to nonsingularity of the following matrix for some d ∈ N :





[

eT
i

]

i∈α

ZT
[

f ′
γ,α(x∗) f ′

γ,γ(x∗)
]

ZT
⊥(f ′

γ)′(x∗; d)





[

Iα 0
0
[

Z̄ Z̄⊥
]

]

,

where Iα is the identity matrix of dimension |α|. By forming the matrix
product, we find that it is block lower triangular. Therefore, nonsingularity
of the matrix product is equivalent to nonsingularity of the three (square)
diagonal blocks, which are

Iα, ZT f ′
γ,γ(x∗)Z̄, ZT

⊥(f ′
γ,γ)′(x∗; d)Z̄⊥,

which have dimensions |α|, r, and |γ| − r, respectively. It is easy to see that
ZT f ′

γ,γ(x∗)Z̄ is nonsingular by the definition of Z and Z̄. Since the columns

of Z⊥ defined earlier span the subspace Nf
∗γ , and since the columns of Z̄⊥

span the subspace Nf
γ , nonsingularity of ZT

⊥(f ′
γ,γ)′(x∗; d)Z̄⊥ is equivalent to

condition (122).

Nonlinear Equations. We now consider the case in which α = β = ∅, so that
the NCP reduces essentially to a system of nonlinear equations f(x) = 0
whose solution is at x = x∗. In the nondegenerate case in which f ′

γ,γ(x∗) ≡
f ′(x∗) has full rank n, we have from definition (108) that N = {0}, so that
x∗ is a nonsingular solution and Theorem 3 does not apply.

Consider now the case in which α = β = ∅ but f ′(x∗) has rank less than
n—essentially the case of degenerate nonlinear equations. By specializing the
discussion of nondegenerate NCP, we have from the definitions in Theorem 4
that

Nf = ker f ′(x∗), Nf
∗ = ker f ′(x∗)T ,
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where we have dropped the subscript γ. Hence, 2-regularity is satisfied for
some d ∈ N if

PNf
∗

(f ′)′(x∗; d)|Nf is nonsingular for some d ∈ N .

This is the 21-regularity condition for nonlinear equations (6).

NCP with a Modified Weak Regularity Condition. We now consider another
special case in which we remove the condition β = ∅ and assume that the
matrix f ′

γ,β∪γ(x∗) has full rank. This assumption is similar to the weak reg-

ularity condition of Daryina et al. [1], which is a full-rank assumption on
f ′

β∪γ,γ(x∗). (The two assumptions are identical when β = ∅ or f ′ is symmet-

ric, as is the case when f is the gradient of a scalar function.)

Theorem 5 If for d ∈ IR
n the set of n vectors in IR

n

{ei}i∈α ∪ {f
′
i(x

∗)}i∈γ ∪ {〈f
′
i(x

∗), d〉ei + dif
′
i(x

∗)}i∈β1∪(123)

{〈f ′
i(x

∗), d〉f ′
i(x

∗) + diei}i∈β2 ,

where β1 := β1(d) and β2 := β2(d), with

β1(d) := {i ∈ β | 〈f ′
i(x

∗), d〉 > −di},(124a)

β2(d) := {i ∈ β | 〈f ′
i(x

∗), d〉 ≤ −di},(124b)

is linearly independent, then 2-regularity (113) is satisfied by the NCP at x∗

for d ∈ IR
n. Conversely, if f ′

γ,β∪γ(x∗) has full rank and 2-regularity holds for

d ∈ IR
n at x∗, then the set of vectors (123) is linearly independent.

Proof Observe that if f ′
γ,β∪γ(x∗) has full rank, we can set Z = I and Z⊥

null, so the matrix in (113) reduces to





[

eT
i

]

i∈α

[max(〈f ′
i(x

∗), d〉,−di)ei −min(〈f ′
i(x

∗), d〉,−di)f
′
i(x

∗)]Ti∈β

f ′
γ(x∗)



 .

By partitioning the index set β according to (124), we see that nonsingularity
of this matrix is equivalent to linear independence of the vectors (123). This
proves the converse implication, since it assumes that f ′

γ,β∪γ(x∗). The first

implication follows by noting that linear independence of the set (123) implies
that f ′

γ,β∪γ(x∗) has full rank.

As discussed at the end of Section 4, 2-regularity for almost every d ∈ IR
n

is necessary for “directional denseness” of the starlike domain of convergence.
According to Theorem 5, it is sufficient to require linear independence of the
vectors (123) for the partition (β1, β2) of β defined in (124) for almost every
d ∈ IR

n. This condition is similar to the quasi-regularity condition of Izmailov
and Solodov [12, Definition 4.1]. It requires linear independence of the vectors
(123) for every partition (β1, β2) of β for some d ∈ IR

n.
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6.4 “Directional Denseness” of the Starlike Domain.

In this subsection, we give sufficient conditions for the starlike domain of
convergence R (33) (or Rα (50)), to be “directionally dense” at the solution
x∗.

Definition 8 A starlike domain R about x∗ ∈ IR
n is directionally dense at

x∗ if for almost every t ∈ S,

there exists a positive number Ct such that(125)

if ρ < Ct then x = x∗ + ρt ∈ R.

A direction t satisfies (125) if and only if t is not an excluded direction, as
defined in Section 2.

We recall the characterization of the excluded directions of R from (35):
A direction t ∈ S is excluded if and only if one of the following conditions is
true:

t ∈ Π−1
0 (0),(126a)

g(t) = 0, or(126b)

g(t)/‖g(t)‖ ∈ Π−1
0 (0).(126c)

In the following, we tailor the definitions of Π0 and g(t) to our application.
(We do not use the standardizing assumptions (10) in the following defini-
tions.) Consider the first and third conditions (126a) and (126c). We recall
the definition of Π0 : IR

n → IR,

(127) Π0(d) := det(PN∗
Ψ ′)′(x∗; d)|N , for d ∈ IR

n.

Observe that the condition d /∈ Π−1
0 (0) is equivalent to the 2-regularity

condition (110) for d ∈ IR
n, which is itself equivalent to nonsingularity of the

matrix (113) by Proposition 1. Further, if d ∈ N , the condition d /∈ Π−1
0 (0)

is equivalent to nonsingularity of the simpler matrix (114).
Now consider the second condition (126b). For x ∈ IR

n withΠ0(x−x∗) 6= 0
and ‖x − x∗‖ sufficiently small, recall that the Newton iterate from x is
x∗ + 1

2g(x − x
∗) + O(‖x − x∗‖2), where g : (IRn \Π−1

0 (0)) → N ⊆ IR
n is the

positively homogeneous vector defined by

g(x− x∗) = ρg(t) = PN (x− x∗)(128)

+ ((PN∗
Ψ ′)′(x∗; t)|N )−1(PN∗

Ψ ′)′(x∗; t)|N⊥
PN⊥

(x− x∗),

for x = x∗ + ρt, ρ = ‖x− x∗‖, and t ∈ S. As in (36), we have

(129) g(d) = 0⇔ (PN∗
Ψ ′)′(x∗; d)d = 0, for d ∈ IR

n \Π−1
0 (0).

From (112) and dividing the set β into β1(d) and β2(d) (124) for d ∈ IR
n, we

have

(130)
1

2
(Ψ ′

i)
′(x∗; d)d =











2di〈f ′
i(x

∗), d〉, i ∈ α,
2di〈f ′

i(x
∗), d〉, i ∈ β1(d),

−d2
i − 〈f

′
i(x

∗), d〉2, i ∈ β2(d),
2di〈f ′

i(x
∗), d〉 + x∗i 〈(f

′
i)

′(x∗; d), d〉, i ∈ γ.
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In order to express (PN∗
Ψ ′)′(x∗; d)d = 0 in terms of f , recall from the proof

of Proposition 1 that PN∗
w = 0 if and only if w = AT z for some z ∈ IR

n,
where AT z is the right-hand side of (116). That is, (PN∗

Ψ ′)′(x∗; d)d = 0 for
d ∈ IR

n if and only if there is some z ∈ IR
n for which

2di〈f
′
i(x

∗), d〉 = fizi, i ∈ α,(131a)

2di〈f
′
i(x

∗), d〉 = 0, i ∈ β1(d),(131b)

d2
i + 〈f ′

i(x
∗), d〉2 = 0, i ∈ β2(d),(131c)

2di〈f
′
i(x

∗), d〉+ x∗i 〈(f
′
i)

′(x∗; d), d〉 = x∗i 〈f
′
i , z〉, i ∈ γ.(131d)

If β 6= ∅ and f ′
β 6≡ 0, then (131b) and (131c) fail almost surely. This is

because, for any d ∈ IR
n, di is almost surely nonzero for i = 1, 2, · · · , n, and,

if f ′
β 6≡ 0, then 〈f ′

i , d〉 is almost surely nonzero for i ∈ β. In this case, we have

(PN∗
Ψ ′)′(x∗; d)d 6= 0 almost surely for d ∈ IR

n. If β = ∅, the conditions (131)
can be simplified as follows. Solve (131a) for zα. Substituting zα into (131d),
we find that (PN∗

Ψ ′)′(x∗; d)d = 0 for d ∈ IR
n if and only if there is some

zγ ∈ IR
|γ| that solves

2

(

diag
dγ

x∗γ

)

〈f ′
γ(x∗), d〉+ 〈(f ′

γ)′(x∗; d), d〉 − f ′
γ,α(x∗)zα = f ′

γ,γ(x∗)zγ .(132)

Since, by assumption, the (left) null spaceN∗ is nontrivial, ker(f ′
γ,γ(x∗))T (109)

is nontrivial. Hence, the complementary space range (f ′
γ,γ(x∗)) must be a

strict subspace of IR
|γ|. Thus, equation (132) is solvable only if the left-

hand side, which is an element of IR
|γ|, lies in the subspace spanned by

range (f ′
γ,γ(x∗)) as is required by the right-hand side. Although counterexam-

ples can be constructed, it seems likely that this containment will typically fail
for almost all directions d ∈ IR

n. Under this assumption, (PN∗
Ψ ′)′(x∗; d)d 6= 0

almost surely for d ∈ IR
n. (By positive homogeneity, this is equivalent to

(PN∗
Ψ ′)′(x∗; t)t 6= 0 almost surely for t ∈ S.)

In summary, the starlike domain of convergenceR is directionally dense (8)
at the solution x∗ if (1) nonsingularity of (113) holds for almost every
d = t ∈ S, (2) for almost every d ∈ IR

n, the system of equations (131)
fails to have a solution z ∈ IR

n, and (3) nonsingularity of (114) holds for
almost every d = g(t)/‖g(t)‖ with t ∈ S. Conditions (1) and (2) involve
only the NCP function f , while condition (3) involves Ψ through the defini-
tion of g. Condition (3) arises from (126c), which requires almost surely that
g(t)/‖g(t)‖ /∈ Π−1

0 (0) for t ∈ S. If we assume that N ∩Π−1
0 (0) = {0}, then

condition (3) is trivially satisfied by the fact that range g = N . The assump-
tion N∩Π−1

0 (0) = {0} appears in Section 1 under the name 2∀-regularity (4).
As discussed in Section 1, 2∀-regularity is a strong form of 2-regularity. In
particular, it implies isolation of the solution. However, by assuming 2∀-
regularity, we can write the conditions ensuring directional denseness of the
starlike domain of convergence entirely in terms of f :

Theorem 6 Consider a solution x∗ of NCP(f) for f : IR
n → IR

n with f ′

strongly semismooth at x∗. Suppose that x∗ is a singular solution in the sense
that N = ker f ′

γ,β∪γ(x∗) is nontrivial. The starlike domain of convergence R
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for Newton’s method (or Rα for α ∈ [1, 2) for the 2-step accelerated Newton’s
method (38) and (39)) applied to the nonlinear-equations reformulation Ψ(x)
of NCP(f) is directionally dense if the following conditions hold:

(i) the matrix (113) is nonsingular for almost every d ∈ IR
n,

(ii) the system of equations (131) has no solution z ∈ IR
n for almost every

d ∈ IR
n, and

(iii) the matrix (114) is nonsingular for every d ∈ N \ {0}.

6.5 A partial equivalence between b-regularity and 2ae-regularity.

We recall the definition of 2ae-regularity from Section 2.

Definition 9 (2ae-regularity)2ae-regularity holds for Ψ at x∗ if (PN∗
Ψ ′)′(x∗; d)|N

is nonsingular for almost every d ∈ N .

For the NCP equation reformulation Ψ , 2ae-regularity is equivalent to non-
singularity of (114) for almost every d ∈ N . The definition of b-regularity is
as follows.

Definition 10 (b-regularity) The solution x∗ satisfies b-regularity if for
every partition (β1, β2) of β, the vector set

{f ′
i(x

∗)}i∈β1∪γ ∪ {ei}i∈β2∪α

is linearly independent.

b-regularity is the one of the weakest known conditions implying superlinear
convergence of a nonsmooth Newton method [12, p. 398]. It is also one of the
weakest known conditions providing an error bound for the NCP problem [11,
p. 415]. Further, it is well-known that b-regularity implies isolation of the
solution. (See, for example, Corollary 3.3.9 of [6].) In Proposition 1 of [11],
Izmailov and Solodov prove that b-regularity implies 2T -regularity (7), a
condition that is itself sufficient for isolation of the solution.

When |β| 6= 1, there is no equivalence between 2ae-regularity and b-
regularity and neither condition implies the other. (As shown in Table 1, the
solutions of several test problems satisfy 2ae-regularity but fail b-regularity.
Conversely, the problem doubleknot satisfies b-regularity but not 2ae-regularity.
In fact, doubleknot satisfies strong regularity.)

The following propositions demonstrate the equivalence of 2ae-regularity
and b-regularity when |β| = 1 and f ′

γ,β∪γ(x∗) has full rank. Note that when
the latter condition holds, Z⊥ is null and we can take Z = I. The 2-regularity
matrices (113) and (114) thus become identical to the following matrix:

(133)









[

eT
i

]

i∈α
[

〈f ′
i(x

∗), d〉eT
i + dif

′
i(x

∗)T
]

i∈β1

−
[

〈f ′
i(x

∗), d〉f ′
i(x

∗)T + die
T
i

]

i∈β2

f ′
γ









,

for β1 = β1(d) and β2 = β2(d) (see (124)).
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Proposition 2 Suppose that x∗ is a b-regular solution of the NCP and that
|β| = 1. Then f ′

γ,γ(x∗) is nonsingular and 2-regularity (which is equivalent
to full rank of (133) for β1 = β1(d) and β2 = β2(d)) holds for almost every
d ∈ IR

n and, in addition, for all d ∈ N \ {0}.

Proof Let i0 be the index in {1, 2, . . . , n} such that β = {i0}. By taking
β1 = ∅ and β2 = β = {i0} in Definition 10, we have immediately that
f ′

γ,γ(x∗) has full rank.
We note first from (124) that either f ′

i0
(x∗) = −ei0 , or else the plane

{d | 〈f ′
i0

(x∗)+ei0 , d〉 = 0} partitions IR
n into two half-spaces. In the first case,

we have β2(d) = {i0} for all d ∈ IR
n, while in the second case we have that

{d |β1(d) = {i0}} and {d |β2(d) = {i0}} are both half-spaces of IR
n. In any

case, to prove that (133) is nonsingular for almost all d, it suffices to prove
that the following two matrices are nonsingular for almost all d ∈ IR

n:

(134)





[

eT
i

]

i∈α

〈f ′
i0(x

∗), d〉eT
i0 + di0f

′
i0(x

∗)T

f ′
γ



 ,





[

eT
i

]

i∈α

〈f ′
i0(x

∗), d〉f ′
i0 (x

∗)T + di0e
T
i0

f ′
γ



 .

We deal first with the special case of f ′
i0

(x∗) = τei0 for some τ . Clearly τ 6= 0
by b-regularity. By substituting into (134), we obtain





[

eT
i

]

i∈α

2τdi0e
T
i0

f ′
γ



 ,





[

eT
i

]

i∈α

(τ2 + 1)di0e
T
i0

f ′
γ



 .

Both of these matrices are obviously nonsingular whenever di0 6= 0, that is,
for almost all d ∈ IR

n.
When f ′

i0(x
∗) is not parallel to ei0 , there exists a d ∈ IR

n such that di0 = 1
and 〈f ′

i0
(x∗), d〉 = 0. For this d we have by b-regularity that both matrices

(134) are nonsingular. Noting that the determinants of the matrices (134) are
polynomials in the elements of d, we have that both matrices are nonsingular
for almost all d ∈ IR

n, as desired.
For the final claim, we show that the two matrices in (134) are nonsin-

gular for all d ∈ N \ {0}. (This part of the proof closely follows that of [12,
Proposition 4.3].) By b-regularity, and defining the space L as the range of
the set

(135) {ei}i∈α ∪ {f
′
i(x

∗)}i∈γ ,

we have that ei0 /∈ L and f ′
i0

(x∗) /∈ L. Noting that L ≡ N⊥ from (135) and
(108), we have for all d ∈ N \ {0} that

(136) 〈ei0 , d〉 = di0 6= 0, 〈f ′
i0(x

∗), d〉 6= 0.

If one of the matrices in (134) is singular for some d ∈ N \ {0}, we have that
either

〈f ′
i0(x

∗), d〉ei0 + di0f
′
i0(x

∗) ∈ L or 〈f ′
i0(x

∗), d〉f ′
i0(x

∗) + di0ei0 ∈ L,
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so by taking inner products with d ∈ N and using L ≡ N⊥, we obtain either

2〈f ′
i0(x

∗), d〉di0 = 0 or 〈f ′
i0(x

∗), d〉2 + d2
i0 = 0.

In either case, at least one of di0 and 〈f ′
i0

(x∗), d〉 is zero, contradicting (136)
and proving the claim.

We prove a partial converse of this result by modifying and extending the
argument given by Izmailov and Solodov [12, p. 400].

Proposition 3 Suppose that x∗ is a solution of the NCP with |β| = 1. Sup-
pose also that f ′

γ,β∪γ(x∗) has full rank |γ| and 2ae-regularity holds at x∗.
Then x∗ is b-regular.

Proof We show the contrapositive: Consider a solution x∗ of the NCP with
|β| = 1 and assume that f ′

γ,β∪γ(x∗) has full rank. Suppose that x∗ is not

b-regular. Then it cannot be true that (133) is nonsingular for almost every
d ∈ N .

As above, let L be the range of the set (135). Let β = {i0}, and assume
that b-regularity does not hold. If (135) is rank deficient then (133) is singular
and we are done. Otherwise, since b-regularity fails we must have either
f ′

i0
∈ L or ei0 ∈ L (or possibly both).
Suppose first that f ′

i0 ∈ L. Since L ≡ N⊥ by (108) we have for all d ∈ N
that 〈f ′

i0
(x∗), d〉 = 0. Therefore from (124), we have

di0 > 0 ⇔ β1(d) = {i0}, β2(d) = ∅(137a)

di0 ≤ 0 ⇔ β1(d) = ∅, β2(d) = {i0}.(137b)

In the case (137a), (133) is singular since

〈f ′
i0(x

∗), d〉ei0 + di0f
′
i0(x

∗) = di0f
′
i0(x

∗) ∈ L.

Hence for (133) to be nonsingular for almost all d ∈ N , we must have (137b)
satisfied for almost all d ∈ N . Since N is a subspace, this fact implies that
di0 = 0 for all d ∈ N . We therefore have that

(138) 〈f ′
i0(x

∗), d〉f ′
i0(x

∗) + di0ei0 = 0

for almost all d ∈ N , so that (133) is singular for almost all d ∈ N .
We now consider the case of ei0 ∈ L. Since L ≡ N⊥, we have that di0 = 0

for almost all d ∈ N . Thus from (124) we have

〈f ′
i0(x

∗), d〉 > 0 ⇔ β1(d) = {i0}, β2(d) = ∅(139a)

〈f ′
i0(x

∗), d〉 ≤ 0 ⇔ β1(d) = ∅, β2(d) = {i0}.(139b)

In case (139a), (133) is singular since

〈f ′
i0(x

∗), d〉ei0 + di0f
′
i0(x

∗) = 〈f ′
i0(x

∗), d〉ei0 ∈ L.

Hence for (123) to be linearly independent, we must be in the case (139b)
for almost all d ∈ N . Since N is a subspace, we thus have 〈f ′

i0
(x∗), d〉 = 0 for

almost every d ∈ N . This fact implies that (138) holds for almost all d ∈ N ,
so that (133) is singular for almost all d ∈ N .



Newton’s Method for Nonlinear Equations with Semismooth Jacobian 41

We have shown that when |β| = 1 and f ′
γ,β∪γ(x∗) has full rank then

2ae-regularity is equivalent to b-regularity. However, when f ′
γ,β∪γ(x∗) is rank

deficient, 2ae-regularity may hold, but b-regularity necessarily fails.
Finally, we mention that b-regularity of a singular solution implies the

regularity requirement (PN∗
Ψ ′)′(x∗; d)d 6= 0 (129) for d restricted to N \ {0}.

This observation can be justified as follows. By b-regularity and N 6= {0},
we necessarily have β 6= ∅. Using the definition of N (108), we have N⊥ =
range{(ei)i∈α, (f

′
γ)T }. From b-regularity, for any i ∈ β, we have ei /∈ N⊥ and

f ′
i /∈ N⊥. Hence, for d ∈ N \ {0}, we have di 6= 0 and 〈f ′

i , d〉 6= 0, ensuring
that conditions (131b) and (131c) fail, regardless of the partition (β1, β2) of β.
Thus the entire condition (131), which is equivalent to (PN∗

Ψ ′)′(x∗; d)d = 0,
fails for d ∈ N \ {0}.

7 Numerical Results on Simple NCPs

We describe here some computational results obtained from a simple test set
of NCPs of small dimension, defined in Appendix C. Properties of the prob-
lems are shown in Table 1. If the problem has more than one default starting
point/solution pair, the pair’s number is given following the problem name.
These starting points and solutions are listed in Table 3. The convergence
rate shown is for Newton’s method with unit step length. We also tabulate
the sizes of the sets α, β, and γ, and the satisfaction of various rank and reg-
ularity properties at the solution in question. (2T -regularity is defined in (7),
2ae-regularity is defined in (5). For a definition of b-regularity, see Definition
(3.3.10) of [6].)

The solutions of our test problems are all isolated except for the solu-
tion x∗ = (0, 1) of the problems affknot1 and quadknot. 2T -regularity fails
at this solution for both of these problems. This is consistent with the fact
that 2T -regularity is sufficient for isolation. In contrast, 2ae-regularity, that
is, 2-regularity for almost every d ∈ N , is not sufficient for isolation of the
solution. In fact, it holds for quadknot at this solution. For quadknot, we
observe convergence to this solution from arbitrary nearby starting points.
For affknot1, 2ae-regularity fails, and we observe convergence to this solu-
tion only from points x0 for which the projection of x0 − x∗ onto the null
space N (108) gives a direction for which 2-regularity holds. Specifically, for
affknot1, N = {ke2 | k ∈ IR}. 2-regularity along d = ke2 fails if k ≥ 0 and
holds if k < 0. From starting points x0 = (x1, x2), if x2 < 1, we observe con-
vergence to the solution x∗ = (0, 1) with rate 1

2 , while if x2 > 1, we observe

one-step convergence to the solution (0, x2).
Despite failing 2-regularity for almost every d ∈ N , the problem affknot1

is 2-regular for almost every d ∈ IR
n. Only affknot1, quad1, and quad2 satisfy

2-regularity for directions in N (or IR
n) having positive measure less than 1.

As we have discussed, 2-regularity holds for affknot1 on half of the directions
in N . The problems quad1 and quad2 satisfy 2-regularity for half of the
directions in both N and IR

n. As a result, convergence to the solution from
nearby points occurs with two different rates. The first starting points for
quad1 and quad2 demonstrate convergence along a direction satisfying 2-
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Table 1 Convergence rate of Newton’s Method on Ψ for the Simple NCP test
problems, showing regularity properties. (• = property satisfied, blank = property
not satisfied, — = property not applicable.)

Problem, s.p. n dim N cgce rate |α| |β| |γ| full rank regularity

f ′

γ,γ f ′

γ,β∪γ b 2T 2ae

quarp, 1 1 0 suplin 1 0 0 — — • — —
aff1 2 0 suplin 1 0 1 • • • — —
DIS61, 2 2 0 suplin 1 0 1 • • • — —
quarquad, 1 2 1 1/2 0 1 1 • • • • •
affknot1 2 1 1/2 0 1 1 •
affknot2 2 1 1/2 0 1 1 • • • • •
quadknot 2 2 1/2 0 1 1 •
munson4 2 2 1/2 0 0 2 • •
DIS61, 1 2 2 1/2 0 1 1 • •
DIS64 2 2 1/2 0 2 0 — — • • •
ne-hard 3 2 1/2 0 2 1 • • •
doubleknot 4 2 1/2 0 2 2 • • • • •
quad1,1 2 1 1/2 0 1 1 • •
quad2,1 2 2 1/2 0 2 0
quad1,2 2 1 2/3 0 1 1 • •
quad2,2 2 2 2/3 0 2 0
quarquad, 2 2 1 3/4 1 0 1
quarp, 2 1 1 3/4 0 0 1
quarn 1 1 3/4 0 0 1

regularity, while the second starting points demonstrate convergence along a
direction failing 2-regularity. As expected, the convergence rate is 1

2 for the
first starting points, and slower for the second starting points.

Of these problems, all but quarquad2, quarp,2, and quarn satisfy 2-
regularity (110) for some d ∈ IR

n and most satisfy 2-regularity for almost
every d ∈ N as can be seen from Table 1. Further, most of these problems
also satisfy 2-regularity for almost every d ∈ IR

n; only the problems fail-
ing 2ae-regularity, except for affknot1, fail to be 2-regular for almost every
d ∈ IR

n.
In Table 2, we report the numbers of iterations required for local conver-

gence of Newton’s method and the Accelerated-Newton method of Section 5
for the subset of Simple NCP test problems and starting points giving conver-
gence rates for Newton’s method of 1/2. This is the subset of problems with a
nontrivial null space N for which 2ae-regularity may hold. (In fact, affknot1,
quad1,1, and quad2,1 have convergence rates of 1

2 for Newton’s method but
do not satisfy 2ae-regularity. Despite the absence of 2ae-regularity, the ac-
celeration technique of Section 5 hastens the convergence.) We detect linear
convergence at a rate of 1/2 by applying the following tests to successive
Newton steps pi:

∣

∣

∣

∣

‖pi‖

‖pi−1‖
−
‖pi−1‖

‖pi−2‖

∣

∣

∣

∣

< cCauchy and

∣

∣

∣

∣

‖pi‖

‖pi−1‖
−

1

2

∣

∣

∣

∣

< cLinear

with cCauchy = .005 and cLinear = .01. If both tests are satisfied at itera-
tion i, we scale the next step pi+1 (and every second step thereafter) by the
acceleration factor α = 1.9. Convergence is declared when ‖Ψ(x)‖ ≤ 10−11.
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Table 2 Performance of Accelerated Newton Method (with α = 1.9) for the NCP
test problems for which the convergence rate of pure Newton is linear with factor
1/2. We show iterations for the pure Newton method, iterations for Accelerated
Newton Method, and the iterations required by the Accelerated Newton Method
in the accelerated phase, after a convergence rate of 1/2 had been detected in the
pure Newton method.

Problem, Starting Point Newton Iters Accel Newton Iters Accel Phase Iters

quarquad,1 16 10 5
affknot1 20 10 7
affknot2 19 10 5
quadknot 18 8 5
munson4 19 12 4
DIS61, 1 19 12 5
DIS64 21 11 7
ne-hard 25 19 5
doubleknot 22 14 5
quad1, 1 15 9 4
quad2, 1 20 13 5

The final column of Table 2 shows the number of steps taken in the
“accelerated phase,” following detection of a linear convergence rate in the
pure Newton method. Note that the accelerated phase was present for all
problem instances and that the number of steps taken in this phase is similar
for all problems. For α = 1.9, the convergence rate in the accelerated phase
predicted by Theorem 2 was observed for all problems.

A Convergence of Newton’s Method: Details of Proof

We present here the remaining details of the proof of Theorem 1. The analysis
follows that of Griewank [8] closely, but various aspects of it are referred to in our
discussion of the accelerated Newton’s method in Section 5, so we state it in full
here.

We pick up the thread from the end of Section 4.

A.1 The Form of a Newton Step from x ∈ R̄

The content of this subsection is taken directly from [8] (with k set to 1); we include
it here for completeness and readability of this section and for further reference in
Section 5.

We consider the form of the Newton step from a point x = ρt in the domain of
invertibility R̄ defined in (19) to the point x̄, where

(140) x̄ := x− F ′(x)−1F (x).

For x ∈ R̄, we have σ(t) > 0. In the remainder of this discussion, we drop
the argument t from σ(t) and dependence of various matrix quantities on x. Using
positivity of σ and (13), it can be checked that the following expressions from [8]
are also true here.

F ′(x)−1 =

»

G−1 −G−1CE−1

−E−1DG−1 E−1 +E−1DG−1CE−1

–

,
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(see [8, (12)]),where

(141) G−1(x) = ρ−1B̄−1(t) + σ−2O(ρ0) = σ−2O(ρ−1),

(see [8, (13)]). As in the proof of [8, Lemma 4.1] with k = 1, we have

F (x) =

»

1

2
G+O(ρ2) 1

2
C +O(ρ2)

1

2
D +O(ρ2) E +O(ρ)

–

x.

Using (13) to aggregate the order terms, as in Griewank [8], we have

F ′(x)−1F (x) =

»

1

2
I + ‖G−1‖O(ρ2) − 1

2
G−1C + ‖G−1‖O(ρ2)

O(ρ) + ‖G−1‖O(ρ3) I +O(ρ) + ‖G−1‖ρ2

–

x.

Due to (13), (141), and the positivity of σ, we have

G−1(x)C(x) = B̄−1(t)C̄(t) + σ−2O(ρ).

Hence,

F ′(x)−1F (x) =(142)
»

1

2
I + ‖G−1‖O(ρ2) − 1

2
B̄−1(t)C̄(t) + σ−2O(ρ) + ‖G−1‖O(ρ2)

O(ρ) + ‖G−1‖O(ρ3), I +O(ρ) + ‖G−1‖ρ2

–

x.

Since ‖G−1‖ = σ−2O(ρ−1), we can write

(143) F ′(x)−1F (x) =

»

1

2
I − 1

2
B̄−1(t)C̄(t)

0 I

–

x− e(x),

where the remainder vector e(x) can be bounded as follows:

(144) ‖e(x)‖ ≤ δ
‖x‖2

σ(x/‖x‖)2 = δ
ρ2

σ2
,

where the constant δ is positive and finite; in fact, it is a product of finite powers of
the constants in the O(·) terms in (13) which, as we have already noted, are finite.
The definition of r(t) (34) uses this value of δ.

Using (143), we have

(145) x̄ = x− F ′(x)−1F (x) =

»

1

2
I 1

2
B̄−1(t)C̄(t)

0 0

–

x+ e(x) =
1

2
g(x) + e(x),

where g(x) is defined in (32). In other words, if xk = ρktk for tk ∈ S is sufficiently
close to x∗ and σ(tk) is bounded below by a positive number, then the Newton
iterate xk+1 satisfies

xk+1 =
1

2
g(xk) +O(‖xk‖2).

The proof provides a single positive lower bound for σ(tk) for all subsequent Newton
iterates {xk}. Hence, 1

2
g(xk) is a first order approximation to the Newton step from

xk.
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A.2 Entering Ws0

Denoting the sequence of Newton iterates by {xj}j≥0, we use the following associ-
ated notation in the remainder of this section:

(146) ρj = ‖xj‖, tj = xj/ρj , σj = σ(tj), sj = g(xj)/‖g(xj)‖.

For s ∈ S , let ψj(s) denote the angle between tj = xj/ρj and s, that is,

(147) ψj(s) = cos−1 tTj s.

We show that if x0 = ρ0t0 ∈ R, then

sinψ1(s0) < sin φ̂(s0) and ρ1 < ρ̂(s0),

so that x1 ∈ Ws0 . In the next subsection, we show that all subsequent iterates
remain in R̄ and converge linearly to x∗.

In the analysis below, we make repeated use of the following relations. Let ωv,s

denote the angle between two vectors v ∈ IR
n and s ∈ S . This angle must lie in the

range [0, π]. If ωv,s ≤ π/2, we have

(148) sinωv,s = min
λ∈IR

‖λv − s‖,

as well as sinωv,s ≥ 0. If v is a linear subspace rather than a vector, ωv,s ≤ π/2
trivially, and the above relations hold.

By applying (145) to the Newton step from xj to xj+1, we have

(149)

‚

‚

‚

‚

xj+1 − 1

2
g(xj)

‚

‚

‚

‚

=

‚

‚

‚

‚

xj − F ′(xj)
−1F (xj) − 1

2
g(xj)

‚

‚

‚

‚

= ‖e(xj)‖ ≤ δ
ρ2

j

σ2
j

,

By setting j = 0 in (149) and using x0 ∈ R, we have

(150) sinψ1(s0) = min
λ∈IR

‚

‚

‚

‚

λx1 − g(x0)

‖g(x0)‖

‚

‚

‚

‚

≤
„

1

2
‖g(t0)‖

«−1

δ
ρ0

σ0
2
.

The equality in (150) is a consequence of (148), provided that ψ1(s0) ≤ π/2. (We
verify the latter fact in Appendix B.) By the third part of the definition of r(t)

(34), we have from (150) that sinψ1(s0) < sin φ̂(s0) and therefore ψ1(s0) < φ̂(s0).
It remains to show that ρ1 < ρ̂(s0).

Let θj+1 denote the angle between the iterate xj+1 and the null space N. By
dividing (149) by ρj+1, we obtain

(151) sin θj+1 = min
y∈N

‖tj+1 − y‖ ≤ δ
ρ2

j

σ2
jρj+1

, for j = 0, 1, 2, . . . .

The equality in (151) is valid because N is a linear subspace. (For the starting
point we have only the trivial upper bound sin θ0 ≤ 1.) By the definition of g (32),
we have

xj − g(xj) =

»

xj cos θj

xj sin θj

–

−
»

I B̄−1(tj)C̄(tj)
0 0

– »

xj cos θj

xj sin θj

–

(152)

=

»

−B̄−1(tj)C̄(tj)xj sin θj

xj sin θj

–

.
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By combining (149) and (152), we obtain
‚

‚

‚

‚

xj+1 − 1

2
xj

‚

‚

‚

‚

≤
‚

‚

‚

‚

1

2
(xj − g(xj))

‚

‚

‚

‚

+

‚

‚

‚

‚

xj+1 − 1

2
g(xj)

‚

‚

‚

‚

(153)

≤ 1

2

`

‖ − B̄−1(tj)C̄(tj)‖ + 1
´

‖xj sin θj‖ + δ
ρj

2

σ2
j

≤
„

1

2

‖C̄(tj)‖ + σj

σj
sin θj + δ

ρj

σ2
j

«

ρj

≤
„

1

2

c

σj
sin θj + δ

ρj

σ2
j

«

ρj ,

where the final inequality follows from (23). Dividing by ρj and applying the inverse
triangle inequality, we find that

(154)

˛

˛

˛

˛

ρj+1

ρj
− 1

2

˛

˛

˛

˛

≤ 1

2

c

σj
sin θj + δ

ρj

σj
2
.

Upon setting j to zero and rearranging (154), we obtain

(155) ρ1 ≤ ρ0

„

1

2

„

1 +
c

σ0

«

+ δ
ρ0

σ0
2

«

.

From x0 ∈ R we have ρ0 < r(t0) (33), so by the second part of the definition (34),
we have

ρ0 <
σ2

0 ρ̂(s0)

cσ0 + σ2
0

=
ρ̂(s0)

1 + c/σ0

,

and also

ρ0 <
σ2

0 ρ̂(s0)

2δrb
≤ σ2

0 ρ̂(s0)

2δρ0

,

where the latter inequality follows from ρ0 < r(t0) ≤ r̄(t0) ≤ rb (see (34), (20)).
Applying these inequalities to (155) yields

ρ1 <
1

2
ρ̂(s0) +

1

2
ρ̂(s0) = ρ̂(s0).

We conclude that if x0 ∈ R, then x1 ∈ Ws0

A.3 Convergence from Ws0

We next apply the analysis of [8, Section 5], an inductive argument proving linear
convergence from inside the domain Ws)

.

As in (146), we define s0 := g(t0)/‖g(t0)‖. From any initial point x1 ∈ Ws0 , we
show that the sequence of Newton iterates {xj = ρjtj}j≥1 maintains the properties

(156) ρj < ρ̂(s0) ≡ ρ̂, θj < φ̂(s0) ≡ φ̂, ψj(s0) ≡ ψj < φ(s0) ≡ φ.

By the first and third properties, the iterates remain in Is0 (29). Further, because
of (22), the third property implies that

(157) σj ≡ σ(tj) ≥ σ̂(s0) ≡ σ̂ > 0,

a fact that is used often in the proof. We also use the abbreviation

(158) q ≡ q(s0).
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For x1 ∈ Ws0 , the first and third properties follow immediately from the pre-
vious subsection, as does the second property upon observing that s ∈ N implies
sin θj ≤ sinψj(s).

We assume that (156) holds for all 1 ≤ i ≤ j. From (154) we have for all
i = 1, 2, . . . , j that

˛

˛

˛

˛

ρi+1

ρi
− 1

2

˛

˛

˛

˛

≤ 1

2

c

σi
sin φ̂+ δ

ρ̂

σi
2

from (154) and (156)

≤
„

1

2

c

σi
+

(1 − q)σ̂2

2σi
2

«

sin φ̂ from (26) and (157)

≤ c/σi + 1 − q

2
sin φ̂ from (157)

≤ q

2
, from (25).

Therefore,

(159)
1 − q

2
≤ ρi+1

ρi
≤ 1 + q

2
, for i = 1, 2, . . . , j.

From the right inequality of (159), we have

(160) ρi+1 ≤ ρ1

„

1 + q

2

«i

< ρ̂, for i = 1, 2, . . . , j.

From (151), we have

sin θi+1 ≤ δρ2
i

σ2
i ρi+1

for i = 1, 2, . . . , j

(161)

≤
„

δρi

σ2
i

«„

2

1 − q

«

for i = 1, 2, . . . , j, by the left inequality in (159)

<

„

δρ̂

σ̂2

«„

2

1 − q

«

for i = 1, 2, . . . , j, by (156)

= sin φ̂ for i = 1, 2, . . . , j, by the definition of ρ̂ (26).

Let ∆ψj be the angle between two consecutive iterates xj and xj+1. From (153)
we have the upper bound
(162)

sin∆ψi = min
λ∈IR

‖λxi+1−ti‖ =
2

ρi
min
λ∈IR

‖λxi+1−1

2
xi‖ ≤ c

σi
sin θi+

2δρi

σ2
i

, for i = 1, 2, . . . , j.

In Appendix B, we verify the first equality in (162) by showing that ∆ψi ≤ π/2 for
i = 1, 2, . . . , j.

By the definition of ∆ψi, we have

ψj+1 ≤ ψ1 +

j
X

i=1

∆ψi.

Using ψ1 < φ̂ < π/2, ∆ψi ≤ π/2, the monotonicity and positivity of sine on
[0, π/2], and the identity sin(α + β) = sinα cosβ + sin β cosα for angles α and β,
we have

(163) sinψj+1 ≤ sin φ̂+

j
X

i=1

sin∆ψi.
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From (162) and (157), we have

(164)

j
X

i=1

sin∆ψi ≤ c

σ̂

 

sin θ1 +

j−1
X

i=1

sin θi+1

!

+
2δ

σ̂2

j
X

i=1

ρi.

Using (160), the bound ρ1 ≤ ρ̂, and the definition of ρ̂ (26), we have the upper
bound

j
X

i=1

ρi ≤ ρ1

2

1 − q
≤ σ̂2

δ
sin φ̂.

By combining with bounds like those used in (161), we obtain the upper bound

j−1
X

i=1

sin θi+1 ≤ 2δ

σ̂2(1 − q)

j−1
X

i=1

ρi ≤ 2

(1 − q)
sin φ̂.

Hence, from (164), we have

(165)

j
X

i=1

sin∆ψi ≤ c

σ̂

„

sin θ1 +
2

(1 − q)
sin φ̂

«

+ 2 sin φ̂.

From (163), by adding sin φ̂ to this sum and using θ1 ≤ φ̂ and the first inequality

implicit in the definition of sin φ̂ (25), we have

sinψj+1 <

„

1 +
c

σ̂

„

1 +
2

1 − q

«

+ 2

«

sin φ̂

≤ q

1 − q

»

(3 − q)c/σ̂ + (3 − 3q)

c/σ̂ + 1 − q

–

=
q

1 − q

»

(3 − q)(c/σ̂ + 1 − q) + q(1 − q)

c/σ̂ + 1 − q

–

<
3q

1 − q
.

Since q = 1

4
sinφ ≤ 1

4
, we find that sinψj+1 < sinφ. From (162) and (166), we have

sin∆ψj =
2

ρj
min
λ∈IR

‖λxj+1 − 1

2
xj‖ ≤ 2

ρj
‖xj+1 − 1

2
xj‖

≤ 2

ρj

q

2
ρj = q < sinφ.

Combining this inequality with ∆ψj ≤ π
2
, we have ∆ψj < φ. By definition, we

must have ψj+1 ≤ ψj +∆ψj . Using our assumption ψj < φ and ∆ψj < φ, we have
ψj+1 < 2φ ≤ π

2
. Along with sinψj+1 < sinφ, this implies that ψj+1 < φ. Since

θj+1 ≤ ψj+1 and ψj+1 ≤ π
2
, we have that (161) implies θj+1 < φ̂.

At this point, we have shown that ρj+1 ≤ ρ̂ (160), θj+1 < φ̂ (161), and ψj+1 < φ
(previous paragraph). Hence, (156) continues to hold if j is replaced by j + 1, and
our inductive argument is complete. We conclude that all iterates remain in the set

Is0 := {x = x∗ + ρt | t ∈ S , cos−1(tT s0) < φ(s0), 0 < ρ < ρ̂(s0)},

which is contained in R̄; see (31).
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Noting that (160) and (161) hold for all j ≥ 1, we see that ρj and θj go to zero
as j goes to infinity. Using these facts in (154), we find that

lim
j→∞

ρj+1

ρj
=

1

2
.

This concludes the proof of Theorem 1, and therefore the extension of Griewank’s
linear convergence result [8] to Assumption 1.

B Verification of applications of (148)

In this section, we justify the use of the formula (148) by showing that the angle
in question is bounded above by π/2 in each case. As in earlier discussions, we let
ωv,s denote the angle between two vectors v ∈ IR

n, s ∈ S . We use αv/ss to denote
the projection of v onto s, so that αv/s = v · s = ‖v‖ cosωv,s. In each case below,
we show that αv/s ≥ 0, so that ωv,s ≤ π/2, as desired.

First, we justify the equality in (150). Let x1g := x1/‖gt0‖, so that αx1g/s0
s0

is the projection of x1g onto s0. By setting j = 0 in (149) and noting that g(x0) =
ρ0g(t0), we have

‚

‚

‚
x1 − ρ0

2
g(t0)

‚

‚

‚
≤ δ

ρ2
0

σ2
0

.

Dividing by ‖g(t0)‖, we have

‚

‚

‚x1g − ρ0

2
s0

‚

‚

‚ ≤ δ
ρ2
0

σ2
0‖g(t0)‖

.

By expressing the vector on the left as a sum of its components parallel to and
orthogonal to x0, we obtain

‚

‚

‚
αx1g/s0

s0 − ρ0

2
s0

‚

‚

‚
≤ δ

ρ2
0

σ2
0‖g(t0)‖

.

Hence, we have

αx1g/s0
≥ ρ0

2
− δ

ρ2
0

σ2
0‖g(t0)‖

>
ρ0

2

„

1 − 2δ
r(t0)

σ2
0‖g(t0)‖

«

≥ ρ0

2

“

1 − sin φ̂(s0)
”

> 0,

where the second inequality follows from the ρ0 < r(t0), the third inequality follows
from the third part of the definition of r(t) (34), and the final (strict) inequality

follows from φ̂ ≤ φ ≤ π
4
. We conclude that αx1g/s0

> 0, as required.

Second, we verify the equality in (162) by showing that αxi+1/ti
> 0. By (153),

we have for i ∈ {1, 2, . . . , j},
‚

‚

‚

‚

xi+1 − 1

2
xi

‚

‚

‚

‚

≤
„

1

2

c

σi
sin θi + δ

ρi

σ2
i

«

ρi(166)

<

„

1

2

c

σ̂
sin φ̂+ δ

ρ̂

σ̂2

«

ρi by (156)

=
1

2

“ c

σ̂
+ 1 − q

”

sin φ̂ρi by (26)

≤ q

2
ρi by (25).
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By separating into components parallel to and orthogonal to ti, we have that
‖αxi+1/ti

ti− 1

2
ρiti‖ ≤ (q/2)ρi, so that αxi+1/ti

≥ 1

2
(1−q)ρi > 0 for i ∈ {1, 2, . . . , j},

where the final inequality uses q < 1 by (24).
Third, we verify (71) by showing that ∆ψ1 < π/2. From (72),

‖x2 − (1 − α/2)x1‖ < α

2
qαρ1.

Hence, by the usual argument,

‖αx2/t1t1 − (1 − α/2)ρ1t1‖ ≤ α

2
qαρ1,

which implies that

αx2/t1 ≥
“

1 − α/2 − α

2
qα

”

ρ1 =

„

1 − α/2 − α

2

(1 − α/2)

4
sinφ

«

ρ1

> (1 − α/2)

„

1 − sinφ

2

«

ρ1 > 0

where we have used the definition of qα (42) for the equality and the fact that
α < 2 for the final inequality. Therefore, the angle between x2 and x1 must be less
than π/2.

Fourth, we use (91) to justify (98) as follows. From (91), we have by the usual
argument that

‚

‚

‚

‚

αx2k/t2k−2
t2k−2 − 1

2

“

1 − α

2

”

ρ2k−2t2k−2

‚

‚

‚

‚

≤ 1

2

“

1 − α

2

”

qαρ2k−2,

so that

αx2k/t2k−2
≥ 1

2

“

1 − α

2

”

(1 − qα)ρ2k−2 > 0.

Fifth, we justify (102). Since (83) holds for k = j, we have

‚

‚

‚

‚

αx2j+1/t2j
t2j − 1

2
ρ2jt2j

‚

‚

‚

‚

<
qα

2
ρ2j .

Therefore αx2j+1/t2j
≥ 1

2
(1 − qα)ρ2j > 0 as desired.

C Simple NCP Test Set: Problem Descriptions

Below we list the Simple NCP test problems, their solutions, and the corresponding
starting points used to initialize Newton’s method. A solution is any x satisfying

0 ≤ x ⊥ f(x) ≥ 0,

and we denote such x by x∗. Table 3 lists the starting point x0 that was used for
each solution x∗.

1. quarp

f(x) = (1 − x)4.

2. aff1

f(x) =

»

x1 + 2x2

x2 − 1

–

.
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3. DIS61 ([1, Example 6.1])

f(x) =

»

(x1 − 1)2

x1 + x2 + x2
2 − 1

–

.

4. quarquad

f(x) =

»

−(1 − x1)
4 + x2

1 − x2
2

–

.

5. affknot1

f(x) =

»

x2 − 1
x1

–

.

6. affknot2

f(x) =

»

x2 − 1
x1 + x2 − 1

–

.

For illustration, we consider the properties of this problem in some detail. The
unique solution is x∗ = (0, 1)T , where f(x∗) = (0, 0)T . Hence α = ∅, β = {1},
and γ = {2}. We have

Ψ ′(x∗) =

»

0 0
2 2

–

.

By inspection, we have N = {(a,−a)T , a ∈ IR} and N∗ = {(b, 0)T , b ∈ IR}.
Thus,

PN∗
=

»

1 0
0 0

–

.

Consider the unit vector d = 1√
2
(1,−1)T , whose span is N. Using

(Ψ ′)′(x∗; d) =
√

2

»

−1 1
−1 −1

–

,

we have

B̄(d) =

»

1 0
0 0

–

.
√

2

»

−1 1
1 1

–˛

˛

˛

˛

N

=
√

2

»

−1 1
0 0

–

.

Consider any y = (a,−a)T ∈ N \{0}. We have B̄(d)y =
√

2(−a, a)T 6= 0. Thus,
B̄(d) is nonsingular, and x∗ is a 2ae-regular solution of NCP(f).

7. quadknot

f(x) =

»

x2 − 1
x2

1

–

.

8. munson4 (from MCPLIB [17])

f(x) =

»

−(x2 − 1)2

−(x1 − 1)2

–

.

9. DIS64 ([1, Example 6.4])

f(x) =

»

−x1 + x2

−x2

–

.

10. ne-hard (from MCPLIB [17])

f(x) =

2

4

sin x1 + x2
1

x3
2 + x1x3

x2
3 − 200 + x1x2

3

5 .
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Table 3 Starting Point/Solution Pairs

Problem, s.p. x0 x∗

quarp, 1 0.1 0
aff1 (0.1, 0.9) (0,1)

DIS61, 2 (0.2, 0.85) (0, (
√

5 − 1)/2)
quarquad, 1 (0.1, 0.9) (0, 1)
affknot1 (0.9, 0.1) (0, 1)
affknot2 (0.5, 0.5) (0, 1)
quadknot (0.5, 0.5) (0, 1)
munson4 (0, 0) (1, 1)
DIS61, 1 (1.5, -0.5) (1, 0)
DIS64 (2, 4) (0, 0)

ne-hard (10, 1, 10) (0, 0,
√

200)
doubleknot (0.5, 0.5, 0.5, 0.5) (1, 0, 0, 1)
quad1,1 (0.9, -0.1) (1, 0)
quad2,1 (-1, -1) (0, 0)
quad1,2 (0.9, 0.1) (1, 0)
quad2,2 (1, 1) (0, 0)
quarquad, 2 (0.9, 0.1) (1, 0)
quarp, 2 0.9 1
quarn 0.9 1

11. doubleknot

f(x) =

2

6

4

1 − x1 + x2 + x3

x1 − 1
x4 − 1

1 + x3 − x4

3

7

5
.

12. quad1

f(x) =

»

x1 − 1
x2

2

–

.

13. quad2

f(x) =

»

x2
1

x2

–

.

14. quarn
f(x) = −(1 − x)4
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